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Abstract. Much of the existing work on automatic classification of ges-
tures and skill in robotic surgery is based on kinematic and dynamic
cues, such as time to completion, speed, forces, torque, or robot trajec-
tories. In this paper we show that in a typical surgical training setup,
video data can be equally discriminative. To that end, we propose and
evaluate three approaches to surgical gesture classification from video.
In the first one, we model each video clip from each surgical gesture
as the output of a linear dynamical system (LDS) and use metrics in
the space of LDSs to classify new video clips. In the second one, we
use spatio-temporal features extracted from each video clip to learn a
dictionary of spatio-temporal words and use a bag-of-features (BoF) ap-
proach to classify new video clips. In the third approach, we use multiple
kernel learning to combine the LDS and BoF approaches. Our experi-
ments show that methods based on video data perform equally well as
the state-of-the-art approaches based on kinematic data.

Keywords: surgical gesture classification, time series classification, dy-
namical system classification, bag of features, multiple kernel learning.

1 Introduction

Recent technological advances have contributed to, and changed, the way in
which surgery can be performed. One of them is Robotic Minimally Invasive
Surgery (RMIS), which has several advantages over traditional surgery, such as
better precision, smaller incisions and reduced recovery time. However, the steep
learning curve together with the lack of fair and effective criteria for judging the
skills acquired by a trainee, may reduce the benefits of this technology.

This has motivated a number of approaches for automatic RMIS skill assess-
ment and gesture classification. One of the most natural approaches is to decom-
pose a surgical task into a series of pre-defined ‘atomic’ gestures or surgemes
[1–3], such as ‘insert a needle’, ‘grab a needle’, ‘position a needle’, etc. (Fig. 1
shows sample frames from three different surgemes). The problem then becomes
how these surgemes can be segmented in time, recognized, and finally assessed.

Most of the prior work on surgical gesture recognition (see, e.g., [4–6]) uses
hidden Markov models (HMMs) to analyze kinematic data stored by the robot,
such as the position of the robot tools, angles between robot joints, velocity mea-
surements and force/torque signatures. All these approaches model each surgeme
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(a) S2: positioning needle (b) S4: transferring needle from
left to right

(c) S5: moving to center with
needle in grip

Fig. 1. Examples of three different surgemes in a suturing task

as one or more states of an HMM. The main difference is in how these approaches
model the observations within each surgeme. For example, [5] vector-quantizes
the observations into discrete symbols, [7] uses a Gaussian model combined with
linear discriminant analysis (LDA), [6] assumes that the observations are gener-
ated from a lower-dimensional latent space using Factor Analyzed HMMs (FA-
HMMs) and Switched Linear Dynamical Systems (SLDSs), [8] uses a Gaussian
mixture model (GMM), and [9] models the observations as a linear combination
of atomic motions with sparse coefficients. All of these methods have significantly
improved surgical gesture classification over a standard HMM.

In addition to kinematic measurements, RMIS systems are also typically
equipped with cameras that record the entire procedure. The work in [10, 11]
propose to recognize the different phases of a surgery (e.g. CO2 inflation, ab-
dominal suturing, etc.) using laparoscopic videos. Other works on video data
analysis [12, 13] focus on recognizing the phases of a surgery by also observing
surgeons and nurses in the operating room. To the best of our knowledge, the
only existing work on automatic skill and surgical gesture (rather than coarse
phases as in [10–13]) classification from video is [14], which uses basic visual
cues based on optical flow and concludes that kinematic-based approaches are
generally more accurate.

In this paper, we propose and evaluate three approaches to surgical ges-
ture classification from video. The first approach uses linear dynamical systems
(LDSs) to model each video clip from each surgeme. Distances between the pa-
rameters of the LDSs are then used to classify new video clips. The second
approach is a bag-of-features (BoF) approach in which a dictionary of spatio-
temporal words is learned from spatio-temporal features extracted from all video
clips. Each video clip is then represented with a histogram of such words and
distances between histograms are used to classify new video clips. The third
approach combines the LDS and BoF approaches using multiple kernel learn-
ing (MKL). Our experiments on kinematic data from a typical surgical training
setup show that methods based on LDSs already outperform state-of-the-art
approaches based on HMMs [9]. For video data, the BoF approach performs
better than the LDS approach, while the MKL approach performs equally well
in terms of accuracy, but is typically more robust. Overall, our main conclusion
is that methods based on video data perform equally well as methods based on
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kinematic data for a typical surgical training setup. This result should encourage
further investigation of video based techniques for surgical gesture classification
as videos potentially carry more unexploited information than kinematic data.

2 Video-Based Methods for Classifying Surgical Gestures

In this section we describe three techniques for surgical gesture classification
based on video data. We assume that each video is segmented into video surgemes,
i.e., video clips corresponding to a single execution of one out of a pre-defined
set of surgemes. All three methods use labeled video surgemes to learn a model
for each of them. We then show how these models can be compared and used
for classifying gestures in new video surgemes.

2.1 Classification Using Linear Dynamical Systems

In this approach, we model the raw pixel intensities of each frame in a video
surgeme as the output of a Linear Dynamical System (LDS). More specifically,
the raw pixel intensities at time instant k, zk ∈ R

p, with p � n, are given by

xk+1 = Axk +Buk, (1)

zk = Cxk + nk, (2)

where xk ∈ R
n is an unobserved (latent) continuous state, uk is the state driving

process (assumed to be Gaussian) with zero mean and identity covariance, i.e.,
uk ∼ N (0, I), and nk represents the measurement noise, also Gaussian with
nk ∼ N (0,R) and independent from uk. The matrices A, B and C describe,
respectively, the dynamics of the state variable, the correlation among the driving
process samples and the mapping of the latent state to the observed signal.

Given a video surgeme, we identify the system’s parameters A,B,C and R
using a sub-optimal, but computationally efficient, method based on Principal
Component Analysis proposed in [15]. Once, we have identified an LDS for each
video surgeme, we need a distance to asses how close two given surgeme models
are. A survey of different metrics that could be used can be found in [16]. We
tried different distances on the space of LDSs based on subspace angles [17]
(Finsler, Frobenius and Martin) and Binet-Cauchy kernels (Trace, Determinant
and Max Singular Value) [17, 18]. Since the Martin and Frobenius distances
performed best, we will present the results obtained with these two distances.
More specifically, let θ1, . . . , θ2n be the subspace angles between the observability
subspaces of two nth order LDS models M1 and M2. The (squared) Martin and
Frobenius distances between the models M1 and M2 are, respectively, given by:

d2M (M1,M2) = − log
2n∏

i=1

cos2(θi) and d2F (M1,M2) = 2
2n∑

i=1

sin2(θi). (3)

These distances can be used to classify new surgemes using a nearest neighbor
approach. In our experiments we have used them to train a Support Vector
Machine (SVM) classifier with a Radial Basis Function (RBF) kernel. That is

k(Mi,Mj) = e−γd2
X(Mi,Mj), where dX = dM or dF and γ > 0 is a parameter.
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2.2 Classification Using Bag of Spatio-Temporal Features

The second approach is based on the Bag of Features (BoF) approach, a widely
used technique for object recognition [19]. In the standard BoF approach, some
salient features (e.g., SIFT features [20]) are first extracted from images of dif-
ferent objects. These features are then clustered to learn a dictionary of visual
words given by the cluster centers. Each image is then represented in terms of
the dictionary using a histogram, and classifiers are trained to recognize new
images based on their histograms. The BoF approach can also be extended to
action recognition tasks. The most direct way to do so is to build a histogram
for each video, where the features are extracted from groups of frames rather
than from a single image (see, e.g., [21–23]).

In the case of surgical gesture recognition, we extract Space-Time Interest
Points (STIP) [21] from each video surgeme. STIP are salient points where the
video has significant variations both in space and in time (as opposed to uniform
regions). Hence, STIP can be seen as an extension of space corners to the space-
time domain. Moreover, STIP are always detected in correspondence of motion,
thus most of the information contained in the static background is automatically
discarded. A 3D cuboid is then centered around each of the detected STIP and
the local information contained in the cuboid is used to build a 72-bin histogram
of oriented gradients (HOG) and a 90-bin histogram of optical flow (HOF), as
described in [24]. Therefore, each STIP is described with a vector of size 162 that
contains gradient and motion information. The HOG-HOF features extracted
from a training set of videos are then clustered by K-means to form a dictionary
of N words and histograms of words are built for each video surgeme. Given
these histograms, we compute the χ2-kernel and train an SVM classifier for each
surgeme.

2.3 Classification Using Multiple Kernel Learning

Both the LDS and BoF techniques previously described use visual data. How-
ever, while the LDS approach tries to capture the dynamics of the scene, the
BoF approach is based on sparse (due to feature detection) local structures of
the frame (captured by HOG) and very small and sparse motion (captured by
HOF). Hence, it seems natural to think about a strategy that integrates these
complementary techniques.

One way of combining the LDS and BoF approaches is to exploit the fact
that both techniques use a kernel to train an SVM classifier. Therefore, we can
combine the kernels using a Multiple Kernel Learning (MKL) framework [25]. In
this framework, the SVM optimization problem is solved with respect to a new
kernel obtained as a weighted linear combination of a set of given kernels. Thus,
the principle behind MKL is to simultaneously solve for the classifier parameters
and the kernel weights. Specifically, given a training set of features {xi} and their
labels {yi}, the objective is to learn a classification function of the form f(x) =
wtφ(x) + b, where the kernel is given by φt(xi)φ(xj) =

∑
k dkφk(xi)

tφk(xj),
with dk being the weight of each kernel k. The problem, therefore, is:
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min
w,b,d

1

2
w�w + C

∑

i

l(yi, f(xi)) + r(d), subject to dk ≥ 0, (4)

where r(·) is a regularizer (�1 or �2 norm), l(yi, f(xi)) = max(0, 1 − yif(xi))
is the loss function and C > 0 is a parameter that sets the trade-off between
maximizing the margin and minimizing the loss [25].

3 Experiments

Surgical Data. For our tests we used the California dataset [3]. The dataset
consists of three different tasks: suturing (SU, 39 trials), needle passing (NP, 26
trials) and knot tying (KT, 36 trials). Each task is performed by 8 surgeons with
different skill levels. Typically each surgeon performed around 3 to 5 trials for
each task. Each trial lasts, on average, 2 minutes and both kinematic and video
data are recorded at a rate of 30 frames per second. Kinematic data consists of 78
motion variables (positions, rotation angles, and velocities of the master/patient
side manipulators), whereas video data consists of JPEG images of size 320×240.

The data was manually segmented based on the surgeme’s definition of [3].
Specifically, the vocabulary of possible atomic actions consisted of 14 surgemes:
1) reaching for needle with right hand, 2) positioning needle, 3) pushing needle
through tissue, 4) transferring needle from left to right, 5) moving to center with
needle in grip, 6) pulling suture with left hand, 7) pulling suture with right hand,
8) orienting needle, 9) using right hand to help tighten suture, 10) loosening more
suture, 11) dropping suture at end and moving to end points, 12) reaching for
needle with left hand, 13) making ‘C’ loop around right hand, 14) right hand
reaches for suture and 15) both hands pull.

Results. In order to compare the accuracy of the surgeme recognition task using
kinematic versus visual data, we created two different test setups. The first setup
is the leave-one-super-trial-out (LOSO), where we leave one trial for each one of
the users out for testing. The second setup is the leave-one-user-out (LOUO),
where we leave all the trials from one user out for testing. For each task we
performed a training and a test phase using only the surgemes that appeared in
that task.

Note that the LDS approach is not restricted to video data, in fact we also
present here the results of LDS with kinematic data. For kinematic data, an
additional approach based on sparse dictionary learning (KSVD) [9] is evaluated.
With the exception of [9], all other techniques use the SVM classifier (one-versus-
one multi-class classification) [26]. The SVM penalty parameter C is estimated
using 3-fold cross validation. We empirically set γ = 10−3 for the RBF kernel,
n = 15 for the order of the LDS, and N = 300 for the size of the BoF dictionary.
For MKL, we use �2 norm regularization on the kernel weights. In order to avoid
over-fitting in favor of the most frequent surgemes, we randomly sample no more
than 40 surgemes per class and average the results over 20 repetitions.
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(a) Average surgeme classification rates

(b) Confusion matrix KT task MKL Mar
(Vid) BoF (Vid) - LOSO

(c) Confusion matrix KT task MKL Mar
(Vid) BoF (Vid) - LOUO

Fig. 2. Results of Kinematic- (Kin) and Video- (Vid) based techniques

The performance is measured as the percentage of correctly identified surgemes
averaged over all tests and repetitions for each setup (see Fig. 2). The intervals at
the top of the bars of Fig. 2(a) correspond to the average standard deviation for
that experiment. Fig. 2(b) and 2(c) show the confusion matrices for Knot Tying
(with video data) for the LOSO and LOUO setups, respectively. The numbers
in parentheses along the main diagonal represent the number of times that the
corresponding surgeme appeared in the dataset.

Among the kinematic-based algorithms the LDS technique with the Frobenius
distance outperforms the LDS with Martin distance and the KSVD approach
of [9] in almost all of the cases. The combination of gradient and optical flow
features extracted by BoF leads to higher accuracy than LDS on video in all of
the cases. When merging LDS and BoF using the MKL framework, the average
accuracy seems to be slightly improved although not in all of the tested cases.
However, as shown in Fig. 2(b) and 2(c), the errors become almost equally spread
among classes.
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Particularly interesting is the LOUO test, which provides an insight into the
ability of the algorithms to generalize and recognize actions performed by users
that were unseen during the training phase. The results show that kinematic-
and video-based algorithms are able to generalize equally well in this setting.
Overall, we observe a decrease in performance of around 10 percentage points
for all approaches, with KSVD being the most sensitive.

4 Conclusion

We have proposed three methods for surgical gesture classification from video
data. The results showed that video data can be as discriminative as kinematic
data. However, in this paper we used fairly low-level visual features, such as
image intensities, image gradients and optical flow. Future work includes using
more advanced visual features, such as detection and tracking of surgical tools.
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