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Surgical treatment of cryptogenic neocortical epilepsy is challenging. The aim of this study was to evaluate surgical
outcomes and to identify possible prognostic factors including the results of various diagnostic tools. Eighty-nine patients
with neocortical epilepsy with normal magnetic resonance imaging (35 patients with frontal lobe epilepsy, 31 with
neocortical temporal lobe epilepsy, 11 with occipital lobe epilepsy, 11 with parietal lobe epilepsy, and 1 with multifocal
epilepsy) underwent invasive study and focal surgical resection. Patients were observed for at least 2 years after surgery.
The localizing values of interictal electroencephalogram (EEG), ictal scalp EEG, interictal '*F-fluorodeoxyglucose
positron emission tomography (FDG-PET), and subtraction ictal single-photon emission computed tomography were
evaluated. Seventy-one patients (80.0%) had a good surgical outcome (Engel class 1-3); 42 patients were seizure free.
Diagnostic sensitivities of interictal EEG, ictal scalp EEG, FDG-PET, and subtraction ictal single-photon emission com-
puted tomography were 37.1%, 70.8%, 44.3%, and 41.1%, respectively. Localization by FDG-PET and interictal EEG
was correlated with a seizure-free outcome. The localizing value of FDG-PET was greatest in neocortical temporal lobe
epilepsy. The focalization of ictal onset and also ictal onset frequency in invasive studies were not related to surgical
outcome. Concordance with two or more presurgical evaluations was significantly related to a seizure-free outcome.

Ann Neurol 2005;58:525-532

Patients with intractable epilepsy recently have bene-
fited from improved surgical procedures. However,
most surgical treatments involve medial temporal lobe
epilepsy (TLE) and lesional neocortical epilepsy.’ Con-
cordant results of electrophysiological and high-
resolution magnetic resonance imaging (MRI) studies
have a high predictive value for surgical outcome.>” A
focal structural neuroimaging alteration is usually a re-
liable indicator of seizure onset.®"® However, MRI is
ineffective in 29% of patients with partial epilepsy,”
and many patients referred to epilepsy centers for sur-
gery have normal MRI results. MRI may be unremark-
able even in patients with cortical dysplasia.® Previous
studies report that surgical outcome is poor for patients
with neocortical epilepsy with normal MRI, but these
conclusions were based on limited numbers of pa-
tients.”” "% It is important to know not only the sur-
gical prognosis of patients with normal MRI, but also
the surgical prognostic factors of these patients. Al-
though noninvasive studies such as ictal single-photon
emission computed tomography (SPECT), positron
emission tomography (PET), and ictal SPECT provide

important presurgical information, these modalities
rarely have been compared with surgical outcome.

Intracranial monitoring is indispensable for neocor-
tical epilepsy with normal MRI, but it is limited by
insufficient sampling. Furthermore, the intracranial ic-
tal onset pattern itself may also be important. A variety
of electrographic intracranial seizure onset patterns are
known."?™'® However, the first electrographic change
does not always indicate a true ictal onset zone, and
some patterns represent a propagated phenome-
non.'>'® Resection of the area in which the true local
intracranial onset lies could improves surgical outcome.
Therefore, identification of intracranial ictal onset as-
sociated with seizure-free outcome would be useful.

The objectives of this study were to evaluate the sur-
gical outcomes of patients with neocortical epilepsy
with normal MRI and to identify prognostic factors
including the results of various diagnostic modalities
and invasive studies. We also evaluated the diagnostic
sensitivities of interictal EEG, ictal scalp EEG, interic-
tal FDG-PET, and subtraction SPECT.
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Patients and Methods

Patients

We included 89 consecutive patients without MRI-
detectable lesions who underwent focal surgical resection for
intractable epilepsy at Seoul National University Hospital
from September 1995 to July 2002. The group consisted of
55 men and 34 women with ages ranging from 8 to 56
(mean, 25.6 = 7.9) years. Age at seizure onset ranged from
2 to 49 (mean, 6.8 * 6.1) years, and the duration of illness
from 3 to 28 (mean, 13.5 * 6.5) years. All patients had
intractable epilepsy despite proper anticonvulsant medica-
tion. Follow-up for patients continued for at least 2 years
after surgery (mean, 3.54 * 1.85). We included only pa-
tients with focal resection and excluded patients with func-
tional hemispherectomy, corpus callosotomy, hippocampal
sclerosis on MRI, or medial temporal intracranial ictal onset
zone.

Magnetic Resonance Imaging

All patients underwent brain MRI. Standard MRI was per-
formed on either a 1.0-or a 1.5-Tesla unit (Signa Advantage;
General Electric Medical Systems, Milwaukee, WI) with
conventional spin-echo T1-weighted sagittal and T2-
weighted axial and coronal sequences in all patients. Section
thickness and conventional image gaps were 5 and 1mm, re-
spectively. In addition, T1-weighted three-dimensional mag-
netization prepared rapid acquisition with gradient-echo se-
quences and 1.5mm-thick sections of the whole brain, and
T2-weighted and fluid-attenuated inversion recovery images
with 3mm-thick sections were obtained in the oblique coro-
nal plane of the temporal lobe. The angle of the oblique
coronal imaging was perpendicular to the long axis of the
hippocampus. Spatial resolution was approximately 1.0 X
1.0mm (matrix, 256 X 256mm; field of view, 25cm).

Functional Neuroimaging

PET was performed in 79 patients during the interictal pe-
riod (no seizures for more than 24 hours). Axial raw
data were obtained using a PET scanner (ECAT EXACT
47; Siemens-CTI, Knoxville, TN) 60 minutes after the
intravenous injection of 18F-ﬂU.orodeoxyglu.cose (FDG;
370MBq)."” Spatial resolution was 6.1 X 6.1 X 4.3mm.
FDG-PET images were assessed visually and by Statistical
Parametric Mapping (SPM) analysis as described previous-
ly."” Ictal SPECT was performed on 56 patients during
video-EEG monitoring. **™Tc was mixed with hexameth-
ylpropyleneamine oxime (925MBq) and injected as soon as
a seizure started. Brain SPECT images were acquired
within 2 hours of administering the injection.'” A triple-
head rotating Gamma camera (Prism 3000; Picker, Cleve-
land, OH) equipped with a high-resolution fan beam col-
limator was used. Interictal SPECT was also performed to
identify perfusion changes. Side-by-side visual analysis of
interictal and ictal images and the subtraction method were
performed by the method described previously.'”

Video-Electroencephalographic Monitoring

Interictal and ictal scalp EEGs were recorded using a video-
EEG monitoring system, with electrodes placed according to
the International 10-20 system and with additional anterior
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temporal electrodes. We used a combination of grids and
strips for intracranial EEG. Grid and strip placements were
determined by the results of presurgical evaluations. At least
three habitual seizures were recorded during scalp and intra-
cranial EEG monitoring. When necessary, preoperative and
intraoperative functional mapping and intraoperative electro-
corticography were also performed.

Evaluation of Noninvasive Studies

Interictal and ictal scalp EEGs were reviewed and classified
by two epileptologists after consensus had been reached. A
localizing pattern of ictal-onset rhythm/interictal spike was
defined as a localized ictal rhythm/interictal spike confined
to the electrodes of an epileptogenic lobe or two adjacent
electrodes.

FDG-PET analyzed by SPM and ictal-interictal subtrac-
tion SPECT were reviewed by one experienced physician
who was unaware of the results of other presurgical evalua-
tions. The SPECT images were also evaluated using side-by-
side visual analysis. Results of FDG-PET and SPECT were
defined as localizing when the predominant hyperperfusion
area or the predominant hypometabolic zone was confined to
the resected lobe.

Invasive Studies
The “intracranial ictal onset zone” was defined as the area
with the first sustained rhythmic change in EEG differend-
ated from the background and interictal waves. The onset
frequency was characterized in traditional EEG bands: B, a,
0, and S.

Distribution of seizure onset was categorized as focal (in-
volving <5 adjacent electrodes), regional (=5 adjacent elec-
trodes), or widespread (>20 adjacent electrodes).

Surgery and Pathology

The resection margin was defined by an intracranial ictal on-
set zone including the area with persistent pathological delta
slowing and the location of eloquent cortex. Tissue sections
from cortical resections were immersion fixed in 10% buff-
ered formalin, embedded in paraffin, and stained with hema-
toxylin and eosin, Bielschowsky stain, and cresyl violet. A
diagnosis of pathological cortical dysplasia was classified into
mild, moderate, and severe, according to the system of Mis-
chel and colleagues.'®

Follow-up

Follow-up information for at least 2 years was available in all
patients. Surgical outcomes were classified into four groups
according to the Engel classification." Surgical outcome was
also divided into seizure free and nonseizure free.

Analysis

We assessed surgical outcome as a whole and according to
the location of the epileptogenic lobe. The accuracy of the
presurgical evaluations were evaluated in all patients and in
seizure-free patients to exclude the possibility of false local-
ization of epileptogenic foci. To determine the significance
of surgical prognostic factors, we performed univariate anal-
yses for age of onset, duration of illness, age at operation,
location of epileptogenic foci, localization of interictal EEG,



Table 1. Surgical Outcome of 89 Patients with Nonlesional Neocortical Epilepsy according to Epileptogenic Focus Location

Engel Class

No. of

Location Patients 1 11 111 v
Frontal 35 15 1 12 7
Neocortical temporal 31 17 3 5 6

Parietal 11 3 1 3 4
Occipital 11 7 1 3 0
Multifocal 1 0 0 0 1

Total 89 42 (47.2%) 6 (6.7%) 23 (25.8%) 18 (20.2%)

ictal scalp EEG, interictal FDG-PET, ictal subtraction
SPECT, and results of invasive study. We also assessed the
relation between surgical outcome and the concordance of
presurgical evaluations. x> or Fisher’s exact test was used,
depending on the variables tested.

Results

Surgical Outcome
Of the patients, 35 had frontal lobe epilepsy (FLE), 31
had neocortical temporal lobe epilepsy (n'TLE), 11 had
parietal lobe epilepsy (PLE), 11 had occipital lobe ep-
ilepsy (OLE), and 1 had multifocal epilepsy. Seventy-
one patients (80.0%) had a good surgical outcome
(Engel class 1-3); 42 patients were seizure free
(47.2%). The seizure-free rates for FLE or PLE were
less than for n'TLE or OLE, but the difference was not
significant (p = 0.134;Table 1).

By univariate analysis, surgical outcome was not re-
lated to factors such as age at surgery, sex, age at onset,
or duration of illness.

Diagnostic Accuracy and the Prognostic Values of
Presurgical Evaluations

Interictal EEG showed unifocal epileptiform discharges
concordant to the resected lobe in 33 of 89 patients
(37.1%) and in 20 of 42 seizure-free patients (47.6%)
(Table 2). FDG-PET had concordant focal hypome-
tabolism in 35 of 79 patients (44.3%) and in 23 of 40
seizure-free patients (57.5%) (Fig). Subtraction SPECT
had concordant focal hyperperfusion in 23 of 56 pa-
tients, who underwent ictal and interictal SPECT; it
was observed in 10 of 24 seizure-free patients. The
mean injection delay of radioligand was 28.5 = 17.1
seconds. Ictal EEG correctly localized the resected lobe
in 63 of 89 patients and in 33 of 42 seizure-free pa-
tients. Localization by FDG-PET and interictal EEG
was significantly related with a seizure-free outcome
(p = 0.042 and 0.015, respectively), whereas localiza-
tion by subtraction SPECT or ictal EEG was not re-
lated to a seizure-free outcome.

The localizing value of FDG-PET was greatest in
nTLE (Table 3). The focalization of ictal onset and the
ictal-onset frequency in invasive studies were not re-
lated to outcome (Table 4).

A comparison between the good outcome and poor
outcome groups showed that the concordance rate was
greater in those with a seizure-free outcome (Table 5).
Concordance in 2 or more modalities was found in 29
of 42 seizure-free patients and in 19 of 47 patients who
were not seizure free. Concordance between two or
more presurgical results was related to a seizure-free
outcome (p = 0.006).

The roles of FDG-PET and ictal SPECT in the lo-
calization of the epileptogenic lobe were complemen-
tary. FDG-PET correctly localized the epileptogenic
lobe in seven patients with nonlocalizing subtraction
SPECT, whereas SPECT correctly localized it in three
with nonlocalizing PET.

Pathology

Pathology specimens were available for 80 patients.
There were 58 cases of cortical dysplasia including mi-
crodysgenesis, 10 other migration abnormalities, 9
cases of focal neuronal loss with gliosis, and 2 cases of
ischemic change. In one patient, moderate cortical dys-
plasia was associated with a dysembryoplastic neuroep-
ithelial tumor. Pathology results were not related to
surgical outcome.

Discussion

The results indicate that surgical treatment can be of
benefit in patients with neocortical epilepsy with nor-
mal MRI. Of these patients, 47.2% were seizure free
for at least 2 years after surgery, and 80.0% had a sei-
zure reduction of least 90%. However, compared with
epilepsy with focal abnormal MRI, the relative poor
outcome is also noticeable. The good surgical outcome
associated with focal abnormal MRI at ictal onset is
well known.>'”*® Many studies including a metaanaly-
sis have suggested that the presence of a specific lesion
indicates a favorable surgical outcome.'*?'* One
multivariate analysis suggests that FLE patients with
normal MRI have a poor surgical outcome.?” Only 4
of 17 patients became seizure free after surgery. An-
other report also shows that only 41% of nonlesional
FLE patients had excellent outcomes after surgery.®
Three comparable studies have used large numbers of
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Table 2. Diagnostic Accuracy of Presurgical Evaluation and Surgical Outcome

Presurgical Evaluation”

(no. of patients) Seizure-free

Interictal EEG (89)
PET (79)

Ictal SPECT (56)
Ictal scalp EEG (89)

20/42 (47.6%)
23/40 (57.5%)
10/24 (41.7%)
33/42 (78.6%)

Persistent Seizure ?
13/47 (27.7%) 0.042
12/39 (30.8%) 0.015
13/32 (40.6%) 0.577
30/47 (63.8%) 0.098

“Focal abnormality compatible with a resected area or lobe.

EEG = electroencephalogram; PET = position emission tomography; SPECT = single-photon emission computed tomography.

patients with normal MRI.?*™*® One of these shows
that only 37% of patients with intractable nonlesional
focal epilepsy were seizure free after surgery.”® Another
showed that 20 of 24 patients with normal MRI who
had focal intracranial ictal onset zone had a good sur-
gical outcome.”” However, if patients with normal
MRI and no positively identified focal invasive onset
are included in the total, only 20 of 43 patients had a
good surgical outcome. The correct localization of ep-
ileptogenic foci is difficult when no structural lesion is
evident on MRI. Characteristics of neocortical epilepsy
such as a widespread epileptogenic process, rapid prop-

agation of ictal rhythm, and the presence of eloquent
areas also contribute to a poor prognosis.

MRI is the most important diagnostic technique for
epilepsy surgery. It readily detects focal cortical dyspla-
sia and distinguishes Taylor’s focal cortical dysplasia
from non-Taylor’s focal cortical dysplasia.”> However,
MRI may be persistently unremarkable even in malfor-
mation of cortical developments. High-resolution MRI
showed the lesion in only half of the cases.”® We also
reported that MRI could miss lesions in 9 of 23 cases
with cortical dyslamination and cytomegaly.® MRI may
also miss microdysgenesis. MRI was unrevealing in

Fig. (A, B) A 29-year-old female patient with the nonlesional right frontal lobe epilepsy. (A) '®F-fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) scans showed right frontal hypometabolism (arrow). (B) Statistical Parametric Mapping image (p =
0.001, uncorrected) also showed right frontal decreased metabolism. (C-E) A 16-year-old female patient with left parietal lobe epi-
lepsy. (C) Interictal single-photon emission computed tomography (SPECT) demonstrated no remarkable hypoperfused area. (D) Ictal
SPECT showed focal increased perfusion in the left parietal area. (E) Subtraction SPECT also showed the left parietal hyperper-

fused area. L = left; R = right.
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Table 3. Localizing Value of Individual Modalities in
Seizure-free Patients (42 patients) (number of localizations/no.
of patients who received a presurgical evaluation)

Table 5. Comparison of Concordance between the Seizure-free
and the Not-Seizure-free Groups

Not
Interical Ictal Ictal Concordance Seizure-free seizure-free

EEG EEG PET SPECT (no. of patients) (42) (47)

Frontal 7115 12/15 4/14 3/7 Four modalities (5) 4 1

nTemporal 9/17 13/17 14/16 6/8 Three modalities (18) 10 8

Parietal 0/3 1/3 1/3 0/3 Two modalities (25) 15 10

Occipital 4/7 717 417 1/6 One modality (28) 9 19

Subtotal 20/42 33/42 23/40 10/24 All nonlocalizing (13) 4 9
ya 0.365 0.132 0.010 0.062

“By Fisher’s exact test: significantly different results according to the
involved epileptogenic lobe.

EEG = electroencephalogram; PET = position emission tomogra-
phy; nTemporal = neocortical temporal.

34% of patients with microdysgenesis.”’ High-Tesla
MRI, multiplanar reconstruction, curvilinear reformat-
ting,” or high-resolution MRI with the phase-array
surface coil may improve the detection rate.

Our study demonstrated high localizing value of ic-
tal scalp EEG. The localizing value of ictal EEG has
not been extensively studied in neocortical focal epi-
lepsy. It frequently does not localize and can localize
falsely when the focus is circumscribed or in the depths
of a sulcus.”*>” Many previous studies used small
numbers of patients or were confined to specific epi-
leptic syndromes.'*?*? Two studies®®*! showed the
clinical usefulness of ictal surface EEG for neocortical
epilepsies. Ictal EEGs were correctly localized in 50.2%
of extratemporal epilepsy cases and 74.5% of nTLE
cases.*® We previously reported that 42% of ictal EEGs
were able to be localized in neocortical epilepsy cases
and that 62% of patients had at least one ictal EEG
that could be localized.*’ The diagnostic sensitivity in
our study was calculated based on the number of pa-
tients. When we analyzed our data based on the num-
ber of EEGs, 238 of 463 ictal scalp EEGs were able to
be localized (51.4%). There should be a selection bias

Table 4. Results of Invasive Studies and Surgical Outcome

Persistent

Seizure (47) ?

Results of Invasive Seizure-free

Study (42)

Onset pattern
(no. of patients)

Focal (41) 20 21 0.626
Regional (47) 22 25
Widespread (1) 1
Onset frequency
24 30 0.544
a 7 5
0 2 4
S 4 6
Periodic spike and 5 2

wave

underlying this high diagnostic sensitivity, because pa-
tients with localized ictal EEG could have been re-
cruited more easily for surgery, especially in the ab-
sence of a structural lesion. Our inclusion criteria
(normal MRI) may also have played a role. The pres-
ence of structural lesions may hamper the correct lo-
calization because a large structural lesion or cerebro-
malacia can limit the number of neurons firing at the
start of a seizure.

Surgery was effective when the majority of scalp-
recorded seizures arose from the resected lobe.”® How-
ever, despite the high localizing value of ictal scalp
EEG in our study, the localization itself did not predict
surgical outcome.

Patients with focal interictal spikes in the neocortical
epileptogenic area are a minority.>*?>** Although the
diagnostic sensitivity of interictal EEG was low in our
study, the presence of focal interictal spikes was asso-
ciated with a good surgical outcome. Poor outcome
was reported to be predicted by the presence of spikes
distant from the resected lobe, multiple spikes, or gen-
eralized spike and wave.*

FDG-PET localized the epileptogenic lobe in 44.3%
of our patients. Some authors have emphasized the
minimal yield of PET in neocortical epilepsies when
MRI is nf:gative.43_47 However, a recent study based
on 462 cases demonstrates that 32% of normal MRIs
were associated with an abnormal PET scan.*® FDG-
PET demonstrated hypometabolism in 12 of 13 chil-
dren with FLE with normal MRI and microdysgen-
esis.*” Focal hypometabolism was also found in a small
number of children with cryptogenic infantile spasms
with microdysgenesis.”® These findings suggest that
FDG-PET is useful for patients with neocortical epi-
lepsy with normal MRI, which confirms our results.

The SPM technique yields better FDG-PET results
than visual analysis.”’ We used both analyses to detect
focal hypometabolism; this may partially have influ-
enced the high sensitivity of FDG-PET. A recent re-
port shows that 26 of 30 patients with TLE without
hippocampal sclerosis had concordant FDG-PET later-
alization.”® The high incidence of abnormal metabo-
lism in neocortical TLE may also have affected our re-
sults.
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FDG-PET localization was significantly related with
a seizure-free outcome. The relation between focal hy-
pometabolism in neocortical epilepsy and surgical out-
come has not been studied extensively. The presence of
unilateral temporal lobe hypometabolism, even when
MRI is normal, predicts a good surgical outcome in
more than 80% of cases.’

The diagnostic sensitivity (41.1%) of subtraction
SPECT was less than expected. Prior literature demon-
strated that subtraction ictal SPECT was valuable in
the localization of neocortical epilepsy.*>>* Subtraction
periictal SPECT showed localized hyperperfusion in
66.7 to 86% of neocortical epilepsy cases even in the
absence of lesions on MRI.>**> The localization of
subtraction SPECT was reported to be predictive of
surgical outcome.’® However, these authors included
two-lobar patterns such as parietooccipital or fronto-
temporal hyperperfusion in the “localizing” group. We
classified this as “lateralizing” pattern. Our criterion for
“localizing” was the presence of a predominant hyper-
perfused area in the one epileptogenic lobe. When we
included these “lateralizing” patterns into the “localiz-
ing” group, 18 of 24 seizure-free patients (75.0%) and
35 of all 56 patients (62.5%) had “localizing” SPECT.
This result is comparable with those of other patients.
The lateralizing pattern was the image of propagated
ictal activity, which is often observed in extratemporal
seizures.'”>”>? Propagation of ictal activity partly ex-
plains variation in sensitivity and specificity with dif-
ferent thresholds of subtraction SPECT.®® Our fixed
threshold may have affected the results. Even when we
included the “lateralizing” pattern in the “localizing”
group, the predictive value of subtraction SPECT for
good surgical outcome was only marginally significant
(p = 0.081, Fisher’s exact test). Inclusion of greater
numbers will resolve this issue.

Neocortical epilepsy cases showed a lower concor-
dance rate between diagnostic modalities than mesial
TLE cases. This is partly due to the lower sensitivities
of all diagnostic methods in these patients.®’~*® The
presence of concordance between diagnostic methods
means that the localized lesion shows its abnormality
through different physiological mechanisms. This im-
plies that there is a greater possibility that the colocal-
ized lesion is an epileptogenic zone. Although the con-
cordance of these diagnostic modalities was important
for predicting surgical outcome in our trial, the com-
plementary roles of FDG-PET and subtraction SPECT
were also evident. Multimodal evaluations thus are in-
dicated for these patients. However, they sometimes lo-
calize falsely or lateralize, and caution should be exer-
cised when interpreting results.”

Intracranial low-voltage fast activity at seizure onset
may be associated with good surgical outcomes.'®!*¢*
A slower frequency ictal onset may represent a propa-
gated electrographic pattern or a larger epileptogenic
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zone."* 7' Some authors have argued that low-voltage
localized B activity is a marker of the site of seizure
onset,””~°® but others have disputed this.'>1® We also
found that the most common early intracranial ictal
discharge is low-amplitude B activity. However, we did
not detect a relation between the frequency and surgi-
cal outcome. It is also held that spatial restriction is
characteristic of an intracranial ictal onset close to a
true ictal onset zone. In contrast, regional onset might
imply volume conduction or propagation from a dis-
tant generator.”~’> However, we could not detect a
relation between the focalization of intracranial ictal
thythm and surgical outcome.

Although we did not observe a definite relation be-
tween the location of epileptogenic foci and surgical
outcome, the location appears to affect surgical out-
come. When we regrouped patients into the classes,
FLE/PLE and nTLE/OLE, and surgical outcomes into
Engel classes 1/2 and 3/4, the relation between the lo-
cation of epileptogenic foci and surgical outcome was
significant (p = 0.024). The limitations of complete
resection caused by eloquent areas and the difficulty of
sufficient intracranial sampling of the medial and or-
bitofrontal areas may be related to poor outcome in
FLE. Semiologic inconsistencies in PLE, low-yield di-
agnostic modalities, and presence of eloquent areas in
nonlesional PLE”?""® also contribute to poor progno-
sis.

Surgical treatment can benefit patients with nonle-
sional neocortical epilepsy, and presurgical evaluations
can correctly localize the epileptogenic lobe in these pa-
tents. The focal hypometabolism on FDG-PET, focal
interictal spikes, and concordance of the presurgical
evaluations can be used to predict good surgical out-
come.
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