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1. INTRODUCTION. The authors of this paper met at a summer institute sponsored
by the Oregon Collaborative for Excellence in the Preparation of Teachers (OCEPT).
Edwards is a researcher in undergraduate mathematics education. Ward, a pure math-
ematician teaching at an undergraduate institution, had had little exposure to math-
ematics education research prior to the OCEPT program. At the institute, Edwards
described to Ward the results of her Ph.D. dissertation [5] on student understanding
and use of definitions in undergraduate real analysis. In that study, tasks involving the
definitions of “limit” and “continuity,” for example, were problematic for some of the
students. Ward’s intuitive reaction was that those words were “loaded” with conno-
tations from their nonmathematical use and from their less than completely rigorous
use in elementary calculus. He said, “I’ll bet students have less difficulty or, at least,
different difficulties with definitions in abstract algebra. The words there, like ‘group’
and ‘coset,’ are not so loaded.”

Eventually, with OCEPT support, the authors studied student understanding and
use of definitions in an introductory abstract algebra course populated by undergradu-
ate mathematics majors and taught by Ward. The “surprises” in the title are outcomes
that surprised Ward, among others. He was surprised to see his algebra students having
difficulties very similar to those of Edwards’s analysis students. (So he lost his bet.) In
particular, he was surprised to see difficulties arising from the students’ understanding
of the very nature of mathematical definitions, not just from the content of the defini-
tions. Upon hearing of Edwards’s dissertation work, some other mathematicians who
teach undergraduates found those difficulties surprising even when restricted to real
analysis.

Hereafter, we present a simple two-part theoretical framework borrowed from phi-
losophy and from mathematics education literature. Although it is not our intent to
give an extensive report of either study, we next indicate the methodology used in
Edwards’s dissertation and in our joint abstract algebra study so that the reader may
know the context from which our observations are drawn. We then list the “surpris-
ing” difficulties of the two groups of students, documenting them with examples from
the studies and using the framework to provide a possible explanation for them. We
conclude with what we see as the implications for undergraduate teaching, along with
some specific classroom activities that the studies and our experience as teachers sug-
gest might be of value.

2. FRAMEWORK. It is commonly noted in mathematics departments that under-
graduate mathematics majors often experience difficulties when trying to write math-
ematical proofs in their introductory abstract algebra, real analysis, or number theory
courses. Some researchers have investigated certain aspects of students’ understanding
or success in proof-writing [8], [16], [11]. In particular, Moore [11] notes that, while
attempting to write formal proofs, students do not necessarily understand the content of
relevant definitions or how to use these definitions in proof-writing. Edwards’s study
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with real analysis students [5] found that some undergraduate mathematics majors,
even those who would be deemed successful based upon their grades, had difficulties
understanding the role that mathematical definitions play in mathematics in general.
There were particular difficulties in understanding the philosophical categorization of
mathematical definitions and in using definitions to perform mathematical tasks, such
as proving theorems.

Definitions play a key role in mathematics, but their creation and use differ from
those of “everyday language” definitions. First, we turn to philosophers and lexicog-
raphers for useful categorizations and observations about definitions. Afterward, we
look to mathematics education literature for some insights on the use of mathematical
definitions.

Philosopher Richard Robinson [15] distinguishes between lexical and stipulative
definitions. Robinson writes “Lexical definition is that sort of word-thing definition in
which we are explaining the actual way in which some actual word has been used by
some actual person” [15, p. 35]. Lexicographer Sidney I. Landau [10] discusses the
same category, but uses the term extracted definitions in place of lexical definitions
because they are “definitions that are based on examples of actual usage, definitions
extracted from a body of evidence” [10, p. 165]. Herein, we follow Landau’s termi-
nology since Edwards used “lexical” in a different way in her earlier work.

By contrast, Robinson uses stipulative definition to “mean the explicit and self-
conscious setting up of the meaning-relation between some word and some object, the
act of assigning an object to a name (or a name to an object)” [15, p. 59]. Its chief
advantage is “the improvement of concepts or the creation of new concepts, which is
the key to one of the two or three locks on the door of successful science” [15, p. 68].
Landau says such definitions “are imposed on the basis of expert advice” with the
goal of “ease and accuracy of communication between those versed in the language of
science” [10, p. 165].

Thus, extracted definitions report usage, while stipulated definitions create usage,
indeed create concepts, by decree. Moreover, when a term is defined by stipulation, it
is to be free from connotation, that is, free from all the associations the term may have
acquired in its nontechnical use. We think of mathematical definitions as stipulated,
whereas most “everyday language” definitions are extracted.

We turn next to the mathematics education literature to describe how students use
definitions in mathematics. According to Vinner [21] and Tall [19], each mathematical
concept has associated with it a concept definition and concept image.1 The concept
definition can be the stipulated definition assigned to a given concept. The concept im-
age, on the other hand, is a nonverbal representation of an individual’s understanding
of a concept. It includes the “visual representations, the mental pictures, the impres-
sions and the experiences associated with the concept name” [21, p. 68]. We agree
with Vinner in believing that mathematics instructors generally would imagine their
students’ concept image as growing out of a given concept definition, as illustrated in
the simple diagram of Figure 1.

When faced with a task involving a concept, rigorous mathematics demands that
concept usage follow one of the schemes charted by Vinner in Figures 2–4. The tasks
we have in mind, for example, are proving theorems or identifying an object as having
a certain defined structure, such as being a group. The key element is that in whatever
ways the concept image enters into the processing and completion of the task, the
ultimate output will be based solely on the concept definition.

1Our brief summary is based on our interpretation of Vinner [21], where the interested reader will find a
more complete exposition.
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Concept Definition Concept Image

Figure 1. The idealized development of a formal mathematical concept [21].

Concept Definition Concept Image

Input

Output

Task (proof
or identification)

Figure 2. Interplay between definition and image [21].

Concept Definition Concept Image
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Figure 3. Deduction following intuitive thought [21].

Concept Definition Concept Image
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Figure 4. Purely formal deduction [21].
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To summarize, we have introduced the categories of stipulated definitions, to which
mathematical definitions belong, and extracted definitions. We have also provided cog-
nitive models, based on concept definition and concept image, of some aspects of the
processes by which definitions are used in the completion of mathematical tasks.

3. METHODOLOGY. The purpose of both studies was to look beneath student un-
derstanding of the content of mathematical definitions to discern their understandings
of the role played by formal definitions in mathematics. This is somewhat tricky since
it is possible that a student might apply a definition in a mathematically incorrect
way for at least two reasons. It could be an incomplete or faulty understanding of
the concept that it defines. On the other hand, it could be a mathematically incorrect
understanding of the role of mathematical definitions in general. A further difficulty
influencing the design of these studies arose from the possibility that, if asked directly,
students might profess a seemingly adequate understanding of the role of formal defi-
nitions in mathematics without really understanding this role. It is not uncommon for
students (or any person for that matter) to repeat something they have heard without
full understanding. For instance, students may say, perhaps to please instructors, that
“mathematics is necessary in all walks of life,” without being able to give one mean-
ingful example beyond the day-to-day interactions involved in commerce.

Both studies employed similar research methods. For the methodology of the real
analysis study see [5] and [6]. In the algebra study, the participants were enrolled in
an “Introduction to Group Theory” course taught by Ward and observed by Edwards.
Data for the study were in the form of two written class assignments2 in which all four-
teen students participated and interviews with eight student volunteers from the class.
Each of these eight students participated in two one-hour task-based interviews (see
the appendix). The first interview began with the question “What is mathematics?”
By asking follow-up questions as needed, the interviewer made sure each student said
something about the nature and role of definitions in mathematics. In both interviews
students were asked to read a set of definitions that either had been or were to be in-
troduced in their class, after which they were asked to work on a task related to the
given definitions. We chose the definitions and tasks in an attempt to create situations
in the interviews in which students might have a conflict between their concept image
and the concept definitions. We also selected definitions and tasks that our experience
suggested would be difficult for the students. Our particular interest was to observe
whether and, if so, how the students used the definitions in overcoming their difficul-
ties. Students had access to the written definitions at all times during the interview.
The interviews were audio-taped and video-taped. Verbatim transcripts of the inter-
views were made and analyzed.

Analysis of the interview transcripts involved the following process. Independently,
we read and reread the transcripts, studied the students’ written responses, and did an
initial categorization based upon an interpretation of each student’s expressed view
on the role of mathematical definitions and his or her mathematical behavior while
working on the given tasks. We wrote brief case studies for each of the eight students
and then met to compare our initial findings. We discussed our findings for each stu-
dent and came to an agreement on a coding scheme to use for further study. Working
individually, we then reread the transcripts using our coding scheme and met several
times after this to discuss and refine our conclusions about each student. It was from
comparing these results with each other and with Edwards’s dissertation conclusions
that the surprises emerged.

2The written exercises are not discussed in this paper.
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4. THE SURPRISES.

Surprise 1: Many students do not categorize mathematical definitions the way
mathematicians do.

Mathematicians understand (and would be hard pressed to remember a time when
they did not understand) that mathematical definitions are stipulated. As Robinson puts
it [15, p. 59]:

Above all, the mathematicians, ever since Euclid at latest, have been making their own mean-
ings for words. ‘By a denumerable series’, they say, for example, ‘we shall mean a series
which you can put into one-to-one correspondence with the positive integers without chang-
ing its order.’ This is not a historical description of what has been meant by ‘denumerable’ in
the past or is commonly meant by it now. It is an announcement of what is going to be meant
by it in the present work, or a request to the reader to take it in that sense.

Mathematics instructors may not be aware that some students do not categorize
mathematical definitions among stipulated definitions. Indeed, this study came about
by Ward betting Edwards that students in abstract algebra would have no choice but to
treat the definitions as stipulated. To illustrate how some students fail to place math-
ematical definitions firmly in the stipulated category, we cite two examples from our
abstract algebra study and one from Edwards’s dissertation study.

Asked “What is mathematics?” in the first interview of the abstract algebra study,
Andre3 brought up the notions of theorem and definition. He said, “That is basically
what a theorem is, a definition . . . . Once [a theorem] is proven, it becomes a defini-
tion . . . . At some point in time, we proved that 1 plus 1 is 2. Therefore, the definition
is that always 1 plus 1 equals 2 . . . ” At first, Andre’s response seemed so strange
that we were tempted to regard it as an outlier. However, by thinking in terms of the
categorization of definitions, one can explain Andre’s point of view. For Andre, math-
ematical definitions reported facts. Andre was a student for whom all properties of a
mathematical object held “by definition.” His definitions were extracted, though not
from common usage, but rather from the body of knowledge about the concept. They
were not stipulative in any sense.

Heidi, another student in the algebra study, provides another example of a student
who seemed not to categorize mathematical definitions the way mathematicians do.
However, she seemed to teeter on the cusp of understanding. We see her case as evi-
dence that a student’s understanding of the categorization of mathematical definitions
is not necessarily clear cut. Students do not fit nicely into one group (those who un-
derstand) or the other (those who do not understand). We think of this as a transition
stage similar to what Burger and Shaughnessy [4] describe as transition stages of stu-
dents understanding between van Hiele levels in geometry. According to Burger and
Shaughnessy, it is possible that students may exhibit different levels of understanding
on different tasks and some may even oscillate between levels of understanding on the
same task.

The depth of Heidi’s understanding of the role of mathematical definitions was
unclear to us after analyzing statements she made in her first interview. Sometimes
she seemed to be exhibiting a mathematically correct view of definitions, as when she
talked about a hierarchy of definitions and axioms being used to prove theorems. But
a few lines later she said, “You have to make the definitions from what something
actually is.”

3All student names are pseudonyms.
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In her second interview, Heidi was presented (for the first time) with the defini-
tion for coset multiplication (see the appendix, Definition 4). Before the interview, the
definition of coset had been discussed in class (appendix, Definition 2). Heidi had cal-
culated cosets and had observed some of their properties as part of a classroom activity.
Ward had proved the basic properties of cosets in lecture, and Heidi had probably done
some homework on cosets. Before she could even begin dealing with the coset multi-
plication definition, which was what we wanted to observe, she had to calculate some
cosets. Unfortunately, she could not calculate them. She worked unsuccessfully for
more than twenty minutes. Edwards asked her why the definition of “coset,” which
was in front of her, was not helping her find the cosets. She replied, “Because I know
how to do it, because I did it . . . .” In her struggles, she repeatedly made similar state-
ments. She did not seem to read the definition until pointedly prompted to do so by the
interviewer.

Heidi’s insistence on trying to remember how to compute cosets rather than to look
at the definition was, perhaps, partly explained by embarrassment or a feeling that by
now she ought to know the definition. However, taking into consideration the ambi-
guity in her descriptions of definitions in her first interview, another factor appeared
to be at work. Having seen repeated instances of cosets over a period of days, she
may have believed the definition should no longer be needed. Having been repeatedly
shown instances of a chair, one does not need a definition in order to build or sit in a
chair. Heidi seemed to believe that mathematical objects could be defined in the same
way and that, if necessary, she should have been able to extract the definition from the
instances.

Stephanie, a participant in Edwards’s dissertation study (whose case is also dis-
cussed in [6]), seemed to believe that mathematical definitions were more like ex-
tracted definitions than like stipulated definitions. Just as a lexicographer must doc-
ument a word’s extracted usage before it becomes a dictionary entry, Stephanie said
that, when a mathematician writes a definition, “you would have to like have your
colleagues, like review it, make sure it’s legitimate and there’s no errors.”

Andre, Heidi, and Stephanie were competent students. In fact, two of them earned
high grades in their mathematics courses. Nevertheless, they categorized mathemati-
cal definitions incorrectly. All of them experienced difficulties that could be explained
partly by their failure to place mathematical definitions firmly in the stipulated cate-
gory.

The readers may now wish to think of their own experiences with student misuse of
definitions and consider the role miscategorization may play in that misuse.

Surprise 2: Many students do not use definitions the way mathematicians do, even
when the students can correctly state and explain the definitions.

The improper use of definitions is not a surprise. In an extreme (but familiar) case,
definitions are not used at all! Anyone who has ever taught an advanced mathemat-
ics course will have seen students complete tasks as in Figure 5. Vinner calls that the
“Intuitive Response.” Most mathematics instructors would assume such a response oc-
curs when the student does not know or does not understand the definition. Instructors
generally assume that if a student can accurately state and explain a definition, then
victory is at hand and such purely intuitive responses will be banished, as will other
misuses of definitions. Our data, alas, suggests otherwise. That is a surprise.

For example, in Edwards’s study, Stephanie was able to explain the definition of
infinite decimal given in her real analysis course.4 She could use the definition to

4The definition was: Let c1, c2, . . . , cn, . . . be an infinite sequence of integers with 0 ≤ ci ≤ 9. The number
sup{0.c1c2 . . . cn | n = 1, 2, 3, . . .} is denoted by 0.c1c2 . . . cn . . . and is called an infinite decimal.
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Figure 5. Intuitive response [21].

explain why 0.333 · · · = 1/3 (see [6] for details). Nevertheless, she disregarded the
definition when she argued that 0.999 · · · was not equal to one. Instead, she used her
concept image, which was based on long division. One can get 0.333 · · · by dividing
1 by 3, she said, but one does not get 0.999 · · · by dividing 1 by 1. The definition
in front of her was ignored. When the concept definition conflicted with her concept
image, the concept image won. Consistent with her categorization of mathematical
definitions, she seemed to think the concept definition for repeating decimal had not
been extracted quite correctly in the case of 0.999 · · · .

Similarly, in the same study, Jesse gave an acceptable definition of continuity, yet
used his concept image in claiming the absolute value function is not continuous at 0.
Even though he kept saying that according to the definition the function should have
been continuous, in the end, he placed more value on a memory from his introductory
calculus course that something was “different” about the absolute value function.

Surprise 3: Many students do not use definitions the way mathematicians do, even
in the apparent absence of any other course of action.

Vinner writes, “It seems to us that many teachers at the secondary and the colle-
giate levels expect a one way process for the concept formation as shown in Figure 1,
namely, they expect that the concept image will be formed by means of the concept
definition and will be completely controlled by it” [21, p. 71]. That was certainly what
Ward thought. He had no doubt about it in the case where the definition is simply a
formula, as for coset multiplication (appendix, Definition 4). He had little doubt about
it in general for a first course in abstract algebra, for terms like “group” and “ring”
therein defined certainly could carry no connotation on which to build a concept im-
age independent of the definition. He attributed the difficulties of Stephanie and Jesse
to entrenched, flawed concept images formed by prior experience with repeating dec-
imals and continuity. In the absence of any prior experience, Ward expected the inter-
views for the algebra study to show a concept image being formed and controlled by
the concept definition. There seemed to be no alternative.

We selected the definition of coset multiplication for use in our second interview
because it is a known trouble maker in group theory. Some sources of the trouble have
been studied in [3] and [2]. For students who might not have difficulty with the content
of the definition, we ensured trouble of another kind by asking the students to consider
a situation in which coset multiplication was not well-defined. Whatever the source
of the trouble, our particular interest was in observing whether and, if so, how the
students used definitions as tools in dealing with the trouble.
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Heidi, after finally calculating the necessary cosets, read the definition of coset mul-
tiplication and said, “Would you do it like in a FOIL form . . . ?” FOIL, First-Outer-
Inner-Last, refers to the distributive property for multiplying two binomials. Here it
amounts to elementwise multiplication of the two cosets. (Ironically, in some cases,
Heidi’s scheme is actually equivalent to the given definition, a fact that is not entirely
obvious.) Andre did a similar computation (under the moniker “Marvin the Martian”
because the lines he drew to designate the products formed an alien-looking face).

Blake, another student in the algebra study, had a sophisticated understanding of the
structure of mathematics. His description of the nature of mathematical definition was
on target. In both interviews, he repeatedly sought answers in the given definitions,
making comments like “It has got to be in this definition . . . .” Nevertheless, realizing
that the operands in coset multiplication are sets, he wondered for some time if the
definition of coset multiplication was only a “weird way” to indicate “simply listing
them [the coset elements] all out,” by which he meant forming the union of the two
cosets.

For Heidi and Andre, the coincidental fact that each coset in the problem we pre-
sented contained two elements led them to write expressions such as {V, H}{D, F}.
Presumably, that cued the FOIL response because of the visual similarity with
(V + H)(D + F). For Blake, the fact that two sets were being operated together
brought to mind another set operation, union. He then tried to imagine how the given
formula might describe union. For all three students, the concept image for coset mul-
tiplication was not formed as envisioned in Figure 1, even though we conjectured there
would be no alternative. Instead, we saw the appearance of an inappropriate, preexist-
ing, concept image, namely, either FOIL or union. The inappropriate concept image
competed with or may even have replaced the concept definition as the controlling
force in the formation of the concept image (see Figure 6). Upon reading an unfamiliar
mathematical definition, an experienced mathematician is more likely to form a con-
cept image (at least a partial concept image) based solely on the concept definition and
then afterward to explore its relationship to existing images. Heidi, Andre, and Blake
did not use the concept definition in the way an experienced mathematician would
use it.

Concept Definition Concept Image

New Concept (coset multiplication)

Concept Definition Concept Image

Existing Concept (FOIL or union)

Figure 6. Inappropriate image influencing image formation.

5. IMPLICATIONS FOR TEACHING. In this section we give some implications
for teaching inspired by these studies. We also suggest some sample classroom activ-
ities. Investigating the effectiveness of these suggestions could be the basis for future
research.
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Implication 1. The special nature of mathematical definitions should be treated as a
concept in its own right, one that should be understood at some level by all college
mathematics students.

This is especially important in a student’s first proof-intensive course, which we
refer to generically as an “introduction to proof” course. Certainly a case can be made
for insisting that students know the exact content of the definitions they use, but this is
not sufficient. It is very clear from our analysis of the data in these studies that students
also need to understand the specific role definitions play in mathematics. Thus in such
courses the nature of mathematical definitions needs to be addressed more directly and
more often.

In particular, introduction to proof courses certainly should include a unit on the
categorization and use of mathematical definitions. The introductory material in this
article should be sufficient for describing the categorization of definitions, although
reading chapter 4 of Robinson [15] for additional background would be very enlight-
ening for the instructor. Chapter 3 in Solow [17] and chapter 3 (especially pages 82–83)
in Exner [7] illustrate methods for teaching the use of mathematical definitions.

It may be informative for students (and instructors) to search the dictionary for
words that have both extracted and stipulated definitions. For instance, The American
Heritage Dictionary [1] lists both extracted and stipulative definitions for the word
“radical,” namely, “excellent; wonderful” and “the root of a quantity as indicated by
the radical sign,” respectively. This is an especially good example because it shows
how the use of words over time can evolve new extracted definitions. The definition
“excellent; wonderful” is not found in dictionaries printed thirty years ago. Mathe-
matical definitions are not extracted from popular usage in the way “excellent” has
become a definition for “radical.” Though mathematical definitions can vary over time
and context, mathematicians are careful to stipulate which definitions are to be used in
their own work.

There are other available activities that focus on the nature of mathematical defini-
tions. We give a few recommendations here.

A short version of the junior high activity in [12] played out very well for Ward,
even in an upper-division axiomatic geometry course. It quickly illustrates why math-
ematical definitions are and must be stipulated with such precision. The activity went
as follows.

Question from Ward: What is a quadrilateral?
Response from the class: A four-sided figure.
Ward drew a four-sided figure with curved sides.
Response: Oops, a four-sided figure having straight line segments as sides.
Ward drew an open four-sided figure . . .

The activity continued in this fashion until an acceptable definition was given. (Refer-
ence [12] gives further details and follow-up activities.)

Even more to the point are activities that engage students in actually formulating
definitions in the same way that practicing mathematicians do. For example, Edwards
uses David Henderson’s geometry text [9] in a course for mathematics majors who
intend to teach either high school or community college mathematics. Early in the
course students have a definition of “triangle” that is useful for a while on the Eu-
clidean plane, on the sphere, and on the hyperbolic plane, even though triangles on the
sphere can sometimes look a good deal different than the triangle on the plane that we
have seen since elementary school. However, students eventually find that the Side-
Angle-Side Theorem (SAS) is not true for all triangles on the sphere. At this point
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they must do what all mathematicians do—look for the special case or cases for which
the theorem is valid. This leads to a special definition of a “small triangle,” one for
which SAS is true on the sphere.

Implication 2. Instructors can better understand the struggles undergraduate students
face in proof-intensive courses by thinking in terms of the required shift to the concept
definition-based logical reasoning illustrated in Figures 2–4. The students very likely
have thirteen years of conditioning in courses where Vinner’s Intuitive Response (Fig-
ure 5) is closer to the norm. This transition can be difficult, not to mention puzzling,
for many students.

A brief presentation (like the one herein, for example) on concept definition and
concept image might provide students with a framework in which to think about what
is happening in their classes. In fact, Vinner’s discussion on concept definition and
concept image [21, pp. 68–73] is probably accessible enough to be of value to an un-
dergraduate. That presentation might be done in conjunction with a reading on the
centrality of rigor and proof in mathematics such as is found in Stewart (“What Math-
ematics Is About” [18, chap. 3]) in order to explain why the shift to increased rigor is
necessary.

Ward used the material from Vinner in two recent courses, an upper-division course
in axiomatic geometry and an introduction to proof course. In geometry, he spent about
twenty minutes on the first day of class discussing concept image versus concept def-
inition and showing Figures 1–5. Most of the students immediately adopted Vinner’s
terminology. When asking about a step in a proof, many would say “My concept image
is . . . [usually referring to a diagram]. How do I make that rigorous?” When an unjusti-
fied claim was made in a proof (for example, “ABCD is a quadrilateral”), Ward would
ask: “Is that based on concept image (the diagram) or concept definition (A, B, C , and
D are distinct coplanar points, no three of which are collinear, and any pair of the seg-
ments AB, BC, CD, and DA either have no points in common or have only an endpoint
in common)?” The students all seemed to see the point of such questions.

In the introduction to proof course, Ward introduced the concept image/concept def-
inition terminology and Vinner’s figures late in the course after several structural proof
techniques (in the style of Velleman [20], Solow [17], or Exner [7, chap. 3]) had been
introduced. He referred to various proofs done earlier in the course and showed how
the diagrams modeled the process used in class to produce the proofs. For example, in
proofs about sets, Venn diagrams provided a useful part of a concept image in some
cases. Figure 2 or Figure 3 modeled the process by which those proofs were con-
structed. For proving injectivity and surjectivity of functions, Ward had stressed how a
proof strategy could be outlined by simply looking at the quantifiers in the definitions.
He then related that to Figure 4. For the students who continued to write heuristic,
arm-waving pseudo-proofs, Ward pointed to Figure 5.

Implication 3. The results of this research should be considered in the mathematical
preparation of future teachers.

One might ask if it is sufficient to wait until students are enrolled in post-calculus
mathematics courses to begin talking about the special nature of mathematical defini-
tions? In Edwards’s dissertation study with students in a beginning real analysis course,
Jesse provided some evidence against waiting. Especially in Jesse’s early interviews,
he displayed a belief (and even acted accordingly) that the words of a definition were
secondary to one’s understanding of the related concept. To use the terminology of
Vinner, if one’s concept image conflicted with the related concept definition, Jesse
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believed the concept image should prevail. Jesse repeatedly attributed his understand-
ing of the nature of mathematical definitions to what he had learned in his high school
mathematics courses. As he explained in the second interview, his AP calculus instruc-
tor had talked early in the course about the notion of formal mathematical definitions.
But Jesse said, “After about the first day in calculus, we didn’t care about this [formal
definition] if you had the concept right, not really the definition, that was all that really
mattered.” And again in the third interview he said, “[the calculus teacher] would even
say, now this [the formal definition] may mean a lot of jargon, but this is what it really
means.” We can probably understand the motives of the instructor. It is important for
students to have deep conceptual understandings. Jesse’s instructor probably did not
want his students to be hindered by what often seems to be the heavily symbolic and
terse language of formal definitions, but he was also assuming (or hoping?) that his
students would not leave his course with mathematically incorrect understandings of
the concepts in calculus.

The goal of helping students develop deep conceptual understandings does not have
to conflict with helping students see the special role played by definition in mathemat-
ics. Indeed, The National Council of Teachers of Mathematics Standards recommend
that “Teachers can help students see that some words that are used in everyday lan-
guage, such as similar, factor, area, or function are used in mathematics with different
or more-precise meanings. This observation is the foundation for understanding the
concept of mathematical definition” [13, p. 63]. In other words, the standards advise
K–12 mathematics teachers to inform students of the need to beware of connotations
a word may carry because of its nontechnical use and also of the need to distinguish
informal concept images from precise concept definitions.

Furthermore, it is worth noting a common method of creating definitions that
seems related to extracted definitions. One defines ostensively [15, pp. 117–126], [10,
pp. 167–168] when one indicates something, with a gesture perhaps, and says “this is
a . . . ” With enough repetition, one expects the listener to pick up the meaning. Recall
that Heidi seemed to be under the impression that cosets could be defined ostensively.

Since many mathematics majors will eventually teach mathematics at some level,
they should be made aware of the dangers of defining ostensively. Prevost reports on
high school sophomores who were repeating a geometry course during the summer,
having failed it the previous year. He writes, “Almost all the students could parrot
the definitions they had learned during the previous year. Their ‘working definition,’
however, was ‘looks like.’ . . . As teachers, we are guilty of reinforcing this ‘looks like’
definition. The figures we draw are stereotypical and oriented with one side parallel to
the lower edge of the paper or chalkboard” [14, p. 412]. Thus, for instance, a square
whose sides are not parallel to the sides of the paper was identified by the students
as “a diamond, perhaps, but not a square” [14, p. 411]. In the terminology of this
paper, in spite of knowing the stipulated definitions of geometric figures, those students
worked as though the figures had been defined ostensively by repeated reference to
stereotypical instances of figures in certain orientations. They remained at van Hiele’s
“recognition” level of geometric sophistication rather than advancing to the “analysis”
level. (See [4] for a discussion of the van Hiele levels.) Not surprisingly, Prevost relates
this failure at accurate identification to failure in the course.

We certainly are not calling for the use in K–14 classrooms of the so-called
definition-theorem-proof means of discourse that is prevalent and valuable among
working mathematicians. What we are saying is that teaching for conceptual under-
standing is valuable but should not be done at the expense of students’ building a good
understanding of the nature and use of mathematical definitions. Even before students
take proof-intensive courses and even before college, instructors should attempt to
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plant the seeds of a more rigorous approach to the use of definitions. Thus, it is par-
ticularly important that undergraduate mathematics students who plan to teach should
have experiences in their college courses that help them build robust understandings
of the role and use of mathematical definitions.

6. CONCLUSION. We have used terms from the literature on definitions to cate-
gorize definitions as extracted (everyday language) or stipulated (mathematical). Our
research has shown that undergraduate mathematics majors may not fully understand
this distinction, and that this failure to understand affects their understanding of the
concepts themselves. The tendency of some of the real analysis students in Edwards’s
original study to rely on their concept images instead of the related concept defini-
tions, when the two were in conflict, could be partially explained by the fact that some
of the definitions used in that study were for concepts that were very familiar to the
students from their previous mathematics courses (continuity and infinite decimal, for
example). This was not the case in the abstract algebra study, yet some of the algebra
students displayed a similar preference for concept image over concept definition.

We have concluded, therefore, that the special nature of mathematical definitions
should be addressed more directly in mathematics courses at all levels, but especially
in the first proof-intensive course. Students should have experiences that focus on the
use of mathematical definitions and experiences in the process of defining. Although
it may be true that many students eventually “figure out” the role of mathematical
definitions, it seems that it would be preferable not to leave this important facet of the
nature of mathematics to chance.

7. APPENDIX.

Abstract Algebra Interview 1

The first interview began with Edwards asking “What is mathematics?” By asking
follow-up questions as needed, Edwards made sure each student said something about
the nature and role of definitions in mathematics.

After that introductory discussion, each student was handed the following defini-
tion. Binary operations were being studied in class, but the definition of group had not
yet been presented.

Definition 1. Let G be a nonempty set together with a binary operation ! that assigns
to each ordered pair (a, b) of elements of G an element of G denoted by a ! b. We say
G is a group under ! if the following three properties are satisfied.

1. The operation is associative; that is, (a ! b) ! c = a ! (b ! c) for all a, b, c in G.
2. There is an element e (called the identity) in G, such that a ! e = e ! a = a for

all a in G.
3. For each element a in G, there is an element b in G (called the inverse of a) such

that a ! b = b ! a = e.

After reading the definition, each student was given these three tasks to complete.

Set: R, the set of real numbers
Binary Operation: Ordinary subtraction, −
Is R a group under subtraction?
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Set: R, the set of real numbers
Binary Operation: The operation ⊕ where a ⊕ b = a + b + 3
Is R a group under ⊕?

Set: R, the set of real numbers
Binary Operation: Ordinary multiplication
Is R a group under multiplication?

Abstract Algebra Interview 2

In addition to Definition 1, the following definitions were given in the second inter-
view. The last two were new to the students.

Definition 2. Suppose K is a subgroup of a group G and a is an element of G. The
set {ay : y ∈ K } is called a left coset of K in G. It is denoted by aK .

Definition 3. Suppose K is a subgroup of a group G. We define G/K to be the set of
all left cosets of K in G. In other words, G/K = {aK : a ∈ G}.

Definition 4. Suppose K is a subgroup of a group G. For left cosets bK and cK of K
in G, we define (bK )(cK ) = bcK .

Each student was given the following task to complete based on the definitions. The
symmetry group of the square is denoted by D4, and F denotes a reflection across one
of the diagonals.

Consider the subgroup 〈F〉 of the group D4 under the operation of composition.

1. Find D4/〈F〉.
2. Is D4/〈F〉 a group where (b〈F〉)(c〈F〉) is defined by Definition 4?
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