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Abstract 

 

Glacier surging is an internally triggered instability. Surge-type glaciers periodically alternate between 

long periods of slow flow (the quiescent phase) and short periods of fast flow (the surge phase). 

Surging yields down-glacier transport of mass and often results in large and sudden glacier advances. 

The surging phenomenon has always challenged the notion of normality in glacier flow dynamics. 

The mechanisms of surging remain poorly understood. Observation of different surge behaviors 

across the world has been used as evidence for the development of glacier type-specific surge 

models that lack transferability and representativeness. Although only about 1% of the entire glacier 

population has been observed to surge, the surge phenomenon questions the completeness of our 

understanding of glacier dynamics.  

This thesis uses different perspectives to gain a new understanding on the global, regional and 

local controls on surging and reconcile the mechanisms of surging under a single model. Through a 

geodatabase of surge-type glaciers, datasets of climate and glacier geometry variables and a global 

distribution model we explore the controls on the non-random distribution of surge-type glaciers on 

a global scale. The highest densities of surge-type glaciers are found in a well-defined climatic 

envelope bounded by temperature and precipitation thresholds, while glacier geometry exerts a 

second-order control on their distribution. We introduce the enthalpy cycle model which relates flow 

oscillations to imbalances between enthalpy gains and losses. Enthalpy balance is satisfied outside of 

the optimal surge envelope, in cold and dry or warm and wet regions. However, the intermediate 

conditions of the optimal surge envelope prevent enthalpy balance to be reached, yielding dynamics 

cycling of glacier flow. 

Thermal switch models have been used to explain surging of polythermal glaciers. We 

reconstruct the evolution of the thermal regime of six glaciers in Svalbard from existing and new 

data. The large and thick surge-type glaciers of our sample do not return to a cold-based conditions 

between surges, demonstrating that thermal switching cannot apply to surges of large glaciers in 

Svalbard. On the other hand, the thin and mostly cold glaciers display evidence of former warm-

based thermal regimes, showing that switches in climate can make glaciers go in and out of surging. 

We demonstrate that the concept of enthalpy cycling can explain surge and surge-like behavior in 

Svalbard. 

Finally, we investigate the role played by local controls on the initiation and development of 

the surges of two large polythermal glaciers in Svalbard. First, passive seismics and DEM differencing 

enabled the reconstruction of the chronology of events that led to the catastrophic surge of the 

Nathorstbreen glacier system. Removal of backstress by the failure of the frozen glacier terminus 



triggered the catastrophic collapse of one of the tributaries of the glacier system, source of unusual 

seismic activity. Secondly, the upward propagating surge of Svalbard tidewater glacier 

Aavatsmarkbreen is understood in terms of changes in the force balance. Glacier retreat and thinning 

caused a rapid steepening of the glacier snout, which in turn increased the driving stresses 

substantially. Development of crevasse fields during the late quiescent and surge phases allowed 

transfer of surface meltwater to the bed, increasing basal water storage and causing ice acceleration. 

The increase in driving stress and surface-to-bed drainage both contributed to basal enthalpy 

production, and controlled the pattern of surge evolution. 
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Chapter 1: Introduction 

 

1.1 Motivation 

 

Glaciers have been defined as ‘natural climate-meters’ in the IPCC Fifth Assessment report. They not 

only act as passive indicators of climatic changes but also contribute actively to the global climatic 

balance (IPCC, 2013). Observations have shown that glaciers across the world have been shrinking 

since the end of the Little Ice Age, and that the rate of mass loss has been increasing since the 1980s 

(Leclercq and others, 2011). Together with thermal expansion, glaciers have made a major 

contribution to global sea level rise over the 21st century (Cazenave & Le Cozannet, 2014). There is 

high confidence that glaciers and ice sheets will keep losing mass even without any further changes 

in climate (Cubasch and others, 2013). 

Estimations of future sea level rise suffer from two main issues. First, they are based on a small 

proportion of the world’s glaciers, and second they rarely include a dynamic response of the glaciers 

to changing climatic conditions. Improving the integration of glacier dynamics in future estimates of 

glacier mass loss must therefore originate from a better understanding of glacier dynamics. Glacier 

calving and glacier surging are at the crux of this challenge. While calving rates are predicted to make 

an increasing contribution to sea level rise, directly related to increasing air and water temperatures, 

surging glaciers behave in a more unpredictable way, and episodically discharge large volumes of ice 

on land or in the oceans.  

The surge phenomenon was defined by Kamb and others (1985) as one of the ‘outstanding 

unsolved problems of glacier mechanics’, and remains so today. Several decades of studies have so 

far been unsuccessful at identifying what makes glaciers surge. The study of glacier surging aims not 

only to better understand the processes behind the unsteady flow of these glaciers but also requires 

a comprehensive reassessment of the physical laws of glacier flow. Beyond investigating glacier 

dynamics, the study of surging comprises numerous strands. The cyclic behavior of surge-type 

glaciers, alternating between fast and slow flow, has often been compared to the unstable behavior 

of ice streams (Clarke, 1987 ; Bindschadler, 1997). Surging of ice streams is thought to have played a 

major role in extension of palaeo ice sheets (Boulton and others, 1977 ; Andreassen and others, 

2014). 

The behavior of surging glaciers is characteristically decoupled from climate trends.  Still today 

in a period of global glacier recession, glaciers surge in many parts of the world. Surging glaciers 

complicate the investigation of glacier response to climate variability. The hazards that surging 

glaciers represent are non-negligible. Although they tend to surge regularly, predicting the 
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comparing the evolution of the thermal structure of a representative set of Svalbard glaciers, the 

processes taking place throughout the surge cycle are questioned. The investigation of small and 

thin, large and thick, tidewater and land-terminating glaciers could reveal whether glaciers can 

switch in and out of surging cycling in response to climatic changes.  

Finally, the processes taking place during two recent surges in Svalbard are studied using a 

variety of techniques. Passive seismics and elevation differencing allow the reconstruction of the 

chronology of events that led to the large surge of the Nathorstbreen glacier system. The aim is to 

assess the role played by changes in the force balance in the triggering and development of a surge, 

and to show how passive seismics can provide a unique insight into the mechanisms of surging. In a 

second example, the surge of a tidewater glacier is monitored through feature-tracking of SAR 

imagery, combined with measurements of elevation changes, crevasse mapping and calculation of 

the driving stress. This approach aims to uncover the mechanisms taking place during the upward 

propagating surges of tidewater glaciers in Svalbard. 

 

 

1.3 Outline 

 

An overview of the thesis is provided in Chapter 1, followed by the relevant theoretical background 

in Chapter 2. Chapter 3 focuses on the definition, distribution and characteristics of surge-type 

glaciers, along with details of the main surge models. As this work assesses surging both on a global 

and regional perspective, Chapter 4 follows this progression: in a first part we review the global 

distribution of surge-type glaciers and variations in surge characteristics across regions, and secondly 

we introduce the archipelago of Svalbard, home to the densest cluster of surge-type glaciers on 

Earth. The main techniques used for this work are described in Chapter 5. Chapter 6 summarizes the 

four articles included in this thesis. Chapter 7 concludes this work and suggests future work 

perspectives. References can be found in Chapter 8.  

Finally, Chapter 9 displays the four articles included in this thesis in their entirety: Article I: 

Sevestre, H. and D.I. Benn (2015) Climatic and geometric controls on the global distribution of surge-

type glaciers: implications for a unifying model of surging. Journal of Glaciology ; Article II: Sevestre, 

H., Benn, D.I., Hulton, N.R.J., Baelum, K. (In Review) Thermal structure of Svalbard glaciers and 

implications for thermal switch models of glacier surging. Journal of Geophysical Research – Special 

Issue on Surging and Ice Streaming ; Article III: Sevestre, H., Köhler, A., Benn, D.I., Nuth, C., Luckman, 

A., Weidle, C. (In Prep) Seismic detection of a catastrophic glacier surge and Article IV: Sevestre, H., 

Benn, D.I., Luckman, A., Nuth, A., Kohler, J., Lindbäck, K., Pettersson, R. (In Prep) A tidewater glacier 

surge initiated at the terminus: Aavatsmarkbreen, Svalbard. 



1. INTRODUCTION 

 

 

occurrence of a surge still remains elusive. The advance of a surging glacier can result in river 

damming and disruption to roads, trails, snowmobile routes, etc.  Large quantities of ice discharged 

on land or in the ocean represent a significant danger, particularly in coastal areas and where dense 

maritime traffic occurs. The end of the surge phase is often marked by the release of huge volumes 

of turbid water causing floods and destruction. Predicting the occurrence of surges could improve 

protection of communities and traffic. 

 

Many questions remain partially or completely unanswered in the study of surging. To build on 

Jiskoot (1999), some of the main issues that need further addressing concern the controls on surging 

and the mechanisms taking place before, during and after a surge: 

 What are the controls on the global distribution of surge-type glaciers? 

 Why, within the same cluster, some glaciers surge while others do not? 

 What role does climate play in the distribution and occurrence of surges? 

 Can one surge mechanism be applied to all surge-type glaciers, regardless of their thermal 

regime? 

 Can normal glaciers become surge-type glaciers, and vice versa? 

 What is the role of thermal regime in the surges of polythermal glaciers in the Arctic? 

 Why do tidewater glaciers surge differently from that of land-terminating glaciers? 

 What is the surge trigger? 

 

This thesis aims to tackle these issues by taking a novel approach in the study of the surge 

phenomenon.  

 

 

1.2 Aims and objectives 

 

Investigating the controls on the non-random distribution of surge-type glaciers could unlock a new 

understanding of the surge phenomenon. This work aims to identify these controls by using a global 

inventory of surge-type glaciers, along with global datasets of modelled climatic data and 

information on glacier geometry. The climatic distribution of surge-type glaciers and geometry 

properties across the climatic spectrum could lead to the launch a new theory as to why glaciers 

surge in some parts of the world, while they do not surge in other regions.  

Secondly, this work aims to test and evaluate the thermal switch mechanism, which is 

typically used to explain surges of polythermal glaciers in Svalbard and other Arctic regions. By 
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Chapter 2: Scientific background 

 

The uniqueness of surge-type glaciers can only be grasped if the characteristics and processes of 

‘normal’ glacier flow are reviewed first. Basics of glacier flow are defined in section 2.1, before 

moving on to the concept of balance velocities in section 2.2. Glacial hydrology and water storage are 

described in section 2.3. Finally, section 2.4 focuses on ice temperature and thermodynamics.

 

2.1 How do glaciers flow? 

 

2.1.1 The force balance 

 

Glacier flow is a matter of balance between stresses that drive the flow and stresses that acts against 

it. All glaciers move under their own weight, or more particularly under the horizontal gradient in 

gravitational potential, called the driving stress. In equilibrium, the driving stress is balanced by 

resisting stresses, namely the basal shear stress (that acts along a surface, in this case the bed), 

lateral drag (on the glacier's sides) and the longitudinal stress gradients. Basal drag can be negligible 

in the case of ice shelves, or ice streams, where most of the resistance occurs at the sides. 

Longitudinal stress gradients exert pushes or pulls, driving or resisting the flow. In the force balance, 

the efficiency of the driving stress at driving the flow is compared to that of the resisting stresses at 

restricting it. The force balance of a glacier in equilibrium is zero.  

 

2.1.2 Ice deformation and fracturing 

 

Under stresses, ice either deforms or fractures. Fracturing occurs when the strength of the ice is 

overcome by pulling stresses. It is a major process in the flow of tidewater glaciers, ice shelves and 

ice streams. Ice creep, on the other hand, is a much more widespread and efficient process of ice 

motion. 

The structure of a crystal of ice can be compared to a deck of card. Molecules can easily glide 

on top of each other when deformation occurs along the crystal basal planes. However non-basal 

plane glide requires much higher stresses, and is often referred to as ‘hard glide’. Linear defects in 

the structure are thought to largely facilitate slip along basal planes. Under stress, polycrystalline ice 

responds by creeping. In addition to movements of dislocations within crystals and glide of the 

crystals on top of one another, crystal growth and recrystallization also contribute to ice 

deformation.  



2. SCIENTIFIC BACKGROUND 

 

 

(Eq. 1) 

 

Flow laws relate the rate of ice deformation to stress. They are essential to model flow dynamics and 

in the study of many glaciological mechanisms. Glen's flow law, today's most widely employed flow 

law is based on extensive laboratory experiments (Glen, 1955). It quantifies the rate of ice 

deformation at the secondary creep phase, and relates a dominant shear stress to the rate of ice 

deformation . It must be acknowledged that Nye (1957) made the first applications of the power 

law, which led to the subsequent adoption of the following form:  

 

 

 

where is the basal shear stress, and the effective stress that incorporates all the stress 

components. Parameter  is defined as the exponent. Its value is governed by the creep mechanism 

operating. Results from laboratory experiments point to a value of 3. Rate parameter  relates to the 

viscosity of the ice. Its value can be calculated by the Arrhenius relation (Hooke, 1981), and relates to 

the ice temperature, fabric, water content, density and grain size.  One of the main implications of 

Glen's flow law is that ice does not deform linearly in response to stress. It is a distinct property of 

non-Newtonian (or non-linear viscous) materials. In addition, it only relates stress to strain rate; a 

more general constitutive relation would also include fracturing and elastic deformation. 

 

2.1.3 Basal processes 

 

Basal motion occurs by a combination of ice creep, sliding and deformation of the substrate. As 

challenging as the investigations of subglacial processes can be, large advances were made using 

subglacial laboratories and by studying recently deglaciated areas.  

By observing that the presence of protuberances over hard beds was not preventing the flow 

of glaciers, Weertman (1957) described two processes by which ice can move over and around bed 

bumps: regelation and enhanced creep. Regelation (or re-freezing) occurs around small obstacles. 

High pressures on the upstream side of bumps cause a lowering of the pressure melting point. Ice 

ultimately melts, and meltwater travels to areas of lower pressure on the downstream side of 

bumps. There, the pressure melting point is raised and ice refreezes. Latent heat thus released is 

conducted through the obstacle and further enhances ice melt upstream (Weertman, 1964 ; 

Lliboutry, 1968 ; Lliboutry, 1987 ; Kamb, 1970). Field observations by Kamb and Lachapelle (1964) 

and Cohen (2000) have confirmed the occurrence of regelation. Enhanced creep relates to the 

changes in ice viscosity in response to conductive stresses. These stresses are high on the upstream 
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side of large bumps, lowering the viscosity of the ice, and increasing (in a non-linear fashion) 

deformation rates.  

The size of the obstacle determines the favored process. As the transfer of latent heat is more 

efficient on small bumps than on large obstacles, Weertman (1964), Nye (1969, 1970) and Kamb 

(1970) were able to define a critical obstacle size of 0.5 m below which regelation occurs, and 

otherwise enhanced creep is favored. Although as suggested by Lliboutry (1993), the two 

mechanisms undoubtedly work in combination. 

 

Short-term and significant variations of velocity observed by Iken and Bindschadler (1986) exposed 

the incompleteness of Weertman's theory of sliding. Processes other than ice deformation and 

changes in driving stress must be taking place at the bed. Lliboutry (1968) was the first to observe the 

formation of cavities at the interface between ice and a rough bed. Cavities forming on the lee side 

of obstacles can be filled with water, reducing basal drag. They expand when more water is delivered 

than can be discharged, and decoupling occurs when the water pressure exceeds the ice overburden 

pressure. The driving stress is then only supported in areas where the ice is in contact with the bed. 

 

Glacier flow over a soft bed is radically different. Substrate deformation and sliding (ploughing) over 

the till can contribute to ice flow. Boulton (1979) and Boulton and Hindmarsh (1987) showed that in 

Iceland, deformation of the top few centimeters of the substrate was contributing from 80% to 90% 

of the ice motion. The Boulton-Hindmarsh model states that the strain rate of granular materials 

increases as the basal drag becomes more important that the yield strength of that material, but 

decreases as basal water pressures top the ice overburden pressures. On the other hand, Kamb 

(1991), and Engelhardt and others (1990)  showed that under Ice Stream B, the till failed completely 

past a threshold in applied shear stress (Coulomb-plastic rheology). 

Water plays a central role in till deformation and sliding of ice over its substrate. Low water 

pressures encourage ice infiltration in the pore spaces of the substrate. To the contrary, high water 

pressures prevent infiltration and allow ice to slide over the substrate.  

 

2.2 Balance velocities 

 

Glaciers constantly have to balance rates of accumulation and ablation, and variations in their force 

balance. They naturally tend to modulate their flow velocity in order to match mass gain up-glacier 

with mass loss downstream, and therefore maintain a more or less fixed geometry over long time 

scales. This outlines the concept of balance velocity. High turnover glaciers typically found in wet 

maritime environments tend to have higher balance velocities than glaciers in more continental, 
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drier and cooler regions. Balance velocities are also strongly influenced by the glacier geometry. 

Glaciers with large catchments and narrow outlets will tend to flow faster. Thermal regime, the type 

of basal substrate and bed topography also influence the balance velocities. 

However, glaciers often depart from steady-state and are either growing or shrinking. Changes 

in the balance between driving and resisting stresses cause short to long-term changes in glacier flow 

velocities. For example, the driving stress can increase when the surface profile of a glacier steepens, 

either by melting at the terminus or unusual accumulation in its upper parts; and resisting stresses 

can be modulated by variations in subglacial water storage and pressure.  

 

2.3 Glacial hydrology and its influence on glacier dynamics 

 

2.3.1 Water supply and plumbing system 

 

Meltwater is produced at the surface from snow/ice melt, within the glacier when ice deformation 

causes friction between ice grains, and under the glacier from geothermal heating and basal friction. 

Supraglacial melt is the greatest source of meltwater although it varies spatially over the glacier 

surface and in quantity seasonally. Internal and basal melt is a steadier water supply although 

volumes can change drastically over long timescales. Rain and groundwater also feed the glacier's 

hydrological system. Water can be routed from the surface to the bed, and also from the bed to the 

surface depending on the processes that drive or resist water flow. 

 

2.3.2 Drainage systems and storage 

 

The controls that the glacier hydrological system exerts on ice motion depend on supply, drainage 

and storage, and connections between the supraglacial, englacial and subglacial systems. 

Meltwater produced in the melt season can either percolate through the firn in the 

accumulation zone, or runoff on bare ice in the ablation zone. Refreezing in the firn releases latent 

heat, which in turn progressively brings the layer to the pressure melting point. Any further increase 

in temperature then leads to melting. Drainage through the firn is very inefficient compared to runoff 

on bare ice. Supraglacial meltwater cuts channels through the glacier surface that can incise deep 

over one melt season, as long as channel incision rates are greater than surface ablation rates (Gulley 

and others, 2009). Water can also be stored in ponds on the glacier surface in areas of gentle slope. 
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Four types of englacial drainage systems connect the surface with the bed. Moulins form when 

supraglacial meltwater exploits a fracture on the glacier surface. Sustained water supply will allow 

the moulin to grow and deepen. Hydrofracturing of crevasses occurs when the pressure that water 

exerts onto the crevasse walls overcomes the strength closing the crevasse (Röthlisberger & Lang, 

1987). It allows rapid downwards propagation and connection to the basal plumbing network (Das 

and others, 2008 ; Stevens and others, 2015). This process has been shown to contribute to a great 

extent to the variations in flow of the Greenland ice sheet (Zwally and others, 2002 ; van de Wal and 

others, 2008). Incision of supraglacial meltwater channels also connects supraglacial meltwater to 

the englacial and subglacial networks (Fountain & Walder, 1998 ; Gulley and others, 2009). Finally, 

Gulley and Benn (2007) have shown that water can also easily exploits lines of a different 

permeability to that of the ice, such as debris-filled fractures, crevasse traces, and other similar 

fractures. Storage within temperate glaciers can occur in conduits, crevasses or fracture network, as 

observed on Storglaciären by Fountain and others (2005), while blockages of incised meltwater 

channels commonly occur in polythermal glaciers (Gulley and others, 2009). 

 

Subglacial drainage systems have a huge influence on ice dynamics. They can either be channelized 

when water is discharged through an efficient network of conduits, or form distributed systems that 

are relatively inefficient at discharging water. Channelized systems are divided into R- (or 

Röthlisberger) channels incised between the bed and the ice, N- (or Nye) channels cut into bedrock, 

or sediments and large tunnel valleys. In times of high water input, high water pressures in the 

channels force the water out, while low water inputs cause the water to migrate towards the 

channels. Tunnel size also adjusts to the water intake, making the drainage efficiency of the network 

increase through the melt season. 

Distributed subglacial drainage systems on hard beds are divided into thin water films and 

linked cavities. Thin water films are maintained when energy gained (geothermal activity) or 

produced at the bed (strain, frictional heating) is greater than energy conduction through the ice. 

They are found at the interface between the ice and the bed, and have the most limited ability to 

transport meltwater. As seen in section 2.1.3, linked cavities exerts a large control on flow speed, 

reducing basal drag to areas of ice-bed contact. Large linked cavities can progressively turn into an 

efficient, channelized drainage system as a result of high fluxes. Kamb (1987) suggested this could be 

a mechanism leading to the termination of glacier surges. 

Distributed systems over or within soft beds can discharge large amounts of water (Alley and 

others, 1986). Water can be stored in the substrate pores and advected during shearing of the 

subglacial layer. It can also flow through the pores of the substrate under a hydraulic gradient. The 

volume discharged depends on the permeability and thickness of the aquifer. A water-saturated 
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horizon has a strong influence on basal sliding and sediment deformation. Films at the ice-sediment 

interface can form when the water supply exceeds the availability of pore spaces. Finally, water can 

travel in shallow channels or “canals” within the substrate. Such systems are expected to be present 

below gently sloping ice streams. Subglacial drainage systems largely control flow rates, and in turn, 

ice motion can alter the drainage systems. Such feedback mechanisms remain poorly understood. 

 

2.4 Ice temperature and thermodynamics 

 

Ice temperature exerts a strong control on flow dynamics. Switches in basal temperature can result 

in a dramatic acceleration of glaciers, and are thought to be involved in the surging of polythermal 

glaciers (Fowler and others, 2001). 

 

2.4.1 Controls on ice temperature 

 

Changes in ice temperature can take place at the ice surface, englacially and subglacially. At the 

glacier surface, energy exchanges with the atmosphere can raise or reduce ice temperature. In the 

accumulation zone in particular, latent heat released by the refreezing of meltwater can significantly 

increase the ice temperature and eliminate the cold winter wave. Once the firn is raised to the 

melting point, any excess in heat will produce melting. In winter, snow insulates the glacier, reducing 

heat loss. Conduction defines the transfer of heat from warm to cold areas in the glacier. It is most 

efficient where steep thermal gradients occur. Advection of ice transfers temperate ice produced in 

the accumulation zone downstream, increasing temperatures at depth, whereas advection of cold ice 

originating from the interior of ice sheets reduces temperatures. Ice deformation produces most 

heat at depth, where the shear stress is largest. At the glacier bed, geothermal heat needs to be 

greater than conduction in order to raise the ice temperature to the melting point. Other processes 

such as frictional heating and regelation can significantly warm basal ice, as well as sliding and 

subglacial sediment deformation. 

 

2.4.2 Thermal regimes 

 

Glaciers can be divided into three categories based on their thermal structures. Temperate glaciers 

are composed of ice at the pressure melting point, except for a shallow surface layer a few meters 

thick subjected to seasonal changes in temperature. Between 0.1% and 2% of water can be found 

between grains (Lliboutry, 1976). For a glacier to be fully temperate, the cold winter wave has to be 
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eliminated either by release of latent heat in the accumulation zone, or more efficiently by ablation 

in the summer. The thickness of the cold wave depends on winter temperatures and insulation 

provided by the snowpack. Therefore temperate glaciers are most likely to occur where snow 

accumulation and ablation rates are high, such as in temperate-maritime climates. 

Cold glaciers are frozen to their beds. Heat production is less efficient than heat loss, 

maintaining the ice temperature below the pressure melting point. Cold glaciers are typically found 

in cold and dry environments such as the Dry Valleys in Antarctica. 

 

 

 

 

Polythermal glaciers contain temperate and cold ice. The proportion of both ice types varies, creating 

a spectrum of thermal structures spanning from predominantly cold glaciers with a limited 

temperate basal layer, to predominantly warm with cold ice close to the surface. Six main types of 

polythermal valley glaciers have been described by Blatter and Hutter (1991) and Pettersson (2004) 

(Fig. 1), although the spectrum of polythermal structure shall not be limited to these 6 examples. 

Types a and b are found in cold environments where negligible melt occurs in the accumulation area. 

Figure 1: thermal structures of idealized valley glaciers. Red indicates temperate ice, blue indicates 
cold ice. Modified from Pettersson (2004). 
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Strain heating raises parts of the bed to the pressure melting point. Latent heat release of meltwater 

in the low accumulation area produces a limited core of warm ice (type c). In regions where 

temperate ice is produced by the same process, and the cold wave is ablated in the summer, the 

glacier becomes predominantly temperate, with cold ice still being produced in the uppermost 

accumulation area (type d). In type e, the winter cold ice is not successfully removed in the ablation 

zone. Glaciers of this type are widespread in regions like Svalbard where snowpacks are thin and melt 

rates moderate. Finally, glaciers of type f are found where summer ablation is important and strips 

the cold wave from the ablation zone in the summer.  

 

2.4.3 Feedback mechanisms between ice temperature and dynamics 

 

Ice temperature and glacier flow dynamics are interrelated. Changes in ice temperature exert a 

strong influence on ice dynamics, while ice dynamics can, through feedback mechanisms, gradually 

modify a glacier's thermal structure (Benn & Evans, 2010).  

Positive feedback mechanisms are thought to be involved in the trigger of glacier surges. 

Glacier acceleration yields enhanced frictional heating at the glacier base. This is turn begins to warm 

the ice, and eventually causes melting. Increasing volumes of meltwater promote faster sliding until 

decoupling occurs. The mechanism stops when frictional heating at the bed is not efficient enough to 

keep feeding the system. 

Negative feedback mechanisms can occur in response to changes in geometry of the glacier. 

The mass continuity equation relates a change in glacier thickness through time to the difference 

between the mass balance and the flux of a quantity of ice. If the lower part of the glacier starts 

accelerating, dynamic thinning occurs making the glacier more vulnerable to conduction from the 

bed to the surface. Inversely, if more ice is transported down-glacier, thickening occurs and 

conduction is limited. 

 

2.4.4 Enthalpy 

 

Modelling the thermodynamical properties of polythermal glaciers is challenging as they are 

composed of a fraction of cold ice, and a fraction of temperate ice. These two ice types do not 

respond the same way when submitted to a change in heat content. Raising the heat content of cold 

ice results in a change in temperature, while raising the heat content of temperate ice yields a 

change in water content (Aschwanden & Blatter, 2005, 2009). This difference in ice properties can be 
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understood within the framework of enthalpy. In a glaciological context, enthalpy is the ‘internal 

energy’ of a glacier. 

Enthalpy is produced when a glacier flows downslope and gravitational potential energy is 

converted into thermal energy. Radiative and turbulent heat fluxes at the surface can produce or 

discharge enthalpy. Internal and basal strain heating increase enthalpy, as well as latent heat release 

and geothermal heat fluxes. Enthalpy gains can be dissipated at the glacier surface and bed by runoff, 

and through the glacier by conduction or by calving. 

For a glacier to remain in steady-state, not only it must flow at its balance velocity to balance 

mass accumulation with mass loss, but it must also maintain equilibrium between enthalpy gains and 

enthalpy losses. Any surplus or deficit in mass and enthalpy will have consequences on the glacier 

dynamics.  At the glacier bed, increased strain heating can raise the ice temperature and further 

produce basal meltwater. If the meltwater and the rising temperature cannot be evacuated by 

conduction or runoff as fast as they are generated, positive feedbacks will cause the glacier to 

accelerate above its balance velocity, advecting ice faster than can be produced. To the contrary, if 

heat is lost more rapidly by conduction or runoff faster than it is produced, the glacier will decelerate 

and ice will accumulate within the system. 
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Chapter 3: Surge-type glaciers 

 

This chapter focuses on surge-type glaciers, their dynamics, distribution and mechanisms. The 

characteristics of the surge cycle are defined in Section 3.1.  The contemporary distribution of these 

glaciers and variations in surge behaviors observed across the world are detailed in section 3.2. 

Section 3.3 focuses on the identification of surge-type glaciers, along with the relevant techniques, 

and evidence to look for. Section 4.4 summarizes the results of statistical studies investigating 

controls on regional distributions of surge-type glaciers. Finally, models of surge mechanisms are 

presented in Section 3.5. 

 

3.1 Definition 

 

The spectrum of glacier flow velocities stretches from slow-moving cold-based glaciers in the Dry 

Valleys of Antarctica or Arctic Canada to extremely rapidly-flowing outlet glaciers in Greenland or ice 

streams in parts of Antarctica. Flow behavior spans from more or less constant flow vs to velocity 

pulses. Surge-type glaciers have the ability to periodically switch between long periods of 

continuously slow flow (the passive - or quiescent phase) and short periods of very fast flow (the 

active - or surge phase). Surging is defined as an internally triggered instability, as opposed to other 

pulsating behaviors such as the patterns of advance and retreat observed on Greenland outlet 

tidewater glaciers, which are influenced by bed morphology and climate (Meier & Post, 1969 ; Sharp, 

1988). The surge cycle is composed of the quiescent and the surge phase. Its length tends to be more 

or less constant for each surge-type glacier (Meier & Post, 1969).  

The quiescent phase typically lasts from a couple to several decades, and is characterized by 

flow speeds below balance velocities. Seasonal variations in velocity can still occur during quiescence 

(Abe & Furuya, 2015 ; Burgess and others, 2013). Ice builds-up in the ‘reservoir zone’ up-glacier, 

while flow is restricted in the lower reaches of the glacier, altering its longitudinal profile. ‘Mini-

surges’ or ‘wavy surges’ can be detected a few years prior to the beginning of the main surge, 

travelling down the glacier at great speeds (few hundreds of meters per hour) (Kamb & Engelhardt, 

1987 ; Dolgoushin & Osipova, 1978). The thickening continues, forming a clear front between the 

stagnant ice down-glacier and the increasingly active ice up-glacier (Clarke and others, 1984). The 

bulge or ice front steepens until the surge is triggered (Meier & Post, 1969 ; Raymond, 1987). 

During the surge, the glacier velocity can increase by a factor of ten. These high velocities are 

maintained from a few months to a few years only. The changes in glacier geometry during 

quiescence are rapidly reversed as mass is transferred down-glacier into a ‘receiving zone’. The thick 
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surge front travels down-glacier, causing compression as it moves into more stagnant ice, and 

extension behind it. Drawdown of the glacier surface in the reservoir zone leaves ice hanging on the 

valley sides (Post & LaChapelle, 1971). As the ice stretches, the glacier becomes intensively 

crevassed. The down-glacier propagation of the surge may reach beyond the glacier limit in fast and 

dramatic advances. Exceptions to this pattern are some tidewater glaciers in parts of Iceland, 

Greenland and Svalbard. There, surges have been observed to begin at the calving front and 

propagate up-glacier (Björnsson and others, 2003 ; Rolstad and others, 1997 ; Dowdeswell & 

Benham, 2003 ; Murray and others, 2003b, 2012 ; Pritchard and others, 2003, 2005). 

 

The mechanisms taking place during a surge are still poorly understood, although it is clear that ice 

deformation cannot solely account for the surge velocities. A combination of sliding and substrate 

deformation at the glacier bed must be involved (Raymond, 1987). 

 

3.2 Distribution of surge-type glaciers and variations in surge behaviors 

 

Meier and Post (1969) noted that surging can affect glaciers of all types, and can occur in almost all 

climatic environments. One of the most fascinating facts about the population of surge-type glaciers 

is its non-random distribution both on the global and regional scale (Raymond, 1987). During the past 

100 years or so, surging has occurred in two main ‘superclusters’ namely the Arctic Ring, and western 

Central Asia. Within the Arctic Ring, surge-type glaciers are clustered in clusters in Alaska, Yukon 

Territory, Arctic Canada, parts of Greenland, Iceland, Svalbard and Novaya Zemlya (Post, 1969 ; 

Fischer and others, 2003 ; Copland and others, 2003 ; Jiskoot and others, 2002, 2003 ; Grant and 

others, 2009 ; Citterio and others, 2009 ; Yde & Knudsen, 2007). In western Central Asia, glaciers 

have been observed to surge in the Karakoram, Pamirs and western Tien Shan (Copland and others, 

2009, 2011 ; Hewitt, 1969, 1998 ; Kotlyakov and others, 2008 ; Osipova and others, 1998). A small 

number of surge-type glaciers have been reported in the Caucasus, parts of the Andes, Russian high 

Arctic, Kamchatka and Tibet (Kotlyakov, 1996 ; Kotlyakov and others, 2004 ; Casassa and others, 1998 

; Espizúa, 1986 ; Zhang, 1992 ; Yafeng and others, 2010 ; Dowdeswell & Williams, 1997 ; Dolgoushin 

& Osipova, 1975). The total population of surge-type glaciers is thought to represent about 1% of the 

global population of glaciers (Jiskoot and others, 1998). 

Equally important to the known distribution of surge-type glaciers are glacierized regions 

where surge-type glaciers do not exist today. These are the Brooks Range and the Southern Coastal 

range in Alaska, the contiguous states of the USA, northernmost and southernmost Greenland, 

Pyrenees, European Alps, mainland Scandinavia, Franz Josef Land, Himalayan Range, Bhutan, New 
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Zealand, Northern Andes, and Verkhoyansk in Russia. Although Wellman (1982) explained the former 

geometric changes of Fisher glacier through surging, no surges have been directly observed in 

Antarctica.  

Evidence shows that the population of surge-type glaciers might have migrated in the past 

following climatic patterns. The European Alps hosted at least one surge-type glacier in Austria. 

Vernagtferner underwent five successive surge-like advances between the 17th and 19th century 

(Hoinkes, 1969). Other studies reveal that surge behaviors can be modulated by climate. In Iceland 

Striberger and others (2011) traced the surges of Eyjabakkajökull over the past 1700 years showing a 

clear reduction in the length of the surge cycle in times of high precipitation rates and low 

temperatures, and an increase when the conditions were less favorable. In the Karakoram, a 

sustained rise in precipitation has apparently led to the “Karakoram anomaly”: a sudden increase in 

the number of surge occurrences (Hewitt, 2005). In Svalbard, Dowdeswell and others (1995) 

interpreted a reduction in the frequency and occurrence of surges in Svalbard as a consequence of 

climate change, although recent data contradict these conclusions as more than 15 glaciers are 

currently surging on the archipelago (pers. Com. Luckman, April 2015). 

Surge behavior varies greatly between regions and within individual surge-clusters. Two 

contrasting types of surge behavior have traditionally been recognized: the Alaska-type surge and the 

Svalbard-type surge, which are thought to be a reflection of the predominant thermal regimes found 

in these regions. However, in reality a wide spectrum of behaviors actually exists between and 

beyond these two classes. The shortest surges have been observed in Iceland, Alaska, Yukon 

Territory and in the Pamirs, where they rarely exceed 4 years in duration (Osipova and others, 1998 ; 

Thorarinsson, 1964, 1969 ; Dolgoushin & Osipova, 1975 ; Post, 1969). These clusters have 

correspondingly short quiescent phases. Average surge velocities are highest in Alaska and Iceland 

(Eisen and others, 2001 ; Kamb and others, 1985 ; Björnsson and others, 2003). The longest surge 

cycles take place in Greenland, Svalbard and Arctic Canada (Liestøl, 1969 ; Dowdeswell and others, 

1995 ; Hagen and others, 1993 ; Weidick, 1988 ; Jiskoot and others, 2003). Glaciers in the Karakoram 

are typically found between these two groups, with moderately long surges (3 to 6 years) and 

quiescent phases from 15 to 70 years (Copland and others, 2011 ; Hewitt, 1998). Heterogeneities in 

the evolution of surges are also clear within this region (Quincey and others, 2015). The development 

of the surge cycle also varies from one region to another. Murray and others (2003b) showed that 

the surge of Monacobreen was characterized by a multiyear phase of steady acceleration, and 

terminated with a gradual deceleration, as opposed to rapid initiation and termination for the surge 

of Variegated glacier in Alaska (Kamb & Engelhardt, 1987 ; Kamb and others, 1985). 
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3.3 Identification of surge-type glaciers 

 

The identification of surge-type glaciers is complicated by the changes in geometry, appearance and 

behavior the glacier undergoes throughout the surge cycle. A glacier in full surge is relatively easy to 

identify, and the surge dynamics can leave distinct geomorphological evidence that enables 

identification during the quiescent phase. Surge-type glaciers can be identified using a suite of 

glaciological and geomorphological evidence. Some features have a stronger diagnostic power than 

others, and the most reliable identifications are based on a combination of surge-indicative features. 

Copland and others (2003, 2011) and Grant and others (2009) have made comprehensive lists of 

features for the identification of surge-type glaciers. 

Among the clearest glaciological evidence of surging lies an increase in surface flow velocity by 

an order of magnitude or more. Rare in-situ velocity measurements were collected during surges of 

Variegated and Trapridge glaciers (Clarke and others, 1984 ; Kamb and others, 1985). Today, remote 

sensing techniques are favored to detect such velocity changes (Mansell and others, 2012 ; Burgess 

and others, 2012 ; Dowdeswell and others, 1999 ; Luckman and others, 2002 ; Fischer and others, 

2003 ; Joughin and others, 1996). Very rapid changes in length can be indicative although not 

conclusive of surging, as not all surges result in an advance of the glacier (Braun and others, 2011 ; 

Mansell and others, 2012). Intense crevassing and sheared margins are commonly detected on 

actively surging glaciers (Meier & Post, 1969). The evolution of the crevasse pattern can give 

information the timing of the surge and stress patterns (Dowdeswell & Benham, 2003 ; Hodgkins & 

Dowdeswell, 1994). Measuring elevation changes can allow identification of surging glaciers, in 

particular where sudden thickening of the lower reaches of glaciers coincides with up-glacier thinning 

(Meier & Post, 1969 ; Paterson, 1994 ; Melvold & Hagen, 1998 ; Nuth and others, 2010 ; Bevington & 

Copland, 2012). Finally, looped moraines, surface foliation and potholes can be identified using 

systematic visual interpretation of airborne or spaceborne images (Copland and others, 2003, 2011 ; 

Dowdeswell and others, 1991 ; Hamilton & Dowdeswell, 1996 ; Post, 1969). 

During quiescence, identification of surge-type glaciers has to rely on geomorphological 

features. Surge-type glaciers produce consistent landform-sediment assemblages that cannot be 

observed on normal glaciers in steady-state (Evans & Rea, 2003). A comprehensive model of the 

surge landsystem was described by Evans and Rea (2003), based on landforms previously identified 

by Sharp (1985a, 1985b), Croot (1988a, 1988b), and Knudsen (1995). Detailed mapping of basal ice 

sequences and of internal structures have been applied to reconstruct past changes in flow dynamics 

of the Tellbreen glacier in Svalbard (Lovell and others, 2015).  
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 3.4 Controls on the distribution of surge-type glaciers: statistical studies 

 

The unique distribution of surge-type glaciers has motivated a series of studies investigating the 

connections between surging and a variety of attributes. Post (1969) provided the first qualitative 

assessment of the role played by various parameters over the distribution of surge-type glaciers in 

western North America. Successively, univariate and multivariate regression techniques have 

investigated regional clusters such as the St Elias mountains, Yukon Territory, (Clarke and others, 

1986 ; Clarke, 1991), western North America (Wilbur, 1988), Pamirs (Glazyrin and others, 1987) and 

Svalbard (Hamilton, 1992 ; Hamilton & Dowdeswell, 1996 ; Jiskoot and others, 1998, 2000 ; Atkinson 

and others, 1998), Iceland (Hayes, 2001), east Greenland (Jiskoot and others, 2003) and Karakoram 

(Barrand, 2002 ; Barrand & Murray, 2006).  

Glacier length, size and morphology have been tested in almost all clusters. In the Yukon 

Territory, Svalbard and Karakoram, long glaciers are most likely to surge. Area correlates well with 

surging in the Karakoram and Iceland. In east Greenland, complex glaciers (characterized by long 

perimeters relative to their size) are most likely to surge. As suggested by Clarke and others (1986) 

and Jiskoot and others (2000), the tendency for longer glaciers to surge can be related to the 

increasing vulnerability of the drainage system to instability and collapsing with length. Longer 

glaciers also tend to spread over several lithological boundaries, further affecting the subglacial 

drainage system. Glacier length could also be a proxy for mass balance (Budd, 1975 ; Raymond, 

1987), hypsometry (Glazyrin and others, 1987 ; Wilbur, 1988), subglacial conditions (Post, 1969 ; 

Clarke, 1991) or thermal regime (Murray and others, 2000). Statistics on glacier slope produced 

mixed results. In Svalbard and Yukon, surge-type glaciers tend to have relatively steep slopes, while 

in eastern Greenland glaciers with a low slope are more likely to surge. Clarke (1991) demonstrated 

that slope is only a by-product of its inverse relationship with length. Finally, glacier aspect varies 

tremendously between regions, and could reflect topographic effects on mass balance. 

Paterson (1994) noted that the global distribution of surge-type glaciers appears to be 

confined to new mountain ranges undergoing rapid erosion. Surging glaciers were observed over 

sedimentary, volcanic and metamorphic lithologies in north-western America. In Svalbard, Hamilton 

(1992) found that the probability for surging increased for glaciers underlain by sedimentary rocks, 

although this was the case for 80% of the glaciers in his sample. In the same region, Jiskoot and 

others (1998) showed that surging was well-correlated with young fine grained sedimentary 

substrate. 

The thermal regime of surge-type glaciers has been comprehensively investigated in Svalbard. 

Jiskoot and others (2000), based on a sample of 137 glaciers, showed that a polythermal regime was 

more conductive to surging, as suggested by Bamber (1987) and Macheret and Zhuravlev (1982). 
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However, the influence of the thermal regime is not clear, but cold-based glaciers have never been 

observed to surge. The thermal regime could have an effect on the drainage system and the energy 

balance of a glacier.  

Interestingly, climate has never been fully investigated as a potential control on the global 

distribution of surge-type glaciers. Post (1969) noted that surging glaciers in Alaska and in the Yukon 

Territory were found across a spectrum of climates from sub-maritime to continental, and concluded 

that no specific climate conditions are in favor of surging. However, Budd (1975) suggested that the 

accumulation rate and the bed profile are the primary controls on surging.  

 

 

3.5 Surge models 

 

Since the first observations of surges at the beginning of the 20th century, theories have been 

developed to explain the mechanisms behind surging. Field observations and modelling efforts 

contributed to the development of such models (Clarke, 1976 ; Harrison, 1972 ; Fowler, 1987 ; Clarke 

and others, 1986 ; Kamb and others, 1985). Today, the theories on surging have considerably 

improved, although they lack representativeness.  

Early theories rapidly recognized surging glaciers as out-of-balance with their environments 

(De Geer, 1910). Tarr and Martin (1914) and Nielsen (1937) related surging to tectonic activity and 

volcanism. However, extensive observations by Post (1969) and Thorarinsson (1964, 1969) swiftly 

contradicted these ideas. The fact that surging had been witnessed on glaciers of all types found in 

almost all tectonic and climatic environments was the strongest argument against external controls 

on surging. New models therefore aim to explain surging based on internally triggered instabilities. 

The main models are described below. 

 

   3.5.1. The thermal switch mechanism 

 

The thermal switch or thermal instability mechanism has a long history. Robin (1955) argued that 

switches in temperature at the bed of glaciers from cold to warm could trigger surges. Below the 

thickening reservoir zone, feedback mechanisms between increasing shear stresses and ice 

deformation would progressively bring the base to the pressure melting point, causing a surge. 

Clarke (1976) dismissed this mechanism as it would yield longer surge cycles than were actually 

witnessed. Schytt (1969), based on observations of polythermal glaciers in Svalbard, proposed that 

the cold ring detected along the glaciers margins could act as a dam for meltwater, and that 
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enhanced water pressure in times of strong melting would lead to surging. However, large volumes 

of water at the cold-warm ice transition could not be detected on Trapridge and Variegated glaciers 

(Bindschadler, 1997 ; Clarke and others, 1984). Moreover, the surge bulge found on Trapridge glacier 

was not located at this thermal transition. 

Extensive field observations on Bakaninbreen, Svalbard, revived this theory and led to the 

development of the ‘thermal switch mechanism’ (Murray and others, 2000 ; Fowler and others, 

2001). According to this model, surges of polythermal glaciers occur in response to changes at the 

base from cold to warm. During the quiescence of a cold-based glacier, mass starts to accumulate in 

the reservoir zone. The longitudinal profile of the glacier is progressively altered, yielding enhanced 

ice deformation. A positive feedback between ice motion and heat production (caused by strain 

heating) takes place. Eventually ice reaches the melting point and any excess heat contributes to 

melting it. Cold ice surrounding the core of warm ice, and the underlying permafrost prevent 

meltwater from escaping. Rising water pressure reduces basal drag, promoting sliding. The surge is 

eventually triggered and propagates down-glacier as stresses are transferred from the surge area to 

the surrounding ice, facilitating ice deformation. Infiltration of water at the ice-bed interface and into 

the ice significantly contributes to sliding. Surge termination occurs when the water is able to escape, 

via faults into the ice or through the permafrost. 

The application of the thermal switch mechanism is limited to polythermal glaciers. However, 

Bindeschadler and others (1976) observed that fully temperate glaciers could also surge. This led to 

the development of a model specific to temperate glaciers: the hydrologic switch mechanism. 

 

   3.5.2 The hydrologic switch mechanism 

 

Röthlisberger (1969) first suggested that a switch in the subglacial drainage system, from efficient 

tunnels to inefficient distributed networks could lead to surging. Thorarinsson (1969) also 

emphasized the role of water in the surges observed in Iceland. 

The development of the hydrologic switch mechanism is mostly based on observations made 

during the surge of Variegated glacier, Alaska (Kamb and others, 1985). Field measurements revealed 

the presence of a low-pressure, efficient subglacial drainage system during quiescence, and a much 

more dispersed flow with high pressures during the surge. Peaks in water pressure corresponded to 

uplifts and accelerations of the glacier. At surge termination, large volumes of turbid water were 

released, coinciding with a drop in water pressure and in ice surface.  

Kamb and others (1985) suggested that the surge of Variegated was sustained by extensive 

cavitation over a hard bed and ice bedrock separation, and that its trigger and termination were 

caused by a switch in the drainage system. Surging would initiate when a conduit system collapses 
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into linked cavities. According to Kamb (1987), high flow velocities and low hydraulic gradient keep 

the linked cavity system stable. On the other hand, instability might arise when water inputs are 

important, enlarging the connection between cavities and eventually switching the drainage system 

to conduits. Although processes of surge termination are clear, this model does not satisfactorily 

explain how a conduit system initially turns into linked cavities. Finally, the last requirement for a 

linked cavity system to efficiently cause decoupling of ice from the bed is a large amount of water. 

Fatland and Lingle (2002) and Lingle and Fatland (2003) suggested that this water could originate 

from englacial storage in voids, and that a surge could be initiated as soon as this water reaches the 

subglacial drainage system. The main limitation to Kamb (1987)’s model relates to the bed of the 

glacier. Cavities require a hard bed, although Richards (1988) detected soft, deformable sediments 

under Variegated glacier, as it is the case under numerous other temperate glaciers (Harrison & Post, 

2003 ; Truffer & Harrison, 2006). A surge model based on a linked cavity system, therefore, may not 

be appropriate in these cases.  

Problems exist with both the hydrological and thermal switch models. Although surges of 

temperate and polythermal glaciers differ in terms of magnitude and development, they produce 

similar dynamics. Most interestingly, surges of both glacier types have occurred within the same 

surge cluster of the St Elias mountains (Frappe-Seneclauze & Clarke, 2007), suggesting an underlying 

dynamical unity. Further, as stated in Frappe-Seneclauze and Clarke (2007): “surge models should be 

able to explain the entire spectrum of surge speed and structure observed within a geographical 

cluster, irrespective of the thermal regime of the glaciers.” Development of such a model is one of the 

aims of this thesis. 
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Chapter 4: Study areas 

This thesis investigates surging on a global, regional and local scale. Section 4.1 introduces the 

surging phenomenon on a global scale. In section 4.2 the surge cluster of Svalbard is presented, along 

with a sample of six glaciers representative of the spectrum of glacier geometries and thermal 

regimes found in the region. Finally, glaciers investigated in two case studies are described in section 

4.3. 

 

4.1 Global analyses 

 

Figure 2: Global distribution of surge-type glaciers (pink ellipses) based on the geodatabase of surge-
type glaciers, and normal glaciers (in blue, from the Randolph Glacier Inventory (RGI) v4, Pfeffer and 
others (2014)). 

 

The global population of surge-type glaciers is estimated to represent about 1% of the total number 

of glaciers in the world (Jiskoot and others, 1998), which corresponds to a little under 2000 glaciers 

according to the last estimate of the total population of glaciers from the RGI v4 (Pfeffer and others, 

2014) (Fig. 2). Today, most of the main clusters of surge-type glaciers have been investigated by the 

Svalbard 
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means of statistical studies, remote sensing techniques or field measurements. To date, studies have 

focused on individual clusters, and findings related to one cluster might not be transferrable to other 

regions. Statistical studies for example, have emphasized the differences between surge-type and 

normal glaciers within clusters instead of focusing on common properties of all surge-type glaciers. 

As expected, regional and local controls seem to have a strong influence on surging style and 

magnitude, but region-specific factors may overshadow the global controls on surging. Exploring the 

controls on the non-random distribution of surge-type glaciers may unlock a new understanding of 

the surge phenomenon. 

Fortunately, a wide range of tools are now available to study surging on a global scale. A 

century of observations and identifications of surge-type glaciers has built an accurate picture of 

where surge-type glaciers are found, and where they do not exist. High-resolution datasets allow 

correlations of surging with glaciological and environmental parameters on a global scale, which was 

not possible before. The knowledge gathered from the global distribution of surge-type glaciers can 

then be applied to improve the understanding of regional surge dynamics.  

 

 

4.2 Regional analyses: the High Arctic archipelago of Svalbard 

 

The Norwegian archipelago of Svalbard lies in the High Arctic between 74 - 81°N and 10 - 35°E. It is 

composed of four main islands, the largest being Spitsbergen, followed by Nordaustlandet, Edgeøya 

and Barentsøya. Svalbard is 57% covered by glaciers (Nuth and others, 2013), and a total of 1615 

individual glaciers are registered in the RGI v4 (König and others, 2013 ; Pfeffer and others, 2014). 

 

4.2.1 Environmental settings 

 

Located at the confluence of contrasting ocean currents and air masses, Svalbard displays a unique 

climate sensitivity (Ahlmann, 1953 ; Lamb, 1977). The Arctic Ocean is connected to the North Atlantic 

Ocean through the Fram Strait, a deep gateway between Greenland and Svalbard. The archipelago 

lies on an emerged part of the Barents Sea Shelf. Conditions are relatively mild in Svalbard despite its 

high latitude. The northernmost extremity of the North Atlantic Drift flows along the western coast 

of Svalbard, and is characterized by warm and high-salinity water, while to the east of the 

archipelago cold and low-salinity polar water flows south (Humlum and others, 2003 ; Svendsen and 

others, 2002 ; Saloranta & Svendsen, 2001). There is therefore a strong contrast between the mild 

marine climate of the south-west of the archipelago and the more Arctic conditions of the north east. 
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This is reflected in the strong presence of sea ice for most of the year along the east coast, and its 

absence on the south west coast (with the exception of the formation of fjord ice in winter). Svalbard 

also lies on one of the major gateways for atmospheric heat and moisture transport in the Arctic 

Basin, due to its location in the North Atlantic cyclone track (Tsukernik and others, 2007 ; Dickson 

and others, 2000). Extreme temperature changes on the order of >20°C can occur within a few hours, 

resulting in occasional rain events, even in the middle of winter.  

Svalbard has the longest meteorological record of the Arctic extending from 1911 until today 

(Førland and others, 1997), representative of the conditions in central Spitsbergen (Nordli and 

others, 2014). Mean annual temperatures underwent a very strong increase around the 1920s, 

reaching -5°C at sea level in central Spitsbergen. This marked the end of the Little Ice Age (LIA) in 

Svalbard. A decrease of about 4°C occurred in the 1960s before the temperature steadily rose, 

reaching the present values 4 to 5°C higher than at the end of the LIA. From 2004 to 2014, 

temperatures registered at Longyearbyen airport are the coldest in the month of March (mean = -

12°C) and the highest in July (mean = 7.1°C) (eklima.no), while precipitation is at the lowest from 

February to June (10.5 mm w.eq per month), and at the highest from July to January (20 mm w.eq 

per month). The weather during the winter season is mainly influenced by the Siberian high, a strong 

and cold anticyclone, while summer is primarily characterized by low pressure systems passing across 

the archipelago (Humlum and others, 2003). The mean annual temperature at Longyearbyen airport 

is -3°C, and the mean annual precipitation is around 195 mm (eklima.no). Precipitation rates are 

highest towards the east and west coasts (Sand and others, 2003), and decrease from south to north, 

while the central parts of the archipelago are the driest (Winther and others, 1998). 

Geologically, Svalbard spans from Precambrian Heckla Hoek formations to young Tertiary rocks 

(Hjelle, 1993). The archipelago is crisscrossed by major striking fault zones oriented N-S to NNW-SSE. 

Permafrost is found almost all over the archipelago with thicknesses between 60-90 m (Humlum and 

others, 2003) to up to 450 m in high areas with limited snow cover (Liestøl, 1977). 

 

4.2.2 Glacier types and evolution since the Little Ice Age 

 

There is no such thing as a typical Svalbard glacier, as a wide range of glacier types can be found in 

the archipelago. Cirque and valley glaciers are abundant in central Spitsbergen (Nordenskiöldland 

and Andrée Land), while ice fields and ice caps make up most of the glacierized area. Ice fields are 

defined as large ice masses divided into individual glaciers by topography such as mountain ridges 

and nunataks. Three ice fields cover Spitsbergen in the south-east, north-east and north-west. The 

two largest ice caps, Austfonna and Vestfonna, make 40% of the glacierized area of Svalbard, and are 

found in Nordaustlandet. Smaller ice caps are located in the south-east of the archipelago on 
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Edgeøya and Barentsøya. Both tidewater and land-terminating glaciers co-exist on the archipelago. 

All tidewater margins are grounded (Dowdeswell, 1989). 

In Svalbard, the LIA is thought to have ended at the beginning of the 20th century. Glaciers 

started retreating in the 1920s as a consequence of an increase in summer temperatures. Between 

1936-38 and 1990, glaciers were thinning at low elevations, while the interior of ice caps and ice 

fields was thickening (except on Prins Karls Forland) (Nuth and others, 2007). The most negative 

annual geodetic mass balances over this period occurred in the south and in the west (Prins Karls 

Forland, Nathorstland and Wedel Jarlsberg Land), while the less negative balances were measured on 

the east coast and central Spitsbergen. Comparisons to the other arctic regions reveal that, 

considering the changes in glacier area and geodetic mass balance, Svalbard has the most negative 

balance of the Arctic (Nuth and others, 2010). 

The thermal regime of Svalbard glaciers spans from completely cold for small thin land 

terminating glaciers (Bælum & Benn, 2011 ; Etzelmüller and others, 2000) to polythermal for glaciers 

typically thicker than 120-130 m (Dowdeswell and others, 1984). Temperate ice is produced in the 

accumulation zone of glaciers by latent heat release and is advected down-glacier. Strain heating 

maintains a warm core, while cold ice is found near the surface and at the front of land-terminating 

glaciers (Macheret & Zhuravlev, 1982 ; Björnsson and others, 1996 ; Bamber, 1987). 

Land-terminating glaciers tend to flow at speeds below 10 m per year (Hagen and others, 

2003), while larger tidewater glaciers can move much faster, some reach velocities of a couple of 

meters per day (Lefauconnier and others, 1994). Today, 68% of the glacierized area of Svalbard 

drains through tidewater glaciers (Nuth and others, 2013). 

 

4.2.3 Surging in Svalbard  

 

A large proportion of the population of glaciers in Svalbard are of surge-type, although the exact 

number of surge-type glaciers has always been widely debated. Estimations span from 13% to 34% 

and to 90% of surge-type glaciers on the archipelago (respectively Jiskoot and others (2000), 

Hamilton & Dowdeswell (1996), Lefauconnier & Hagen (1991)), making Svalbard the region with the 

highest proportion of surge-type glaciers in the world. The archipelago is therefore one of the best 

laboratories to study the surging phenomenon. 

 

Svalbard has always been a fertile ground for exploration. Numerous expeditions have made 

substantial observations on glacier dynamics through the 1800s, and early 1900s. Field notes, maps, 

drawings or photographs constitute early records that today are crucial to understand the current 
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behavior of glaciers. The very first recorded surges (interpreted later as such) took place on 

Recherchebreen in c. 1839 (French expedition La Recherche), and on Basin 3 of Austfonna between 

1850-1878 (Swedish expedition of Adolf Erik Nordenskiøld). Liestøl (1969) and Schytt (1969) realized 

early that a large concentration of surge-type glaciers can be found on Svalbard. 

Surges in Svalbard have often been described as ‘muted’ or ‘sluggish’ compared to surges in 

Alaska (Jiskoot, 1999 ; Dowdeswell and others, 1991). The surge cycle is indeed longer, and velocities 

experienced during the surge phase tend to be slower. Typically the surge cycle spans from 30 years  

on Tunabreen (Hagen and others, 1993 ; Blaszczyk and others, 2009) to 500 years for Bråsvellbreen 

(Dowdeswell and others, 1991). The average surge cycle duration is actually close to 60-70 years for 

the limited number of glaciers that have surged more than twice on Svalbard. The duration of the 

surge phase is on average around 6 years (Lefauconnier & Hagen, 1991 ; Hagen and others, 1993) but 

longer surges up to 12 years in duration are not rare (Nuth and others, 2007 ; Blaszczyk and others, 

2009). The long duration of the surge cycle in Svalbard has been attributed to the low accumulation 

rates on Svalbard glaciers (Dowdeswell and others, 1991). 

Liestøl (1969, 1988) gathered evidence of a very large number of surges towards the end of 

the LIA. The rapidly changing conditions could have caused a wave of surges or surge-like advances. 

However, evidence is sparse, and some surges could have been confused with a large glacial extent in 

response to favorable LIA conditions (Lefauconnier & Hagen, 1991). Dowdeswell and others (1995) 

predicted that, in a context of climate warming causing more negative mass balances, fewer and 

fewer surges should occur in Svalbard. This is definitely not the case as today in 2015 no less than 15 

glaciers are simultaneously surging (pers. Com. Luckman, April 2015). 

 

4.2.4 Thermal regime of Svalbard glaciers 

 

Regional mechanisms of surging were investigated through a sample of six glaciers (Fig. 3):  
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Von Postbreen (78.45°N; 17.82°E) is a large (168 km2, König and others (2013)) polythermal surge-

type land-terminating glacier draining into Tempelfjorden, central Spitsbergen (Fig. 3). Its last surge  

dates from 1870 (De Geer, 1910). The glacier has been in quiescence ever since, with both of its 

streams presently moving at low speeds. One of its tributaries, Bogebreen surged in 1980 

(Dowdeswell and others, 1984). In the same size category is Kongsvegen (78.79°N; 13.15°E) another 

large (108 km2) surge-type glacier located near Ny Ålesund (Fig. 3). Today, the glacier is partly water-, 

partly land-terminating. Kongsvegen flows into Kongsfjorden joined to the neighboring tongue of 

fast-flowing tidewater glacier Kronebreen. Together they are responsible for three large advances in 

1800, 1869 and c. 1948 (Lefauconnier, 1987 ; Liestøl, 1988 ; Voigt, 1965 ; Woodward and others, 

2002). Only the last surge is confidently attributed to Kongsvegen. Today the glacier is quiescent and 

moves at velocities between 1.4 to 3.6 m a-1 (Melvold & Hagen, 1998b) while retreating at 250 m a-1 

(Lefauconnier and others, 1994). 

 

 

Figure 3: Archipelago of Svalbard and location of studied glaciers. ML: Midtre 
Lovénbreen, A: Aavatsmarkbreen, K: Kongsvegen, L: Longyearbreen, Te: Tellbreen, Tu: 
Tunabreen, V: Von Postbreen, NGS: Nathorstbreen glacier system. Glacier outlines 
from the RGI v4 (Pfeffer and others, 2014). 
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Tunabreen (78.56°N; 17.61°E) is another large (163 km2) surge-type tidewater glacier draining 

Filchnerfonna and Lomonosovfonna into Tempelfjorden (Fig. 3). Its tongue is separated from that of 

Von Postbreen by an ice-cored moraine. It is one of the few glaciers in Svalbard that has been 

observed to surge three times since the end of the LIA: in the 1930s, 1970s and from 2003-2005. 

Today the glacier is quiescent and fast flow velocities occur at the calving front (1 m d-1) (Flink, 2013 ; 

Flink and others, 2015). 

Midtre Lovénbreen (78.88°N; 12.03°E) is one of the most studied glaciers in Svalbard. The 

glacier is a relatively small (5.2 km2) land-terminating glacier found close to Ny Ålesund (Fig. 3). It was 

identified by Liestøl (1988) as a surge-type glacier although other studies have since then disagreed 

with this classification (Jiskoot and others, 2000 ; King and others, 2008). The glacier is currently 

retreating and flows at velocities under 7.3 m a-1 (Rippin and others, 2005). 

Small land-terminating glaciers Tellbreen (78.25°N; 16.17°E) and Longyearbreen (78.17°N; 

15.46°E) are located in central Spitsbergen (Fig. 3). Tellbreen is a small (3.9 km2), thin (<100 m, 

Bælum & Benn (2011)) cold valley glacier, thinning and slow-moving (<1 m a-1) (AGF212, 2014). No 

surges have ever been observed on this glacier although recent studies of its basal ice and internal 

structures have uncovered evidence of faster flow in the past (Lovell and others, 2015). 

Longyearbreen is slightly smaller (2.9 km2) but thicker (140 m, Etzelmüller and others (2000)) than 

Tellbreen. It is flowing between 1 and 4 m a-1 and experiencing negative balance (Hagen and others, 

2003). Similarly to Tellbreen, Longyearbreen has never been identified as a surge-type glacier 

(Humlum and others, 2005). 

 

4.3 Individual case studies 

 

The chronology of two surges was reconstructed in detail: the surge of the Nathorstbreen glacier 

system (NGS) that started in 2008, and the surge of Aavtsmarkbreen (2013-2015) (Fig. 3). 

The Nathorstbreen glacier system (77.30°N ; 16.67°E) is a very large glacier (430 km2) 

composed of four main branches flowing into Van Keulenfjorden in southern Spitsbergen. A large 

surge of the glacier system is thought to have occurred in 1870 based on the comparison of maps 

made during expeditions 1861 and 1905 (Liestøl, 1973). This produced an advance of 12 km into the 

fjord. Over the last century, the glacier retreated over 17.5 km (Sund and others, 2014). An advance 

of the combined terminus of the NGS started to occur in 2008-2009, and marked the beginning of 

one of the largest surges ever recorded in Svalbard since the 1930s (Sund and others, 2014). 
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Aavatsmarkbreen (78.70°N 12.29°E) is a large (73 km2) tidewater glacier found on the north 

west coast of Spitsbergen, south of Ny Ålesund (Fig. 3). The glacier has had two previous advances, 

one between 1909 and 1936-38 (Niewiarowski, 1982 ; Lankauf, 1999), and in the early 1980s 

(Lankauf, 1999). The glacier has lost over 1.3 km in length from 1990 and 2006 (Grześ and others, 

2008). After a relatively short quiescence of 30 years, the glacier started accelerating in May 2013, 

and produced a two year long upward propagating surge. 
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Chapter 5: Material and methods 

 

An overview of the different techniques used in this research is presented in this Chapter. These 

techniques were applied by the author unless otherwise specified. Section 5.1 describes the process 

used to compile the global geodatabase on surge-type glaciers, and section 5.2 elaborates on the 

model used to reproduce the distribution of surge-type glaciers in combination with the 

geodatabase. Mapping of the thermal regime of glaciers is described in section 5.3. Section 5.4 

focuses on the various remote sensing techniques employed, and finally section 5.5 is dedicated to 

the use of passive seismics in the study of surging glaciers.  

 

5.1 Compilation of the global geodatabase on surging 

 

The first step in the investigation of global controls on the distribution of surge-type glaciers is the 

compilation of a world-scale geodatabase on surge-type glaciers (Article I). For this work, a 

combination of 305 peer-reviewed publications, field observations and historical reports were used 

to inventory known surge-type glaciers, with their precise location and details about their behavior. 

No new observations were made. 

 

Table 1: Structure of the geodatabase 

Table A Table B Table C 

Country – Region 

RGI ID 

Glacier name 

Latitude (WGS84) 

Longitude (WGS84) 

Area 

Length 

Min. elevation 

Max. elevation 

Slope 

Aspect 

Surge ID 

RGI ID 

Glacier name 

Surge onset date 

Surge termination date 

Evidence 

Study surge index  

Harmonized surge index 

Area affected by the surge 

Glacier advance 

Peak surge velocities 

Surge interval 

Quiescence interval 

References ID 

Reference ID 

Date 

Region studied 

Complete reference 

Data 

Technique 

Years of documentation 

Surge index description 

Surge identification criteria 
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The geodatabase is divided into three tables (Table 1). All glaciers included in the database are 

listed in Table A, along with glacier location and a suite of key information on glacier geometry. 

Tributaries are included as separate entries when their behavior differs from that of the main trunk. 

Table B compiles all the evidence that led to the identification of a glacier as surge type. In the case 

of a direct observation of a surge, information on surge timing and magnitude is provided. Finally, all 

references are provided in Table C. Out of the 2317 glaciers composing the geodatabase, 1148 surges 

were directly observed.  A total of 186 glaciers have been observed to surge more than once.  

Integrity of the geodatabase was preserved by evaluating every entry. To be included in the 

database, glaciers had to display either periodical changes in flow velocity, advances asynchronous to 

neighboring glaciers or combinations of glaciological and geomorphological evidence. Secondly, a 

surge-index was implemented in order to rank the quality of the identifications based on the 

evidence presented.  

To allow comparison with normal glaciers, every surge-type glacier is associated with its 

Randolph Glacier Inventory ID. To do so, a spatial join was performed by combining the centerpoint 

of surge-type glaciers with glacier outlines of the RGI. As a result, tributaries were merged with their 

main trunk, resulting in a total of 1430 individual surge-type glaciers. The RGI was first released in 

February 2012 and can downloaded from: http://www.glims.org/RGI/ (Arendt & others., 2012). 

The potential of this geodatabase goes beyond this work as it enables to study the surge 

phenomenon on the global, regional and individual scale. It also allows spatio-temporal analyses of 

surge trends, magnitudes, periodicities, as well as inter- and intra-cluster comparisons as all the 

glaciers are georeferenced. 

 
 
5.2 Investigating controls on global distribution of surge-type glaciers with Maxent 

 

Finding the controls on the distribution of surge-type glaciers has been a strong focus in glaciology 

for the past 30 years. The development of statistical tools such as univariate and multivariate 

regression techniques have enabled the investigation of the relationships between a variety of 

glaciological and environmental controls and surging (Jiskoot and others, 2000 ; Hamilton & 

Dowdeswell, 1996 ; Clarke and others, 1986 ; Clarke, 1991 ; Barrand & Murray, 2006). However, 

controls on the global distribution of surge-type glaciers had not been investigated before this work. 

We used the Species Distribution Model Maxent version 3.3.3k (Phillips and others, 2006 ; 

Phillips & Dudík, 2008) to investigate the global distribution of surge-type glaciers. Maxent aims to 

maximize entropy of a species in a geographic domain of a species in relation to a set of 

environmental variables (James and others, 2015). The model is based on two components. First, the 
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presence data (i.e. known locations of the species) defines constraints on the probability distribution. 

Second, the model uses maximum entropy as a probability distribution to fulfil these constraints. 

Maxent originally starts by assuming a perfectly uniform probability before drifting from this 

distribution only to the extent that it is forced to by the constraints (Merow and others, 2013). The 

selected distribution is therefore only informed by the prior data. 

To investigate a species’ distribution Maxent requires a dataset of presence locations and a 

suite of environmental variables (the predicators). The global geodatabase on surge-type glaciers is in 

this case the list of presence locations. Environmental variables consist of mean annual temperature 

and mean annual precipitation extracted from ERA-Interim (ERA-I) reanalysis data (European Centre 

for Medium-Range Weather Forecasts, Dee and others (2011)), glacier area from the RGI v3.2 

(Arendt & others., 2012) and length, slope, and range derived from a global dataset of glacier 

centerlines and the ASTER GDEM v2 (Machguth & Huss, 2014 ; Kienholz and others, 2014). To ensure 

spatial consistency between climate and geometry datasets, glacier geometry values of all glaciers 

present in every ERA-I cells were averaged. The same grid was therefore used for ERA-I and glacier 

geometry data. 

Maxent’s main output is a map of the probabilities of presence of surge-type glaciers across 

the glacierized regions. The model output is evaluated using the AUC (area under the receiver 

operating curve) (Hanley & McNeil, 1982). It discriminates between presence and background points. 

An AUC of 0.5 qualifies the model as no better than random, while values over 0.5 show a higher 

predictive power. Two series of runs were performed and compared. First, the model was trained on 

75% of the presence data and tested on the other 25%. And second, a 10-fold cross validation was 

used, testing 10% of the training data at each repetition (Radosavljevic & Anderson, 2014). 

Importance of the different variables in building the model was analyzed by a Jackknife test (Wu, 

1986). Finally, response curves show how climate and glacier geometry variables influence the 

probabilities of presence.  

5.3 Investigation of the thermal regime of surge-type glaciers in Svalbard 

Ground penetrating radar (GPR) has been widely used to investigate the thermal regime and to 

measure the thickness of Svalbard glaciers (Hagen & Sætrang, 1991 ; Björnsson and others, 1996 ; 

Macheret & Zhuravlev, 1982 ; Macheret and others, 1985 ; Kotlyakov & Macheret, 1987 ; 

Dowdeswell and others, 1984 ; Bamber, 1987 ; Drewry and others, 1980). The propagation of 

electronic waves emitted by ground penetrating radar is influenced by the ice dielectric properties. 

Cold ice is transparent to electromagnetic waves, whereas small volumes of liquid water contained in 
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temperate ice cause strong scattering, making the two easily distinguishable (Navarro & Eisen, 2009). 

Comparisons of borehole temperature measurements and GPR data in Svalbard showed that a 

continuous internal reflecting horizon (IRH) corresponds to the cold-temperate transition surface 

(CTS) (Hagen & Sætrang, 1991 ; Björnsson and others, 1996). 

For this work, data were collected on a number of glaciers chosen for their representativeness 

of the different types of glaciers found in Svalbard: tidewater and land-terminating glaciers, as well 

as large and thick, small and thin glaciers, quiescent and surging glaciers (Articles II and IV). Here we 

describe the GPR system and processing sequence used in Article II. A complete Malå system was 

employed, fitted with “rough terrain” antennae with center frequencies between 25 and 100 MHz. 

Ideally, higher frequencies (>345 MHz) are most suitable for detecting the CTS (Pettersson, 2005), 

thus the frequencies we use provide a minimum thickness for the CTS. The Malå system is limited to 

267 m in depth, but the focus is to map the CTS, which is generally shallower. Transmitter and 

receiver are oriented in line, and the configuration of the antennae only allows for common offset 

surveys. A GPS was connected to the system for positioning of the survey lines in the vertical and 

horizontal. Typically GPS coordinates were recorded every 5-25 traces. In the field, the system is 

installed on a snowscooter, and the antenna is pulled as the scooter moves at a constant speed close 

to or below 20 km h-1. 

Data were processed using a combination of two softwares. ReflexW version 7.5 (Sandmeier 

Scientific Software) was used for the main processing, while Petrel version 6.1.7601 (Schlumberger) 

allowed 3D interpolation of the results. Pre-processing of the raw data consisted of correcting errors 

in GPS positioning, time zero adjustment and removal of repeated traces. Main processing steps 

included Dewow to suppress unwanted low frequencies, dynamic correction and implementation of 

a constant time increment between all traces. Data were migrated in order to move the reflections 

and diffractions to their true position. A kirchhoff migration with a velocity of 0.167 m ns-1 was used 

on a bracket of 150 traces. A bandpass butterworth filter was applied to reduce noise caused by the 

migration, and finally a linear gain function strengthened the signal with depth. Bed and CTS were 

then manually picked on every single radargram. The software Petrel was then used to interpolate 

the picked data and provide a unique representation of the thermal structure of the glaciers.  

Uncertainties in this technique can be divided into system-specific limitations, data processing 

errors, and positioning errors. System-specific limitations are related to the vertical and horizontal 

resolution of the antenna chosen for each survey. Data processing and more particularly manual 

picking of reflectors introduce uncertainties. Migration quality and cross-over errors were assessed 

by measuring offsets between the bed reflector of valley-parallel and valley-transverse lines. Finally, 

errors in positioning were accounted for. In the early surveys (Tellbreen, Von Postbreen, Kongsvegen 
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and Midtre Lovénbreen) a Garmin handheld GPS with an accuracy of 15 m in the horizontal and in 

the vertical was used, while in the recent surveys a Trimble SPS885 GPS was preferred, characterized 

by an accuracy of 30 cm both in the horizontal and vertical. 

 

 

5.4 Remote sensing techniques 

 

A variety of remote sensing techniques were used in this work. They were essential to derive glacier 

velocities on a high temporal and spatial resolution, measure elevation changes, and map crevasse 

propagation during surging. 

 

5.4.1 Extracting velocities from feature-tracking of TerraSAR-X images 

 

Feature-tracking of synthetic aperture radar (SAR) images has been widely used to derive glacier 

surface velocities (Luckman and others, 2006 ; Fallourd and others, 2011 ; Floricioiu and others, 

2009). The TerraSAR-X satellite, launched in 2007, provides its own source of illumination making in 

independent of sun light. X-band (9.65 GHz) SAR images penetrate rain and cloud, allowing year-

round monitoring of the Polar Regions. Strength of the backscatter depends on the wavelength, 

humidity and roughness of the surface.  

A. Luckman applied feature-tracking to derive glacier velocities of Aavatsmarkbreen 

throughout its surge (Article IV). The technique consists of matching patches between repeat pass 

pairs of images and converting the displacement in velocity (Strozzi and others, 2002 ; Luckman and 

others, 2006). Glaciers commonly display surface features such as crevasses, debris, making tracking 

particularly efficient. Errors in the technique arise when the surface features change too significantly 

for matching. Quality of the results can be assessed by tracking over off-glacier “zero-displacement” 

areas. 

 
5.4.2 Measuring elevation changes  

 

Differencing digital elevation models (DEMs) consists of subtracting DEMs collected at different 

epochs. Significant changes in elevation occur during the surge cycle. Measuring these elevation 

changes enables the detection of patterns of mass accumulation in the reservoir zone prior to 

surging, and during the surge itself, drawdown up-glacier and thickening of the receiving zone. 

C. Nuth employed a large variety of DEMs in Articles III and IV. To investigate the surge of the 

NGS (Article III), four different DEMs were employed: a DEM from the Norwegian Polar Institute built 
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from aerial photographs collected in 1990 (20 m resolution), a SPOT5 HRS DEM (resolution of 5 m 

and 10 m in the vertical) from 2008 and ASTER DEMs from 2003 and 2010 (30 m resolution) (Article 

III). DEM differencing followed the sequence presented in Nuth & Kääb (2011), with co-registration of 

the datasets to WGS 1984 UTM zone 33, and correction of elevation-dependent biases and 

instrumentation related errors. 

DEMs were also used to detect elevation changes of Aavatsmarkbreen during its surge (Article 

IV). Glacier longitudinal profiles were extracted from four different DEMs to reconstruct changes in 

elevation during the two decades prior to surging. 

 

5.4.3 Crevasse mapping on SAR images 

 

As explained above, backscatter strength is affected by the dielectric properties and texture of the 

reflecting material. During the surge of the NGS (Article III), high backscatter values corresponded to 

pervasively crevassed ice, as opposed to low backscatter values over smoother ice. A total of 1468 

ENVISAT ASAR C-band Wide Swath Mode scenes collected between 1st January 2007 and 31st 

December 2010 were acquired. Each scene was classified according to backscatter intensity in order 

to monitor the propagation of highly crevassed ice. Training sets collected in highly crevassed areas 

displayed an average value of -5 dB. This threshold was used to identify highly crevassed ice on all 

the scenes. The spatial propagation of crevassing was then analyzed to understand surge onset and 

its development. Classification was only applied to the lower reaches of the NGS in order to avoid 

changes in reflection due to the presence of snow and firn. Nevertheless, backscatter values reached 

a minimum every summer when meltwater was present on the glacier surface. The technique 

worked best when the glacier surface remained frozen, from the months of October until June. Short 

drops in winter backscatter values occurred during rain on snow events, while short peaks 

corresponded to short-lived increases in temperature. 

SAR images can also be used for manual mapping of glacier surface features. This technique 

was implemented in the study the surge of Aavatsmarkbreen (Article IV). In this case, TerraSAR-X 

images were chosen for the mapping. Their high spatial resolution (2 m) and low penetration of the 

signal (<1 m in snow) make them particularly suitable for mapping. Three winter scenes were chosen 

in order to avoid difficulties in observing features due to surface melt. 
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5.5 Passive seismics 

 

This technique has been applied to study ice quakes emerging during stick-slip events (Weaver & 

Malone, 1979 ; Deichmann and others, 1979 ; Ekström and others, 2003), iceberg calving (Walter and 

others, 2010 ; O'Neel & Pfeffer, 2007), and crevasse opening (Mikesell and others, 2012). In Svalbard, 

a few studies have employed temporary networks of seismometers to study surge mechanisms 

(Stuart and others, 2005), and calving activity (Köhler and others, 2012 ; Vinogradov and others, 2015 

; Cichowicz, 1983). This technique fits well with the challenging monitoring of surging glaciers, as 

seismometers can remotely and safely sense activity occurring tens of kilometers away. 

Regional seismic networks have numerous advantages as they allow continuous monitoring of 

large areas over several years. A network of three permanent stations can be found on Spitsbergen, 

separated by about 100 km. The main station was installed at Longyearbyen in 1992 (SPITS array). It 

consists of 9 instruments and has an aperture of a kilometer. Two smaller stations with single 

seismometers are located at Ny Ålesund and Hornsund. The stations started operating respectively in 

1994 and 2007 (see Köhler and others (2015) for further description of the network specificities). 

The regional network of Spitsbergen can detect tectonic activity, calving, surging-related 

calving, and most interestingly, surging on land. A large peak of seismic activity was detected from 

October 2008 to May 2009 in the vicinity of Nathorstbreen glacier system (NGS) (Article III). A. Köhler 

collected, processed and analyzed the seismics data. The signature of the seismic events were 

different from that of calving as they displayed no seasonality, lacked low frequencies and originated 

from one of the tributaries of the NGS. 

Data pre-processing commonly consists of selecting a small number of strong seismic events 

with clear seismic phase arrivals for localization. A total of 96 events were selected from the SPITS 

array (magnitude >0.5) and from Hornsund station (magnitude >1). Traditional methods of 

localization of seismic events detected on three or more seismic stations are inadequate for events 

detected at regional distances. In this instance, event localization was performed by measuring the 

time delay between P and S wave, calculating the backazimuth (station to source direction) and using 

the BARENTS3D regional velocity model for wave propagation velocities (NORSAR, 2014 ; Köhler and 

others, 2015). Errors in localizations were estimated using the mean and standard deviation of 

backazimuth and distance. Two different techniques were applied to calculate the backazimuth from 

the Longyearbyen and Hornsund stations, resulting in two different error ellipses.  

Local magnitudes of the seismic events were calculated based on a magnitude-amplitude 

(power law) relation based on regional tectonic events recorded from one of the seismometers in 

Longyearbyen. The local magnitude was then converted to seismic moment using an empirical 

relation. 
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Chapter 6: Summary of articles and key results 

 

Article I: Climatic and geometric controls on the global distribution of surge-type glaciers: 

implications for a unifying model of surging 

 

Surge-type glaciers represent about 1% of the world’s glacier population (Jiskoot and others, 1998). 

Despite this relatively small proportion, surge-type glaciers have attracted a great deal of attention 

over the past few decades. Their periodic behavior, alternating between fast and slow flow is one of 

the largest enigmas in glaciology. The issue of surging goes beyond the fascination for the 

phenomenon. We cannot be satisfied with our present understanding of glacier flow if we cannot 

provide a clear explanation as to why some glaciers surge, while most do not. Only an innovative 

approach could shine a new light on the surge phenomenon. One of the most puzzling facts about 

surge-type glaciers is their abundance in some regions, while they are completely absent in others. 

We speculate that the non-random distribution of surge-type glaciers holds the key to a better 

understanding of the surge phenomenon. In this paper, the role of climate on the global distribution 

of surge-type glaciers is examined, while glacier geometry is investigated as a possible secondary, 

local-scale control. 

A global inventory of surge-type glaciers is compiled. Climate data were extracted from the 

ERA-Interim reanalysis dataset (Dee and others, 2011). We focused on two main variables, namely 

mean annual temperature and mean annual precipitation averaged from January 2000 to December 

2009. For every glacier in the world, whether it is normal or of surge-type, mean annual temperature 

and mean annual precipitation were extracted based on location of the glacier centerpoint. Glacier 

area was derived from the RGI outlines (Arendt & others., 2012), while length, slope and range were 

obtained from Machguth and Huss (2014) centerline dataset and the ASTER GDEM v2. Maxent, a 

species distribution model is employed to reproduce the distribution of surge-type glaciers based on 

a limited set of variables, and to investigate variable importance in their distribution. 

Analysis of the climatic distribution of surge-type glaciers reveals that they are concentrated in 

a narrow climatic envelope bounded by temperature and precipitation, which we identified as the 

'optimal surge envelope' (Fig. 4). Interestingly, there is a near perfect overlap in climatic 

characteristics of the two surge superclusters (the 'Arctic Ring' and western Central Asia). Surge-type 

glaciers are longer and have greater areas than normal glaciers across all regions, especially at the 

cold and dry end of the climatic spectrum (Fig. 6). Maxent accurately reproduced the distribution of 

the main surge clusters based on four variables: mean annual temperature and mean annual 

precipitation, and mean glacier length and surface slope (Fig. 9). High probabilities of presence were 
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attributed over the major surge clusters; however more marginal clusters such as the Andes, 

Caucasus and Arctic Canada are under-predicted. 

The results are interpreted in terms of a new enthalpy cycle model. For a glacier to remain 

close to equilibrium, the glacier must maintain balance velocities, and energy gains must be matched 

by energy losses. At the cold and dry end of the climatic spectrum, surge-type glaciers are scarce, but 

are noticeably larger than normal glaciers. On small glaciers, low basal enthalpy production is easily 

dissipated by heat conduction. Large and thick glaciers have higher basal enthalpy production, and 

their thickness reduces heat losses to the atmosphere. Therefore, large glaciers are less likely to find 

a balance between enthalpy production and dissipation.  At the warm and wet end of the climatic 

spectrum, densities of surge-type glaciers are very low. Glaciers in these environments have a high 

turnover, thus enthalpy production is significant. High runoff evacuates enthalpy gains via efficient 

drainage networks.  Finally, in the optimal surge envelope, enthalpy gains cannot be fully dissipated 

by enthalpy losses. In temperate glaciers this causes growing storage of water, while in polythermal 

glaciers, ice is progressively brought to the pressure melting point, and eventually melts, contributing 

to storage of meltwater. 

Glacier geometry exerts a second-order control on enthalpy balance. Large, long and branchy 

glaciers are higher enthalpy producers than small glaciers. Enthalpy gains are less easily evacuated by 

conduction on thick glaciers. Drainage systems are more vulnerable to instabilities under long 

glaciers. This hierarchy in the controls on the distribution of surge-type glaciers is further reflected by 

Maxent’s results. The model predicted the distribution of surge-type glaciers well based on climatic 

variables only, but failed to do so based solely on glacier geometry variables. 

Our results also suggest that many other local-scale controls such as thermal regime, bed 

substrate, or subglacial topography must be involved in the mechanisms of surging. The enthalpy 

cycle model redefines surging as a way glaciers respond to their climatic and topographic 

environments. 
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Article II: Thermal structure of Svalbard glaciers and implications for thermal switch 

models of glacier surging 

 

Two main mechanisms are used to explain glacier surging today: the hydrologic switch mechanism 

for temperate glaciers (Kamb, 1987), and the thermal switch mechanism for polythermal glaciers 

(Fowler and others, 2001). We test the validity of the thermal switch mechanism for surges in 

Svalbard. The archipelago is home to a dense population of surge-type glaciers. By comparing 

published data with new GPR data collected for this work, we measure the evolution of the thermal 

structure of surge-type glaciers through time. Finally, we reflect on the possibility for glaciers to go in 

and out of surge cycling by focusing on small, cold, low-activity glaciers which display strong evidence 

of past fast-flow dynamics.  

The thermal regime of six glaciers is investigated. The glaciers were chosen for their 

representativeness, surge history and availability of previously collected data. Among the large 

glaciers of our sample, Kongsvegen and Tunabreen are marine-terminating and Von Postbreen is 

land-terminating. All three have a known surge history and are currently in quiescence. Their thermal 

structure was mapped in the past (Hagen & Sætrang, 1991 ; Björnsson and others, 1996 ; Bamber, 

1987). The three other glaciers are small and land-terminating. Midtre Lovénbreen is known to 

display a polythermal structure with a narrow core of temperate ice at its base (Björnsson and 

others, 1996), and has a disputed surge history (Hambrey and others, 2005 ; King and others, 2008). 

The remaining two, Longyearbreen and Tellbreen are cold and have not previously been identified as 

surge-type glaciers (Etzelmüller and others, 2000 ; Bælum & Benn, 2011). 

The six study sites were revisited between 2009 and 2015 with a Malå GPR system. Antennae 

with center frequencies between 25 and 100 MHz were used to distinguish cold from temperate ice 

(Table 1). The main processing of the radar data was achieved using ReflexW (Sandmeier Scientific 

Software). The same processing sequence was used for bed and CTS mapping (Table 2). Picking of 

these horizons was done manually. A second software, Petrel (Schlumberger) allowed interpolation 

of the picked lines, improving the visualization of the thermal structure and thickness of the glaciers. 

A detailed estimation of the errors related to the GPR system, data localization and data processing is 

provided.  

New data reveals that the large surge-type glaciers of our sample are remain almost fully 

warm-based during their quiescence. Von Postbreen (Fig. 1) is a typical polythermal glacier of type e 

while Kongsvegen (Fig. 2) is a variation of type e in which the frozen terminus is removed by calving 

(Pettersson, 2004). Since previous studies, the shallow cold layer has expanded horizontally up-

glacier and has deepened (Björnsson and others, 1996). The tidewater glacier Tunabreen (Fig. 3) is 

structurally very similar to Kongsvegen although its last surge in 2003 brought the CTS closer to the 
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surface (Bamber, 1987). Midtre Lovénbreen is a polythermal glacier of type e in the process of 

cooling (Figures 4,5). Finally, Tellbreen and Longyearbreen are entirely cold (Figures 6, 7). Studies 

have revealed that Tellbreen and Midtre Lovénbreen display evidence of formerly more dynamical 

flow (Glasser & Hambrey, 2001 ; Hambrey and others, 2005 ; Lovell and others, 2015). On 

Longyearbreen, we detected a large number of elongated internal reflectors extending from the bed 

to the surface, which corresponds to arcuate features on the glacier surface (Fig. 8). 

Glaciological and geomorphological features show that small glaciers of our sample were more 

active in the past. We propose that these glaciers underwent thermal cycling (from cold to warm) 

when the conditions were optimal during the LIA. This resulted in a sudden and temporary dynamical 

switch to fast flow, similar to the thermal switch mechanism proposed by Fowler and others (2001). 

Larger glaciers such as Tunabreen and Kongsvegen do not display a frozen terminus, and together 

with Von Postbreen remain fully warm-based during quiescence. Thermal switches therefore cannot 

be involved in surge initiation on large and thick glaciers. 

We explain the former fast-flow behavior of small glaciers as well as the cyclic surges of large 

glaciers with the concept of enthalpy cycling (presented in Article 1). Under the present climate, 

small and thin glaciers are low enthalpy producers. Conduction and runoff of meltwater efficiently 

balance enthalpy production. However, during the LIA, favorable conditions led to sustained mass 

accumulation. Enthalpy production rose as the glaciers were thickening. Net enthalpy gains yielded 

positive feedbacks at the bed, ultimately toppling the glaciers into above balance velocity flow 

regimes. On the other hand, large glaciers currently undergo periodic surges. As these glaciers are 

warm-based, enthalpy cycling is manifested by variations in production and drainage of meltwater. 

The efficiency of conductive heat losses is reduced by the glacier thickness. Studies have shown that 

glaciers with high altitude accumulation basins still accumulate mass (Nuth and others, 2007). The 

glacier flow rates must remain below balance velocities to allow build-up of mass. As potential 

energy is increasing, basal enthalpy production rises, encouraging meltwater production. If 

meltwater cannot be discharged by efficient drainage networks, pressure builds-up in the system, 

eventually triggering a surge.  

We argue that enthalpy cycling can explain the full spectrum of surging behavior in Svalbard. 

Our findings also provide a new explanation on the proportion of surge-type glaciers on the 

archipelago. During the LIA, surges or surge-like instabilities affected a very large number of small 

glaciers in Svalbard, agreeing with the estimation of Lefauconnier and Hagen (1991) for the period 

prior to the 20th century. However, under the present conditions, about 20% of all glaciers of 

Svalbard surge (Article I) 
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Article III: Seismic detection of a catastrophic glacier surge 

 

At the end of 2008 – early 2009 the permanent regional seismic network of Spitsbergen 

detected a burst of activity in the vicinity of the Nathorstbreen glacier system (NGS). Signals recorded 

were significantly different from that of calving or tectonic activity. The NGS was then initiating one 

of the largest surges recorded on Svalbard since the 1930s (Sund and others, 2014). Interestingly, 

seismic activity completely ceased three months later, despite continuation of the surge until 2013. 

In this study, we located the origin of the seismic signals, and with a combination of DEM differencing 

and mapping crevasse propagation we reconstructed the chronology of events leading to the surge. 

The NGS is composed of four glaciers flowing as a combined front into Van Keulenfjorden in 

southern Spitsbergen (from west to east: Zawadzkibreen (Z), Polakkbreen (P), Nathorstbreen-

Ljosfonn (N) and Dobrowolskibreen (D)). The NGS extends from 944 m a.s.l. to sea level (König and 

others, 2013). The glacier has been in quiescence since its last surge in 1870 (Liestøl, 1973 ; De Geer, 

1910). Radio echo-soundings from 1980 show a polythermal regime with mostly temperate ice and a 

frozen terminus (Dowdeswell and others, 1984). 

Records of seismic events were collected from the permanent stations of Longyearbyen (SPITS 

array, 90 km north of the NGS) and Hornsund (40 km south). The first signals were detected in 

October 2008, but the main period of activity occurred from early January to May 2009. A total of 

14 000 low-magnitude events were detected. Only the 96 of the strongest and clearest events were 

used for localization, and tributary Z was revealed as the main source of the signals (Fig. 1).  

DEM differencing allowed reconstruction of the chronology of events leading to the surge. 

Between 1990 and 2003 mass was building-up at high elevations on tributaries Z, P and D. From 2003 

to 2008 mass was transported downstream on Z and D. The mass transfer stopped a few kilometers 

from the glacier front, at the limit between temperate and cold ice (Fig. 1). 

ENVISAT ASAR C-band wide swath mode scenes were used to map crevasse propagation 

before and during the surge. In the ablation area of the glacier, when melting did not occur, 

backscatter strength was mostly dominated by surface texture. Highly crevassed regions were 

characterized by backscatter values greater than -5 dB. A total of 1468 scenes were classified based 

on backscatter intensity (Fig. 3). Between October 2008 and January 2009, crevassing rapidly covered 

the entire lower reaches of D, indicating activation of a surge. During the main period of seismic 

activity, linear zones of crevassing formed around the frozen terminus, and between the different 

branches of the NGS. The onset of the surge of the NGS therefore coincided with the fracturing and 

collapse of the frozen terminus. Crevassing also expanded along the lateral margins of Z and between 

Z and its two small tributaries Rozyckibreen (R) and Biernawskibreen (B). 
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Comparison of high-resolution optimal images between September 2008 and July 2009 

showed the formation of unusually large chasms in these areas, up to 100 m wide and 50 m deep 

(Figures 1 and 6). Furthermore, long rifts formed along the margins of Z. 

Similarly to the surge of Aavatsmarkbreen (Article IV), we conclude that the surge of the NGS is 

the result of multi-year processes. The advance of the NGS was eventually triggered by the failure of 

its frozen tongue. As a result, stresses were suddenly transferred to the margins of Z and regions of 

high bed strength. Seismic signals originated from the catastrophic collapse of Z, while terminus 

advance did not lead to detectable seismicity. The absence of signals during the main phase of the 

surge suggests glide over a weak bed with little energy release. The surge of the NGS is analogous to 

glacier speed-ups following the collapse of the Larsen ice shelves. Removal of backstress causes 

sudden glacier acceleration in both cases. 
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Article IV: A tidewater glacier surge initiated at the terminus: Aavatsmarkbreen, Svalbard 

Aavatsmarkbreen is a surge-type glacier found in north-western Spitsbergen (Fig. 1). After 

three decades of recession and thinning, the glacier underwent a two year-long acceleration reaching 

velocities nine fold those during quiescence. The speed-up was initiated at the front and propagated 

to regions higher up-glacier. This behavior relates to other observations of surges of tidewater 

glaciers in Svalbard such as Osbornebreen (Rolstad and others, 1997), Perseibreen (Dowdeswell & 

Benham, 2003), Monacobreen and Fridtjovbreen (Murray and others, 2003a, 2003b). In this study, 

we used a rich data set of glacier velocities, bed topography and surface elevation changes to 

reconstruct the evolution of the glacier before and during the surge, and investigated what drives the 

upward propagating surges of tidewater glaciers in Svalbard. 

Feature tracking of TerraSAR-X imagery was used to derive the glacier velocity field c. every 11 

days from late 2012 to June 2015. The glacier front position during quiescence was mapped on a 

series of Landsat images. The evolution of the crevasse pattern was studied through high-resolution 

optical imagery in 2009-2011 and TerraSAR-X SAR images during the surge. Surface elevation profiles 

were extracted along the glacier centerline from 1990 to 2010, and the 2015 surface profile and bed 

topography were obtained from a helicopter-borne GPR survey performed in May 2015. The 

combination of surface longitudinal profiles and bed topography enabled the calculation of the 

driving stress from 1990 to 2015. 

The 2013-2015 surge was preceded by retreat, thinning, and steepening of the lower 4 km of 

the glacier (Fig. 2). No thickening could be detected prior to the surge, nor could we detect the 

presence of a surge bulge on the glacier surface. The glacier underwent a progressive acceleration 

between the early 2000s and the surge. This acceleration was reflected by the apparition of narrow 

transverse crevasses between 2009 and 2011 (Fig. 5). By the end of 2012 large extensional crevasses 

had already largely expanded up-glacier (Fig. 6). In May 2013 just as melting was initiated, the glacier 

terminal zone started to accelerate, and by the end of the meltseason velocities reached 2.5 m d-1 

(Figures 3,4). While flow stabilized through the following autumn and winter, velocities and 

crevassing propagated up-glacier. A second step-change in velocities occurred again during the 

meltseason, this time with a larger impact on the dynamics. The velocities reached 4.5 m d-1 at the 

glacier front, and high velocities could be measured over the lower 9 km of the glacier. A steady 

decline followed, and by May 2015 the glacier returned to pre-surge velocities (Fig. 7). 

We demonstrate that the surge of Aavatsmarkbreen was caused by two processes. First, 

through the years leading to the surge, sustained steepening progressively increased the driving 

stress. Strain heating was enhanced at depth, causing the glacier to slowly accelerate and large 

extensional crevasses to expand up-glacier. The surge was triggered at the onset of the 2013 

meltseason. Routing of surface meltwater to the bed through the expanding crevasse field reduced 
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bed strength and facilitated glacier motion. The same mechanism took place the following summer, 

this time doubling the speeds of the glacier and mobilizing a greater glacier area. At the end of the 

meltseason velocities steadily decreased through the following year, reflecting slow release of 

subglacial water. 

This surge can be understood in terms of enthalpy production/dissipation (presented in Article 

I). In the late quiescent phase, strain heating, hence enthalpy increased. Enthalpy production in a 

polythermal glacier with a warm base is expressed as a rise in meltwater production. Steepening 

continued, indicating that the glacier kept flowing below its balance velocities. Limited enthalpy 

production is likely to have been evacuated by an efficient drainage system. However, addition of 

large volumes of meltwater through crevasses suddenly increased water storage (hence enthalpy) at 

the glacier bed, and eventually triggered the surge. The behavior of Aavatsmarkbreen reflects the 

interplay between global and local factors on surging (Articles I and II) and changes in the force 

balance (Article III).  
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Chapter 7: Conclusions and future perspectives 

 

Although a small number of glaciers in the world have been observed to surge, the lack of a solid 

understanding of their behavior uncovers weaknesses in our knowledge of glacier dynamics. For this 

reason, surge-type glaciers have been regarded as ‘abnormal’. They are often excluded from 

modelling efforts aiming to quantify glacier’s response to climate forcing. This thesis addresses some 

of the essential questions related to surging, and by combining new data with innovative techniques, 

provides a novel perspective as to why glaciers surge. 

This research shows that the non-random distribution of surge-type glaciers is primarily 

governed by climate. Glacier geometry variables on the other hand, act as a second-order control on 

surging and allow glaciers to surge outside of the optimal surge envelope. These results led to the 

introduction of the enthalpy cycle model. Enthalpy cycling can explain why some regions are prone to 

surging. This concept expresses how glaciers interact with their environment, and unites the 

behavior of normal and surge-type glaciers under the same framework. The model of enthalpy 

cycling can be applied to explain surging of both temperate and polythermal glaciers. In Svalbard 

polythermal glaciers remain warm-based throughout their surge cycle, demonstrating that surging of 

large glaciers does not occur through thermal switches. However, cold and thin glaciers that today do 

not surge display strong evidence of past fast flow dynamics that can be explained by thermal cycling 

during the Little Ice Age. The present behavior of large polythermal surge-type glaciers, and the 

former dynamics of cold and thin glaciers can also be understood within the enthalpy cycle model. 

Finally, case studies have shown that surges in Svalbard are the result of multi-year processes. Failure 

of the frozen terminus of the Nathorstbreen glacier system produced the largest advance recorded in 

Svalbard since the 1930s, and triggered the catastrophic collapse of one of its tributaries. In turn this 

produced a three month long period of unusual seismic activity. Sustained steepening of the 

terminus of tidewater glacier Aavatsmarkbreen produced a chain reaction that led to gradual 

increase in velocities and expansion of the crevasse field. It is ultimately the transfer of surface 

meltwater to the bed that triggered a two year long upward propagating surge. Surges in Svalbard 

are therefore the result of the combination of global controls on surging (climate), and controlled by 

local factors (thermal regime, geometry).  

This new understanding of surge mechanisms and surge behaviors exposes exciting new areas 

of research. The geodatabase on surge-type glaciers could be used to refine the analyses of regional 

distributions of these glaciers. Combined to high-resolution climatic data and regional datasets of 

glacier geometry, bed topography and substrate lithology, regional and local controls on surging 
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could be identified. Field data are scarce and challenging to obtain, especially on surging glaciers, but 

they are an absolute necessity to further improve our understanding of the surge mechanisms. New 

technologies such as wireless sensors for example are perfectly suited to monitor glaciers going into 

surging. Further field studies could be designed to quantify the energy balance of neighboring surge-

type and normal glaciers in order to test the enthalpy cycle model. Eventually such field data would 

provide a strong basis for modelling of glacier thermodynamics. 
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