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Abstract 

What percentage of U.S. residents is incarcerated? If you now 
learned the amount and it surprised you, would it be more 
memorable than if it were not surprising? Our past research 
documented conceptual changes related to policy issues when 
one receives a single, critical number. In the present study, 
Experiment 1 uses a Numerically-Driven Inferencing (NDI) 
paradigm method in which participants estimated policy-
relevant quantities, learned the true quantities, and rated their 
surprise regarding that feedback. When asked to recall the 
quantities either eight or 84 days post-feedback, participants 
improved the most over their original estimates on items that 
surprised them the most. In Experiment 2, we found that a 
measure of prospective surprise (“shock”; Ranney, Cheng, 
Nelson, & Garcia de Osuna, 2001)—derived from an interval 
in which participants believed the number fell, and 
participants’ confidence that the number fell in that interval—
reliably predicted retrospective surprise ratings like those in 
Experiment 1. We conclude that surprise is a rather stable 
construct about which people have considerable 
metacognition. Future work in this area may suggest how 
leaders, voters, and consumers can best employ their 
emotional responses to numbers and enhance cognitive 
strategies that help shape effective policies. 
 
Keywords: Belief Revision; Conceptual Change; Cognition 
& Emotion; Decision Making; Estimation; Reasoning. 
 

Please write down an answer to the following: How many 
pounds of garbage are produced per capita, per day, in the 
U.S.? Include all trash produced by individuals directly and 
by businesses (except for waste from construction sites). 
Reflect briefly on how you reached this estimate. Now, 
think of what you would prefer the quantity to be. The true 
quantity is 4.5 lbs. (Table 1). To the extent that this statistic 
surprised you, will the surprise make this statistic more 
memorable days or months from now?  

Surprise has been identified as one of the six basic, 
universal emotions (Ekman, 1992), as it is associated with a 
distinct bodily reaction over widely divergent cultures. 
Thagard (2006) highlights the particular adaptive value of 
surprise, in that it is the emotional response yielded when 
one receives information that does not cohere with one’s 
current representations. As such, surprise leads one into a 
cycle of questioning and, possibly, discovery. For instance, 
one might estimate garbage production based on what one 
hauls to the curbside each week. This strategy would likely 
lead to a low estimate, as it leaves out the waste produced 
by businesses, and leads to surprise when one learns how 

high the true amount is. Alternatively, one might picture 
dumpsters lined up outside of businesses and landfills in 
one’s community and not fully grasp how many people are 
responsible for producing that much trash; this would lead 
to overestimation of per-person garbage production, and 
might yield surprise when one sees that the true amount is 
much lower. In each of these cases, the surprise brought on 
by receiving the true quantity may lead to a reexamination 
of one’s assumptions, and could ultimately lead to a greater 
coherence across one’s network of beliefs about garbage 
and related concepts (e.g., the economy).  

Wertheimer (1945) proposed that surprising feedback 
(e.g., a recalcitrant badminton opponent) leads to a 
restructuring of one’s beliefs, resulting in better solutions to 
problems. In terms of cognitive development, Piaget (1977) 
argued that highly surprising information leads to 
accommodative change, whereas information that is 
minimally surprising leads to assimilation into extant 
schemas. More recent conceptual change research describes 
discrepant events—outcomes that run counter to 
expectations––which redirect attention and may lead to the 
restructuring of networks of established beliefs (Clement & 
Steinberg, 2002; Ranney & Schank, 1998).   

Literature on discrepant events often focuses on science 
activities, in which surprising outcomes direct students’ 
attention to beliefs that need revision, and this leads to 
deeper understandings of scientific principles. For instance, 
Clement and Steinberg (2002) discussed a discovery process 
“Susan” exhibited in building electrical circuits. She 
initially conceived of electrical current as flowing from a 
battery to a bulb to light the bulb. This assumption works 
for simple circuits, but fails for more complex ones: When a 
capacitor (two metal plates separated by an insulator) was 
placed between battery and bulb, Susan predicted that the 
bulb would not light, reasoning that current could not 
traverse the capacitor’s insulation. She was surprised, 
therefore, when the bulb did light—leading her to develop a 
model in which current may originate from any piece of 
metal (e.g., the aluminum plate of the capacitor nearest the 
bulb), not just from batteries. As Susan saw ever more 
sophisticated circuits, she ran into conflicts, was surprised, 
and then made relevant revisions to her belief network about 
circuits. In terms of the ECHO model of reasoning (e.g., 
Ranney & Thagard, 1988), which represents hypotheses and 
evidence as propositional nodes within a connectionist 
network, discrepant events may yield more coherent 



 

 

networks by (a) adding new nodes, (b) adding excitatory or 
inhibitory links among nodes, and/or (c) changing weights 
on existing links. Discrepant events are, thus, useful both in 
pedagogy and in belief revision research.  

Related research on knowledge of policy-relevant 
numbers has illustrated ways in which knowing a 
particularly salient single number can restructure one’s 
beliefs about an issue, and have both qualitative and 
quantitative consequences for one’s preferences. Munnich, 
Ranney, Nelson, Garcia de Osuna, and Brazil (2003) found 
that the same underlying quantity (the number of abortions 
in the U.S.) can yield dramatically different levels of 
estimation accuracy. Depending on how the question is 
addressed, receiving feedback on actual quantities can either 
provoke  (a) policy shifts, which are non-proportional 
changes in numerical preferences (e.g., going from 
preferring half as much of what a quantity is thought to be, 
to preferring one-tenth as much of what the true quantity is), 
or (b) a mere proportional rescaling of prior preferences 
(e.g., although feedback changes what one believes the 
quantity to be, one maintains a preference that it be halved). 
As an illustration of this, when asked the ratio of abortions 
to births in the U.S., participants were quite inaccurate and 
showed large policy shifts upon learning the true value; in 
contrast, regarding the ratio of abortions to fertile women, 
participants were much closer to the correct answer, and 
largely showed only proportional rescaling of their 
preferences. Moreover, Rinne, Ranney, and Lurie (2006) 
found that shocking numerical feedback on the death rates 
of various diseases led undergraduates to provide funding 
allocations that more closely tracked numerical feedback on 
relative disease mortality rates. Furthermore, Garcia de 
Osuna, Ranney, and Nelson, (2004) found that surprising 
feedback led many participants to articulate quite different 
kinds of rationales for their numerical preferences than they 
had given prior to receiving numerical feedback.  

In the present paper, we extend this body of work by 
further considering the role of surprising numbers over time. 
In particular, we focus on the relationship between surprise 
and memory for policy-relevant numbers. 

Numerically Driven Inferencing 
The Numerically Driven Inferencing paradigm (NDI; 

Ranney et al., 2001) considers whether, when, and how 
numerical evidence can catalyze belief revision. Within the 
NDI paradigm, Ranney and colleagues have developed 
various methods, including EPIC (Estimate, Prefer, 
Incorporate, & Change), in which participants: (1) estimate 
a quantity that is relevant to an issue, (2) state what they 
prefer the quantity to be, (3) receive correct base rate 
feedback to incorporate (e.g., that 507 of every thousand 
18-24 year olds are registered to vote), and finally, (4) state 
what they now prefer the quantity to be––exhibiting whether 
their preferences changed after learning the true number.  

This paper again addresses one of NDI’s central 
hypotheses about the mechanism of numerically driven 
conceptual change: Belief revision is a function of how 

surprised one is by feedback. That is, receiving a single, 
surprising number, as in the kinds of discrepant events 
described above, may lead one to reconfigure networks of 
hypotheses and evidence to achieve a higher degree of 
coherence. The overall hypothesis of this paper is that 
surprise is a rather stable construct that relates to changes in 
numerical beliefs. Specific hypotheses are as follows: 

Hypothesis 1: Surprising values highlight incoherence in 
one’s belief network, leading to belief revisions that 
increase coherence. One source of evidence of this would be 
that recall accuracy would improve as a function of how 
surprising a number was to a participant. 

Hypothesis 2: Surprise is a rather stable construct about 
which people have considerable metacognition, such that 
the extent to which participants’ pre-feedback expectations 
deviate from the actual quantities (i.e., “shock,” a measure 
of prospective surprise), is strongly related to how surprised 
they actually feel upon receiving the value (i.e., 
retrospective surprise). 

 
Table 1: Questions Given to Students in Experiment 1. 
True values were the most recent values available when 
the experiment was conducted in 2003-2004. 
 

Question 
 

True 
Value 

Retest 
Time 

US Legal Immigration 
per 1000 Residents 3 

UC Berkeley Annual Tuition $18 K 
College Degrees 
per 1000 Adults 275 

US Voter Registration 
per 1000 Young Adults 507 

Toyota Camry Price $20 K 
Mean US Sleep per Night  6.9 hrs. 

Mean US One-Way Commute 25.5 mins. 
Households with TV(s) 
per 1000 US Households 980 

8 Days 
Post-
FB 

US Incarceration 
per 1000 Residents 7 

Mean US Male Athlete Salary $2.5 M 
Inflation: $1K in ‘62 = __ in ‘02 $5.8 K 

Mean Garbage Production 
per day per US resident 4.5 lbs. 

US Cars 
per 1000 Drivers 1.2 K 

Female K-12 Teachers 
per 1000 Teachers 833 

US Computers 
per 1000 Households 510 

Mean Non-Diet Soda Calories 150 

12 
Weeks 
Post-
FB 

Experiment 1 
As a test of Hypothesis 1, we examined the extent to which 
participants’ surprise upon learning a number predicts the 
accuracy of their recall of that number. 



 

 

Method 
Participants were 95 eighth-grade Algebra I students from 
three consecutive class periods at a San Francisco Bay Area 
middle school. All 95 received four “common” items (Voter 
Registration, Immigration, Incarceration, Athlete’s Salary), 
and four of 12 other items that were each given to one-third 
of the students (see Table 1 for a complete list of items). 

 
Two items in the EPIC format were presented for a few 

minutes each day over a four-day period. (See Table 2 for 
the procedure; note that it includes all steps, including ones 
involving preference that are not examined in this paper; see 
Munnich, Ranney, & Bachman, 2005, for discussion of 
these steps.) For each item, students first estimated a 
quantity. Next, they indicated their preferences for the 
estimated quantity. Participants then received feedback (the 
true value) to incorporate, after which they indicated on a 1-
5 scale how surprised they were by the actual number; the 
students then had the opportunity to revise their preferences 
in light of feedback.  

 Beginning eight days after the first EPIC items were 
presented, an “RP” extension of EPIC was administered––in 
which students were asked to recall the two numbers they 
received on the first day and to again indicate their 
preferences. The following (tenth) day, students recalled, 
and offered preferences for, the two numbers they received 
on the second EPIC day. Eleven weeks after that, students 
recalled the feedback for, and offered preferences for, the 
remaining four items (again, over two days). Thus, four 

EPIC-RP item sequences were completed after eight days’ 
delay, and four more after 84 days. 

We developed a metric of improvement from one’s initial 
estimate to the number one recalled either eight days or 12 
weeks after receiving feedback, based on Brown and 
Siegler’s (e.g., 2001) Order of Magnitude Error. 
Improvement in accuracy was computed as follows1: 
 

EstimationError =  
Estimate / TrueNumber  {if Estimate ≥ True}  
TrueNumber /Estimate {if True > Estimate} 

RecallError =  
RecalledNumber / TrueNumber  {if Recalled ≥ True}   
TrueNumber / RecalledNumber  {if True > Recalled} 

Improvement in accuracy = EstimationError / RecallError 

Results and Discussion 
As Munnich et al. (2005) reported with regard to the same 
data set, participants’ numerical understandings improved 
between estimation and recall, over both the eight-day and 
12-week intervals. Our Hypothesis 1, though, concerns the 
extent to which improvement in accuracy (numerical 
understanding) reflects the surprise that participants 
reported upon seeing the true numbers.  

 

                                                         
1 We computed all statistics using absolute values of log ratios 

to preserve the pattern of variance, but we present simple ratios 
here for expository purposes. Estimation and Recall Errors are 
computed to preserve the magnitude of error; in other words, if the 
estimate is twice the true value, it is treated as equally erroneous as 
an estimate that is half the true value. 

Table 2: The Main Steps of Experiment 1’s Procedure  
 

Estimate 
Out of 1,000 U.S. Citizens between the ages of 18 and 
24, estimate the number of people who were registered 
to vote in the presidential election in the year 2000.  

Preference 
[Preference regarding what the quantity ought be was 

elicited; these data are not addressed herein]  
Incorporate Feedback 

According to the U.S. Census Bureau,     507     out of 
every 1,000 U.S. citizens between the ages of 18 and 24 
were registered to vote in the 2000 presidential election. 

Rate Surprise 
Rate how surprised you are by this number: 

1 = Not At All      …      5 = Extremely Surprised 
Change Preference? 

[See Preference above]  
Retention interval: 8 days/12 weeks 

Recall Feedback 
Out of 1,000 U.S. Citizens between the ages of 18 and 
24, try your best to remember the number of people who 
were registered to vote in the 2000 presidential election  

Change Preference? 
[See Preference above]  

Table 3: Improvement in Recall, in Descending Order of 
Surprise Ratings (nb. when Improvement > 1, one’s recall 
is more accurate than was one’s initial estimate) 
 

 Question Mean 
Surprise 

Mean 
Improvement2 

Immigration 3.5 18.823 
Tuition 3.3 1.19 
College 2.7 0.62 

Vote 2.5 0.70 
Camry 2.4 0.79 
Sleep 2.2 1.01 

Commute 2.1 0.93 

8- day 

TV 2 0.60 
Incarceration 3.3 1.79 

Athlete 3 1.34 
Inflation 2.8 0.87 
Garbage 2.8 1.70 

Cars/Driver 2.7 0.45 
Teacher 2.6 0.98 

Computers 2.5 0.64 

12- wk 

Soda 2.4 0.78 



 

 

We predicted that surprise would be associated with the 
long-term recall of numerical feedback, so we tested 
whether the quantity participants recalled was closer to the 
feedback number than it was to the original estimate. (See 
Table 3 for summary data.) A linear model was constructed 
in which participants and items were treated as random 
factors. Using restricted maximum likelihood estimation, we 
computed z-scores for regression coefficients assuming 
asymptotic normality. Surprise ratings did not reliably 
interact with delay of recall, so the interaction term was 
removed from the model. Surprise reliably predicted 
improvement from estimation to recall (z = 2.34, p = .02), 
but delay of recall did not reliably predict improvement (z = 
0.46, n.s.). 

Experiment 1 indicated that the more surprising the 
feedback on a question, the more participants improved over 
the retention interval (i.e., how close recall was to the 
feedback value relative to the proximity of initial estimates 
to that feedback number). This held for both eight-day and 
12-week intervals, and both results are evidence in support 
of Hypothesis 1.    

Experiment 2 
This experiment was performed to further our understanding 
of the nature of surprise—how surprised one expects to be 
prior to feedback and how surprised one feels upon 
receiving feedback.  To the extent that there is a relationship 
between anticipated surprise and the surprise one indicates 
upon learning the true quantity, that relationship would 
suggest that surprise is a relatively stable construct, about 
which people have notable metacognition (Hypothesis 2).  

Method 
We analyzed data from our laboratory (McGlothlen, 2003) 
collected from 14 high school students who were asked to 
give oral explanations while responding to nine EPIC items 
(Table 4). For this analysis, we were concerned with the 
extent to which students’ non-surprise intervals and 
                                                                                               

2 It is reasonable to ask why some mean improvements are, in 
fact, decrements (i.e., <1), indicating that participants performed 
less accurately for some items, at the recall stage, than they 
performed originally at estimating. It appears that (a) many 
students had forgotten less surprising feedback numbers by the 
time they were retested, and were actually re-estimating rather than 
recalling, and (b) spontaneous student comments suggested that 
that students were not trying as hard at the recall stage (when the 
task had lost some of its novelty). So, their re-estimates would not 
be expected to be as accurate as their original estimates. That said, 
note that for all four items in which mean surprise was three 
(“moderately surprised”) or greater—immigration, tuition, 
incarceration, and athlete salaries—students showed clear 
improvement at the recall stage. This is consistent with Hypothesis 
1, in that when feedback was surprising it improved students’ 
memories for the numbers. 

3 Since mean improvement for the immigration item was 
considerably greater than for other items, a separate analysis 
excluded this item—yet still showed that surprise reliably 
predicted improvement (z = 2.44, p = .02). 

confidence ratings (prospective surprise; Ranney et al., 
2001), predicted their surprise ratings after they received the 
true number (retrospective surprise). To indicate their 
prospective surprise, after students provided estimates, they 
were asked 1) how high the true number would have to be to 
surprise them, 2) how low would the true number would 
have to be to surprise them, and 3) how confident they were, 
on a scale from 55% to 95%, that the true number would fall 
within the non-surprise interval indicated in steps 1 and 2. 
Based on these steps, we calculated a 1-10 “shock” scale 
(Ranney et al., 2001): If subjects captured the value in their 
non-surprise interval, then: 

 

Shock = 11 - ((Confidence percentage + 5) / 10). 
 

If subjects did not capture the actual value in their non-
surprise interval, then: 

 

Shock = (Confidence percentage + 5) / 10 
 

Therefore, a “1” on the shock scale corresponds to hardly 
being surprised at all—being 95% confident that one would 
capture the number in one’s non-surprise interval and 
successfully capturing the number. “5” and “6” correspond 
to moderate shock—respectively, 55% confidence and 
capturing the number and 55% confidence without capturing 
the number.  Finally, a shock of “10” corresponds to 
maximal surprise—that is, having been 95% confident but 
not capturing the number in one’s non-surprise interval.  
  

Table 4: Questions in Experiment 2. True values were the 
most recent values available when the experiment was 
conducted in 2003. 

 
Question True 

Value 
College Degrees 
per 1000 Adults 275 

US Legal Immigration 
as % of Total Population 0.3% 

California Population 35.1 M 
Mean Age in U.S. 36.6 yrs. 

Median College Vs. HS Grad Wages 1.8 : 1 
Median US Net Worth (< 35 yrs.) $11.6 K 

Median US Net Worth (65-74 yrs.) $176 K 
Murders 

per 1 Million Residents 55 
Deaths in Auto Crashes 

per 1 Million Residents 148 

Results and Discussion 
To analyze the results, we constructed a linear model (in 
which participants and items were treated as random 
factors) and tested whether students’ shock values predicted 
their surprise ratings post-feedback. Results show this to be 
the case, as prospective surprise on the shock scale was a 
reliable predictor of retrospective surprise (F(1,103) = 
12.10, p < .001). Further analyses examined the relationship 
between shock and surprise across items, subject-by-subject. 
Nine out of 14 students exhibited correlations of .64 or 



 

 

higher (all p’s < .03). Two additional students exhibited 
marginally significant correlations (r = .56, p = .06; r = .49, 
p = .09), perhaps suggesting that more items would have 
yielded even more reliable relationships. (If these were 
reliable relationships for the two students, their correlations 
suggest that their shock values would respectively explain 
31% and 24% of the variance of their surprise ratings.) One 
of the remaining three students consistently captured the 
true numbers in the student’s non-surprise intervals with 
confidence ratings of 75% and higher, so the individual’s 
nonsignificant correlation may have been due to restricted 
range. Finally, two students exhibited non-significant 
correlations (although one was r = .38, p = .16).  

In Experiment 2, we found that students’ pre-feedback 
expectations reliably predicted their surprise upon receiving 
feedback, which lends support to Hypothesis 2: Surprise 
does appear to be a relatively stable construct, about which 
people have notable metacognition. Variation in the 
predictive value of the shock index for individual students’ 
surprise suggests that, although the two scales correlate, 
they may tap partially dissociable aspects of a broader 
notion of surprise. In the General Discussion, we will return 
to the question of how each scale might be independently 
inform prediction of how well a student will ultimately 
remember a statistic. 

The present findings suggest that people may have 
reasonably apt metacognition in that prospective surprise 
involves one's ability to anticipate one's own surprise. An 
alternative explanation is that offering a non-surprise 
interval and a confidence rating ahead of time may lead 
participants to deliberately provide post-feedback surprise 
ratings that are consistent with values elicited before 
feedback (i.e., reflecting how surprised they said they would 
be, not how surprised they actually were). We do not think 
this is a likely explanation, since the prospective (i.e., non-
surprise intervals and confidence) and retrospective surprise 
questions were phrased quite differently, did not appear on 
the same page, and were separated by several other 
questions––so it would not have been obvious to 
participants that the two measures served the same purpose. 
Below, we propose follow-up experiments that manipulate 
the inclusion of both types of surprise measure in recall 
experiments, so as to determine better how independent the 
measures are. 

General Discussion 
The present work provides a new perspective on numerical 
understanding to the body of work on “hot cognition” (e.g., 
Thagard, 2006)—the intersection of cognition and emotion. 
We draw two main conclusions from the present findings: 
First, there is a reliable relationship between the 
surprisingness of a single piece of numerical feedback and 
the accuracy of participants’ subsequent recall of that 
number. Second, individuals seem to have rather good 
metacognition regarding their surprise response, as 
projected surprise was a good predictor of retrospective 
surprise. Ultimately, we hope this work might include 

physiological measures that may provide neural 
perspectives on the surprise reaction.  

Our findings build on research on learning from 
discrepant events, given surprise’s role among the basic 
emotions. Unlike fear, surprise is not clearly negative (i.e., 
not a withdrawal emotion), so one does not remember what 
was surprising just to avoid an event in the future; indeed, 
surprise is often enjoyable. Unlike happiness, a clearly 
positive (i.e., approach) emotion, surprise may provoke us 
to restructure our world-views, so that we are not surprised 
again. That is, surprise is not so jarring that we reflexively 
avoid an event in the future, but just jarring enough for us to 
redirect our attention and reorganize our conceptual 
understandings. 

This research suggests two directions for future work on 
the role of surprise in numerical understanding. First, we 
think it important to turn to a more detailed qualitative 
analysis of what happens to people’s explanations of how 
they arrive at predictions––both immediately after 
surprising feedback, as well as over time (Ranney & 
Thagard, 1988; Ranney, Schank, Mosmann, & Montoya, 
1993). The dynamics of the role of surprise in estimating 
and recalling numbers could also be more finely modeled. 
Thagard’s (2006) HOTCO model employs a connectionist 
network that incorporates emotion in achieving coherence 
during argumentation. In HOTCO, beliefs are connected via 
excitatory and inhibitory links (as with ECHO), and surprise 
arises following the introduction of new information (as in 
discrepant-events experiments) or when a discovery is made 
about the inconsistency of aspects of one’s extant network. 
Surprise then triggers re-weighting of the present links and, 
as necessary, the introduction of new belief nodes. The 
present paper shows that surprising feedback can lead to the 
long-term retention of numbers that are relevant to social 
issues; understanding the dynamics of how this unfolds 
presents an important challenge for the future.  

A second possible direction for future research is to 
explore how hindsight bias moderates the feeling of being 
surprised by new numbers. Hindsight bias (e.g., Hawkins & 
Hastie, 1990) arises when one has knowledge of an outcome 
and is overconfident about how well one would have 
anticipated that outcome earlier. In terms of numerical 
outcomes, Rinne et al. (2006) found that estimating a 
disease’s mortality rate before feedback increased the 
influence of the feedback on one’s later preference for 
research funding. Such participants more often explained 
their decisions by making reference to the actual values as 
well. An attractive explanation for this increased reliance on 
feedback numbers is that having just made an estimate, and 
faced with evidence of one’s misunderstanding of the data 
involved with an issue, the possibility that one would show 
hindsight bias is reduced. Awareness of our numerical 
misunderstandings seems to spawn greater surprise at the 
feedback numbers, and, thus, greater belief revision.  

Consider how estimating a number and providing an a 
priori non-surprise interval relates to hindsight bias, and to 
the surprisingness of numerical feedback. The present paper 



 

 

points to the impact of that surprisingness on the long-term 
retention of numbers: To the extent that surprise is 
accentuated when one “puts one’s cards on the table” by 
specifying an estimate, we would expect that estimating  
before learning a quantity’s true value would lead to 
improved retention of feedback numbers. In this paper, we 
observed a large, but not complete, overlap between the 
prospective shock values and the retrospective surprise 
ratings. In the future, manipulating the asking of prospective 
and retrospective surprise questions as a part of long-term 
numerical recall studies may illuminate both shared and 
separate components of these two scales. It is possible that 
eliciting a non-surprise interval lessens hindsight bias, 
thereby accentuating a sense of surprise, which might then 
drive the long-term retention of numerical feedback. 

In this paper, we considered two data sets that, 
respectively, indicate that numerical surprise 1) has a long-
term impact on how accurately people retain numbers, and 
2) can be reliably predicted using metacognitive self-
assessment. As our project moves forward, we hope to 
understand better the dynamics of numerical cognition. We 
also hope to further connect other domains involving 
discrepant events that contribute to surprise, which increases 
the coherence of an individual’s representations. Findings in 
this research area should interest both educators and others 
involved in public policy, as they aim to help people attain 
more coherent understandings of what numbers mean in the 
contexts of learning and citizenship. 
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