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Surprising Sine Sums and Integrals 

Robert Baillie, David Borwein, and Jonathan M. Borwein 

1. MOTIVATION AND PRELIMINARIES. We intend to show that a variety of 

trigonometric sums have unexpected closed forms by relating them to cognate inte 

grals. We hope this offers a good advertisement for the possibilities of experimental 
mathematics, as well as providing both some entertaining examples for the classroom 
and a caution against over-extrapolating from seemingly compelling initial patterns. 

Recall the standard convention sinc(x) := sin(x)/x when x^O and sinc(O) := 1. 
It is known (see, for example, [4] and [3]) that 

r?? r?? it 

/ sinc(x)dx= / sinc2(x)dx 
? ?, 

Jo Jo 
W 2 

"00 I ^ Jl. 

(1) 

while 

oo OO _ 1 

J2 sinc(rc) = ]T sine2(ft) = ---. (2) 
n=1 n=\ 

Since sine is an even function we can remove the mysterious ?1/2 from (2) to get the 

equivalent statement 

/OO /?OO oo oo 

sinc(x)dx ? / sinc2(x)dx = Y^ sinc(n) = ?_\ sinc2(/i) = n. 

In the rest of the paper we do not restate this sort of equivalence and mainly use the 
one-sided sums and integrals which are more familiar to most readers, rather than the 
two-sided versions which are more natural from a Fourier analysis perspective. 

Experimentation with Mathematica suggested that for N ? 1,2, 3, 4, 5, and 6, the 
sum 

oo 

y^sinc^(n) 
n = \ 

is ?1/2 plus a rational multiple of n. But for Af = 7 and N = 8, the results are com 

pletely different: Mathematica gives polynomials in n of degree 7 and 8 respectively. 
For example, for TV = 7, we get 

1 1294237T - 2016847T2 + 144060tt3 - 54880;r4 + 117607t5 - 1344tt6 + 64tt7 

~2+ 46080 
" 

These results are surprising, and we explain them below. But there's more. Further 

experimentation suggested that for TV = 1, 2, 3, 4, 5, and 6 (but not 7 or 8), we had 

oo 1 /?OO 

Vsinc"(H) = ? +/ sincN(x)dx. (3) 
n=\ 2 ^0 
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This too was unexpected. In the integral test for infinite series, the convergence of the 

integral of f(x) may imply the convergence of the sum of f(n), but there is usually 
no simple relationship between the values of the sum and the corresponding integral. 

We found more examples where the sum was 1/2 less than the corresponding inte 

gral. In [5] and [8], it was shown that, for N = 0, 1, 2, 3, 4, 5, and 6, 

? 

00 N ' X \ . It 

k=0 
nsinc (-) dx = - (4) 

but that for N ? 1, the integral is just slightly less than jt/2: 

I sinc(x) sine ( 
? 

) sine ? ? J dx 

il 6879714958723010531 \ " n 
\2 

" 
935615849440640907310521750000/ 

' 

This surprising sequence is explained by Corollary 1 of Theorem 2 in [5], which we 

incorporate into Theorem 2 below. 
More experiments suggested that, for N = 0, 1, 2, 3, 4, 5, 6, and 7, the sums were 

also 1/2 less than the corresponding integrals: 

In fact, we show in Example 1(b) below that (6) holds for every N < 40248 and 
fails for all larger integers! This certainly underscores the need for caution, mentioned 
above. 

We now turn to showing that the theorems for integrals proven in [5] imply ana 

logues for sums. Our results below use basic Fourier analysis, all of which can be 
found in [16] and [8], to explain the above sums, and others, and to allow us to express 
many such sums in closed form. 

2. WHEN SUMS AND INTEGRALS AGREE. Our notation and original develop 
ment in this section were based on Boas and Pollard [4], but the present more satis 

factory treatment is largely due to the kind and insightful suggestions of Mark Pinsky. 
See also [13] for pertinent information about Fourier analysis. 

Suppose that G is Lebesgue integrable over (?00, 00) and define its Fourier trans 
form g by 

V27F./ 
g(x) := ?= / e-luxG(u)du. 

At any point u such that G is of bounded variation on [u 
? 

8, u + 8] for some S > 0 
we have [16, Theorem 23] that 

*T 1 1 r 
-{G(u+) + G(u-)}= lim ?= / ?llxg(x)dx, (7) 2 T-+00 ̂2jt J-t 

where G(m?) denotes lim^^u? G(x). 
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Suppose, in addition, that G(x) = 0 for x ? (?a, a) for some a > 0, and that G is 
of bounded variation on [?8, 8] for some S > 0. Then clearly 

g(x) = -=f e~luxG(u)du, (8) 

and hence, for r = 0, 1, 2, ... , by summing the exponential, as in [15, Theorem 5.12], 

> g(w) - -= 
/ G(w)-??--d?. (9) 

/2_r V2tt J-a sin(?/2) 

Suppose first that 0 < a < 2tt . Then 

^ I ra * sin((r + l/2)w) Y g(n) = -= / G*(n) 
^ ' du, (10) 

where 

G*M-GM . 
M 
(11) 

sin(M/2) 

Since G* is of bounded variation on [?8, 8] and Lebesgue integrable over (?a, a), 
and G*(0+) = 2G(0+) and G*(0-) = 2G(0-), it follows, by a standard Jordan-type 
result (see the proof of Theorem 3 in [16]), that 

lim 
f G*(u)Sm(ir 

+ 1/2)M) du = n-{G*(0+) + G*(0-)} 

= tt{G(0+) + G(0-)}. (12) 

The following proposition, which enables us to explain most of the above experimental 
identities, now follows from (7) with u = 0, (10), (11), and (12). 

Proposition 1. If G is of bounded variation on [?8, S], vanishes outside (?a, a), and 
is Lebesgue integrable over (?a, a) with 0 < a < 2n, then 

lim Tg(n)= lim f g(x)dx = M{G(0+) + G(0-)}. (13) 
n ??r J?l T 

As a simple illustration, consider the function G that equals 1 in the interval (?1, 1) 
and 0 outside. The corresponding g is given by g(x) = 

^/2/rt sinc(x). Then (13) 
shows, since sinc(jc) is an even function, that 

oo /?OO 

1+2 Yj sinc(fl) = 2 / sinc(x) dx = 7r, 
?-i Jo 

where the integral is an improper Riemann integral. 
The prior analysis can be taken further, assuming only that G(x) = 0 for x ? 

(?a, a) for some a > 0. Suppose first that 2jx < a < 4tt and that G is also of bounded 
variation on [?2ic 

? 
8, 

? 2rc + 5] and [2n 
? 

8, 2ic + 8]. Then, by splitting the integral 
in (9) into three parts and making the appropriate changes of variables, we get 
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v- , , 1 r r( ,sin((r+l/2)H) J 
y g(n) 

? 
t_ / G(u)-du 

t^J V2?J-n sin(n/2) 

, - 
r1W r? mo ,sin((r + 1/2)?) ̂  H-== / G(w + 2tt)-;-du 

i r 

//27T J-7T sin(w/2) 

sin((r + l/2)w) 
sin(w/2) 

Hence, from this we get as in the previous case that when 2tt < a < 4n 

1 / ?uii^v/ ~T i/^juj 
-\--= / G(u 

? 
2tc)-???-du. 

\J2tZ Jln-a 

lim y g(ri) = lim / g(x)dx r^oo ??~' T->oo / T n = ? r J?l 

+ 
J^ 

{G(2tt-) + G(2tt+) + G(-2tt-) + G(-2tt+)}. (14) 

This process can evidently be continued by induction to yield that, when 2mn < a < 

2(m + 1)tt with m a positive integer, and G is of bounded variation in intervals con 

taining the points ?2nn, n = 
0, 1, ... , m, 

lim Y] g(n) = lim / g(x)dx+ - Rm, (15) r^oo * ?' r^oo lT V 2 n??r V'~I ' 

where 

m 

Rm := 
Y^{G{2njx-) 

+ G(2n7T+) + G(-2nn-) + G(-2n7r+)}. 
n=l 

3. APPLICATIONS TO SINC SUMS. For an application of the above analysis let 

TV 

g(x) '-= 
]~]sinc(a*x) 
Ar=0 

with all ak > 0, and let 

N 

AN := 
^ak. 

k=0 

The corresponding G satisfying the Fourier transform equation (8) can be taken to 
be the function FN+\, with differently numbered ak, defined in Section 5 below. As 
shown for example in [5] and also in [12, p. 20, Entries 5.2-5.13], G is positive and 
continuous in the interval IN := (?AN, AN) and 0 outside the closure of IN, and is 
of bounded variation on every finite interval; indeed, G is absolutely continuous on 

(-co, oo) when N > l.lt therefore follows from (13) along with (14) that 

oo N /?oo N 

1+2 y^ JJ sinc(akn) = 21 Y[ sincfe*) dx, (16) 
n=\ k=0 ^? k=0 

provided 

AN < 2ir when N > I, or AN <2n when N = 0. (17) 
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The proviso is needed since (15) tells us that the left-hand side of (16) is strictly greater 
than the right-hand side when (17) doesn't hold, since then either (?) N > I, AN > 2tt, 
and G(?2tt) > 0 or (ii) N = 0, AN > 2n, and G(2tt-) + G(-2tt+) > 0, and in 
either case all other terms that comprise the remainder RN are nonnegative. We can 

go further and say that when the proviso fails the constant 1 on the left-hand side of 

(16) has to be replaced by a constant C < 1 that depends only on the value of AN; 

unfortunately there appears to be no neat expression for C. We emphasize that though 
the case N ? Q follows from the above analysis, neither the series nor the integral in 

(16) is absolutely convergent in this case. For all other values of N both are absolutely 
convergent. 

As is made clear in [4], this "sum = integral" paradigm is very general. However, 
as a perusal of [12] shows, there are not too many "natural" analytic g for which G 
is as required?other than powers and other relatives of the sine function. Some nice 

examples are exhibited by Boas and Pollard in [4]; often they require massaging. For 

example, with G(t) := (1 + elt)a for |i| < n and zero otherwise, and with a > ?1, 

they obtain a result first found by Shisha and Pollard: 

a)eint 
= H (a)eltu du = (1 + elt) 

nj J-oc W E n =?oo 

for a > ? 
1, |f | < jr. 

Additionally, however, in the case of sine integrals, as explained in [5, Theorem 1 

and Remark 1], [8], and more explicitly in [6], the right-hand term in (16) is equal to 

2~NVN7t/ao, where VN is the?necessarily rational when the ak are?volume of the 

part of the cube [?1, 1]^ between the parallel hyperplanes 

a\X\ + a2x2 + + aNxN = ?a0 and a\X\ + #2X2 + + a^xN = a$. 

Theorem 1 (Sine Sums). One has 

1 ?? N r?? N 7T V 7T 1 ^r?\ t?r / -1?r 71 V ?\[ 71 - + 2^ 1 1 sincfen) = / II sinc(akx) dx = ? ? < ? (18) 

where the first equality holds provided 

2ao 2N 2a0 

AN = ^^ak 
<2tv when N > 1, or AN < 2it when N ? 0. (19) 

The second equality needs no such restriction. Moreover (18) holds with equality 
throughout provided additionally that 

AN <2a0. (20) 

Various extensions are possible when (19) or (20) fails. The following corollary 
follows immediately from (18) on making the substitution x = xt in the integral. 

Corollary 1. Let x be any positive number such thatO < x AN <2n when N > I, or 

0 < x AN < 2n when N = 0. Then 
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oo N ?oo N X C 71 V 71 

2 ^?Lo Jo ? 2ao 2" 2a0 

In particular, (21) /s independent of x in the given interval. 

When (20) fails but AN_i < 2a0, as proven in [5, Corollary 1] we may specify the 
volume change: 

Theorem 2 (First Bite). Suppose that 2ak > aN for k ? 0, 1, ... , N - 1 and that 

An~\ S 2<2o < Ajv, andO < x AN < 2tc. Then 

oo r 
poo 

r 
- + x y^ I] sinc(Tflfcfl) = / TT sinc(?jt^) ?^ 

n = l ?=0 ^? Jt=0 

? 
/orr 

= 
0, 1,... ,N- 1, (22) 

2a0 

while 

r 
?? 

/V 
/?oo /V 

?h r y^ [I sinc(r^^) = / Jl ?nc(akx) dx 

^?L?l (^~2^ \ (23) 
2a0\ 2^-^!nL^/' 

4. EXAMPLES AND EXTENSIONS. We may now explain the original discover 
ies: 

Example 1. (a) Let N be an integer and for k ? 0, 1, ... , N, let ak := 1/(2/: + 

1). If N is in the range 1 < N < 6, then 

A/v = y^^ik 
< 2a0 and A/v < 2tt. 

k=0 

Hence, for each of these N, conditions (19) and (20) of Theorem 1 hold and so we can 

apply that theorem to get 

?? N / ? \ roc N ' x \ 71 1 ?? yv [ n \ r?? / 
dx ? 

2 t^U V2^ + iy Jo \a \2k + v 2 

Now for N = 7, condition (20) fails because 

11111 1 1 
AN 

= l-\-1-h 
- 

H-1-1-1 
3 5 7 9 11 13 15 

11111 1 
u N ' 

3579 11 13 

However, the conditions of Theorem 2 are met, namely 

88069 91072 ? 
AN-.? 

=- < 2a0 < AN 
= - < 2n, 45045 

- 
45045 
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and for each k = 0, 1, ... , N 
? 

1, we have 2ak > aN. Therefore, we can take r = 1 

and apply equation (23) of Theorem 2 to get 

i oo 7 

?h / M sine . 2 ^?1 \2k n = \ k?0 

? I f| sine (- I dx 
J0 11 \2k+\) 
^ / /91072 9\7 \ _ n l y _ V45?45 

- 
2i \ 

2 \ 267' 1 1 - 
/ \ 

^ ' ' 3 5 15/ 

_ Ti / 6879714958723010531 \ 

"2\ 467807924720320453655260875000 ) 
' 

(b) Let ak be as in part (a). If 7 < N < 40248, then Y?=o ak < 27r> so (19) holds 
but (20) does not. For each of these N, Theorem 1 tells us that 

i oo N / \ /.oo N / \ 
- + 7 If sine (- I = / FT sine (- | dx < ?. 2 ?-H \2k+l) h U \2k+l) 2 

For N > 40248, the equality in the above formula fails. Indeed, equation (15) shows 
that 

?+su (st?) 
* 
r?s,nc(st?) 

" 

since the error term is necessarily strictly positive for the requisite G, which was dis 
cussed at the beginning of the previous section. In a remarkable analysis based on 
random walks, Crandall [10] rigorously estimates that the error for N = 40249 is mi 
nuscule: less than 10~226576. The integral is still less than 7r/2 by virtue of [5, Theorem 

1]. Moreover, all subsequent errors are provably no larger than 10~13679. 

(c) Let ak := \/(k + l)2. Because J2T=o ak converges with sum 7r2/6 which is both 
less than 27i and less than 2a0 = 2, Theorem 1 says that, for every N > 0, 

5+? ?s,nc (?t???)=f ?s,nc (?^) 
** * 

Thus, no matter how many factors we include, both sum and integral are unchanged! 
In fact, if the ak are the terms of any positive infinite series that converges to a sum 
less than or equal to min(27r, 2a0), then for every N > 0, 

1 _??. 
/V /?oo N 

- + 2_. [\ sinc(akn) = I FT sinc(akx) dx ? ?. 
2 /i=l k=o ^o k=0 

Example 2. To inject a little number theory, let p0, p\, p2... be the primes starting 
with po = 2. Then, by Theorem 1, 

1 ?? N / \ /.oo N / v \ i + ?rfsinc(-)= / ffsinc(-)^ (24) 

holds until Ylk=o ^1 Pt exceeds 27r. For N = 0 and TV = 1 the value of (24) is it, but 
for N = 2, Theorem 2 tells us it is tt(1 

- 
1/240). 
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We now estimate the N for which (24) ceases to hold. The sum of the reciprocals of 
the primes diverges slowly. In fact, ̂{l/p: p,< x, p prime) is roughly log (log (x)) + 

B, where B ~ 0.26149 ... is the Mertens constant (see, e.g., [11, pp. 35, 79, 80]). In 
order for this sum to exceed 27r, x must be about y = exp(exp(27t 

? 
B)) 

~ 10179. 

Thus, by the Prime Number Theorem, TV ~ y/log(y), which is about 10176. Thus, 

anyone who merely tested examples using these reciprocal prime coefficients would 
almost certainly never find an integer N where (24) failed. This time Crandall [10] 

proves?without assuming the Riemann hypothesis?that the left side minus the right 
side of (24) is less than 10~(1? \ which is much less than one part in a googolplex. 

What makes this even more interesting is that neither side of (24) is tiny: using The 
orem 4 of [10], Crandall calculates that the right side of (24) exceeds 0.686tt for all 
N. Moreover, assuming the Riemann hypothesis the upper bound on the difference 

reduces to 10-(1?178). 

Example 3. Let 1 < TV < 6, and take a0 = a{ = = aN-\ 
? 1. Then condition 

(19) with /V replaced by N ? 1 is satisfied, so equation (18) of Theorem 1 tells us that 
for each N = 1, 2, 3, 4, 5, and 6, we have 

OO 1 /?CO 

> ?x\cN (n) =-h / s'mcN (x)dx. 
?? 2 'o 

Moreover (see [5, Remark 1] and [8]), for each N > 1 the integral is an effectively 
computable rational multiple of Tt, the numerator and denominator of which are listed 

by Sloane in [14, Seq. A049330] and [14, Seq. A049331]. If N = 7, then AN_X = 

7 > 2tt, so (19) with N replaced by N ? 1 is no longer satisfied and, in this case, as 

Example 4 shows, the sum and the integral do not differ by 1/2. Indeed, for N > 7, 
the sums have an entirely different quality: they are polynomials in Tt of degree N. 

We continue this discussion in the next counterexample, for which we define, for 
JV = 1,2,... , 

/?CO oo 

iN \= I sincN (x)dx, sN := 
y^sinc^fo). 

Jo n=1 

Example 4. 

(a) We saw in Example 3 that for N = 1, 2, 3, 4, 5, and 6, we have sN = iN 
? 

1/2. 
By contrast /7 = 5887tt/23040, but Mathematica gives 

1 43141 16807 , 2401 , 
Si =-1-Tt-Tt ~\-Tt 

2 15360 3840 768 
343 4 49 , 7 fi 1 7 

-Tt4 + -Tt5-Tt6 + -Tt1. (25) 288 192 240 720 

Similarly, ?8 = 15l7r/360, and Mathematica gives 

1 7337T 256tt2 64tt3 16tt4 4ti5 Tt6 Tt1 rts 
ss = 

-- 
+-h-1-h-. (26) 2 210 45 15 9 9 15 180 5040 

Although (19) fails, we can explain these sums, and we will show how to express sN 
in closed form. 

December 2008] surprising sinc sums and integrals 895 

http://www.jstor.org/page/info/about/policies/terms.jsp


(b) For N < 6, sN is 1/2 less than a rational multiple of it. The sudden change 
to a polynomial in tt of degree TV is explained by the use of trigonometric identities 
and known Bernoulli polynomial evaluations of Fourier series. In general, we have the 

following two identities, whose proofs we leave to the reader: 

N + 1 iV + l / ? N -I- 1 \ 
(?> = ^ E(-da'+' (N tl i)sin ({2k ~1)n> (27) sin N ' 

JIN 
k=\ 

and 

si-2"<?>=^ (iO+?<-<2 
- 
*)cos<2tn)) 

<28) 

In particular, to compute s7, we start with 

7 35 21 7 1 
sin (n) = 

? sin (ft)-sin(3n) H-sin (5?)-sin(7rc). (29) 64 64 64 64 

Now, for 0 < x < 271, 

? sin(nx) (?l)^"1 lhr,x / x \ 

and 

y^ cos(?x) (-1)"-' 2N /x\ 

L,-?sr- 
= 
?2?Q*) M^)' 

(31) 
n = \ 

where 0/v(x) is the TVth Bernoulli polynomial, normalized so that the high-order coef 
ficient is 1/TV!, see [15, p. 430]. We divide (29) by n1 and sum over n. Then, we would 
like to use (30) four times with TV = 3 and x = 1, 3, 5, 7. But there is a hitch: (30) is 
not valid for x ? 7 because x > 2it. So instead of 7 we use 7 ? 2tt. It is this value, 
7 ? 271, substituted into the Bernoulli polynomial, that causes s1 to be a 7th degree 
polynomial in it. For s13, for example, we would have to use jc = 1, 3, 5, 7 

? 
2tt, 

9 ? 2tt, 11 ? 27T, and 13 ? 471. For TV > 7, we would end up with an TVth degree 
polynomial in it. 

(c) With more effort this process yields a closed form for each such sum. First, for 
TV = 7 we have observed that 

?64 sin7(n) 
? ?nijn) 

? 7 sin(5ft) + 21 sin(3rc) 
? 35 sin(n), (32) 

and that 

E?? 

?n(nx) 7 / x \ 
?\-L 

= 
?Ait1^ ( 

? 
) for 0 

< x < 2tt, (33) 
n1 \2it / 

where 

1 1 , 1 s 1 7 1 fi 
07(x) := -x-x3 +-x5 +-x1-x6 (34) ^ v 

30240 4320 1440 5040 1440 

is the Bernoulli polynomial of order seven. Note that in (32), 7 is the only coefficient 
that falls outside the interval (0, 2it). Substituting (33) into (32) yields (25), provided 
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instead of simply replacing x with 7, we replace x with 7 ? 2tt when dealing with 
the sin(7n) term in (32), to stay in the interval where (33) is valid. The same proce 
dure, with versions of (33) and (32) using cosines in place of sines, yields (26). An 

interesting additional computation shows that 

* + 
5-''=<i*''KIir)-*'(?))- 

(35) 
In other words the difference between s7 + 1/2 and /7 resides in the one term in (32) 
with coefficient outside the interval (0, 2tt). 

(d) Let us use the fractional part 

{zh* := 
z-^r 2tt L2ttJ 

In like fashion, we ultimately obtain pretty closed forms for each sM> 
For M odd: 

For M even: 

Ml 
nM ?(_l)*+l ?MJ?_ \ abM ({2k - IW) . 

M 
$M (-1)M/2 mxM-D*+' / M ?f HT/ m \ 

7^ ok.o + 1 \T V M! ^ 5t,o 

where, as usual, S^o = 1 when k = 0, and 0 otherwise. Remarkably, these formulae 
are rational multiples of Tt exactly for M < 6 and thereafter are polynomials in Tt of 

degree M. 

Many variations on the previous themes are possible. For example, one may in 
sert powers of cosine as in [5, Thm. 3], although it does not seem possible to extend 
Theorem 1 to this case. In simple cases it is, however, easy to proceed as follows: 

Example 5. Let us introduce the notation 

' 
smc(n)1 cos(n)j. = E' 

71=1 

We discovered experimentally that sjj 
= 

51,2 
= 

s2,\ 
= 

^3,1 
= 

s2,2 
= 

^r/4 
? 

1/2 and 

that in each case the corresponding integral equals tt/4. Likewise s\3 = s2,3 = ^3,3 = 

?"1,4 = ?2,4 = 37T/16 
? 

1/2 while the corresponding integrals are equal to 3tt/16. Ex 

cept for ̂ 12, ?2,2, ?2,3> and 5*1,4, the identity sinc(n) cos(n) = sinc(2^) allows us to ap 
ply Theorem 1. In the remaining four cases, we may use the method of Example 4 to 

prove the discovered results, but a good explanation has eluded us. Richard Crandall 

[9] has, however, recently pointed out that Poisson summation will produce a finite 
closed form for each stj. 

5. AN EXTREMAL PROPERTY. We finish with a useful Siegel-type lower bound, 
[2, Exercise 8.4], giving an extremal property of the sinc^ integrals. This has appli 
cations to giving an upper bound on the size of integral solutions to integer linear 

equations, [1], In [1] it was intimated that the proof was easy; it appears not to be so: 
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Theorem 3 (Lower Bound). Suppose a0 > ak > Ofor k ? 1,2,... , n. Then 

poo n />oo 

/ risinc(^x)dx > / sincn+1(a0-^)dx. (36) 
Jo k=0 Jo 

In view of Corollary 1 we then have the following: 

Corollary 2. Suppose a0 > ak > Ofor k ? 1,2, ... ,n and 0 < xAn < 2it. Then 

t ?? n /?oo n 
- + r y^ |[ sinc(ra^r) ? / ||sinc(^x)dx 

r=\ k=0 J? k=0 

poo 
> I sincn+l (a0x)dx. 

Jo 

Proof of Theorem 3. Let 

r?? 
n 

r?? 

xn := I V[sinc(akx) dx, ?n := j sincn+\aox) dx, 
Jo ,,-n Jo 

(37) 

'0 k=0 

and, for a > 0, let 

Xa(x) 
' = 

1, if \x\ < a\ 

1/2, if \x\ = a; 

0, if |jc| > a. 

Further, let 

^o := -,hzXa0, Fn := (A)1""/! * /2 * 
' ' ' * /?, 

a0V 2 

where 

an V 2 

and * indicates convolution, i.e., 

/oo 

//(*-f)/*(0df. 
-oo 

Then (see [5], and [12, p. 20, Entry 5.2]) L0 is the Fourier transform of sinc(a0^) 
and, for ft > 1, Fn is the Fourier transform of fl/Ui sincfex). In addition, for ft > 1, 
Fn(x) is an even function which vanishes on (?oo, 

? 
an] U [crn, oo) and is positive on 

(?an, crn), where on := An 
? 

a0 = ax + a2 + + an. Furthermore, for n > 1, Fn(x) 

is monotone nonincreasing on (0, oo). Hence, by a version of Parseval's theorem (see 
[5]), 

xn = / Fn(x)F0(x)dx = ?J- / En(x)dx for ft > 1. 
Jo ?*o V 2 Jo 

(38) 
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Observe that, for n > 2, 

1 
Tn 

? 
~7=-Tn_\ * jn, 

V2tx 

and hence that, for y > 0, 

ry i ry r?? 

/ Fn(v)dv = ^ dv Fn_x(v-t)fn(t)dt 
Jo \l2ft JO J-oo 

j ry ran 
= ? 

/ 
dv Fn_x(v-t)dt 

?an Jo J-an 

I ran ry 
= ? / df / En_x(v -t)dv 

?an J-an Jo 

Y ran ry-t 
= - / dt I Fn-\(u)du. 

2an J_an J_t 

Thus, we determine that 

ry ry 

/ Fn(v)dv = Fn-i(u)du +Ii(an) +I2(an), (39) 
Jo Jo 

where, for x > 0, 

i rx r? i r ?y-' 
I\{x) := ? / d? / Fn_\(u)du and /2U) := ? / ^ / Fn_\(u)du. 

2x J_x J_t 2x J_x Jy 

Now I\ (x) = 0 since f_t Fn_\ (u) du is an odd function of t, and for y > x, 

I rx ry-t j 
/?O ny-t 

h(x) = ? / di / Fn_l(u)du + ? dt I Fn_x(u)du ?x Jo Jy ?x J-x Jy 

= -!- ? 0(0 di, (40) 
2x Jo 

where 

/.y+f /.^ 

0(0:=/ Fn_i(u)du- Fn^(u)du < 0 for 0 < f < y, (41) 

since F?_i(m) is monotonie nonincreasing for w > 0. Observe that 0'(O = 

Fn_\(y + 0 
? 

Fn_i(y 
? 

i) < 0 for 0 < t < y, apart from at most two exceptional 
values of f when n = 2. Hence 

I'2(x) = 
? 

(0OO 
- 

0(0) di = ? / dr / 0'(w) dw < 0, 

and so 

I2(x) is nonincreasing for 0 < x < y. (42) 
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Our aim is to prove that xn > ?n. Since, by Theorem 1, this inequality automatically 
holds when a0 > on, we assume that a0 < an. Note that in case n = 1 the hypothesis 
a0 > a\ = o\ immediately implies the desired inequality. Assume therefore that n > 2 
in the rest of the proof. Suppose a0, ax, ... , an are not all equal, and re-index them so 

that a0 remains fixed and an < an_{ < a0. If an is increased to an-\, it follows from 

(42) with x = an and y = a0 that I2(an) is not increased and hence, by (38), and (39) 
with y = a0, that xn is not increased. Continuing in this way, we can coalesce all the 

ak's into the common value a0 without increasing the value of xn. This final value of 
xn is, of course, ?n, and so the original value of xn satisfies xn > ?n, as desired. 

Perhaps a somewhat analogous version of Theorem 3 holds for sums? 
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A Very Short Evaluation of an Integral 
In [1], the author used partial fractions to evaluate the integral of an odd power 
of sec 0. Here, we give a one-sentence evaluation of this integral: 

J J sec?+tane 

t + lt\2ndt ?r? I ? 
if := sec? + tan?) 2 / t 

In 

1 (2n\ = 
2^V?7 

g [sece+tan?] 

*Z? /1*A ivn^a _L to? ?\2n-2r _ /c~~ ?) _ fori r\\2n-2r 

m 

. (seco + tanO)M-?r 
- 

(sec? 
- 

tonOy 

In the second step, we have used the fact that l/t = sec 0 ? tan 6, and in the last 

step, for each r between 0 and n-lwe have combined the terms of the sum for 
r and 2n ? r. One can, of course, rewrite the expression in terms of 1 ? sin? 

easily because 

, n ~ (1 + sin?)2 l + sin<9 
(sec6> + tan<9)2 

=-~- =-?. 

l-sin2# 1-sin? 
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