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Surjectivity of convolution operators on spaces of
ultradifferentiable functions of Roumieu type

by

THOMAS MEYER (Disseldorf)

Abstract. Let £;,y(J) denote the space of all w-ultradifferentiable functions of
Roumieu type on an open interval I in R. In the special case w(t) = t we get the
real-analytic functions on I. For p € £,1(T) with supp(s) = {0} one can define the
convolution eperator Ty : Equ1 (1) — Eq,1 (1), Tu(F)(e) = {u, (¢ — -)}. We give a char-
acterization of the surjectivity of T, for quasianalytic classes £¢,1(I), where =R or I is
an open, bounded interval in R This characterization is given in terms of the distribution
of zeros of the Fourier Laplace transform 7 of .

Let w : [0,00] — [0,00[ be a continuous increasing function which
satisfies some technical conditions. By £;.1([) we denote the space of w-
ultradifferentiable functions of Roumieu type on an open interval I C R
This notion is an extension of the classical Gevrey classes I'9HR), d > 1.
In the special case w(t) =t we get the real-analytic functions on I.

For i € £,1(R)" the convolution operator Ty, : Er,)(R) — &) (R) is
defined by :

Tu(f) () = {u, flz =), [e&uR), zel.

Many authors have investigated the surjectivity of convolution operators on
various classes of infinitely differentiable functions. For non-quasianalytic
classes £7,3(R) (i.e. when w satisfies {J” w(f)t™2 dt < co) Braun, Meise and
Vogt [7, 3.8] have shown that a convolution operator T, on £} (R) is sur-
jective if and only if the following two conditions are satisfied: (i) 7, admits
a fundamental solution, (ii) there exists a decomposition J; U Jz of the zero
set of the Fourier Laplace transform I of p with

lim  |lmz|/w(z) =0 and Im z|/w(z) > 0.

2| =00, z€Jy z|
Because of the topological structure of £4,,1({), which is a projective limit

of (DFS)-spaces, this theorem is more difficult to prove then for example for
the classes C°°(I), where the existence of a fundamental solution is already

lim inf
—ro0, 2&Ja

1891 Mathematics Subject Classification: 46F05, 44A35.
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102 T. Meyer

equivalent to surjectivity. In the real-analytic case (w(f) = t) an analogous
result for p € £1,3(R)" with supp(p) = {0} and open intervals I in R has
been shown by Korobeinik [9] and independently by Napalkov and Rudakov
[21].

In the present article we extend these results for u € &£;,3(R)’ with
supp(u) = {0} to quasianalytic classes £(,y(I) where I = R or [ is an open,
bounded interval in R. For this purpose we choose a projective spectrum
(B, 7511 )nen of (DFS)-spaces with limit £q,y (1) such that T}, also operates
on each E,. We call T, locally surjective if T), is surjective on all B,. The
main result of the present article is the following theorem.

THEOREM. A convolution operator Ty, on £y (1) is surjective if and only
if the following two conditions are sotisfied:

(1) T, s locally surjective,
(ii) there ezists a decomposition J1 U Jo of the zero set of the Fourier
Laplace transform I of p with
lim  Imz|/w(z)=0 and liminf [Imez|/w(z) > 0.
|z}—ro0, z€J) |z}— 00, zEJa

In the non-quastanalytic case the local surjectivity is equivalent to the
existence of a fundamental solution for T),.

As in Braun, Meise and Vogt [7] the proof is based on the essential prop-
erties of the projective limit functor of Palamodov [22] and on Vogt's [25] ele-
mentary approach to it. To apply these methods, we first show proj* £fw y=0
for a projective spectrum S{Iw} with limit £g,3(2). In the non-quasianalytic
case this follows immediately from the existence of cut-off functions (see
8, 1.8]). In the quasianalytic case we use a result of Braun [5, 2.3.5], who
introduces two conditions which are sufficient for proj* &£ {-’w} = 0. The proof
of these two conditions is the main part of Section 3.

Then the surjectivity of a convolution operator T}, which is locally sur-
jective is equivalent to proj* Kf(w,u) = 0, where K (w, 1) is a particular
projective spectrum of (IDFS)-spaces with limit ker T,,. To evaluate the con-
dition proj' ¥ (w, u) = 0 as in [7] we need a sequence space representation
of ker T},. For this purpose, and to characterize the local surjectivity of T, by
means of growth conditions on the Fourier Laplace transform i of 1, we show
the equivalence of local surjectivity for T, and a new slowly decreasing con-
dition (8D) for #. Using (SD) we construct a sequence space representation
of ker T}, similar to. Meise [12]. Together with a result of Vogt [25] charac-
terizing proj' A’(v,8) = 0 for certain projective spectra of (DF)-sequence

spaces, this yields the equivalence of proj' K!(w, x) = 0 and condition (i)
of the j:heorem.
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Another problem which does not appear in the non-quasianalytic case
is that surjectivity of a convolution operator implies local surjectivity. This
is shown in 3.12 using de Wilde’s open mapping theorem, a theorem of
Grothendieck on topological homomorphisms and some results of Vogt on
projective spectra of (DF)-spaces.

The article has three sections. In the first section we introduce the classes
of ultradifferentiable functions of Roumieu type and fix some notation. The
second part deals with the characterization of the local surjectivity of a
convolution operator T), with different slowly decreasing conditions, and
the sequence space representation of kerT,. In the last section we show
proj' £ {‘Tw} = [ and the theorem stated above.

1. Preliminaries. In this section we introduce the spaces £, of ultra-
differentiable functions, which we will use in the sequel. We begin witk the
definition of weight functions in the sense of Braun, Meise and Taylor [6].

1.1. Weight functions. Let w : [0,00] — [0, oo[ be a continuous increasing
function. We consider the following properties:

(o) w(2t) = O0w(®), t—o00, (B) S lw_'(_tjg dt < o0,
0
(v) logt=ow(t)), t—o0, (§) :t— w(e’)is convex.

(g) w(t)=0(), t— o0,

w is called a weight function if it satisfies conditions (a), (7), (6) and (g). If
in addition {3} holds, then w is called a non-quasianalytic weight function;
otherwise it is quasianalytic. In both cases we denote by ¢ the Young
confugate of @, l.e.

¢" : [0, co[ — [0, 00}, ¢*(z) = sup{zy — ¢(y)).
y=0

We extend w to the complex plane by setting w(z) = w(|z|) for z € C.

1.2. REMARK. (a) If we replace (@) by the stronger condition (a'): Vs,t
>0 w(s+1) < ws) - w(t) and (v) by the weaker condition (v') : logt =
O(w(t)), then (o), (8) and (v') are the conditions which were used‘ by
Beurling [3] and Bjérck [4] to develap a theory of ultradifferentiable functions
and ultradistributions. -

(b) There exists a weight function ¢ < w satisfying U}[P,.l} = 0 and
o(t) = w(t) for all large ¢ > 0. Since the subsequent definitions do not
change if w is replaced by o, we will assume that «@|jp,1y = 0- Then * has
only non-negative values and »** = .
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1.3. Ultradifferentiable functions. Let w be a weight function and I ¢ R
an open interval. We define

D) = {7 e0*)

for each K & I there exists m € N with

. 1
G (f) = sup sup |f<J>(m)|exp(——sa*(jm>) < oo}
JENy 26K m

and endow £;,3(I) with the topology given by the projective limit over
K & I of the inductive limits over m € N.

As in Braun, Meise and Taylor [6, 4.4] one can show that ) is a
nuclear locally convex algebra with continuous multiplication (for the quasi-
analytic case see [16]).

1.4. DEFINITION AND REMARK. Let w be a weight function. We will
see that it suffices to consider the case I = |—1,1] instead of an arbitrary
bounded, open interval. Therefore we fix T = R or [ = ]~1,1]. Then we
choose a strictly increasing sequence (an)nen € RY with lim,ye a, = 1
(for I =]—1,1[), resp. limp.oo @ = oo (for I = R), and define for n,m € N
the compact sets Ky, := [~ayn, 0], Knm 1= [—an ~ 1/m, ayn + 1/m] and the
normed spaces

Egymm = {f € O°(Bam) | 4z, (f) < 0}
We write
Gn,m(f) = QKn‘m,m(f) = Q;z—mm,m(f)

and remark that (£} n,m)men together with the restriction mappings is an
inductive spectrum for each n € N. We set

g{w}:'n == :Tlilg f’.{uu},n,ﬂnm Ty g{w}(I) e g{u},n: "T'n(.f) = f]Kn

and

Tkt Eqpntt = Egudn, Tnga(f) = fly

to get a projective spectrum (£1u,),n, M1 Jnen With ¢y (I)= proj,_, Equyn-
In addition we define ‘

Equyo = ind En
where
Emi={f € C%(Le) | grom(f) < 00}, Ly = [-1/m, 1/m)],

and remark that p € (£5,3,0) if and only if e E(w}(R) and the following
condition holds:

Vm € N30y, > 0 Vf EwyB) = [, )] € Cmgzom(f).

icm

Surjectivity of convolution operators 108

1.5. Convolution operators. Let w be a weight function and p € (Eqwr o)
Then

Tu: €)= EpT),  Tu(f)=p=f and
Tun: g{w},n - E{w},m Tu.ﬂ(f) =pxf
with g f(z) = (u, f(2—-)) are linear and continuous mappings. T,and T, ,

are called convolution operators. Taking an open, bounded interval la, b] and
the transformations

b—a b-+a

t -
2 + 2 1 te] 1)1[?

T: Euy(a,b) — Ey(-1,1), T(f)=f-T,

we see that £y, (]a, b]) and £, (]—1, 1]} are linear topologically isomorphic.
So we can reduce our considerations for open, bounded intervals to the case
I=1]-1,1L.

T(t) =

1.6. Fourter Laplace transformation. Let w be a weight function, (@, )nex
the sequence from 1.4 and p(z) = |[Im 2| + w(z). Then we define the follow-
ing spaces of entire functions (A(U) for open U C C denotes the space of
holomorphic functions on U):

A{w},n,m
1
= {f e A(C) l | fln,m = sup|f(z)] exp(—-an|lmz| - —p(z)) < oo},
zeC m
A?w},n = P:gg A{w},n,m: Afw} = HI_C}A%LU},n

and
Ap = {f e A(C) ‘ YmeN: |f|m = i:glf(z)[exp(—%p(z)) < oo}.

A%w}m and AJ endowed with the locally convex topology induced by the
seminorm systems (| |n,m)men, respectively (| |m)men, are nuclear Fréchet
spaces. As an inductive limit of nuclear (F)-spaces, Afw} is a nuclear

(LF)-space. Moreover, Af, is an algebra with the continuous multiplication
(f-9)(2) = f(2) - g{2). Setting f.(z) = exp(—izz) forz € R and z € C we
define the Fourier Laplace transformations

F g{w}(I)fb ~* A‘l[-m}a F(F‘)[z] = </J') .fz):

Fn (E{W},ﬂ){o - A%w},m Falp)lz] = {u, f2),

Fo : (Egurolh ~ Aps Fo(w)lz] = (u, f2)-

The index b denotes the strong topology in the dual space. Using a result
of Taylor [24] one can show (see [16, Chapter 5]) that the Fourier Laplace
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transformations F, F, and Fp are linear topological isomorphisms. We also
use the notation 7 instead of F(u).

1.7. Multiplication operators. As in [6] each functional p € (E1.y,0)" also
defines a convolution operator on the dual spaces of £1,1(f) and £f.y , in
the following way:

Eqp (D) = Erny (T,

with g * v(f) 1= (v, i % £y = v o Ta(f), (& ) i= {p, [) and f(z) = f(-a).
The definition for g}, is analogous. For vy € ¢,y (1) and vy € (Eguy0)'
we get immediately

Flaxw) = Fo(p)F(v1), Fulprve) = Folu)Fn(ve).
Let g € Ag. Then we can define the muitiplication operators
M, :A‘Ew} — Afw}, My(f)=gf and
Moy : Aluyn = Aoy Mon(f) = gf.

If we denote by T}, (resp. T}, ,) the transposed map of T), (resp. Tp,n), ie.
Ti() =vo T, ve E(I) (resp. T, ,(v) =veTyun, v € (Eqin)), then
we get

Vi kU,

T} = F o MeyuyoF and T5,=Fito Meygy o Fa.

2. Lecal surjectivity of convolution operators and a sequence
space representation of ker 7). In order to characterize the surjectivity of
a convolution operator T}, on £¢,1 (1 ) we need some preparations. In the first
part of this section we characterize the local surjectivity, i.e. the surjectivity
of Ty o0 &gy}, by & new slowly decreasing condition for fi. This new
condition is equivalent to a condition of Ehrenpreis (2.1(E)), which was
already used by Braun, Meise and Vogt [7] in the non-quasianalytic case.
In the second part we use the slowly decreaging condition to get a sequence
space representation of the kernel of T),. This construction uses methods of
Meise [12] and modifications of those by Momm [19].

2.1. PROPOSITION. Let w be a weight function, p(z) = |Im z| +w(2) and
F o0 a function in Ag. Then the following conditions are equivalent:

(i) For all k € N there exists zp, > 0 such that for oll © € R with |x| > xx
there exists w € C such that |w — x| € w(z)/k and |F(w)| = exp(—w(w}/k).

(E) For all k € N there ezists i > 0 such that for all z € R with |z| > z
there exists t € R such that [t — z| < w(z)/k and |F ()] > exp(—w(t)/k).

(i} For all k € N there exists zy > 0 such that for aoll z € C with
|z| > 2. there erists w € C such that |w — 2| < (w(Rez) + [Imz|)/k and
|F(w)! > exp(—(w(w)+ [Imw|)/k).
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(i) For all k € N there ezists z, > 0 such that for all z € C with
|2| 2 i there exists a circle T around z with diam T < (w(Rez)+Imz|)/k
such that for oll ¢ € T we have |F({)| > exp(—(w(() + [Im¢|)/k).

(SD) For all k € N there exists Cr, > 0 such that for all components
S of Sup(F) = {2 & C | |F(z)] < exp(~(w(z) + [Tmz])/k)} e hove
diam § < inf,e5((w(Re 2) + [Im 2|)/k) + Cy.

(iv} For all n,m € N there exist k € N and Cm > 0 such that for all
f € A%w},n we have J.ﬂn,m < Cm’FfJn,k-

By diam S = sup, ¢ |2z — w| we have denoted the diameter of S.

Proof. The proof follows the proof of Momm (18, Praoposition 1], which
follows the proof of Meise, Taylor and Vogt [14, 2.3] for the steps (E)=(ii)=
(iii)=+(SD). The differences here are the weight system (k™ 1w)gen instead
of (kw)ken, different quantifiers and the need of appropriate estimates for

the diameters of the components of the set S, x(F). For technical details
see [17].

2.2. REMARK. In the proof of 2.1(iv)=>(i) it is shown (see [17, 2.2], resp.
Momm [18, Prop. 1]) that if the Ehrenpreis condition (E) does not hold for

a function F' € A (and therefore 2.1(i) does not hold) then we have the
following: For each | € N there exists a sequence ( filjen in Af[’w} ; such that:

(1) (Ffi)jen is bounded in A%w},l and therefore in Afw}.
(2) (f3)sen is unbounded in A9, | forall A€ N, A> L.

To use Proposition 2.1 for the investigation of convolution operators, we
now give our definition of local surjectivity.

2.3. DEFINITION. Let w be a weight function and 4 € (€wy,0)'- Then
the convolution operator Ty, is called locally surjective if for all n € N the
operator T, n @ E(uym — Efu),n is surjective,

2.4. "]E‘HEOREM. Let w be o weight function. Take 0+ p € (Equyo) and

set F' = [i. Then the following conditions are equivalent:
(1) T, is locally surjective.

(if) For all n € N, Mg, : A?w}m‘ — Al is an injective lopological
homomorphism.

(i) For all n,m & N there ezist k € N and Gy, > O such that for all
fe A%w}’n we have | flnm < ConlF flak-

(E) For oll k € N there ezists zx > 0 such that for oll = € R with |z| >
zy there exists t € R such that |t — | < w(z)/k and |F(t)| > exp(~w(t)/k).

(SD) For all k € N there emists Cy, > 0 such that for all components

S of Sur(F} = {z € C | |F(2)| < exp(—(w(z) + [lmz|)/k)} we have
diam § < inf,cs((w(Re z) + [Im 2|)/k) + Ck.
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Proof. By definition T, is locally surjective if and only if T}, ,, is sur-
jective for all n € N. Consider the short exact sequence for n € N:

0—kerThn — Eruim Loy Erwyn — 0.

Since £7u1,n 18 a (DFS)-space, hence reflexive, we can apply Meise and Vogt
(15, 26.4, 26.22] to the dual sequence

1

T
0= (Egupn) =5 (Egwyn) = (ker Tn) — 0

and find that T}, , is surjective if and only if Tﬁm is an injective topological
homomorphism. Fourier Laplace transformation yields the equivalence of (i)
and (ii}.

(il)=-(iii). If (ii) is satisfied then the map j’\/I‘,';,;L1 : Mp,n(A%w}’n) — A‘Ew},n
is continuous with respect to the topology induced by (I [n,m)men. This gives
the estimate.

(iii)=-(E)=-(SD) is a part of 2.1.

(SD)=>(ii). First we want to show that if (SD) holds, then
() forallnmeNand g€ Al with g/F e A(C) we have g/F & AQ5 -
This can be done as in Proposition 3 of Berenstein and Taylor {2]. The esti-
mate for g/ F € A%w}’n outside a set Sy m (F) is immediate. Inside S, (F)
we use the maximum principle, g/F & A(C) and the estimates of the di-
ameter of the components of S, . (F) to derive g/F € A?w},n. Because

A},; . is continuously embedded in A(C), from (x) we deduce that FAY s
is a closed subspace of A({)w}m (for a sequence Ff; € FA({’W}’H we can take
F-lim;o0 f; (the limit of f; in A(C))). Since FAY,,  is an (F)-space we
get the assertion by the open mapping theorem.

2.5. DEFINITION AND REMARK. In the sequel we fix a weight function
wand p: € — [0,00], p(2) = [Imz| + w(z). For F € 4% C A‘Ew} we set

Tioe(F) = {f € Afw} | f has at least the zeros of F' with multiplicities}.

Then Jj,.(F) is a closed subspace ofAfu} and FA‘EM} C Loe(F). IfF € Ag is
slowly decreasing (i.e. F satisfies 2.1(SD}), then FAfw} is a closed subspace
of A7, and Hoo(F) = FA{,. This can be seen as in 2.4(SD)=>(ii).

We restrict the following considerations to the case I = ]—1, 1[. First we
give a variation of a theorem of Berenstein and Taylor [2].

2.6. THEOREM. Let 0 £ F & Ag and q: C — RT be an upper semicon-
tinuous function which satisfies the following conditions:
(1) g(z) = o(p(2)), de V¥Ye>03D.>0VzeC:qlz)<ep(z)+ D,
(2) VeeC: |F(2)] < exp(q(z)).
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For all n € Ny define
qn(2) = (n+1) sup g(w)+nlog(l+|z|?)

lz—w|<n

and
50 (P, 0) = {z € €| () < F exal-anle) .

Then for every function f € A(Sq (F,1)) with
(38) F0<n<lYmeNID, >0Vze 5,(F1):

FI < D (sl + (o))

there exist numbers ky € N, €y > 1 and functions f € A{EM} and o €
A(8y,, (F,C1)) such that

(4} Yz € Sy (F\C1): f(z) = flz) + a(2)F(z).

Proof. Since p satisfies (o) and (7), from (1) we get g, = o(p) for all
k & N. Now let f € A(S,(F, 1)) satisfy (3). As in Momm [19, Proposition
8] (see also Momm [20, 2.4]) there exist numbers k; € N and C; = 1 such
that
1
(6) V2 Sy, (FCD): dist(s, T\ So(F1)) 2 o-exp(—am (2))

1

Following Berenstein und Taylor [2, page 120] we get the existence of a
function ¥ € C*(C) with 0 < x < 1, supp(x) C Sg(F,1), x = 1 on
Sy, (F C1) as well as numbers kp € N and € > 1 with

(6) [0x] < Caexp(gns)-
Since d(xf) = 7 Ox on Squ, (F, C1) equals zero, the function

v(z) = —-F—%ﬂxf')(z)

lies in. 0°°(C) and supp(v) C S (F,1) \ 8g,, (¥, C1). By definition we get
(7) -F%—z—)—i— < O exp(gy, (2)) for z € C\ Sy, (F,C1).
Now from. (3), (6) and (7) it follows that for all m € Nand z € C,

|v(z)| € C1Dy Oy exp (qm(z) + 7[lm 2| + —?%w(z) + G, (z))

1 1
< Di,exp (;n-p(z) + nllm 2| + Ew(z))
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for suitably chosen D}, > 0 according to gx,, qx, = o(p). Hence
Wn<fi<l¥meNID., >0VzeC:

[v(z)] < DI exp (mxmzl ; —j;wz)) )

Since log(1 - {t|} = o(w(¢t)} for all m € N there exists B,, > 0 with

(1 lexs (~mel - Lot) ) arie) <

C

where d) denotes the Lebesgue measure on C. Now we can apply Meise [12,
2.4] and the hypoellipticity of 8 to get a function u C™(C) with fu= v
such that for all m € N there exists E/_ > 0 with

2

®) §{ e oo (- = - @)) D) < B,
C

If we define f = xf—l—uF, then we have 8f =0,ie fe A(C). Taking o(z) =

u(z) for z € Sy, (F, C1), we get Box(z) = v(2) = 0 for z € Sge, (F,C1), henge

o € A(Sq,, (F,C1)) and the desired representation f = f--oF on Sgi, (F,Ch)

holds. From (8), (3} and F € Ag we conclude that f = yf + uF € A‘{rw}.

Now, for every slowly decreasing function F ¢ Ag, we have to construct

an upper semicontinuouns function ¢ : C — R satisfying the assumptions of
Theorem 2.6. This is done in the following lemma.

2.7. LeMMA. Let 0% F ¢ Ag be slowly decreasing. Then there exists an
upper semicontinuous function q : C — Ry with the following properties:

(i) for all z € C, |F(2)| £ exp(q(2)),
(11) q= O(p):
(iif) for all k € N there ezists Cy, > 0 such that for all components § of
Sq(F,1) = {2 € C| |F(2)| < exp(~q(z))} we have

=~ 1
diam S < % inf (|Im 2| + w(Re 2)) + Ch.
ze8

Proof. By assumption for all & € N there exists Cr > 0 such that for
all components S of

5= Syu(P1) = {z c cc} F(z)] < exp (—%p(z)) }

we have -

~ 1
diam § < - inf (|Im 2| + w(Re 2)) + Ck.
: szS
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Since Sy C S for I > k, there exists a sequence (Ck)en € R_NF such that for
all & € N and all components S of S and all { > k we have

~ 1
diam § < 7 inf (|Im 2| + w(Re 2)) + C;.
z€8

Applying this to k¥ € N and I = 2k, we see that there exists B, > 0 such
that for all components 5 of Sy lying outside By, (0) = {2z € C| |2| < R}
we have

(1) diam § < H inf ([Im.z[ + w(Re z)).
k 25

‘Without loss of generality we choose Ry strictly increagsing with limg. .00 Bx
= co. Now we label the components of Sy outside Bg, (0) as (Sk;)jen in
such a way that sup{|z| | z € Sk ;} is increasing with j € N. Then we define

Si= U Sk,j UBRO(O)
j,kEN
where Rg = Ry + C1 +8up,c g, (0)(IIm 2| + w(Re z)). This assures that the

zero set V(F) of F lies in 5, because the components § of 5y not lying
in (J;en S1,5 must lie in Bg(0). We get im%ediately: For all & € N there
exists Ry > 0 such that for all components S of § outside B, (0) we have
diam § < kE~linf, g(|Im 2} + w(Re 2)), or eciuivalently: For all k € N there
exigts £ > 0 such that for all components § of § we have

(2) diam S < = inf (|Im 2| + w(Re z}) + Cx.
k res

Since Sy \ Bgr,(0) € S\ Bg,(0) it follows that if z € C\ (Bg, (0) U S) then
z € C\ {Bg,(0) U S) and |F(2)] > exp(—p(2)/k), i-e.

1
(3) VEeNVze C\(Bg, (0)US): |F(z)|>exp (»Ep(z)).
Now we can define ¢ : C — Ry by

g(2) := max(ln | F(2)], xe\s (2) I (| F ()| 7), 0),

where x¢\g denotes the characteristic function.of C\S AsV(F)y Cc 8
the function x¢\ g (2) In(}F(2)| ™) admits only finite values. Moreover, xe\s
and therefore ¢ are upper semicontinuous, since C \ S is a closed set.DN_ow
condition (i) follows by definition. Condition (ii) follows fro.r.r} Fe Ap, ie.
In|F(2)| = o(p), and (3), L.e. xers In [F(2)] 71 = ofp). To get (iil) it suffice_slto
show S,(F,1) ¢ 8. To do this, let z & S be given. Then g(z) = In(jF(z)|™*),
ie. |F(z)| > exp(—q(z)), hence z & §;(F,1).



112 T. Meyer

Now we are able to give a sequence space representation of A-Ew} (I=
]-1,1[) modulo a closed subspace FAfw}. For this purpose let 0 # F ¢
AY be slowly decreasing, ¢ : C — R, as in 2.7 and card V(F) = co. Let
(Sj)jew be the components § of S,(F,1) with S N V(F) # @ arranged
that so § := (sup,cg, w(z))jen is an increasing sequence. We define o :=
(sup,eg, Im 2]};en and denote by m, the multiplicity of a zero a of F. The
finite-dimensional C-vector spaces E; are defined by

Ej = H CMe
a€ 8NV (F)
for every j € N. We consider the linear surjective mappings
05 A%(8)) = B, g = (@YW (@) Daes,nvr),
A%(85) = A{f € A(Si} | | £l ase(sy) = sup [F(=)] < oo},
ey

and define the quotient norm || ||; : E; — Ry by ||z]; = inf{]|g]l aes¢s;) |
g € A%(8;), 0;(9) = x}. We set E = (E;, | |;)jen. Finally, for a sequence
(Gn)nen as in 1.4 we define

Kr(a,,B,E) = {mz (mj)jem € HE, IneNYmeN:

JeEN

1
i||-'33mn,m i= sup ||z;]|; exp —Gne; — —f3; | < ooy,
jeN m

and endow this space with the natural (LF)-space topology by taking the
inductive limit over n € N of the projective limits over m & N. With
Kn(o, B,E) »= {2 € [[;en By | ¥m € Nt ||z)ln.m < 00} we get K (e, 5,E)
=ind,_, K(o, 3,E)

2.8. THEOREM. Let 0 # F € AD be slowly decreasing, ¢ C — R, be
as in 2.7 and card V(F) = oco. Then, with the notations above, the map
0: Afw} ~ K'(0, 8. E), f — (0;(f|s,))jen, induces o linear topological
isomorphism § between

A{w}/IloC(F) and K’I(a’ ﬁ: E)

Proof ¥or f ¢ Afw} there is 0 < n < 1 such that for all m & N there
exists Cp, > 0 with

|f(2)| < Cpy, exp (77|Imz| + %w(z)) for z e C.

Hence for all j € K,
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1
log(Fis,)lls < 1 £15, las(syy < Comexp (n sup |Imz| + L sup w(z))
ZES; LLETSH

1
= Cp, exp(naj + ~m~ﬁj).

From this we get the existence and continuity of the linear map g.

To sbhow the surjectivity of g, let 2 = (z;);en € K¥ (e, 8,E) be given.
Since o; is surjective there exists a function f; € 4%(S;) with g;(f;) = z;
and || fjl| as(s,) < 2[jz;ll;. For z € K'(a, 8, E) there is 0 < n < 1 such that
for all m € N there exists D,, > 0 with

1
4 sup ||z;l; expl ~ne; — —3; | € D,
@ sup oIy exp ~10; - 2. ) < Do

If we define

- =« [Fi(z) forze§;
F:S(F1)-»C by £z} -—{[)J fOI‘ZESZ(Fyl)\UjENSj’

then f € A(Sg(F,1)). Forp < 77 < 1 and m' € N we choose | € N with
n(1+1/1) <7 and /1 < 1/(2m"). Taking C| > 0 from condition 2.7(iii), for
all j € Nand 2 € 5} we get

sup [Imw| < inf [Imw|+ diam S
wESy wES;
1 1
< [Imz| + TfImz| + Tw(z) +C

<

=3 )3

1
and

sugj wlw) < u}élgj w(|w| + diam ;) < w([z[ + %(w(z) + {Imz|) + C’;)

weE
L Kw(z) + K,
for some K > 1 depending on [ € N. If we choose m € N with K /m <
1/(2m') then for all j € N and 2 € §; we get
o~ 1
7 = 1461 S Ifllamisy < 21l < 2Drmexn o5 + 255 )

1
= 2D, exp (fn sup [Imw| + — sup w(w))
wes; - T wes;

7 1 1
< 1 (K K
< 2D, exp(n(nllmzl + 2m’nw(z) + C’l) + m( w(z) + ))

1 — 1
= 2Dy, exp (nC’; + %) exp (’n]Imzj + Ew(z))
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Since f satisfies the assumption of 2.6, there exist numbers n € N, Ky > 1
and functions f € Ai{'w} and o € A(Sy, (F, K1)) with

F(z) = flz) + aF forall z € Sy, (F,K1).

Obviously, o(f|s,(r1y} = o(f) = =z, i.e. ¢ is surjective and by the open
mapping theorem for (LF)-spaces even topological. Since ker p = Tjoo{F),
we get the assertion.

2.9. REMARK, For further considerations in Section 3, we need the fol-
lowing result for the spaces K, (o, 8,E) and AY If0#F e AJ is slowly

{w}n’
decreasing, g : C — Ry as in 2.7 and card V(F') = oo, then for all n € N,

On b A?w},n HKR(Q,,B,]E), Un(f) = (Qj(f!Sj))jEN'ﬂ
is a continuous linear mapping with ker o, = lige(F) = FA‘{)M},N (lioe(F) in
A%w}’n). In particular, we have the linear, continuous and injective mapping
Fnt ALyl FALuyn = K, B,8),  Galf + FAL},) = oa(f)-
This follows directly from the proof of 2.8.

Now we transfer the sequence space representation via Fourier Laplace
transformation and duality theory to the kernel of a convelution operator
T, with slowly decreasing .

2.10. DEFINITION. Let (ct)jem, (85)jen € RY and E = (Bj, || [};)sen be
a sequence of Banach spaces. For a sequence (an)nen 28 in 1.4 we define

M{a,8,E) = {a: =(z;)jen € [ Bs|¥neN3Ime N:
JEN
> 1
2l = D el exp | anay + B ) <oop.
j=1

FE=(C,||)jen we will write M (c, 3) instead of A7 (@, A, E). If in addition
lim; .0 B3 = o0 and dimE; < oo for all j € N, then we see, as in Meise
(12, Proposition 1.6], that Af(a, 3, E) is a complete Schwartz space and
that Af(e, 8, E)}, is linear topologically isomorphic to K¥(a, 5,E) (E =
(B 15)5en), via the canonical bilinear form

(og) =Y (3,905 3=(xj)jen € [[ Bs v = @Wy)ien € [] B
JEN ieN jeN
2.11. THEOREM. Let p € (Euy0), B € AY be slowly decreasing and
let Ty i Eruy{I) = Erp(d) (I =R or I =]-1,1[) with dim(kerT},) = 0.
If v = (yijen, 1 = Imayl, and § = (6;)jen, & = w(ay), where (a;)jen
counts the zeros of i with multiplicities, then kerT), is linear topologically
isomorphic to M (v,6). .
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Proof Case I = ]-1,1]. Since fi is slowly decreasing, so is [ and we
have

RAL ) = BAL,y = Lioe()-
If we consider the transposed map j* : £,y (1), — (ker T,.);, of the injection
J i kerTy, — £r,3(I) and apply the Fourier Laplace transformation, duality
theory and 1.7, we get a linear topological isomorphism between (ker T.)4

and A‘{Tw}/ﬁAfw}. With 2.8, 2.10 and the notations after 2.7 we get

(kex To)y, = A{uy/BAL = ALy hoe(B) = K (0, 8,B) = M (a, 5,E),.

K¥{a,3,E) does not change if we switch from i to fi.

Now ker T, and A (a, 8,F') are complete Schwartz spaces, hence semire-
flexive. Therefore the transposed map of the above isomorphism is a linear
bijection between ker T, and X (e, 8, ). As in Meise [12, 2.7, 3.4] one can
show that the equicontinuous sets in M (a, 8, E')}, and (ker 7)), coincide.
Hence the bijection is a linear topological isomorphism. Since kerT,, is a
closed subspace of a nuclear space, ker T}, and A (a, 5; ') are also nuclear.
As in the proof of Meise [13, 1.3(1)=>(3)] the nuclearity implies

Ve>0: ) dimEjexp(~e(a;+5;)) < co.
i=1

A slight modification of Meise [12, 1.7] yields an isomorphism

Mo, 8,E) 2 N (7,8),
where the sequence 7 (resp. 5) is obtained from o (resp. 8} by repeating
a; (resp. f;) dim B} = dim F; times. Since the dimension of F; equals the
number of zeros of [z in S with multiplicity, and because of 2.7 (iii}, we may

replace ¥ and 5 by « and 6. For an index % with 7 = oy we have a; € Sx.
Therefore

B; = supw(z) (S; asin 2.8)

a; = sup {Tmz|,
ZESy 2€8;

yields v £ 5, und §; < Ej for all j € N. From the proof of 2.8 we get the
existence of B > 0 such that for all j € N,
(1) sup w(z) < B(1+ inf w(z)), thus &; < B(L+6;).

ZES; Z€8;

7

Now, 2.7(iii) implies
Ve>03C, >0VkeN: diam Sy < ¢ 1en§ |Imzjj“+w(Rez)) + C,

and
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(2) Ve>03C.>0VjeNJkeN:
F; = sup [Imz| < inf |Im 2|+ diam Sy,
2E8, zES,

< +e( igéf iImz| + w(Rez)) + Ce <y +ev; +eb; + Ce.
z&8y

If we denote by | | , a norm in M (7, ;SU), then (1) and (2) implies
Yk € N 3k € NVmy € N Imy € N vz € M (v,6)

1
ol < 050 (08,C + 5 el

Since the reverse estimate is obvious, we get the isomorphism
ker T}, & M (7, 8) 22 X (v, 6).

Case I = R. The proof is analogous to the case I = -1, 1], because the
only difference is the absence of the restriction 0 < 1 < 1 in 2.6 and 2.8.
In the non-quasianalytic case this has already been proved by Meise [12,
Theorem 3.6}.

3. Surjectivity of convolution operators. In the previous section we
characterized the local surjectivity of a convolution operator T}, by a slowly
decreasing condition for the Fourier Laplace transformation 1 of g. To turn
to global surjectivity one can use the following idea. Take any f € 8{“,}(1’ )
and consider functions gn € &), with T, n(gn) = fl|xk,, which exist if
T, is locally surjective. Then change g, by adding a function from ker T, -
such that the new sequence gn € gn +ker 7}, » converges to g € £¢,,3(1) with
T,(9) = f. As a requirement for this construction the projective spectrum
of the kernels of T, », has to satisfy a certain condition.

The above construction will be used in an abstract setup, based on the
works of Palamodov [22] and Vogt [26], which was already used by Braun,
Meise and Vogt [7] to characterize surjectivity of convolution operators on
non-quasianalytic classes £(.,1(R). To apply these methods we need some
preparations on projective spectra of linear spaces. We follow the approach
of Vogt [286].

3.1. Projective spectra. (1) A sequence X = (Xp, i} y)nen of vector
spaces X, and linear mappings (. : Xny1 — X, is called a projective
spectrum. We set ¢t =idx, and o2, =% o 0 L form >n+ 1

(ii) For a projective spectrum X = (Xy,:%, 1)nen we define the vector
spaces

proj’ X := {(ﬂin)neN € H X,
neN

Vo €N (za) = mn},
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B(X) = {(an)neN € H X H(bn)nEN S H X, :

neEN neN

VYneN:a, = "24-1 (bn+1) - bﬂ}

and
projt & := ( 11 Xn)/B(X).
neN

(iii) A map & : X — Y between projective spectra X = (Xn, e Jnen
and ¥ = (Y5, /0, 1)nen is a sequence cp};"(n) : Xp(n) — Yy of linear maps
with k(n) < k(n+1) and @y 0 i | = 7 0 prtd | for all n € N. For
m > k(n) we set g, = @, 0 O

(iv)Let ®: X — ), & = ((P;:(n))nENa and @ : Y — 2, ¥ = (wﬂn))neNs

be two maps between projective spectra &, V, Z. Then we define the com-
position Wod : X — Z by

1 T l(n
Wo® = (XEu(n)))neN:  Xiam)) = Pitn) ‘P:c((zgn))-
(v) Twomaps & : X — ), & = (Phgnymens and ¥+ X — Y, ¥ =
(an))%M are called eguivalent if

vn € N 3m(n) = max(k(n),i(n})) :  @hpy = Uiy

(vi) Two projective spectra X and Y are called eguivalent if there exist
maps ¢ : A — Y and ¥ : Y — A such that & o ¥ and idy, and respectively
o and idy, are equivalent. By idx and idy we denote the identity maps
(tn)nen and (F)nen.

(vii) Let X, Y, Z, & and ¥ be as in (iv). The sequence

x2y%z
is called ezact in Y if the following two conditions are satisfied:

(1) ¥ o & is equivalent to the zero map.

(2) ¥n € NNN Z k(n) 3u € Nym > max(n,l(g)), with imp% >
2 er

(vili) In the special case @ : X — Y, & = (¢})pen, and ¥ : Y = Z,
¥ = () nen, where all the sequences -

0-X. 2%, "z, >0
are exact, we get a short exact sequence of projective spectra

0—+XE>3)£>Z—->O.
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3.2. DEFINITIONS AND NOTATIONS. (i) The spaces £(,3},,, together with
the maps

Tot1  Efwimal = Eoims Tnsr(F) = flg.,  Kn=[-an,a.),

form a projective spectrum, denoted by £F {w} (with (@n)nen a8 in 1.4). The
map

I 5@,} — H E{w},na I(f)y=(n

nelN

( ))nEN = (f|Kn)nEN7

induces a natural isomorphism between £,y (I) and proj 0gl {w}

(i) Let u € (Equy,0)’ and consider the sequence Tpp ¢ £rutm — Efu)ns
n € N. Then the map

Lo+ €y = €y Tu = (Tum)nen,
defines. a map on the projective spectrum S{Iw}. For n ¢ N we set
k”’ = kerTH)n’ q':+1(f) = 7‘[."';:':‘4"1Ikﬂ-')-l (f) = f|K11’

to get the projective spectrum K (w, u) =
With gy : ker T, — kn, qu(f) =

Qg+1 kngr — kn,

(km qz+1)nEN~
flx.., we have

proj kn = kerT),.
oy
In addition, for all n € N we define
In ik — g{w},ﬂ.: Jn(f) f, and J: K:I(wa_/-"') —* wa}, J= (jﬂ)nEN-

(i) For ker T}, with slowly decreasing i € Ag we have the sequence space

representation AZ(vy, 6) from 2.11. Let
AI(% '5)‘:2 ('\n(’h 5)7'52+1)neN» i2+1($) =T,

ImeN: Ejmalexp(an’yﬂ+ 6) }

jEN

with
A7, 8) 1= { et

be the corresponding projective spectrum.

A main pomt in using the methods of Palamedov and Vogt is the vanish-
ing of proj! & f b For the non-quasianalytic case this is more or leas obvious
(see Braun, Meise and Vogt [7]), because of the existence of cut-off functions.
In the quasianalytic case we use a result of Braun [5], who gives sufficient
conditions for proj* Efw} = 0. We begin by proving a density condition
with methods from [16]. There an idea of Taylor [24] was used to show the
injectivity of the Fourier Laplace transform on £(,,}(R)’. To simplify the cal-

culations, we introduce a new projective spectrum with limit £,y (1) which
is equivalent to £l (o}
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3.3. DEFINITION. Let w be a Welght function and (@n)nen, (Kn)nen be
as in 1.4. For n,m € N and f € C*(K,,) we define

; 1
Annlf) = 0, (1) = 310 19 |19 0} e~ L)),
JEX geft, m
we introduce the Banach space
En,m = {f € Ow(r{n) | Qn,m(f) < Oo}

and denote by Bnm = {f € Enm | Qum(f) < 1} the closed unit ball in
By . We also define

E, = ind Eym

and the restriction maps 7}, : En+1 ~ B, mhy1 () = flx.,-
The corresponding representation of Af {w} 18 given by

{u},n,m

= {f € A(C)

* 1
1t o= sup |£(2)] exp (—an|1mz| - %w(z)) < oo},

zeC m

Afuyn = DIOJ ALy s Ay =ind A7, .

Al {w},» 18 1ot equal to Al {whn , but the inductive limits coincide. As in 1.6 the
Fourier Laplace transformation is a linear topological isomorphism between

(Bn)p, and A7, . (see [16]).
3.4. LeMMA (density condition). Let w be & weight function. Then
D) VneNIk>nVieNImeNVK>kEIMeN:
WQE;@J - W?(EK,M + Bnm.

Proof. For all k,m € N the exponential functions f,(z) = exp(-—izz),
z € C, and therefore the linear span E = span{f; | z € C}, lie in Ey ,, as
a short calculation shows. To prove the assertion we show

(1) Vk,leNImeN: Ey c E%m,

To deduce (D} from (1) let n € N, choose k = n and for I € N choose
meN accordmg to (1). For given K > k, M € N and f € Ej; there exists
gEECwKEKMWthkm(f gy <1, 1ef g € Bym. With

f=g+(f-9) € 1%Bxnm + Bem
we get the assertion.
Proof of (1): For k,m € N we define

1 - -
bim = exp(atp*(km)), b 1= (Dk,m)ketgs b = (bk,}n)kEND?
Fy, = C(Ky, sup |f()),
sE K,
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and we introduce the Banach spaces

lp(bm) == {.U = (ui)sene € [ Fi Nelhm = ltssllrgbjm < 00}
JEMy JENy

and

iom) = {# = (ser € TT A] Jin 11075 = 0}

where we endow ci(b;;,} with the norm [FlRom = supsen ”fj”Fkbj—’}n. An

easy calculation shows the isomorphy cf (b7, )’ = Ii(bm) via the canonical
bilinear form

((15)iemes (Fi)ieme) = 3 {tass 13)-
FENy
By elementary estimates of the Young conjugate ¢* (see [16, 2.5]) one can
prove the following Schwartz condition for (b m)ren, ,men:

() VieNdmecNm>1: j{xabj,;/b-,mzo,

hence for all [ £ N there exists rn € N such that the map
$: Ek:l - cg(b.,;), $(f) = (f(j))jENm

is linear, continuous and injective. Let p € (By,,)' and define & = o Y
(where ¢ : By — By, f — f). Then the map fic ¢~ is well defined on
im ¢ and continuous because
Wi e 6™ (P jeno) | = 1 £ = (£
< OQim(f) =Cllf|Em,  f € Bry

By the Hahn-Banach theorem we find e ) = 1 (by) with G = o ¢.
Setting i = (p3) en, € Ui (bm) we get for all f € Fy,,
B f) = (b ) = (0 (FD)jena) = Y (g 9.
JENy

As in the proof of Taylor [24, Theorem 2.8] (see also [1
from (2) we get
(2) YieNImeNm>IVue (Eym):

VzeC:{u, fo) =0=Vf € Byt {p, £y =0.

To show (1) we take f € Eyx; and suppose f € E¥+m C E, .. By Hahn-

Banach there is a y € (Eym) with plgs,,. = 0 and (4, f) = 1, which
contradicts (2) and shows the assertion.

6, 5.3] or [17, 4.5]),

3.5. LEMMA. Using the notations above, we introduce the following two
conditions:
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(P) WweNImeNk>2yvymeNINeNVK>k35>0:
g Brm C S(mk Bg v + Bun),
(P*) VVENETLGNk>U‘v’meNEINENVK>kHS>OVf€A{w}V:
[l < S(UFkw + 115 n)-
Then (P*) implies (P).
Proof. First we transfer (P*) via Fourier Laplace transformation from

(Afuyn)nen to ((Bn)i)nen. For k;m € Nand 4 € E} we define the dual
norms

£l m = sup{| (g, )] | Qem(f) < 1}

Then a short calculation, using the property ¢** = ¢ of the function ¢ :
z v+ w(e®), shows that for each k,m €N, 4 € Ff, and z € C we have

B0 < il 0 (HImz] + L),

and therefore {|Zfi} ., < ||@lly, - An important point for further calculations
is that the index m does not change. Since the Fourier Laplace transforma-
tion is a linear topological isomorphism, we get a converse estimate directly:

(1) Yk, m' 3Im, Cre > 0Vu € Bt |l imr S Coe |l -
An obvious choice of indices shows that (P*} implies (P') where
(P) VW eNIn'eNK >V Vm' eNIN' eNVK' >k 358" >0VuecE, :
lsllir e < S Niellrer pov =+ iellz )
To dualize (P’) we need for k,v,n € N with & > v the sets
m = {n € B, | lullm < 1}.
In the dual system (F,, E}) we have
Al = (T{Bre,m)® -
As polars the sets AY . are absolutely convex and weakly closed. In addition,
A} is a zero ne1ghborhood in B, hence by Alaoglu-Bourbaki (A} )° is

Weakly compact and (A} ,.}° + (A m)° is weakly closed.
Condition (S) (see proof of 3.4) 1mp11es

Yn Jm Vv
Since the closure of By, in By m, respectively B, , is compact, we get
—FB, =B,
(2) ¥n 3n' Yy acv nnt C Bv,n = BU.‘!’L C Cu,n,n’Bv,n’-
In terms of the sets A ., (P’) can be written in the form

VveNIneNiE>rVmeNINeNVK > k35 >0:
Sy m D Ay N AL,

B, n is relatively compact in B, .
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To show (P) let » € N. Choose k¥ > v and n € N according to (P’). (From
now on we omit the upper index ). For n we take n’ by (2). For m € N
there exist N by (P’) and N’ by {2) {not depending on K) such that for all
K >k there exists a suitable 5 > 0. We set §' = max(Ck,~, 7, Cn,n')S.
Using the bipolar theorem and well-known computation rules for polars we
get

1 l [#] [s]
2 Bym © gBkm = gAhm = (SAkm)° C (Ax,v N 4dyn)

= (A N UALL)" C Ay +43,)°° = A v + Ayn

= (7 Br,w) + (Byn)™ = (W}’gBK,N)
-5

C 71—.!i;i'('BK,I\T K) + Cy,n,n’Bu,n’

- 71JI"((CY-K',J’\T,I\"’ BK,N’) + Cv,n,n’By,n’

C max(CK,N}N., Ov,n,n’)(W?{BK,N' -+ By,nl)

and hence the assertion.

S

+ Bu,n

3.6. LemMMA. Let 1 € R, R, D>0and B={zc Cjilmz >0, |z -z

< R}. Let u be o continuous function on B which is subharmonic in the

interior of B. If u satisfies (1) and (ii) then also (iii), where
(i) VEeRNB: u(¢) <0,
i) YCedB,Im¢>0: wu

(i) Yo<y<R: 4 v

- =D.
R
Proof. This can be seen by a scaling argument as in Ahlfors [1, 3.4],

where the harmonic measure is estimated on the unit half circle.

) <
(mﬂy)Sqr

3.7. THEOREM. Let w be a weight function. Then proj* £ j[r p = 0.

Proof. Braun [5] has shown that the conditions (P) and (D) are suffi-
clent for proj Ej[r 3 = 0. By 3.4 and 3.5 it suffices to show that (P*) holds.
We first take I = ]~1,1[ and remark that (P*) is equivalent to the following
condition:

V0<u<15neNu<k<1VmeN5NeNVk<K<1ES>O
VfEA{w} (i} & (ii) = (iii), where

) vzeC: mu@ngmm4+%m@,
({H) YzeC: mU@NSKmnd+%w@L
(i) VzeC: 1n|f(z)|_§klImz{-i—%w(z)-{—lnS.
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We will show this for subharmonic functions on C instead of In|f]. To do
this let ca > 1 be such that w(z) < ¢o|z] + co for all z € C according to
1.1(g) and choose C' > 1 such that for all z € C,

w({ca +1)|z|+ca) £ Cw(z)+ C and w(3|z]) € Cw(z) + C.

Let 0 < » < 1. Choose n € N such that k := v + 16C/(7%n) < 1 and for
given m € N take N € N with N > Cm. Finally, we take an arbitrary K
with & < K < 1 and set S = exp(C' + C/N). Now we have the following two
cases:

(A) z € C with Imz| < 7w(z)/8. We only treat the case Imz > 0 since
Imz < 0 can be handled in the same way.

We define R = w(z) and B={C € C|Im¢ >0, |~ Rez| < R} Then
for a subharmenic function u on C the conditions (i) and (ii) yield:

u(€) < ¥iImd] + w(0),

u(€) < $w(e).

(i ¥({€B:
(ii)) Y€eRNB:
For ¢ € B we have
w(() fw(|Rez|+ R} < w(|z| + w(z)) < wl(|z| + calz| + 2} € Cw(z) + C.
Hence by (i)’ and (ii)’ we get
u(¢} < v[Im(| +
u(6) < £ (Cw(z) +0).
Defining %(¢{) = u(¢) — v|Im{| ~

c C
Y¢ e B: -T:w(z)-f“g,
YVEcRNB:

N7 Cuw(z) + C) gives

~ c C
V(e B: a()< ;w(z) +
veeRNB: £ <0.
Now we can apply 3.6 to the function % to get the following estimates for @
and u: _ c
i) < 184 (a4 2,
hence

2) <v|lmz|+ = L (Cw( Y+C)+ = : ]II?Z§| (”‘" (2)+ — )
< (u+%%>|1mz[+%w(z)+%+%

1
< kil z| + aw(z) +1InS.
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(B) 2 € C with |Im 2| > nw(2)/8. As in (A) we only need to treat the case
Imz > 0. We define R = 2|lmz/ and B={( € C|Im{>0,|(—Rez| < R}.
Now ¢ € B satisfies

8C
w(¢) € w(|Rez|+2Imz]) < w(3|z|) < Cw(z)+C < —ﬂ_—|1mz| +C.
For a subharmonic function » on C, from (i) and (ii) we get
8C C
: < —_— —
Y¢eB u(g)__u|Im§|+nﬂEImz|+ o
1
VEeRNB: w()< -N:(C'w(z) + C).
w(() —vilm (] -
~ 8C C
Ve B: u(¢) < —|mz+—,
wn n
VEeRNEB: TE)<0.
As in case (A} it follows by 3.6 that

~ 4 |Im 2| C
< 2 2A
Uz) < n R mri ‘Jr

Defining %(¢) := L Cw(z) + C) we get

hence
()<uumz|+—(ow( )+ C)+ zi(——ll o+ %)
( +£€)1Imz|+%w( )+%+%§

< k|Im z| + %w(z) +1In S,

which shows the assertion in the case J = ]-1,1[. The proof in the case
I =R is an easy consequence of the above proof,

3.8. PROPOSITION. Let w be a weight function and p € (Equy,0)'- For
every locally surjective convolution operator Ty, : E(y(I) — Egu(I) the
following conditions are equivalent:

(D) Ty : Equp (D) = Equr(I) is surjective,

(i) proj” Kf(w, p) =0,

Proof The proof follows Braun, Meise and Vogt [7, 3.3]. Since T}, is
locally surjective, the operators T}, are surjective for every n € N s0 we
obtain the short exact sequences

0= kn 33 £y 2% £y — 0.
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By 3.1,
T J T Ty I
0 — K (w, ) = Efuy = Efy — 0
is a short exact sequence of projective spectra. By Vogt [25, 1.11] there exists
the following exact sequence of six spaces:

0 70
0 — proj® KX {w, 1) L proj® S{Iw} - proj’ E{Iw}

& i .
% projt K (w, 1) EN projt E{w} -5 projt é'fw} — (0.
By 3.2 we can identify proj® £ fw} with £r,3(I}). Then T corresponds to the
opevator T,,. If proj* K7 (w, i) vanishes, the exactness at the third place of
the sequence gives the surjectivity of T Otherwise, if T, is surjective, we
need proj 8 oy = 0 (3.7) to get proj iCI(w w)=0 from the exactness at
the fourth place.
To evaluate the condition projt X! (w, ) = 0 using the sequence space
representation 2.11, we need three lemmas.
3.9. LEMMA. Let w be a weight function and p € (Equy,0) with § € AQ

be slowly decreasing. Consider the convolution operator T), on E,1(]~1,1])
and the follourng diagram:

(k'er T#){a 4 g‘[w}(I)‘l’:/(ker TH)J’ £ ; A{w}/ﬁAfw} d KI(C“) ﬁ) E)
{an)* n
(kn)’b —Ab (g{w},ﬂ){a/ki— WUPL} A%w},'n/ﬁA%w},n “E[L}' n(a: B, E)

where g is the isomorphism from 2.8, and &y, is as in 2.9. The canonical maps
A, B, A, and By, will be defined in the preof. Under these assumptions the
diagram is commutative and (gn)® is an injective map. For I = R we get the
same result if we replace @ by the corresponding isomorphism of Meise [12,
2.6].

Proof. Using the Hahn—Banach theorem we get for every vy € (ky)y, 2
functional vy € (Eguy,n)f, With v1 ¢ f, = o and a linear topological isomor-
phism

An: (knlly = (Eguym)b/bns  Anlvo) = w1+ Kz,
because £,y is a (DFS)-space. The map A is defined in the same way. We
have k; = im Tin and fm My = ,'J.A . by [16, 7.5] and Fourier Laplace
transformatlon, so we can deﬁne an 1somorph1sm
B., (8{‘“}1 )b/k'L - A{w} 'n./tu'A{w} n? Bﬂ(yl + k:;i‘) =n+ ﬁA%w},n
(and B analogously). Using the definition of &,, from 2.9, an easy calculation
shows 1y 0Gp o Bno Ay = goBoAc(gn)’. Since A, and By, are isomorphisms
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and i, and &, are injective, 9o B o A o (g} is also injective. Hence the
injectivity of (g,)! follows, because ge B ¢ A is an isomorphism.

3.10. LEMMA. Let w be a weight function, p € (Eg.3,0) slowly decreasing
and v and § as in 2.11. Then

proj* AI('y, §i=0¢& proj* ]CI(w,,u,) == (.
Proof. We have
proj X, (7,6) = A (7,6) = ker T}, = projkn
+—n -

By Vogt [26, 5.3] two reduced projective spectra of complete (LB)-spaces
generating the same space are equivalent. Since Al (v, §) and %k, are (DFS)-
spaces, hence complete (LB)-spaces, and A’(y, §) is a reduced spectrum, it
suffices to show that Kf(w, u) is reduced. By 3.9, (gn)t is injective for all
n € N, which means the image of g, is dense. So we get proj* A7 (v,6) =
proj* £ {w, u) from Vogt [26, 1.2].

3.11. LemMa. Let (aj)jen and (B;)jen be sequences in R, with
limj oo B; = oo and let w be o weight function. Then the following con-
ditions are equivaolent:

() prog 47(a, ) = 0.
(i) There exists a decomposition Jy U Jo of N such that

limm Oﬂj/ﬁj =0 and

liminf o;/3; > 0.
jroo, JET j ¥ 1/

J—00, JET

Proof For increasing sequences (73 )ren and (gx ) pen with limg_ oo 1y =
7 and limg_,co or = @ we define a;j,5m = exp(rrc; — 0mf;). Setting ¢ = 0
and 7 = 1 for I = |~1,1] (resp. 7 = oo for I = R) we get the assertion
directly from Vogt [26, 4.3].

In the non-quasianalytic case it is obvious that surjectivity irnplies local
surjectivity (see Braun, Meise and Vogt [7, 2.5, 2.7]), because of the existence
of cut-off functions. In the quasianalytic case we need duality theory and
Remark 2.2.

3.12. LEMMA. Let w be a weight function. Then every surjective convo-
tution operator Tj, : Eq,y (I} — Euy(T) is locally surjective,

Proof. Since proj' £Iw} = 0 we deduce from Vogt [25, 5.7] that g1 (1)
is ultrabornological and barreled. Being a projective limit of inductive lim-
its of (B)-spaces, £,1(I) is a webbed space, so we can apply de Wilde’s
open mapping theorem (see Kothe [10, §35]) to the surjective operator
Ty 2 Equp{I) =+ €3 (I). This yields that 7}, is a topological homomorphism.
We consider the transposed map T} : £, (1), — Equy(I)}, of T),. Since Ty,
is surjective, Tﬁ is injective and a theorem of Grothendieck on topological
homomorphisms (sce [10, 32.4(3)]) gives: For every equicontinuous set M
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in T}, (£1.y (1)) the set T *(M) is equicontinuous in £g.1(T)'. Since £y (1)
is barreled, the equicontinuous sets in £¢,}(I)" coincide with the bounded
sets. Via Fourier Laplace transform we get for the multiplication operator
oAl I =
MF.A{w}ﬁA{w}, F = Ly
the following:

(1)  For every bounded set B C MF(Afw}) the set M5z (B) is bounded
in A‘Ew}.

Now we want to show the Fhrenpreis condition (E) for F', which is equiv-
alent to the local surjectivity of T}, (2.4). Suppose (E) is not true. By 2.2 we
get for every 1 € N a sequence (f;)jen € (4], )" with (Ff;);en bounded
in Aiw}, but (f;);en unbounded in Af{’w}‘)\ for A > I. Since projlgfw} =0
and the spaces A?w}’ 31 A €N, are reflexive it follows by Vogt [27, 4.1, 4.4],
that A{u} is a regular space, i.e. every bounded set B C A‘Eu} lies in a space
A%w}’ 5, for some A and is bounded there. This is not true for (f;);en, so this
sequence is unbounded in A{w} and we have a contradiction with (1).

We are now able to give the final result.

3.13. THEOREM. Let w be o weight function, i € (Equy,0) and I an
open bounded interval in R or I = R. Then the convolution operator

T,_,, : E{w}(I) — S{w}(I): Tu(f) = px*f,
is surjective if and only if the following two conditions are sotisfied:

(i) T, is locally surjective.
(ii) There exists a disjoint partition V (i} = Jy U Jo with
li I =0 and liminf |Dmez|/w(z) > 0.
TR, m 7| /w(2) |2|"-*°°=2€J9| |/w(z)

Proof. We consider only the cases T = }—1,1[ and I = R. The case
I =a,b[ can be easily reduced to ]—1,1{ by the transformation from 1.5.
Defining v = (7;)jen = {|Imz;|)jen and § = (6;)jen = (w(2;))jen, where
(27)jen counts the zeros of I, we can write (i} in the form:

There exists a decomposition Jz U Jy of N with
liminf  ;/6; > 0.

jmroo, jEJa

: e d
e, /=0 an
Now 3.10 and 3.11 imply proj* K7 (w, u) = 0. By 3.8 we get the surjectivity
of T),.
Conversely, if T, is surjective, then 3.12 yields the local surjectivity of
T, Applying 3.8, 3.10 and 3.11 we get (ii) and hence the assertion.

Addendum, (a) In the meanwhile, Wengenroth [28] proved that condi-
tion (Pg) of Vogt [25], [26], which is slightly weaker than (P*), is sufficient
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for a reduced spectrum X of (DFM)-spaces to satisfy proj* X = 0. The ne-
cessity of (P3) is known by Vogt [26, 2.7]. The main difference for the proof
of Theorem 3.7 is that condition (D) is no longer needed.

(b) For an extension of the result of Korobeinik, Napalkov and Rudakov

(which has been mentioned in the introduction) to the case supp(y) # {0}
but I = R, we refer to a recent publication of Langenbruch [11].

[10]
(1]

[12]

18]
(14
[15]
16}

[17]

References

L. V. Ahlfors, Conformal Invarignts. Topics in (eometric Funclion Theory,
McGraw-Hill, 1978. .

C.A.Berenstein and B. A. Taylor, 4 new look af inlerpolation theory for entire
functions of ene variable, Adv. in Math. 33 (1979), 109-143.

A. Beurling, Quasianalyticity and general distributions, Lectures 4 and 5, Amer.
Math. Soc. Summer Institute (Stanford, 1961).

G. Bjdrck, Linear partial differential operators and generolized distributions, Ark,
Mat. 6 (1965), 351-407.

R. W. Braun, 4 sufficient criterion for the vanishing of proj1 for (DFS)-spectra,
preprint.

R. W. Braun, R. Meise and B. A. Taylor, Ulitradifferentiable funclions and
Fourier enalysis, Results Math. 17 (1990), 206-237.

R. W.Braun, R. Meise and D. Vogt, Existence of fundamental solutions and sur-
Jectivity of convolution operaiors on classes of ultra-differentiable functions, Proc.
London Math. Soc. (3) 61 {1990), 344~370.

-—, —, —, Characterization of the linear partial differential operators with constant
coefficients which are surjective on non-gquasianalytic classes of Rowmicu type, Math.
Nachr. 168 (1994}, 19-54.

Yu. F. Koroheinik, Selvability of a convelution equation in some clogses of analytic
functions, Mat. Zametki 49 (2) (1991), 76-83 (in Russian); English transl.: Math.
Notes 49 (1991), 165-172.

G. K8the, Topological Vector Spaces Il, Grundlehren Math. Wiss. 237, Springer,
1979,

M. Langenbruch, Hyperfunction fundamental solutions of surjective convolution
operators on real analytic functions, J. Fanct. Anal. 131 (1895), 78-93,

R. Meise, Sequence space representations for zero-solutions of convolution equa-
tions on ultradifferentiable functions of Roumieu type, Studia Math. 02 (1989),
211-230,

—, Sequence space representations for (DFN)-algebras of entire functions modulo
closed ideals, J. Reine Angew. Math. 363 (1985), 50-95.

R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions
and local Fourier expansions, Indiana Univ. Math. J. 36 (1087), 720~756.

R. Meise und D. Vogt, Finfihrung in die Funktionalanalysis, Vieweg, Braun-
schweig, 1992,

T. Meyer, Die Fourier-Laplace- Transformation quasianalytischer Funktionale und
thre Anwendung auf Faltungsoperatoren, Diplomarbeit, Diisseldorf, 1989.

-—, Surjekbivitit von Fallungsoperatoren auf Rdumen ultradifferenzierborer Funktio-
nen vom. Roumieu Typ, Thesis, Diisseldorf, 1992,

icm

18]
[29]
[20

i21]

(27]

(28]

Surjectivity of conuolution operators 129

8. Momm, Closed principal ideals in nonradial Hormander algebras, Arch. Math.
(Basel) 58 (1992), 47-55.

—, Convolution eguations on the analytic functions on conver domains in the plane,
Bull. Sci. Math. 118 (1994), 259-270.

—, Ideale in gewichieten Algebren holomorpher Funktionen auf dem Binheitskreis,
Dissertation, Diisseldorf, 1988,

V. V. Napalkov and I. A. Rudakov, Conveolution operator in the space of real
analytic functions, Mat. Zametki 49 (3) (1991}, 57—65 (in Russian); English transl.:
Math. Notes 49 (1991), 266-271.

V. P. Palamodov, The projective limit funcior in the category of linear topological
spaces, Math. USSR-Sb. 4 (1968), 526-559.

C. Roumieu, Sur quelques cetensions de la notion de distribution, Ann. Sci. Ecole
Norm. Sup. (3) 77 (1960), 41-121.

B. A, Taylor, Analytically uniform spaces of infinstely differentiable functions,
Comm. Pure Appl. Math, 24 (1971), 39-51.

D. Vogt, Lectures on projective spectra of (DF)-spaces, Universitit Wuppertal,
1987.

—, Topics on projective spectra of (LB)-spaces, in: Advances in the Theory of
Fréchet Spaces, T. Terzioglu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer, Dor-
drecht, 1989, 11-27.

~, Regularity properties of (LF)-spaces, in: Progress in Punctional Analysis, K. D.
Bierstedt, J. Bonet, J. Horvith and M. Maestre (eds.), North-Holland Math. Stud.
170, North-Holland, 1992, 57-84.

J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120
(1996), 247-258.

Mathematisches Institnt

der Heinrich-Heine-Universitit
Universitdtsstr. 1

40225 Drisgeldorf, Germany

Received May 26, 1994
Revised version January 22, 1997

(3280)



