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SURJECT1VE STABILITY IN DIMENSION 0
FOR  K2  AND RELATED FUNCTORS

BY

MICHAEL R. STEIN

ABSTRACT.   This paper continues the investigation of generators and rela-

tions for Chevalley groups over commutative rings initiated in ll4j.  The main

result is that if A   is a semilocal ring generated by its units, the groups  L(*, A)

of Ll4j are generated by the values of certain cocycles on  A* X A*.  From this

follows a surjective stability theorem for the groups  /.(♦, A), as well as the

result that  L(4>, A)  is the Schur multiplier of the elementary subgroup of the

points in  A   of the universal Chevalley-Demazure group scheme with root sys-

tem   ♦ , if  <t   has large enough rank.  These results are proved via a Bruhat-type

decomposition for a suitably defined relative group associated to a radical ideal.

These theorems generalize to semilocal rings results of Steinberg for Chevalley

groups over fields, and they give an effective tool for computing Milnor's groups

Ky(A)   when  A   is semilocal.

Let  O. be a reduced irreducible root system of rank  / and  A   a commutative

ring with   1.  There is an exact sequence

(D 1 -L(<D/; A) - St(4>., A) — E(4>., A) -1

where St (4>,, A)  is the Steinberg group [14, (3.7)] and E(í>., A)  is the elementaty

subgroup of the points in A   of the universal Chevalley-Demazure group scheme

with toot system  4>,  [14, (3.3)].  U *f>     is a second such root system, containing

<t>.  as a subsystem generated by a connected subgraph of the Dynkin diagram of

0   , thete are induced homomorphisms  Oil, m): L(<t>., A) —» L(<t>   , A), and Steinberg

[17] has shown these are surjective for all   m > / > 1   when  A   is a field.   In this

paper I will prove that this is true for any semilocal ring  A   with at most one resi-

due field isomorphic to  I*'      I will also show, in this case, that the groups  L(í> , A)

are generated by the values of certain cocycles on   A* x A* and that (1) is a cen-

tral extension (and not just stably central; cf. [14, (5.1)1), theorems again due to

Steinberg [17] when  A   is a field.  These results were announced in [1.3].

Received by the editors March  15,  1972.
AMS (MOS) subject classifications (1970). Primary 18F25, 20G10, 20035; Secondary

200,25, 20G30.
Key words and phrases. Chevalley group, universal central extension, stability theo-

rems, Steinberg group, commutators in Chevalley groups, /C, second homology group, Hru-

hat decomposition. Copyrighl © 1973. American Mathematical Society

165

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 M. R. STEIN

In general one conjectures that Oil, m) is surjective for all m> I >d,

where   d  is  a fixed positive  integer related to the dimension of the maximal

ideal space of A; the theorem proved here may thus be thought of as the dimension

0  case of a surjective stability theorem for  L(<I> , ).  If $    belongs to one of the

infinite families  A      B     C.,  D., one deduces, under the same hypotheses, the sur-

jectivity of

6(1, o.): L(4>z> A) ^L(<t>x,A) = liml_xL(<S>l, A).

This reveals one motivation of the present research, since  L(A   , ) is Milnor's

algebraic  K2  functor [9l.
The paper proceeds as follows.  Let   qC A  be an ideal, and write (1 + q)*

for the units congruent to  1  modulo   q.  In §1 I define pairings ("relative Steinberg

symbols")

1 , \:A*X (1 +qf  —Li*,, q)

and recall some of their properties.  In §2 I prove, when   qC rad A, a normal form

for the relative group St ($, q) analogous to the Bruhat decomposition of the

Chevalley groups over fields [17, 7.6]. This implies that the groups  L(<I>., q) are

generated by the relative symbols of §1, and, therefore, that  L($ ,  q) —► L($   ,  q)

is surjective for all  722 > / > 1.  Combining this with Steinberg's theorem for fields

yields the above-mentioned results for semilocal rings.  In addition the theorems

of this section allow one to deduce a presentation for £($, A) of such a semilocal

ring.
In §3 I compute  L(<D., A)  for various local rings, using the results of §§1 and

2.  In §4 I apply these results to the problem of surjective stability for the maps

W2(SL2(A), Z) -W2(F(<D/, A), Z).

The reader primarily interested in   K2   should note the following.  Milnor's

groups  E     j(A), St     ,(A) are the groups  F(A   , A), St (A   , A) of this paper in >
2), and  KAA) = LiA^, A). The symbols Í , !a are always bilinear in this case.

A positive root  a £ A     is to be identified with a pair (ij),  l<i</<» + l; — a

then corresponds to (//').

Milnor's   K2    theory   exists for noncommutative rings as well, and most of the

results of §2 remain true in this case, provided certain elements in  A*  lie in [A*,

A*].  I have omitted a discussion of these points since the surjective stability

theorem for  K    of noncommutative semilocal rings has recently been obtained by

Dennis [3], based on work of Silvester [12].

When A = K is a field, Matsumoto [8] has shown that the maps Oil, m) ate

injective as well.  This injective stability theorem remains true for radical ideals

in the semilocal rings considered here, and will be the subject of a subsequent

paper [I5L
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Notation and terminology.  The definitions, notations  and  terminology regard-

ing root systems, Chevalley groups, Steinberg groups  and  theit  subgroups  and

relations are to be found in [14, §3].  However in this paper we always assume that

the Chevalley-Demazure group schemes in question are universal [14, (3.3)].  If

0, C $     are reduced irreducible root systems, we say they are of the same type

if they satisfy
(a) 3>.  is generated by a connected subgraph of the Dynkin diagram of 0   .

(b) If $     is symplectic, then  $.  is also symplectic and at least one long

root of $     occurs in  $,.
77! Z

The inclusions D   C B   violate (a) and the inclusions A ._. C C,,  / > 2, violate

(b).
The reader is reminded that the relative groups used in this paper differ from

those of [9] and [l6] (cf. the warnings following [14, (3.13)1).  However the results

of this paper do apply to the relative groups of [16], as follows from U6, (1.1),

(2.5) and (2.6)].
All rings are commutative with   1; all homomorphisms preserve 1.   If A   is a

ring, rad A   is its Jacobson radical and A* is its multiplicative group of units.  A

pair (A, q) consists of a ring A  together with an ideal   qC A; if   q C rad A  we

say  (A, q) is a radical pair. We write  (1 + q)* = (l + q) n A*.  If  T  is a subset

of A, the subring of A  generated by  T is denoted  Z[t1.
Let   G  be a group.   For o , r e G  we write    o - ror~   ,  [r, o] =   o ■ o~    =

to~t~ a"  .

If  H, K are subgroups of  G, [H, K]  is the subgroup generated by \[h, k], h £ H,

k  £ K\;  in    particular  the commutator subgroup of  G  is  ÍG, G], We write  G      -

G/[G, G\.  If  G  is finite, \G\   is its order.
Finally, Z  denotes the rational integers and  F    a finite field with q elements.

1. Relative Steinberg symbols and the subgroup L(<I>, A) n K($, q). Recall

[14, (3.12)] that W(<I>, q) is the smallest normal subgroup of r/(<l>, A) containing

all haiv), a £ $, v £ (1 + q)*.  H(<D,  q) is a subgroup of St ($, q) (cf. (2.7)(a)).
Definition.   Let  a £ <t>, u, v £ A*, and set

(D \u,v\a=h¿uv)baiu)-lhaiv)-\

The subgroup of f/(<J>, A) generated by all \u, w\a, \w, u\a, where u £A*, w £

(1 + qY and a  ranges over í> is denoted D(<J>, q).  D(<P, q) is a subgroup of

St(<P, q) (cf. (2.7)(a)).
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168 M. R. STEIN

It follows from relation (R8)  that for all  a, ß £ <J>,

(2) \u{ß'a),v\ß=lha(u),h^u)\.

Thus if there is an  a e $ with   (ß, a) = 1, we have  {u, wL e [/7(<I>, A), r7(0, q)]

C //(O,  q).  This will be the case except when 0  is symplectic and  /3  is /o7Zg.

The following proposition summarizes various well-known identities satisfied

by Í , !a.  Proofs may be found in [8, 5.5-5.7], [10, 3.2, 3.9, Appendix] and [18,
Lemma 39 and Theorem 12].

(1.1) Proposition.  Let  a e <J>, u, v, w £ A*.  Then {u, u!"1 = {v, u\_a.  Writ-

ing 1 , S = i , la, the following identities hold in  D($, A):
(51) {u, 1]=«1, zzS=l.
(52) {u, v}{uv, w\ = izz, vw\\v, w\.
(53) {u,v} = {u-l,v-1}.

(54) izz, v\ = {u, - uv\.
(55) Izz, v\ = izz, (1 - u)v\ if 1 - u £ A*.
(56) {u, v  w\ = {u, v  \{u, w\; {u   , vw\ = {u   , v\{u  , w\; {u   , v\ = izz, v   ¡; izz, v\

= {v~   , u\; izz, - 1 S = izz, v\\u, - v~   \.

(57) // zz, v generate a cyclic subgroup of A*, then  {u, v\ = {v, u\.

(58) // izz, v\ = {v, zz!, then  {u, v2} = 1.

Moreover, if <I>  z's nonsymplectic or if a   is short,

(S°2)  {u, vw\ = izz, v\{u, w\.

(S°3) {u, v\ = {v, «r1.

Remarks.  1.   The above identities are not independent.  For example, (SI)—

(S4) imply (S6)-(S8), and if $ is nonsymplectic or if a is short, (S1)(S5)(S°2)
(S°3) imply the others. (Cf. [10, Appendix].)

2.   Identity (S5), which is of great importance for computations when  A   is a

field, is valueless when u £ (1 + q)* (since in that case  1 — u 4 A* it   q 4 A). A

new identity which can sometimes be used to replace (S5) in such computations

when   qC rad A   will be proved in (2.8).
(1.2) Definition.  A relative Steinberg symbol on the pair (A,  q) with values

in an abelian group  C is a mapping

1 , }:A*x(l + q)*—C

satisfying (S1)-(S5) of (1.1) and (2.8). When q = A, we call Í , ! a Steinberg sym-
bol. If (S°2) holds, we call i , I a irelative) bilinear Steinberg symbol. We some-

times abbreviate "Steinberg symbol" to "symbol."

In this paper the word symbol will always refer to one of the symbols i , I

with values in D(3>, q) constructed above.

Let  K($, q) be the subgroup of St ($, q) generated by Di<&, q) and all ha(v),

a e4>, v £ (1 + q)*.
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SURJECTIVE STABILITY IN DIMENSION  0 FOR K2 169

(1.3) Proposition,  (a)  D(0,  q)  is a central subgroup of St ($, A).

(b) z7(3>, q) C Xi<t>, q), and

[//($, A ), //($, q)] C L($, A ) n /?($, q) C L(<t>, A ) n K(4>, q) C D(0, q),

ií/¿/¿» equality if 0  z's nonsymplectic or if every element of (1 + q)*   is a square.

(c) D(í>, q)  z's generated by all \u, v\a, u £ A*, v £ (l + q)* /or any fixed

long root a. Hence if 0. C $     are reduced irreducible root systems of the same

type, the homomorphism D($  , q) —► D($   ,  q)  is surjective for all m > I > 1, z'tz-

cluding m = °e  z'/ <I>  z's classical.

Since /7(A) is an abelian subgroup of F(4>, A) [18, Lemma 28(b)], D(3>, q) is
a subgroup of  z7(í>, A) n L(0, A), and the latter group is central in St (3>, A) [18,

p. 39, Corollary ll. This also proves  [//($, A), W(0, q)l C L(0, A) O /7($, q),
since /7(<I>, q) is normal in  Hi<î>, A).

If u £ A*, v e (1 + q)*, then

baiu)hß(v)haiU)-1 = Ä^«^' av)bß(u{ß' "V1 = l» (Ä a>, v\ßhß(v) £ K(4>, q).

Since D(<1>, q) is central in St (í*, q) by (a), this shows that  K(0, q) is a normal

subgroup of /7(A) containing all baiv); hence /7(<I>, q) C £($, q).  Thus  L($, A)

n /7(0, q) C L«f>, A) n K(0, q).
Given  ¿ e K(<I>, q), it follows from [17, 7.7] that we may write  h = dh.iu.) • • •

h.iu.) where d £ Diq), h Au A = h „ iu),  a.  e A, and zz.  £ (l + q)*. Then ifz      I ' l      l a.j     I 1 i '

1   =77(Í) = ¿1(«1)...¿,/(ZV/)

we must have  zz. = 1   for all   z, since  F(€>, A)  is a subgroup of a universal Chevalley

group [18, Corollary to Lemma 28]. Hence h.iu.) = 1  for all  i; that is, h = d £

Diq) proving the last inclusion of (b).

Now if $ is nonsymplectic, it follows from (2) that D(3>, q) C [/7(î>, A),
/7(<1>,  q)], and the inclusions in (b) are equalities.   If $  is symplectic, we may

assume   iß, a) = 2   and (2) becomes

(3) f"2. v\ß = {ha(u),hß{v)l

By (1.1), S"  > v\ß = Izz, v   \n\ thus it follows from (3) that if every  v £ (l + q)* is

a square, again

D(4>, q) C [/?(<&, A ), /7(4\ q)l

which completes the proof of (b).

For fixed ß, let  Dß be the subgroup of Di<$, q) generated by all \u, v\ß,

u £ A*, v £ (1 + q)*.  Let o = aa be an element of the Weyl group of $.  Then

relation (R5) and (a) imply
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170 M. R. STEIN

izz, v\ß = wa(l) - izz, v\ß . wa(- 1)

= zía(l) - hß(uv)hß(u)-lhß(v)-1 . Û/a(-l)

= Kßi^^Kßi-ny'Kßi^h^^u)-1 h^ß^h^v)-1

= h\ß(Wv)h0-ß(VuTlbaß(v)-lhaß(v)haß(ri)baß(r)v)-1

={t7h, v\aß\ri, v\~lß

for some 77 = + 1. This proves DßC D aß,   and, by symmetry,  D ß = Do. Since

the Weyl group acts transitively on roots of the same length, we have shown that

if a.  and  ß have the same length, Da = D „.

Suppose then that  ß  is short and choose a long root  a  such that   (ß, a.) = 1.

Then by (2)

(4) U, v\ß = lha(u), hß(v)] = lbß(v), ha(u)]~l = {via'ß\ u\-al

which proves  Dß C Da. Since  by (1.1)(S6)   {v, u\a = {u~   ,   v\a we have shown

Da = D($,  q), proving the first part of (c); the rest of (c) is now an easy corollary.

Remark.   In view of (1.3) we will usually write  ! , i for  i , Sa; in that case it

is to be understood that the symbol in question is taken with respect to a fixed

long toot  a.

2. The relative Bruhat decomposition for a radical ideal.

(2.1) Lemma.   Let  a e A.
(a) ¿/(«D, q) = 0(<D+ - ia!, q). Û(a, q).

(a-) Û_(<I>, q) = Û(<t>_ - i- a¡, q).D(- a, q).
(b) Û($'+ - ¡a!,  q)  is normalized by Sta(A).

(b~) Ù(<t>    - i- a!,  q)   is normalized by Sta(A).

The set of roots <I>+ - ia! (resp. <f>_ - i- a\) is an ideal in the closed sets of

roots <t>+ and ($+ - ia!) u i- a! (resp. <f>_ and ($_ - i- ai) u i»D. The lemma

thus follows from [l8, Lemmas 16, 17, 18, 36].

Definition. Set  ÁÍ(<J>, q) = ()"(<J>, q)K(<ï>, q)Û(<t>, q), a subset of St (<t>, q)
(cf. (2.7)).  Recall from (1.3) that if $ is nonsymplectic or if ((1 + q)*)2 = (1 + q)*,
then  K(í>, q) = P($, q), and that in any case, K(<I>, q) is the product of the cen-

tral subgroup  D(<t>,  q) with the group generated by all  ha(v), v £ (l +■ q)*.  Thus

27(K(<I>, q)) = W(<I), q).

(2.2) Lemma.   &-(<P, q)K(<l>, q)Mi<S>, q) = M($, q) = Ái(4), q)K(í», q)Û(<I>, q).

This follows from relation (R6) which shows that r/(<I>, q), and therefore also

K(<&, q), normalizes  Ü~(<t>, q) and  Û(Q>, q).
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(2.3) Theorem,  (a)  The product map

i)-(<ï>, q) x K(<&, q) x £/(<&, q) — St (<£, q)

is injective.

(b) L(<D, A) n.MW>, q)C K(<&, q).
(c) M(í), q) = St($, q)  implies   qCradA.

Suppose  û, û   £ Ûiq), v, v   £ U~iq) and k, k   £ Kiq). Then if vkù = v k û ,
we have

rriÛ'v-1 )=T7(k'uÜ-lk-l)e U~iA)n UiA)HiA) = íl!

by [18, Lemma 21].  Hence  v = v , since  tt\U~ÍA) is an isomorphism [18, Lemma

36].  Similarly  û - û, and therefore   k = k , proving (a).

Now suppose  n(vkû) = 1. Then  rriv) = niû ~ lk ~ l) £ U~iA) O UÍA)HÍA) = [1 !
implies  v = 1; hence zz = 1  also, proving (b).

Finally, it is easily checked in SL (2, A) that   (" d) £ U~XHU implies  a £
A*.  Moreover,  <tS~   iU~HU) C U~HU, where the decomposition on the right is in

SL(2, A) and 0a: SL(2, A) -♦ Fa(A) is the homomorphism of [14, (3.6)1.
Applying these remarks to

/l+q      -?  \

for any <? e q, we see that Miq) = St(q)  implies (l + q) C A* and therefore,  qC

rad A.  This proves (c).

The key result of this section is the following partial converse to (2.3)(c):

(2.4) Theorem.   Let (A, q) be a radical pair and assume A = Z[A*].  Then

St(<D, q)= M(0, q).

(2.5) Theorem.   Let (A, q)  èe a radical pair with A = Z[A*], and suppose

$. CO     are reduced irreducible root systems of the same type.  Then  L(í>   ,  q)

z's generated by all \u, v\a, u £ A*, v £ il + q)* for any fixed long root  a, and

the homomorphisms   L(<I> ,  q) —> L($   ,  q) are surjective for all m > /> 1, includ-

ing  m = »s  z'/ $     ¿s classical.
° ' 77!

//, z/z addition, $     072«" A   satisfy one of the hypotheses of [14, Theorem 5.3],

St(4>   , (0, q))  z's fie universal E(0   , A)-coz;erz'72e [14, §2] o/ F($   , q).
777 77Z ° ' ' til

This theorem is a corollary of (2.3)(b), (2.4) and (1.3).
Note.  The hypothesis  A = Z[A*]  is innocent.   It is fulfilled, for example, by

semilocal rings having at most one residue field with 2 elements tl4, (4.2)] (in

particular, by local rings) and by group rings.

The proof of (2.4) will be based on a series of lemmas.
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172 M. R. STEIN

(2.6) Lemma.    Let  a e + A, t £ A.  Then x (/)  normalizes M(q) if and only if

xait)V(- a, q)xa(- i)C Miq).

The "only if" is clear. For the converse, we assume  a e: A (the case a e - A

is similar).  By (2.1)(a—), we have

M(q) = 0(3>_-i-a¡,q). 0(-a, q) • K(q) ■ Û(q).

Since xa(t) normalizes  f)(<I>_ - !- a!, q) by (2.1)(b_) and also normalizes  Uiq),

it suffices to prove

xa(t)- Oi-a, q)K(q) -xa(-t)CM(q)

and, in view of the hypothesis and (2.2), that would follow from

xa(t)- k(q)-xa(-t)CK(q)U(q)

which is true since   Kiq) C HÍA) and  HÍA) normalizes   Uiq) by relation (R6).

(2.7) Proposition. Let  u, v £ A*, a e fj>.   The following identities hold in

St(<I>, A):

u, v\Ja(v)

x_a(u- li

(-«"')

(a) , *     (-u-1)-lv> .    -a „  (,,i., _  i «   . v   („dr l

x(u(v-D)
(b) a

(O "        x_a(u-l(l-v))

= x_a(u-l(v~1 -l))\u,v\aba(v)xa(u(l -v-1)).

Proof,  (a)

iz', v\nh(v) = h(uv)ha(")~l  - wa(uv)ûa(- u)

= w_ai-u    lv    ')<%(-*)

= *_a(- u~[v~l)xa(uv)x_a(- u~lv~l)û,a(- u)

= x_ni-u-lv-1)  -xa(uv)wa(-u) .'"a"  x_n(-,rlp-1)

= *_a<- «" lv~ ' )  • X«(W,')*a< - »)x_a(«_1 )xa(- ZZ)  • Xa(«77-' )

= x_a(U-la-v-l))x_a(-u-1) -xa(u(i, -l))x_n(u-])xa(u(„-1 -I))

= x_a(u-Hl -z'-1))' X_a .v>(r -D) ••v>(z'-' -D).

(b)  follows immediately from (a).
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(c)  In (b)  exchange  a   with  — a  and  u with  u~   ; then take the invetse of

each side.  The identities  h_aiv)~    = baiv) and  izz"   , z'!~a = \v, u~   la = \u, v\a

complete the proof.

(2.8) Corollary.   Let  a £ <f>, q £ rad A.   For all u, v, u , v   £ A* such that  u f
v - u   f ii , the symbol \ , \n  satisfies the identity

izz, (1  + qz)/(l  +  qv)\a \v, 1  + qv\Jl  + qv, - (1 + qz)\~l

(Sq) =1«',   d  +az)/(l  +qv')\a\v',l +qv'\Jl +qv',-(l + qz)\^

where z = u + v = u   + v .  Moreover if z t A*, both sides of (S9) equal \z, 1 t- qz\ .

Since   u + v = u   + v , we must have

We will use (2.7) to put (1) into  Miq); (S9) will then follow by comparing the tetms

in   Kiq)  which are uniquely determined according to (2.3)(a).

Write  w = 1 - qv £ A*.  Then  q = v~   (1 - w) and  u>~    - 1 = qvw~   ; applying

(2.7)(c) with  zz = v, v = z^z yields

(2) xa(-")x_a(a)=x_a(a^-1){>z,UzlaÂ»xa(-(7,72t/.-1).

Similarly write  x = 1 - quw~    = u~   (l - qz) £ A*; then  qw~    -- u~   (l - x), x~    -

1 = quil - qz)~     and we have

(3) X-(u)x_a(qw-1)-x_a(q(l -qz)-l)\u,x\j;a(x)x¿-quHl-qzrX).

C'ombining (2) and (3), and simplifying using telation (R6) and the definition of

I > lrt gives the identitv

x    (-u)x    (-v) ,    s
a a x      (q)

(4)
"X-M1 -«i2)"')!«. xi¿i;w\ak,,x\-lb¿l -qz)xa(-qz2(l -qz)~l).

(It should be noted that in deriving (4) we need only the weaker hypotheses u, v, 1 — qv,

1 — qu, 1 — qz t A*; this will be important in (2.9) below.) We perform a similar

calculation for    a a x_ %liq); the identity follows by compating the tetms

in   Kiq) (noting that  h_  (1 — qz) depends only on  z) and replacing  q by  — q.
X    ( z )

Finally if  z £ A*, we may use (2.7)(c) to compute x   J,q) directly; com-

paring   Kiq) terms, we see that  \z, 1   i qz\a must equal both sides of (S9).

(2.9) Corollary.   Let  u, v £ A*, (ifií and write  p = u - 1, q = v - 1.   Then if
pq = 0, |1 + q, 1   r p\:l = \x_   (\q), x %ip)].

We will compute the right-hand side using (4) above.   Make the substitutions

-« = «,- v = - 1, q = - q  in (4); then  z = - p, 1 -r- qz - 1 - qp = 1, x~ ' = w - 1 + a,
and
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xalp) x   (u)x   (-1)

Therefore

But (1.1) implies

\-u,x\Ju-\x\a = \-l,x]a = {x-\x\a

and therefore

k_a(?), *,#)] = i""', *£ = U, «'' La = i*"1, "La =U +», 1 + pLa
which yields the desired result by interchanging  a and   — a.

(2.10) Proposition.  Let (A, q) be a radical pair.  Then Miq)  is a normal sub-

group of St(<I>, Z[A*]).

Let us first show that (2.10) completes the proof of (2.4). The hypotheses of

(2.4) imply that St ($>, A) = St (<P, Z[A*]); thus by (2.10), Miq) is a normal subgroup
of St(3>, A) containing all  Û(a, q). Therefore St (<t>, q)CM(q).  But Miq) C
St($, q), whence (2.4).

Now let us prove (2.10). St (<I>, Z[A*]) is generated by all xa(t), a e + A,

t £ A*.  By (2.6), the set Miq) is normalized by St ($, Z[A*]) if and only if
XaU)x_ aiq) £ Miq) tot all a £ + A, t £ A*, q £ q. Since   q C Z[A*], this follows
from (2.7)(b) and (c).

Now since  Û~(q) C St(<I), Z[A*]), we have

Al(q)M(q) = Al(q)()-(q)X(q)(}(q)=(}-(q)AÍ(q)K(q)D(q)=M(q)

by (2.2).   Therefore  Miq),  being   the monoid generated by 3 groups, is a group.

Remark.  In showing Miq) = St (í>, q) for a radical pair (A, q), the restriction

A = Z[A*]  was needed only in verifying (2.6).  In SL(2, A), however, it is easy

to show that

eait)U(-a, q)ea(-t)CU-(q)H(q)U(q);

this is simply the matrix equation

'1     A  /I     0\/l     -A       /    1 0\/«    0  \   A     -t'qu-A

y0    l)\q     l/\0     1/        V"1     l/\0  zz"1/ \0 1 i

where u = 1 + tq £ A*, since   q C rad A. We conclude

(2.11) Corollary.   Let (A,  q)  be a radical pair.  Then

E(4>, q)= U-(q)H(q)Uiq).
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(2.12) Lemma.   // rk $ > 2, St ($, )  preserves finite products.  // rk O = 1,

St ($, A) x St ($, B)   « St (í>, A x ß)/C, where C is the normal subgroup generated by

all [xaiia,0)),x_aiiO, b))].

There is always a surjective homomorphism p: St ($, A x ß) —» St (<t>, A) x

Stíí, B) induced by the projections of A x B  onto its factors. Now St (<t>, A) x

St ($, B) is generated by all (xa(a), l), (l, xaib)), and we may define a map s

backwards by

(xja), 1) r-»xa((a, 0)),       (1, xa(b)) H»xa((0, *>)).

To show this defines an inverse isomorphism to p, we must check that the defin-

ing relations of St (í>, A) x St (i1, B) are preserved by s. These relations are

(i) the defining relations of St ($, A) applied to the generators (xa(a), 1),

(ii) the defining relations of St ($, ß) applied to the generators  (1, xaib)),

(iii) [(*>), D, il,xßib))] = 1  for all a, ß £®,a £A, b £ B.
It is clear that s preserves (i) and (ii). Moreover relation (R2) in StW>, A x ß)

shows that  s  preserves (iii) whenever ß ¿ - a.  Hence the induced map s: St (A)

x St(B) —♦ St (A x B)/C  is an isomorphism, since  piC) = 1.  This completes the

proof when rk <1> = 1.
If rk $ > 2, there exist  ß, y £ $,  ß, y / - a, such that

x_aii0,b)) = [xß((0tl)),xy((0,b))]y

where y e DIS, (O, B)), for some  K <t> with  - a   4 S.  Hence

[xa((a, 0)), x_a((0, &))]

= [xa((a, 0)), [xß((0, 1)), xy((0, fc))]y] = 1

which proves   C = 1   and the lemma.

(2.13) Theorem.   Let A   be a semilocal ring with at most one residue field

isomorphic to F7, and suppose <î>. C <J>     are reduced irreducible root systems of

the same type.   Then the homomorphisms Oil, m): L($,, A) —> L(<t>   , A) are sur-
J l m

jective for all m > / > 1, including  m = °°  z/ <t>     z's classical.

If I > 2, L((t> , A)  z's ¿ic central subgroup generated by all \u, v\a, u, v £ A*,

for any fixed long root  a.   T/zzs z's a/so /rae z^/jctz  / = 1, provided either that A

has no residue field isomorphic to F.   or that A   is a local ring.

If, in addition, $, and A  satisfy one of the hypotheses of [14, Theorem 5-3],

StiO,, A)  is the universal covering of Ei<i>r A) and L^, A)   « /72(F($ , A), Z).

Write A = A/rad A, a finite product of fields. Steinberg [17] has shown that

L(0, k) = D(<D, k) when  4 is a field. Since Ei<t>, ) preserves finite products, it

follows from (2.12) that  L(<J>, Ä) = D($, Ä) if rk $ > 2, and that  L(0, Ä) is gen-
erated by D($, A) and C when rk $ = 1, where C is the normal subgroup generated by all
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[*a((0,---, k.,..., 0)),x_a((0,---,kj,..., 0))]

(the appropriate generalization of the subgroup C of (2.12) when A   is a product of

more than 2 factors).

Now suppose rk $ = 1.  Then if A   is local, L($, Ä) = D(<t>, Ä) by Steinberg
[17].   If A   is semilocal but has no residue field isomorphic to  F?, we want to show

C C D(<í>, A), and it clearly suffices to consider the case A = k x k , a product of

two fields.  Then by (2.9),

txa((a, 0)),x_a((0,b))] = {(l +«, 1), (1, 1 +¿>)!_aeD(<D, Ä)

provided neither a  nor  b equals  — 1.   But even if  a = — 1,

*a((-l,0))
[xa((- 1, 0)), x_a((0, b))] = [x_a ((0, b)), xa((l, 0))]

= 1(1, 1 +i), (2, l)}aeD(4), Ä)
and a similar argument applies if £> = — 1. Hence if — 1 ^ 1, C C D(0, A).

Thus our hypotheses imply  L(Q> {, A) = D^, A); since A* —> A*  is surjective,

so is D^, A) —» L^, A).  But our hypotheses also imply (2.5) for   q= rad A;

therefore   L(<1) ,  q) = D($., q) and the second part of the theorem follows from the

exact sequence

1 - L(*,, q) - L(<D/; A) - L(Qr A) -1
together with (1.3).

The first part of the theorem is a consequence of the second and (1.3), and

the last part follows from [14, (5.3)].

(2.14) Corollary.   Let A   be a semilocal ring with at most one residue field

isomorphic to F,.  // rk <£ = 1, assume further that either A   is local, or that A   has

no residue field isomorphic to F2.   Then  F($, A)  has a presentation by generators

ea(t), a £ <t>, t £ A, and relations  (Rl), (R2) (resp. (R3) if rk 0 = 1) and

(C)ha(u)ha(v) = ha(uv),      u, v eA*, ae4>.

The proof is the same as [18, Theorem 8(b)] in view of (2.13).

Note.  Theorems related to (2.14) have been proved by Silvester [ll], [12], and

Wardlaw [19].

(2.15) Proposition.   Let  \s, q be ideals of A.
(a)  // rk $ = 1, assume  L($, q)  is central in St ($, A).   Tzjerz if St ($, q)   z's

generated by M(q),

[St($, A), [St(4>, q), St(4>,  }3)]] C St(<D, ̂ q).
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(b) Suppose rk > 1 and that 2 £ A* if $ = C2.  // either St ($, q)  is generated
by  Miq)  or St(3>, p2)  z's generated by ÁÍ(p2), then

[St($, q), St(4>, p2)]CSt(<I\  pq).

Suppose  M, zV  are normal subgroups of a group  G, and define

(M:/V) = \g £G\[g,N]CM\.

It follows from the commutator formulas of [14, (2.1)] that  ÍM:N) is a normal sub-

group of G.  The conclusions of the proposition are thus equivalent to

(a') St(pK((St(pq): St GO): St(q)),
(b') St(p2)C(St(pq):St(q)).

The groups on the right in (a ) and (b ) are normal in St (3>, A); therefore by [14,

(2.1)] it suffices to prove

(a") Uia, p)c((St(pq): St GO): St (q)),
(b")  0(a, p2) C(St(pq): St(q))

for one root  a  of each length.

If ß / - a, (R2) implies that

(5) [Û(a, p), Üiß, q)lCSt(pq).

Suppose rk O > 1  and that 2 £ A*  if $ = C2. Then (R2) implies the existence of
ß, y £ $ such that

¿/(a, p2)C L&(/8,   P), Ù(y,   p)]. &(S,   p2)

where  S C $ and  a 4 S.  Therefore

(6)   [Û(a, p2), Û(-a, q)]G[[Uiß,  p), f}(y,   p)] • Û(S,  p2), Û(-a, q)]CSt(pq).

(The last inclusion follows from [14, (2.1)] and (5).)
Finally, K(<I>,  q)  is generated by elements of the form  !zz, v\nh„iv), u £ A*,

v £ (l + q)*. Therefore since \u, v\n   is central, relation (R6) implies

\xa(p), \u, v\ßhß(v)] = [xa(p), hß(v)] = xa(p'q')

for some  p   £ p, q   £ q, which implies that

(7) [Ûia,   p), K(q)]CSt(pq).

Clearly (b  ) is a consequence of (5), (6), (7); this is true under either hypothe-

sis of (b) since (b ) is equivalent to

St(q)C(St(pq): St(p2)).
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From (5) and (7) we also conclude that

[0(a,  W, St(q)]=St(H) • [Ö(a,  p), 0(-a, q)].

It is easily checked, moreover, that in SL(2, A)

[(/(a,  p), U(-a, q)]CF(pq)

and therefore

[ij(a,  p), St(q)]CSt(pq) • (L(4>, q) nSta(A)).

Since  L($, A) n Sta(A) is central in St (<P, A) (by [14, (5-1)] if rk O > 1  and by
hypothesis if rk $ = 1), (a) is proved.

(2.16) Corollary.   Let (A, q) be a radical pair and assume A = Z[A*].  // ip C

A   is an ideal such that  pq = 0, then [St ($, p), St ($, q)]  ¿s central in St ($, A).

Moreover f/ rk O > 1  arca" 2 e A*   z/ $ = C2, /¿e72 for all  i > 2,

[St(<D, p1'), St(4>, q)l = [St(<D, p), St(<D, q')] = |lj.

(2.17) Corollary. Let (A, q) be as in (2.15) and suppose further that q" + 1 =
0. T^erz r = [St(<ï>, q'), St($, q')]  is central in St ($, A)  z/ i + j> n + 1.

// rk $ > 1  ana" if 2 £ A*  if <b = C2,Y is trivial when  i + j > n + 2.

3. Some computations for local rings.

(3.1) Proposition.   For any pair (A, q), /¿e sequence

1  - L(4>, q) - L(4>, A) - L(4>, A/<r)
z's exact.

Except for the "1" on the left, this is just [16, (3.2)]. Exactness at the left

holds because the group L($, q) used here is the image under the natural homo-

morphism of the group  L(<£, q)  of [l6], and is therefore a subgroup of  L(í>, A).

(3.2) Proposition [17, 3-3].   '/ k is an algebraic extension of a finite field,

L($, k)=l.

(3.3) Proposition, (a)  For every positive integer m  not divisible by 4,

L(0, Z/mZ) = 1, provided rk <P > 2.
(b)  For every integer n>2, the groups  L($, Z/2" + 1Z) and L($, Z/2"Z) are

isomorphic and are generated by the symbol j— 1, - 1 i, which has order at most 2

if í>  is nonsymplectic.

Proof, (a) Since   L(<I>, )  commutes with finite products, the Chinese remainder

theorem implies we may assume   777 = p", p  a prime; we may further assume  22 > 1

and p 4 2 by (3.2). Since Z/p"Z satisfies the hypotheses of (2.13), it follows from
(3.2) and from (3.1) with   q = rad(Z/p"Z) = pZ/p"Z that  L($, Z/p"Z) is isomorphic
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to L(<I>, pZ/pnZ) which, according to (2.5), is generated by all izz, v\, u £ÍZ/p"Z)*,

ve{l + pZ/pnZ).
Now  iZ/p"Z)* is a cyclic group of order  (p - l)p"~   , isomorphic to the direct

product  iZ/pZ)* x (1 + pZ/pnZ).  Hence (1.1)(S7), (S8) imply  \u, v2\ = l   (a, v as
above).  Since  p is odd, every element of   1 + pZ/pnZ is a square, which proves (a).

(b) Again the hypotheses of (2.13) are satisfied.  It follows from (1.1)(S1) that
¡- 1, - 1¡  is the only possibly nontrivial symbol in  L($, Z/4Z), and if <î>  is non-

symplectic, (1.1)(S°2) implies that the order of this symbol is at most  2.  Since

(Z/2" + 1Z)* -» (Z/2"Z)* is surjective, we have, by (2.13) and (3.1), an exact

sequence

1 — L($, 2"Z/2"+1Z) — L(4>, Z/2"+1Z) ->L($, Z/2"Z) -» 1

for all  72 > 1  and all  $.  Thus to complete the proof of (b) it suffices to show

L(<p, 2"Z/2"+1Z) = l    for„>2.

Let /z > 2.  According to (2.5), L($, 2"Z/2n+ Z) is generated by the symbols
Í1 + 2", u\, u £ (Z/2" + 1Z)*. Now  (Z/2" + 1Z)* is the direct product of the group
!+ l! with the cyclic group of order 2"~     generated by the residue class of 5

modulo  2"+  .  Moreover, an easy induction argument shows that for all  72 > 2,

(D 1+2"=5S     mod2"+1,       s=2""2.

Now assume  72 > 3.  Then  1+2"  is a square and (1.1)(S6) implies that

L($, 2"Z/2" + 1Z) is genetated by the two symbols  ¡1 + 2", - 1}, [1 + 2", 5!; since
il + 2", - 1|= [1 + 2", 1 + 2"¡ = ¡I + 2", 5\s by (1), this group is generated by the
single symbol  ¡1 + 2", 5!.  Again applying (1) and computing in  L(<I>, Z/2"+  Z),
we have  il + 2", 5 i = Í55, 5 S = 1  by (1.1)(S8).

Now suppose  /z = 2.  Then it follows from (2.5) and (1.1)(S1) and (S4) that
L($, 4Z/8Z) is also generated by  Í5, - 11. Take q = 2, u = v   =-l,zz   = u = 5
in (2.8) to conclude that, in  L(0, Z/8Z), 1 = ¡5, - 1 j.

Note.  For the functor   ÍC = üm,   ^ LÍA., ), this proposition was proved by

Milnor [9] using his computation of  KAZ) (cf. [ll], [19]) and results of Mennicke,

Bass, Lazatd and Serre [l] on the congruence subgroup problem.

(3.4) Proposition.   Let A   be an artinian ring such that A* is cyclic, and sup-

pose rk $ > 2.  Then L(0, A) = 1, except possibly when A  has a direct factor

isomorphic to Z/4Z.

Eldridge and Fischer [4] have shown that if A  is artinian and A* is finitely

generated, then  A   is finite.  Moreover, a finite ring is a finite product of primary

rings A., ■ • • , A    (rings with a unique prime ideal); if A* is cyclic, A* must also

be cyclic for z'= !,•••, 72 with  |A*|  and  \A*\  relatively prime for  i ^ j. Gilmer
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[5]  has determined   all primary rings with cyclic groups of units; they are

(a) F , q a prime power,

(b) Z/pmZ, p an odd prime, m > 1,

(c) Z/4Z,
(d) FplX]/(X2), p prime,
(e) F2[X]/(X3),
(f) Z[X]/(4, 2X,X2 -2).
Since   L($, ) commutes with finite products, it suffices to compute   L(0, A)

when A   is one of the rings in (a)—(f) and we may apply (2.13).   Propositions 3.2

and 3.3 above settle cases (a)—(c).   In (d), (e), (f ) we let  x denote the residue

class of X   in  A.
In (d) we use (3.1), with   q = rad A = 1 4- Ax, and (3.2) to conclude that

L(<J>, A)  ~   L((p, 1 + Ax).  If £ is a generator of  F*, A* is the product of the cy-
clic group (£,) of order  p — 1   with the cyclic group  (l+x) = l+Axof order  p.

If p is odd, 1 + x  is a square, and  L($, 1 + Ax)  is generated by  {£, 1 + x¡  and

il + x, 1 + x| according to (2.5) and (1.1)(S6).  That these symbols are trivial fol-

lows from (1.1)(S6), (S8).
If p = 2   in (d), C = 1   and   L(<î>, 1 + Ax)  is generated by

ll +x, 1 +xj = |1 +x, -(1 +x)| = 1
by (S4) of (1.1).

In (e) and (f ), A* is cyclic of order 4, generated by   1 + x, and  L(ff>, A)  is

generated by  ¡1 + x, 1 + x!.   In (e) we have

il    t-X,  1   +x| =il   +X,  - (1   4 x)l = 1,

and in (f )

il  +x, 1 +x| = |l  +x, (I +x)"M = ¡1   t-x, - (1  +x)| = 1,
which completes the proof of (3.4).

Our next objective is to generalize Proposition 3.3.  Throughout the rest of

this section we will assume A   is a local ring whose maximal ideal  p is principal

and generated by p.  We further assume that A/p is a finite field containing  q =

p    elements.

For 22 > 0, the group of units (A/p"+ )* is the direct product  (£) x (l +

p/p"+ ), where £ £ (A/p"+ )* is of order  q - 1  and maps to a generator of (A/p)*

Ä  (F )*. Since A   and A/p"+    are local, they are generated by their units.

(3-5) Comma.  For all 22 > 0 and 1 < 1 < n + 1, the additive group  p'/p" +
and the multiplicative group  1 + p'/p"+    have exponent p"~'+  .  Hence if p is

odd, every element of  1 + p/p"+     is a square.

The map a r-» a~pn  induces, for all  22 > 0, an isomorphism of additive groups

A/p«pVp"+1
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where we write ä for the residue class of a £ A modulo p" + . Since (p"/p"+ )

= 0, 1 + p"/p" + 1 « p"/p" + ' and both, therefore, have exponent p. The lemma

follows by descending induction on   z  and the exact sequences

o — p!'+1/pn + 1 - p7p" + 1 — p7'p¿ + 1 - o,

i — d + p¿+1/pn+1) —(i + pvp" + 1) — a + p7p' + 1) -*i.

(3.6) Lemma.   Let  k  be a finite field.  Every element of k  is a sum of squares.

Every element of k  is a sum of fourth powers if and only if k ¿ F .

Let k = F , a = p", and let  a" be a positive nonzero integer.  The subset S of

k consisting of sums of ath powers is closed under addition, multiplication and

subtraction, since — I - p — 1 = 1    + . .. + 1   . Hence S, being a subdomain of a

finite field, is a subfield of  k, and S = F , r = pm  for some  ztz dividing  72.   In parti-

cular, pm — 1  divides  p" — 1  with quotient  c.

Choose an  x £ k* of order  p" - 1.  Then xd £ S and thus  xd{pm-'l) = 1, which

implies  p" - l\dipm - 1).  Hence  cipm - l)|atz>m - l) and  c\d.  If  d = 2, then  c =

1  or 2.  If c = 2, then

2pm-2 = pn-l,       pm(2 -pn-m) = l,       p = l.

Thus  c = 1   and  n - m.

Ii d = 4 we must have  c = 1, 2 or 4, and we have seen above that c = 2  leads

to a contradiction.  If  c = 4, then

,y(4-p"-m)=3,       p = 3,« = l,« = 2,

and it is easily checked that  (F )    = F^.
Note.  I would like to thank Armand Brumer who supplied the neat proof of this

lemma.

(3.7) Corollary.   The symbols  ¡Us,l+¡!,s6 p/p" + 1, t £ p"/p" + 1   generate

D(0>, p"/p" + I).

Recall from (1.3) that  D($, p"/p" + 1) is the subgroup of  L($, p"/p" + 1)  gen-
erated by all  \u, 1 + ii, u £ (A/p" + 1)*, / £ p"/p" + 1.  Write  u = C'il + s), s £
p/p"+  , where  Ç,  is of order  a — 1.  Then if  p is odd, 1 + s  is a square by (3.5),

and if p = 2, £,'  is a square.   In either case (1.1)(S6) implies

izz, 1 +/! = \Ç, 1 +f|ll +s, 1 +/|

and we must show  \Ç ', 1 + t\ = 1.  Suppose   1 + /  is a square and let  v £ 1 +

p"/p"+  , v   = 1 + /.  Then  u has exponent  /> by (3.5) and  Ç,1  has order prime to

p.  Hence  C' and  v generate a cyclic subgroup of  (A/p"+  )* and  !£!, 1 + t\ = 1

by (1.1)(S7) and (S8).  If  1 + z"  is not a square, we must have  p = 2  and  £'  is a

square; a similar argument applied to (£!) 7  and  1 + '  again yields   \C\ 1 + il = 1.
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(3.8) Lemma.  // rk $ = 1, assume A/p ¿ Fp.  Then  L($, p"/p" + 1)  is gener-
ated by all

il + up1,  1 + up"\,        1 < i■ < 22,

where u  is a power of £ and p   denotes the image of p  in A/p"+  .

Moreover if <t> ̂  A x, C2, or if $ = C2  and p  is odd, then these symbols are

trivial except possibly when  i = 1.

We begin by proving that the additive group  pm/p"+    is generated by all

Çp   , m < k <n, where  ç is an even power of £ (resp.  ç  is a fourth power of £ if

A/p 4 F9).   By (3.6) this is true it m = n, for  p"/p" + 1   is isomorphic to A/p.   By
definition of  £, pm_   /p"+    is generated by all  vp   , m - 1 < k < n, where  v is a

power of £.  According to (3.6), v = fl, +• • •+ a    modulo  p/p"+    where the  a. are

even (resp. fourth) powers of £. Therefore vp-   = a.jü    + • • • + a p    + b for some

b £ pm/p"+  ; by descending induction on  222, b is of the desired form.

Our hypothesis on  p assures us, by (2.5), that  L($, p"/p" + 1) = D($, p"/p" + 1)

and is generated, according to (3-7), by all

(2) [1+5,1   +Çp"\a, S   £    p/p"+1,

where £ = b. +• • •+ b    is a sum of even (resp. fourth) powers of Ç, and a is any

fixed long root. (The "resp." statements hold under the hypothesis A/p¡¿ F—)

Now if $ is nonsymplectic, there is a j3 e$ with  (a, ß) = 1, where a is the

root occuring in (2).  We now show that the same is true if í> = C., I > 2, and  p is

odd.  In that case   1 + s = (1 + s )    for some  s   £ p/p"+    by (3-5), and we have, by

(4) of §1 and(l.l)(S°3),

il +s, 1  +/!a = i(l +s')2, 1  +z!a

= !l +t, 1 +S1}-1 =il +s', 1 +t\y

where  y eO  is a short root such that   (a, y) = 2, (y, a) = 1.  Replacing  a by  y

in (2), we are done.

Because (p/p" + 1)(p"/p"+1) = 0, we may apply (2.9), (2.17), and the commuta-

tor identities of [14, (2.1)] to conclude

[l+s,l +Çpn\a=lx_a(s),xa(Çpn)}

(3) = k-ai^'Xa&lï1")-  ■■■•xa(bTp")]

= lX-a(S)>XJblli"Ü-----lx_a(S),xa(brp-n)]

= il   +S,l+fc1?"la.....U   +S,1   +¿7r7i"!a

which shows we may assume in (2) that  rf itself is an even (resp. fourth) power of

£ (and not just a sum of such powers).
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Conjugating

ii +s,i +{p"\a=lx_ais),xa(Çp:n)}

by  h^^VA  yields

il + s, 1 + ftX = k_a(£s), xa(p")] = {1 + ¿s, 1 + p-J^

and  L(0, p"/p" + 1)  is thus generated by all

(4) \l+s,l+pn\a,       sep/pn+I.

Now we may write  s = a,a + • • • + a zz", where each a .   is a sum of even

(resp. fourth) powers of £. Arguing as for (3) above, we have

il+s, 1 +p"\a=lx_a(s), xa(p")]

(5) = ^-d^it7). xa(/I")l-----tca(a„F"), x-aiP-n^

= il +a,7i, 1 +íT"la-...-jl +anp", 1 +p"\a,
and a further argument of this type shows we may assume each a .   is itself an

even (resp. fourth) power of £.  We conclude, therefore, from (4) and (5) that

L($, p"/p" + 1)  is generated by the symbols

(6) il +ap\ 1 +p"\a= \x_aiapl), xaip")l       !<*'<«,

where a  is an even (resp. fourth) power of Q.

Now if $ is nonsymplectic, or if p is odd and í> = C., I > 2, take /3 so that

(a, jß) = 1  and let f be a power of C such that  f   = a.  If $ = A ,, or if p = 2
and $ = C., / > 2, take  ß = a  and let  f be a power of £ such that  v   = fl  (these

choices are possible by our hypotheses and the previous discussion).  Conjugating

(6) by  hßiv) yields

il +ap\ 1 +pn\a =   ß       t)í.a(11r'')1xa(íí")l

= [x_a(zz¡Z,)> xa(zz7i")] = il + up1, 1 + zz7i"la

where  u = v    '        is a power of  £, as desired.

Finally if 0 ^ A ,, C2, or if $ = C2   and  p  is odd, it follows from (2.9) and
(2.17) that for   z > 1,

il + up.1, 1 + up"] = [x_a(zz7i ), x a(up   )] = 1.

(3.9) Lemma.  For every u £ A* and all n~>l,

(l+upk)t>n~    ~l+upn-kpk     modp"+1,       2<k<n.

// p 4 2, this congruence holds for k = 1   as well.

If  k = n the congruence is clearly true, and we will prove the remaining cases

by induction on  in — k, n + 1)  (lexicographically ordered).
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Our induction hypothesis implies

(1 +upk)p"~ =1 +up"-k~1pk    mod p"

77 + 1and, therefore, for some  s £ p"/p       >

(1 + upk)p" = 1 +upn~k-lpk +s

= (1 + up"-k-lpk)(l +s)    modp"+1

since sp   = 0.

Thus modulo  p"+    we have

(1 + upkf = ((1 + upk)P f

=- (1 + upr*-k-Xpk)P(l +sf

= (1 + up"-k-lpk)f

= i + upn~kpk + ¿ i?) iupn-k-xpky

since   1 + p"/p"+    has exponent p by (3-5), and it suffices to show

Q^-ii-yi.O    modp"+1
for 2 < i < p.

According to (3.5), pfe'/p" + 1   has additive exponent  p"~k, + l. Since  ip.)  is

divisible by  /2  if  2 < z < p — 1, we must have

722' - ki - l' +  1 > 72 - ki +  1, 2 < i < p - 1,

np - kp - p > n - kp + 1.
That is, we must have

z> 22/(22- 1),       2 < z' < p - 1,

p> (72+ I)/(« - 1).

These identities are satisfied except when  22 = 1   (in which case the lemma is triv-

ial)  and  when   p = 2, 22 = 2.

This completes the proof when  p  is odd.   If  p = 2, the lemma holds for  22 = 2,
ze = 2  and hence by induction for all  (22, k) with 22 > 2, ze > 2.  The cases  (22, l),

22 > 1   are true exceptions.

(3.10) Theorem.   Let A   be a local ring whose residue field is a finite field

with  q = ps  elements and whose maximal ideal  p is principal, generated by  p =

p, the image of p  in A.  If rk <t = 1, assume that A/p /= F_.  Then for all 22 > 0
and all odd primes p, L($, A/p" + 1) = 1.  Moreover, if p = 2, the groups

L(<P, A/p"+  ) and L($, A/p") are isomorphic for all 22 > 2  and are generated by

the  2s - 1  symbols  il +£'Zf, 1 + £'p\,  1 < i < 2s - 1, 2^¿ere £ £ (A/p" + 1)*  has
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order 2s — 1   and maps to a generator of A/p.  Each of these symbols has order

at most  2.

Since  p =p   generates  p/P"+    (we identify p  £ A  with its image in

A/p" + I), (3.9) implies, for p odd, that

i + upn = i + upn-ipi = a + up -y"-'

and it follows from (3.8) that   L(í>, p"/p" + 1)  is generated by all

(7) il + up', (1 + up'f"'^,        l<i<n,

where  zz  is a power of  £.  Since  p is odd, (3.5) implies that  1 +■ up1    is a square,

and

il + up1, (1 + up')"""] = il + up\ 1 + up'\p"~' = 1

by (1.1)(S6), (S7) and (S8).  The first part of the theorem now follows by induction
on  22  from (3.2) and the exact sequence

(8) 1 -. L(<t>, pVpB+1) — L(A/p"+1) — L(A/p") — 1.

Suppose, then, that  p = 2.  The above argument still applies if  2 < i < n, and

we conclude that

il  f up1, 1 + up"\ = tl + up\ (1 + up')2""\ = 1

so long as  2 < i < n  and  (1 + up1 ) is a square; that is, when  n — i > 1.   Thus

these symbols are trivial whenever  n > i + 1 > 3  and   z > 2.

If  z = 1, it follows from the argument of (3.8) that we may assume  u - £       is

an even power of £.  Then, since we may take p - 2, we have

il + £2kp, l + £2kpn\ = U_a(£2kp), xa(£2kp")]

h*X >Lx  a(£2kp),xa(£2kp")]
(9)

= x-ai~a)i*-a(n xaiCkp")] = ixai£*kp"), x_j-p)]

= il + Ckp\ i - /ri-1 = 1(1 + £^p2)2"'2, - i!-1 = i

if  72 - 2 > 1; that is if  7Z > 3-  Thus we have shown that L(0, p"/p" + 1) = 1   for all
zz > 3.

Finally suppose  n = 2, and continue to take p = 2. Then the characteristic

of A/p3   is  8, and for any  it £ A*,

il + 4zz, 1 + 4«| = U_a(4«), xa(4zv)]
<!0) w  (i)

=     a      U_a(4zz) , xa(4zz)] = Lra(4«), x_a(4,z)] =, [1 + 4«, 1 + 4h|-'.

*_a<-W*-«*>.
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Thus  il + 4a, 1 + 4a|2 = 1   for any  u £ A* Now  L(3>, p2/p3)  is generated by the
symbols  il + 4u, 1 + 4zz|, il + 2u, 1 + 4u\.  But

il + 4u, 1 + 4u\ = Lx_a(4u), xJ4u)i

= U_a(2zz), xa(4u)]2 = il + 2a, 1 + 4a!2

and we may take the symbols  ¡1 + 2a, 1 + 4ai, u = Ç,     , as generators.  But (9),

(10), (11) then imply

\l + 2C2k, l + 4C2ifel=il + 4Ç4k,- li"1

= il + 4(4k, 1 + 4ÇAk\~l = il + 4£4k, 1 + 4£Ak\

= ix_a(4Ck), xa(4CAk)] = L*_a(2¿;4*), xo(4t:4fe)]2

= il + 2£4\ 1 + 4CAk\2 = il + 4C8*, - ll"2 = 1.

(Note that the last 3 lines of this computation follow from (9) by substituting  2k

for  k.)
Thus by (8), L($, A/pn + 1)  «  L($, A/p") for all tz > 2  as stated.  If 72 = 1,

then (8) and (3.2) imply  L($, A/p2)  «  L(0, \)/\)2) is generated by the symbols
¡1 + up, 1 + up\ where   u = £ ', 1 < z < 2s - 1.  Since the characteristic of A/p

is 4, an argument similar to (10) shows that each of these symbols has order at

most  2.

(3.11) Corollary.   Under the hypothesis of (3.10) assume further that  p is nil-

potent.  Then if p is odd, L($, A) = 1, azza" if p = 2, L(<I>, A)  z's generated by the
2s - 1   symbols  \1 + £'p, 1 + £'p\, 1 < i < 2s — 1, which have order at most  2.

The corollary follows from the theorem, since if  p"+   = 0, A/p"+   = A.

(3.12) Corollary. Let 0   be the ring of integers in an algebraic number field

and let 0 ^ p C 0   be a prime ideal which is unramified over pZ = p O Z.   //  rk Í*

= 1, asszzTZze that 0/p j¿ Fg.   77>ctz if p  is odd, L(d>, 0/p" + 1) = 1   for all n>0.
Moreover, if p = 2, the groups  L(<I>, 0/p"+  ) are isomorphic for all n > 1  and are

generated by the  2s - 1  symbols  ll + 2£ ', 1 + 2Ç' \, 1 < z < 2s - 1, where  |0/p| =
2s and £ £ (0/p" + 1)* has order 2s - 1   and maps to a generator of (0/p)*.   These

symbols have order at most 2.

This follows from (3.11) with A =0/p" + 1.
Note.  For the groups of type A ., /> 2, this corollary is due to Christofides

[21.
4. Stability for HAEÍ$>, A), Z).  Throughout this section, A denotes a local

ring with maximal ideal   p. We set  k = A/p, but do 720/ assume that  k  is finite or

that  p   is principal, as in §3.

We fix an   / > 1   (depending on 0 and A)  such that   L($;, A) Ä  z72(F(í);, A), Z)
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and write $ = $,.  It follows from [14, Theorem 5-3l that for a given A  and $

there is an  L > 1  such that every  / > /Q  satisfies this condition, and it is clear

that  L  depends only on  $ and  A/rad A = k.
We abbreviate the functors St (A,, ) and  L(A x, ) by Stj( ) and  Lj( ) and we

write H (G) tot the homology groups H (G, Z) of the group G, i = 1,2.  Recall that
the functor E(A   , ) is SL2( ).

(4.1) Theorem.  W2(SL2(A)) ■— H2(E(Q, A))  is surjective whenever \k\ > 4.

Apply the homology spectral sequence [6] to the diagram of group extensions

1 — LX(A) ^St[(A)^SL2(A) -«1

1 I 1
1 — L(<D, A) — St(*, A) — F(<D, A) — 1

to obtain the following commutative diagram with exact rows:

H2(SL2(A)) £ LX(A) -St,(A)ab - SL2(A)ab - 0

1 1
(D W2(E(d>, A)) -L(<D, A)

1
1

The surjectivity of Lj(A) —► L(<I>, A) is a consequence of (2.13). If \k\ > 4, there

exists u £ A* with zz2 - 1 £ A* and by [14, (4.4)], St, (A)ab = 0. Thus the theorem
follows from (1).

We shall require the following unpublished result of Bass.

(4.2) Lemma.   Let   q C A   be the ideal generated by all u   - 1, u £ A*.   If k -
F2, assume that  p   is principal, generated by p.  Then St. (A)ab   «  St. (A/q)ab

and both groups are quotients of A/q.   Moreover,  q = A   except in the following

cases:

k=Vy q= p, A/q=F3,

k=F2,    zjA = 2A,    q=8A,      A/q= Z/2"Z,    » = 1, 2 or 3,

k=F2,       2£p2A,q=p2A,    A/q*F2[X]/(X2).

Denote the image in St, (A)ab of g e St, (A) by lg], and set   (t) = [xa(i)]

for t £ A.  It follows from relation (Rl) that  /   h» it)   is a homomorphism A    —»

St,(A)ab.   By relation (R3)

"aMX-aiOwJ- u) = xj~ u2t),        u £ A*,

we have  [*_a(')] = (- «  z); hence  /  h-»   (/)   is surjective.  Moreover by (R6)

lha(u), xa(t)] = xa((u2 - l)t)
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and therefore   (/) = 0 for t £ q.  This proves that St. (A)      is a quotient of A/q

and that St . (q) C [St, (A), St. (A)].  Hence there is a surjective homomorphism

St, (A/q)— St, GOab  which factors through St, (A/q)ab; the projection St,GOab

—»St. iA/'q)       is an inverse to this induced homomorphism.

Now let us determine the ideal   q.  Since A   is local,  q = A   if and only if   \k\

> 4.   If k = F,, we have A* = 11 + x, x - 1, x £ p |. Hence if u £ A*, u2 - 1 =
x(2 + x) or x(x - 2) for some  x e p;  since  2 + x, 2 - x £ A*, this proves   q = p.

If  /fe = F2, write  2A = peA   with   e = c*>  ¡f  2A = 0.   If  r = 1   we may assume p =
2, and (1 + 2x)2 - 1 = 4x + 4x2 - 0 mod 8A.  Taking x = 1, we see that   q = 8A
and, therefore, that A/q  « Z/2"Z, rz = 1, 2  or 3.  If c > 1, write  2 = pev, v £ A*.
Then

(1 + p)2 - 1 = 2p + p2 = ^e+1 + zt2 =/t2(l + i/ft*"1).

Since  1 + 741e-1 e A*, q = p2A  and A/q « F2[X]/(X2) as desired.

(4.3) Theorem.   The map

/72(SL2(A)) -/72(F(<H, A)).

is surjective if k  «s   F,.

It suffices, by (1), to show that   L,(A) —» St, GOa     is  0, and this map factors,

by (4.2), as
L,(A)     -St,(A)ab

1 I«
£-,(A/q)-St,(A/q)ab

But  L,(A/q)= L,(F3)= 1  by (3-2).

(4.4) Lemma.   Let  \u, v\ £ L,(A).   Then [\u, v\] = (3(a - l)(i' - l))   z'tz
St,(A)ab.  Moreover, fa, v\  lies in the image of W2(SL2(A))  if and only if i\u, v\]

= 1.

Since  [x_ait)] = {- u  t)  (cf. the proof of (4.2)), taking   t = - u~   , we have

[x_a(- u-1)] =  iu).  Hence  [waiu)] = Ua(z/)x_a(- ¡r^xj.u)] = (3a)  and  [£>)] =

{waiu)wai- 1)1 = <3(zz - 1)).   Finally,

Lia, v\] = lhaiuv)haiu)-lhaiv)-1]

= ( 3(„„ _ 1 ) _ 3(M _ l) _ 3(t, _ 1)) = (3(w _ 1 _ „ + l _ v + 1)> = <3(« - l)iv - 1)>.

Now consider the commutative diagram

1 — L,(A)-► St,(A)-y SL2(A)-,1

1                                1                       1
(2) 1 - L,(A)/0(/72(SL2(A))) -,St,(A)ab^SL2(A)ab -.1

1 1 I
1 1 1
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Its columns and top row are clearly exact.  Since the bottom row is obtained by

factoring out the image of  HASL7 (A)) from the top row of (1), it too is exact.  The

second part of the lemma follows easily from (2).

(4.5) Proposition.  The map H2(SL2(Z/2"Z)) —► Lj(Z/2"Z)  is surjective for
22 = 1, 2  but not for n > 3-   Therefore the map

H2(SL2(Z/4Z)) ^H2(F(«D, Z/4Z))
is surjective.

It is clear from (1) that the second statement is implied by the first.  For 22 =

1, the first assertion is trivial since  L,(Z/2Z) = 1  by (3-2). Now  L,(Z/4Z) is
generated by the symbol  [— 1, — 1|   whose   image   in    Stj(Z/4Z)a      is

(3(- 1 - l)(- 1 - l)) = 1.  This completes the proof for 22 = 2  by (4.4).
Now suppose 22 > 3.  According to (4.2), St, (Z/2"Z)ab   « St,(Z/8Z)ab for

all  22 > 3; thus (1) implies that

<b:   /V2(SL2(Z/2nZ))-*L1(Z/2"Z)

is surjective for 22 = 3  if and only if <f>  is surjective for all n > 3.

Suppose that this is the case.   Then from (1) we have

St,(Z/2"Z)ab «SL2(Z/2"Z)ab

for all  72 > 3, and the same must be true for the 2-adic integers

St,(Z2)abÄSL2(Z2)ab.

Hence  H2(SL2(¿2)) — L,(Z2) — LJZ2)= K2(Z2) is surjective by (1) and (2.13).
Dualizing, we have

Hom(H2(SL2(Z2)), Q/Z) äh2(SL2(Z2), Q/Z)

by the universal coefficient theorem [7, p. 77].  But  H (SL2 (Z2), Q/Z) = 0 [l,
Proposition 2],  Therefore if (p is surjective, we conclude that  KAZ  ) = 0; in

particular  i- 1, - l! = 0  in   K2(Q2).   But it follows from results of Moore [10] and

Matsumoto [8] that  Í- 1, - l! 4 0  in   K2(Q2), whence the proposition.

(4.6) Corollary.   The symbol  ¡-1,-1}  zs nontrivial in  L,(Z/4Z).

Since  {-1,-1} generates   L,(Z/4Z), if it is   1   we conclude from (3.1) that

Lj(Z/8Z)   « Lj(4Z/8Z) is generated by the symbols  ¡1 + 4a, 1 + 2b\, a, b £ Z.
But in Stj(Z/8Z)ab, [il + 4a, 1 + 2/3!] = (3(4a)(2i>)) = 0, which implies that
H2(SL2(Z/8Z)) _» L,(Z/8Z) is surjective by (4.4).  This contradicts (4.5).

Note.  Despite (4.6), we cannot conclude that i- 1, - l! 4 0 in  K2(Z/4Z)
since  KA.Z/4Z) is a quotient of L  (Z/4Z) by (2.13).
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Added in proof. Much more extensive information on the functor K   = lim.   ^ LÍA , )

has been obtained since this paper was written. Dennis ([20], [21]) has proved the

conjecture of the Introduction, showing that when $ is of type A ., the maps

Oil, m)  are surjective for all  m > I >d + 3, where d is the dimension of the maximal

ideal space of A.
The results concerning  X2   of a semilocal ring (Theorem 2.13) have been

completed by Stein and Dennis [24].  They have also proved ([22], [23]) that for

nonsymplectic  0, the maps  Oil, m) are injective (and hence isomorphisms) when

A   is a discrete valuation ring or a quotient thereof, and they have given a presen-

tation of the   K2   of such a ring.  These papers also compute   K7   of a ring of alge-

braic integers modulo any nonzero ideal, generalizing the results of §3.  Among

the consequences of this computation is the nontriviality of the symbol  Í- 1, - 1 S

£ K2(Z/4Z) (see the Note at the end of §4).
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