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Abstract

The systematic biases seen in people’s probability judgments are typi-

cally taken as evidence that people do not reason about probability using

the rules of probability theory, but instead use heuristics which sometimes

yield reasonable judgments and sometimes systematic biases. This view

has had a major impact in economics, law, medicine, and other fields;

indeed, the idea that people cannot reason with probabilities has become

a widespread truism. We present a simple alternative to this view, where

people reason about probability according to probability theory but are

subject to random variation or noise in the reasoning process. In this

account the effect of noise is cancelled for some probabilistic expressions:

analysing data from two experiments we find that, for these expressions,

people’s probability judgments are strikingly close to those required by

probability theory. For other expressions this account produces system-

atic deviations in probability estimates. These deviations explain four

reliable biases in human probabilistic reasoning (conservatism, subaddi-

tivity, conjunction and disjunction fallacies). These results suggest that

people’s probability judgments embody the rules of probability theory,

and that biases in those judgments are due to the effects of random noise.

Keywords. probability; rationality; random variation; heuristics; biases
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1 Introduction

The capacity to reason with uncertain knowledge (that is, to reason with prob-

abilities) is central to our ability to survive and prosper in “an ecology that is

of essence only partly accessible to foresight” (Brunswik, 1955). It is therefore

reasonable to expect that humans, having prospered in such an ecology, would

be able to reason about probabilities extremely well: any ancestors who could

not reason effectively about probabilities would not survive long, and so the bio-

logical basis of their reasoning would be driven from the gene pool. Probability

theory provides a calculus of chance describing how to make optimal predic-

tions under uncertainty: taking the argument one step further, it is reasonable

to expect that our probabilistic reasoning will follow the rules of probability

theory.

The conventional view in current psychology is that this expectation is

wrong. Instead, the dominant position is that

In making predictions and judgments under uncertainty, people do

not appear to follow the calculus of chance or the statistical theory

of prediction. Instead they rely on a limited number of heuristics

which sometimes yield reasonable judgments and sometimes lead to

severe and systematic errors (Tversky and Kahneman, 1973, p. 237)

This conclusion is based on a series of systematic and reliable biases in people’s

judgements of probability, many identified in the 1970s and 1980s by Tversky,

Kahneman and colleagues. This heuristics and biases approach has reached a

level of popularity rarely seen in psychology (with Kahneman recieving a Nobel

Prize in part for his work in this area). The idea that people do not reason us-

ing probability theory but instead follow various heuristics has been presented

both in review articles describing current psychological research (Gigerenzer and

Gaissmaier, 2011, Shafir and Leboeuf, 2002), and in numerous popular science

books summarising this research for the general public (e.g. Ariely, 2009, Kah-

3



neman, 2011). This approach has had a major impact in economics (Camerer

et al., 2003, Kahneman, 2003), law (Korobkin and Ulen, 2000, Sunstein, 2000),

medicine (Dawson and Arkes, 1987, Eva and Norman, 2005) and other fields

(Williams, 2010, Hicks and Kluemper, 2011, Bondt and Thaler, 2012, Richards,

2012). Indeed the idea that people cannot reason with probabilities has become

a widespread truism: for example, the Science Gallery in Dublin recently pre-

sented an exhibition on risk which it described as “enabling visitors to explore

our inability to determine the probability of everything from a car crash to a

coin toss” (The Irish Times, Thursday, 11 October 2012).

We have two main aims in this paper: to give evidence against the view

that people reason about probabilities using heuristics, and to give evidence

supporting the view that people reason in accordance with probability theory,

with bias in people’s probability estimates being caused by random variation or

noise in the reasoning process. We assume a simple model where people estimate

the probability of some event A by estimating the proportion of instances of A

in memory, but are subject to random errors in the recall of instances. While

at first glance it may seem that these random errors will result in “nothing

more than error variance centered around a normative response” (Shafir and

Leboeuf, 2002), in fact these random errors cause systematic deviations that

push estimates for P (A) away from the correct value in a characteristic way.

In our model these systematic deviations explain various biases frequently seen

in people’s probabilistic reasoning: conservatism, subadditivity, the conjunction

fallacy, and the disjunction fallacy. The general patterns of occurrence of these

biases match the predictions of our simple model.

We use this simple model to construct probabilistic expressions that cancel

the bias in estimates for one event against the bias in estimates for another.

These expressions allow us to test the predictions of the heuristics view of prob-

abilistic reasoning. One such expression involves estimates, for some events

A and B, of the individual probabilities P (A) and P (B) and the conjunctive
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(‘and’) and disjunctive (‘or’) probabilities P (A ∧ B) and P (A ∨ B). People’s

estimates for all four of these probabilities are typically subject to various forms

of bias. Our account, however, predicts that when combined in the expression

XE(A,B) = PE(A) + PE(B)− PE(A ∧B)− PE(A ∨B)

(where PE(A) represents a person’s estimate for P (A), PE(B) their estimate

for P (B), and so on), then the various biases on the individual expressions will

cancel out, and on average XE(A,B) will equal 0 in agreement with probability

theory’s ‘addition law’ which requires that

X(A,B) = P (A) + P (B)− P (A ∧B)− P (A ∨B) = 0 (1)

Notice that the heuristics view assumes that people estimate probabilities us-

ing heuristics that in some cases yield reasonable judgments (that is, judgments

in accordance with probability theory) but in other cases lead to systematic

biases. To give evidence against the heuristics view it is therefore not enough

to show that some of people’s probability judgments agree with probability the-

ory (that is expected in the heuristics view). Instead, our evidence against the

heuristics view consists of results showing that, even when people’s probability

estimates for a set of events are systematically biased, when those estimates are

combined to form expressions like XE , the results are on average strikingly close

to those required by probability theory. This cancellation of bias is difficult to

explain in the heuristics view: to explain this cancellation, the heuristics view

would require some way of ensuring that, when applying heuristics to estimate

the probabilities P (A), P (B), P (A ∧ B) and P (A ∨ B) individually, the biases

produced in those 4 probabilities are precisely calibrated to give overall cancel-

lation. Further, to ‘know’ that the bias in these four probabilities should cancel

out in this way requires access to the rules of probability theory (as embodied

in the addition law in this case). Since the heuristics view by definition does

not follow the rules of probability theory, it does not have access to these rules

and so has no reason to produce this cancellation.

5



We also use this model to construct a series of expressions where all but one

‘unit’ of bias is cancelled; our model predicts that the level of bias when people’s

responses are combined in these expressions should on average have the same

constant value. Our experimental results confirm this prediction, showing the

same level of bias across a range of such expressions. Together, these results

demonstrate that when noise in recall is cancelled, people’s probability estimates

follow the rules of probability theory and thus suggest that biases in those

estimates are due to noise. These results are the main contribution of our work.

Note that our evidence against the view that people use heuristics to estimate

probabilities is not based on the fact that our model explains the four biases

mentioned above (there are many other biases in the literature which our model

does not address; see Hilbert (2012) for a review). Instead, the point is that our

experimental results show that the basic idea behind the heuristics view (that

people do not follow the rules of probability theory) is contradicted when we

use our simple model to cancel the effects of noise.

1.1 Bayesian models of reasoning

We are not alone in arguing that people reason in accordance with probability

theory. Though “the bulk of the literature on adult human reasoning” goes

against this view (Cesana-Arlotti et al., 2012), in recent years various groups of

researchers have suggested that people follow mathematical models of reasoning

based on Bayesian inference, a process for drawing conclusions given observed

data in a way that follows probability theory. Bayesian inference applies to

conditional probabilities such as the probability of some conclusion H given

some evidence E: P (H|E). In Bayesian models these conditional probabilities

are computed according to Bayes’ theorem

P (H|E) =
P (H)× P (E|H)

P (E)

6



and so the value of the conditional probability P (H|E) depends on the value of

the ‘prior’ P (H) (the probability of H being true independent of the evidence

E) and on the value of the ‘likelihood function’ P (E|H) (the probability of

seeing evidence E given that the hypothesis H is true).

The status of these Bayesian models is currently controversial. On one hand,

close fits between human responses and Bayesian models have been demon-

strated in domains as diverse as categorisation, naive physics, word learning,

vision, logical inference, motor control and conditioning (see e.g. Tenenbaum

et al., 2011, Chater et al., 2006, Oaksford and Chater, 2007), leading researchers

to conclude that “everyday cognitive judgements follow [the] optimal statistical

principles” of probability theory (Griffiths and Tenenbaum, 2006). On the other

hand, critics have pointed out a range of problems with this Bayesian approach

(Bowers and Davis, 2012, Marcus and Davis, 2013, Eberhardt and Danks, 2011,

Jones and Love, 2011, Endress, 2013). For example, the estimation of priors and

likelihood functions in Bayesian models is problematic: there are “too many ar-

bitrary ways that priors, likelihoods etc. can be altered in a Bayesian theory

post hoc. This flexibility allows these models to account for almost any pattern

of results” (Bowers and Davis, 2012).

It is important to stress that our approach is not connected to this Bayesian

view. Our model applies only to the estimation of ‘simple’ probabilities such

as the probability of some event P (A), and does not involve Bayes’ theorem

or conditional probabilities of any form. Neither does our model involve pa-

rameter estimation, priors, or likelihood functions. Equally, our results showing

that people’s probability estimates follow the requirements of probability the-

ory when noise is cancelled do not imply that people follow Bayes’ theorem

when estimating conditional probabilities: Bayes’ theorem is significantly more

complex than the simple probabilities we consider.
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1.2 Overview

In the first section of the paper we present our model and show how it can ex-

plain the observed biases of conservatism, subadditivity, the conjunction fallacy,

and the disjunction fallacy. In this section we also discuss other accounts for

these biases, some of which are also based on noise (see Costello, 2009a,b, Erev

et al., 1994, Hilbert, 2012, Nilsson et al., 2009, Juslin et al., 2009, Dougherty

et al., 1999). The crucial difference between our account and others is that

our account makes specific and testable predictions about the degree of bias in

probabilistic expressions, and about expressions where that bias will vanish. In

the second and third sections we present our model’s predictions and describe

two experimental studies testing and confirming these predictions. In the final

sections we give a general discussion of our work.

2 Probability estimation with noisy recall

We assume a rational reasoner with a long-term episodic memory that is subject

to random variation or error in recall, and take PE(A) to represent a reasoner’s

estimate of the probability of event A. We assume that long-term memory

contains m episodes where each recorded episode i holds a flag that is set to

1 if i contains event A and set to 0 otherwise, and the reasoner estimates the

probability of event A by counting these flags.

We assume a minimal form of transient random noise, in which there is some

small probability d that when some flag is read, the value obtained is not the

correct value for that flag. We assume that this noise is symmetric, so that the

probability of 1 being read as 0 is the same as the probability of 0 being read

as 1. We also assume a minimal representation where every type of event, be

it a simple event A, a conjunctive event A ∧ B, a disjunctive event A ∨ B, or

any other more complex form, is represented by such a flag, and where every

flag has the same probability d of being read incorrectly. (We stress here that
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this type of sampling error is only one of many possible sources of noise. While

we use this simple form of sampling error to motivate and present our model,

our intention is to demonstrate the role of noise – from whatever source – in

causing systematic biases in probability estimates.)

We take C(A) to be the number of flags marking A that were read as 1 in

some particular query of memory, and TA be the number of flags whose correct

value is actually 1. Our reasoner computes an estimate PE(A) by querying

episodic memory to count all episodes containing A and dividing by the total

number of episodes, giving

PE(A) =
C(A)

m
(2)

Random error in recall (and hence in the value of C(A)) means that PE(A)

varies randomly: sampling PE(A) repeatedly will produce a series of different

values, varying due to error in recall. We assume that this estimation process

is the same for every form of event: a probability estimate for a simple event A

is computed from the number of flags marking A that were read as 1 in some

particular query of memory, a probability estimate for a conjunctive event A∧B

is computed from number of flags marking A ∧ B that were read as 1 in some

particular query of memory, and so on.

We take P (A) to represent the ‘true’ judgment of the probability of A: the

estimate that would be given if the reasoner that was not subject to random error

in recall and produced estimates in a perfect, error-free manner. We take PE(A)

to represent the expected value or population mean for PE(A). This is the value

we would expect to obtain if we averaged an infinite number these randomly

varying estimates PE(A). Finally, we take P̂E(A) to represent a sample mean:

the average of some finite set of estimates PE(A). This sample mean P̂E(A) will

vary randomly around the population mean PE(A), with the degree of random

variation in the sample mean decreasing as the size of the sample increases.
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For any event A the expected value of PE(A) is given by

PE(A) =
TA(1− d) + (m− TA)d

m

(since on average 1− d of the TA flags whose value is 1 will be read as 1, and d

of the m− TA flags whose value is 0 will be read as 1 ). Since by definition

P (A) =
TA

m

we have

PE(A) = P (A) + d− 2dP (A) (3)

and the expected value of PE(A) deviates from P (A) in a way that systemati-

cally depends on P (A).

Individual estimates will vary randomly around this expected value and so

for any specific estimate PE(A) where C(A) flags were read as having a value

of 1, we have

PE(A) = PE(A) + e (4)

where

e =
C(A)− TA(1− d)− (m− TA)d

m

represents positive or negative random deviation from the expected value across

all estimates. Note that this error term e does not introduce an additional

source of random error in probability estimates: it simply reflects the difference

between the number of flags that were read incorrectly when computing the

specific estimate PE(A) and the the number of flags that are read incorrectly

on average, across all estimates.

Finally, we can also derive an expression for the expected variance in these

randomly varying estimates PE(A). The expected variance is equal to d(1−d)/m

for all events A, A∧B, A∨B and so on, and is independent of event probability;

see the Appendix for details.
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2.1 Conservatism

In this section we show how our noisy recall model of probabilistic reasoning

explains a reliable pattern of conservatism seen in people’s probability estimates.

Probabilities range in value between 0 and 1. A large body of literature

demonstrates that people tend to keep away from these extremes in their prob-

ability judgments, and so are ‘conservative’ in their probability assessments.

These results show that the closer P (A) is to 0, the more likely it is that PE(A)

is greater than P (A), while the closer P (A) is to 1, the more likely it is that

PE(A) is less than P (A). Differences between true and estimated probabilities

are low when P (A) is close to 0.5 and increase as P (A) approaches the bound-

aries of 0 or 1. This pattern was originally seen in research on people’s revision

of their probablity estimates in the light of further data (Edwards, 1968), and

was later found directly in probability estimation tasks. This pattern is some-

times referred to as underconfidence in people’s probability estimates (see Erev

et al., 1994, Hilbert, 2012, for a review).

Conservatism will occur as a straightforward consequence of random varia-

tion in our model. As we saw in Equation 3, the expected value of PE(A) devi-

ates from P (A) in a way that systematically depends on P (A). If P (A) = 0.5

this deviation will be 0. If P (A) < 0.5 then since d cannot be negative we have

PE(A) > P (A), with the difference increasing as P (A) approaches 0. Since es-

timates PE(A) are distributed around PE(A) this means that PE(A) will tend

to be greater than P (A), with the tendency increasing as P (A) approaches 0.

Similarly if P (A) > 0.5 then PE(A) < P (A) and estimates PE(A) will tend to

be less than P (A), with the tendency increasing as P (A) approaches 1. This

deviation thus matches the pattern of conservatism seen in people probability

judgments.
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2.1.1 Other accounts

The idea that conservatism can be explained via random noise is not new to

our account, but is also found in Erev et al. (1994)’s account based on random

error in probability estimates, in the Minerva-DM memory-retrieval model of

decision making (Dougherty et al., 1999), and in Hilbert’s account based on noise

in the information channels used in probabilistic reasoning (Hilbert, 2012). The

underlying idea in these accounts is similar to ours. There is, however, a critical

difference: our account predicts no systematic bias for probabilistic expressions

with a certain form (see Section 3).

2.2 Subadditivity

Here we show how our noisy recall model explains various patterns of ‘subaddi-

tivity’ seen in people’s probability estimates.

Let A1 . . . An be a set of nmutually exclusive events, and let A = A1∨. . .∨An

be the disjunction (the ‘or’) of those n events. Then probability theory requires

that

n∑

i=1

P (Ai) = P (A)

Experimental results show that people reliably violate this requirement, and in

a characteristic way. On average the sum of people’s probability estimates for

events A1 . . . An is reliably greater than their estimate for the probability of A,

with the difference (the degree of subadditivity) increases reliably as n increases.

An additional, more specific pattern is also seen: for pairs of mutually exclusive

events A1 and A2 whose probabilities sum to 1 we find that the sums of people’s

estimates for A1 and A2 are normally distributed around 1, and so on average

this sum is equal to 1 just as required by probability theory. This pattern is

sometimes referred to as ‘binary complementarity’ (see Tversky and Koehler,

1994, for a detailed review of these results).
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Again, these patterns of subadditivity occur as a straightforward conse-

quence of random variation in our model. From Equation 3 we have

n∑

i=1

PE(Ai) =

n∑

i=1

[P (Ai) + d− 2dP (Ai)]

and using the fact that P (A1) + . . .+ P (An) = P (A) this gives

n∑

i=1

PE(Ai) = P (A) + nd− 2dP (A)

Taking the difference between this expression and that for PE(A) in equation 3

we get

n∑

i=1

PE(Ai)− PE(A) = (n− 1)d

and so this difference increases as n increases, producing subadditivity as seen

in people’s probability judgments. In the case of two mutually exclusive events

A1 and A2 whose probabilities sum to 1, from Equation 3 we get

PE(A1) + PE(A2) = P (A1) + d− 2dP (A1) + P (A2) + d− 2dP (A2) = 1

producing binary complementarity as seen in people’s judgments.

2.2.1 Other accounts

The original account for subadditivity given by Tversky and Koehler (1994)

explained the general pattern in terms of an unpacking process which increased

the probability of constituent events by drawing attention to their components.

This account could not explain the observed pattern of binary complementarity;

to account for this observation Tversky and Keohler proposed an additional ‘bi-

nary complementarity’ heuristic, which simply stated that there was no average

bias for binary complements.

An alternative explanation for subaddivity is given in the Minerva-DM mem-

ory retrieval model of decision making(Dougherty et al., 1999, Bearden and

Wallsten, 2004). Minerva-DM is a complex model with a number of different
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components: it provides a two-step process for conditional probability judg-

ments, a parameter controlling the retrieval of items with varying degrees of

similarity to the memory probe (the event whose probability is being judged),

a complex multi-vector representation for stored items in memory, a parameter

controlling the degree of random error in the initial recording of items in mem-

ory, a parameter controlling the degree of random error causing degradation in

stored items, and a parameter controlling the degree of detail contained in mem-

ory probes. Roughly stated, the Minerva-DM model estimates the probability of

some event by counting the number of stored items in memory which are similar

enough to that event (whose similarity measure is greater than the similarity cri-

terion parameter). Depending on the value of the similarity criterion, this count

will include a number of similar-but-irrelevant items in addition to items cor-

rectly matching the target event. Because of these similar-but-irrelevant items,

the model will give a probability estimate for the target event that is higher

than the true probability, producing a degree of subaddivity that increases with

the number of component events in the disjunction, just as required. Note,

however, that because this similarity-based account always increases probabil-

ity estimates, it cannot explain the observed pattern of binary complementarity

in people’s probability judgments, which can only be explained if one probability

is increased and the other complementary probability is decreased.

More recently, Hilbert (2012) gave an account of subadditivity based on

noise in the information channels used for probability computation. Hilbert’s

model is a very general one, providing for noise at the initial encoding of data,

for noisy degradation of stored information and for noise during the reading of

data from memory. The model also specifies three general requirements for the

distribution of noise: that the correct probability is most likely, that noise is

symmetrical around the correct probability and that two binary complementary

probabilities have the same degree of noise. The last of these requirements allows

the model to explain the ‘binary complementarity’ result observed by Tversky
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and Koehler (1994). Beyond these requirements, the model leaves the degree

and form of noise in the system unspecified. Again, this account is similar to

ours but with the crucial difference that our account predicts no systematic bias

for certain probabilistic expressions. We give a further comparison between our

model, Hilbert’s model and Minerva-DM in Section 6.

2.3 Conjunction and disjunction fallacies

Conservatism and subadditivity both concern averages of people’s probability

estimates. Here we show how our noisy recall model explains two patterns that

involve differences between individual probability estimates: the conjunction

and disjunction fallacies.

Let A and B be any two events ordered so that P (A) ≤ P (B). Then

probability theory’s ‘conjunction rule’ requires that P (A ∧ B) ≤ P (A); this

follows from the fact that A ∧ B can only occur if A itself occurs. People

reliably violate this requirement for some events, and commit the ‘conjunction

fallacy’ by giving probability estimates for conjunctions that are greater than the

estimates they gave for one or other constituent of that conjunction. Perhaps

the best-known example of this violation comes from Tversky & Kahneman

(1983) and concerns Linda:

“Linda is 31 years old, single, outspoken, and very bright. She ma-

jored in philosophy. As a student she was deeply concerned with

issues of discrimination and social justice, and also participated in

anti-nuclear demonstrations”

Participants in Tversky & Kahneman’s study read this description and were

asked to rank various statements “by their probability”. Two of these state-

ments were

Linda is a bank teller. (A)

Linda is a bank teller and active in the feminist movement.(A ∧B)
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In Tversky & Kahneman’s initial investigation these two statements were pre-

sented separately, with one group of participants ranking a set of statements

containing A but not A∧B, and a second group ranking the same set but with

A replaced by A ∧ B. The results showed that the average ranking given to

A ∧ B by the second group was significantly higher than the average ranking

given to A by the first group, violating the conjunction rule.

Note that violation of the conjunction rule can occur in averaged data even

when very few participants are individually committing the conjunction fallacy;

equally, this violation is not necessarily seen in averaged data even when many

participants are individually committing that fallacy. For this reason, Tversky

& Kahneman refer to this comparison of averages as an ‘indirect’ test of the

conjunction rule, and describe violations of that rule in averages as conjunction

errors. Surprised by the results of their indirect test, Tversky & Kahneman

carried out a series of increasingly direct tests of the conjunction rule. In these

direct tests each participant were asked to rank the probability of a set of state-

ments containing both A and A∧B. Tversky & Kahneman found that in some

cases more than 80% of participants ranked A ∧ B as more probable than A,

violating the conjunction rule in their individual responses. Tversky & Kahne-

man use the term ‘conjunction fallacy’ to refer only to these direct violations

of the conjunction rule. Most subsequent studies have focused on similar direct

tests of the conjunction rule in individual probability estimates (the conjunc-

tion fallacy) rather than on indirect tests comparing averages (the conjunction

error).

The Linda example is explicitly designed to produce the conjunction fallacy:

this fallacy does not occur for all or even most conjunctions. Numerous ex-

perimental studies have shown that the occurrence of this fallacy depends on

the probabilities of A and B. In particular, the greater the difference between

P (A) and P (B), the more frequent the conjunction fallacy is, and the greater

the conditional probability P (A|B), the more frequent the conjunction fallacy
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is (Costello, 2009a, Gavanski and Roskos-Ewoldsen, 1991, Fantino et al., 1997).

A similar pattern occurs for people’s probability estimates for disjunctions

A ∨ B. Since A ∨ B necessarily occurs if B itself occurs, probability theory

requires that P (A ∨ B) ≥ P (B) must always hold. People reliably violate this

requirement for some events, giving probability estimates for disjunctions that

are less than the estimates they gave for just one of the constituents. Just as for

conjunctions, the greater the difference between P (A) and P (B), and the higher

the estimated conditional probability P (A|B), the higher the rate of occurrence

of the disjunction fallacy (Costello, 2009b, Carlson and Yates, 1989).

The observed patterns of conjunction and disjunction fallacy occurrence arise

as a straightforward consequence of random variation in our model. The general

idea is that our reasoner’s probability estimates PE(A) and PE(A ∧ B) will

both vary randomly around their expected values PE(A) and PE(A ∧B). This

means that, even though PE(A∧B) ≤ PE(A) must hold, there is a chance that

the estimate for A ∧ B will be greater than the estimate for A, producing a

conjunction fallacy. This chance will increase the closer PE(A∧B) is to PE(A).

More formally, the reasoner’s estimates for probabilites PE(A) and PE(A∧B)

at any given moment are given by

PE(A) = PE(A) + eA and PE(A ∧B) = PE(A ∧B) + eA∧B

where eA and eA∧B represent positive or negative random deviation from the

expected estimate at that time (arising due to random errors in reading flag

values from memory, as in Equation 4). The conjunction fallacy will occur

when PE(A) < PE(A ∧B), i.e. when

PE(A) + eA < PE(A ∧B) + eA∧B

or, substituting and rearranging, when

[P (A)− P (A ∧B)](1− 2d) < eA∧B − eA (5)

17



holds. Given that eA∧B and eA vary randomly and can be either positive or

negative, this inequality can hold in some cases. The inequality is most likely to

hold when P (A)−P (A∧B) is low (because in that situation the left side of the

inequality is low). Since P (A∧B) = P (A|B)P (B), we see that P (A)−P (A∧B)

is low when P (A) is low and both P (A|B) and P (B) are high (or more strictly:

when P (A) is close to 0, P (B) is close to 1, and P (A|B) is close to its maximum

possible value of P (A)/P (B)). We thus expect the conjunction fallacy to be

most frequent when P (A) is low and P (A|B) and P (B) are both high. This is

just the pattern seen when the conjunction fallacy occurs in people’s probability

estimates.

Reasoning in just the same way for disjunctions, we see that the disjunction

fallacy will occur when

PE(B) + eB > PE(A ∨B) + eA∨B

or, substituting and rearranging as before, when

[P (A ∨B)− P (B)](1− 2d) < eB − eA∨B

holds. But from probability theory, we have the identity

P (A ∨B)− P (B) = P (A)− P (A ∧B)

and substituting we see that the disjunction fallacy will occur when

[P (A)− P (A ∧B)](1− 2d) < eB − eA∨B (6)

and so, just as with the conjunction fallacy, we expect the disjunction fallacy to

be most frequent when P (A) is low and P (A|B) and P (B) are both high. Again,

this is just the pattern seen when the disjunction fallacy occurs in people’s

probability estimates.

Note that in our model there is an upper limit on the expected rate of

conjunction fallacy occurrence of 50%, which occurs when PE(A∧B) = PE(A):
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estimates PE(A) and PE(A ∧ B) are distributed around the same population

means, and so the chance of getting PE(A) < PE(A ∧ B) is the same as the

chance of getting PE(A) > PE(A∧B). The same limit holds for the disjunction

fallacy, and for the same reason. This limit occurs because our simple model

assumes (somewhat unrealistically) that the degree of error in recall for examples

of A is the same as the degree of error in recall for for A∧B (extensions of our

model which allow for different levels of error in recall for A and A ∧ B would

not impose this limit). As we see in the next section, however, experiments

which control for various extraneous factors typically give conjunction fallacy

rates which are consistent with this limit.

2.4 The reality of the conjunction fallacy

A number of researchers have attempted to ‘explain away’ the conjunction fal-

lacy by pointing to possible flaws in Tversky & Kahneman’s Linda experiment

which may have led participants to give incorrect responses. One argument in

this line is to propose that the fallacy arises because participants in the exper-

iments understand the word ‘probability’ or the word ‘and’ in a way different

from that assumed by the experimenters. A related tactic is to propose that

the fallacy occurs because participants, correctly following the pragmatics of

communication in their experimental task, interpret the single statement A as

meaning A ∧ ¬B (A and not B). Evidence against these proposals comes from

experiments using a betting paradigm, where the word ‘probability’ is not men-

tioned and where ‘and’ is demonstrably understood as meaning conjunction,

and experiments where participants are asked to choose among three different

options A, A ∧ B and A ∧ ¬B. Conjunction fallacy rates are typically reduced

in these experiments (to between 10% and 50%, as compared to the greater

than 80% rate seen in Tversky & Kahneman’s Linda experiment), but remain

reliable (see, for example, Sides et al., 2002a, Tentori et al., 2004a, Wedell and
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Moro, 2008).

Another approach is to explain away the conjunction fallacy by arguing

that Tversky & Kahneman’s probabilistic ranking task is not in a form that

is suitable for people’s probabilistic reasoning mechanisms, which (in this ar-

gument) are based on representations of frequency. The suggestion is that if

participants were asked to estimate the frequency with which constituent and

conjunctive statements are true, the conjunction fallacy should vanish (Hertwig

and Gigerenzer, 1999). In the Linda task, this frequency format could involve

giving participants a story about a number of women who fit the description of

Linda, then asking them to estimate ‘how many of these women are bank tellers’

and ‘how many of these women are bank tellers and are active in the feminist

movement’. However, studies have repeatedly shown that while the occurrence

of the conjunction fallacy declines in frequency format tasks (typically going

from a rate greater than 80% in Linda tasks to a rate between 20% and 40%

in frequency format tasks) the fallacy remains reliable and does not disappear

(Mellers et al., 2001, Fiedler, 1988, Chase, 1998). Indeed, Tversky & Kahne-

man’s original 1983 paper examined the role of frequency formulations in the

conjunction fallacy, and found that the fallacy was reduced but not eliminated

by that formulation.1 Taken together, these results suggest that the conjunction

fallacy rates of 80% and above found by Tversky & Kahneman are artifically

high because of various confounding factors: studies of the conjunction fallacy

that eliminate these factors give fallacy rates that are generally around 50% or

lower, in line with our model’s expectations.

1Note, however, that conjunction errors (that is, violations of the conjunction rule in

indirect tests on averages rather than in direct tests on individual responses) can be eliminated

by this frequency formulation (Mellers et al., 2001).
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2.4.1 Other accounts

A large and diverse range of accounts have been proposed for the conjunction

and disjunction fallacies. Tversky & Kahneman’s original proposal explained

these fallacies in terms of a representativeness heuristic, in which probability

is assessed in terms of the degree to which an instance is representative of a

(single or conjunctive) category. Under Tversky & Kahneman’s interpretation,

in the Linda example people gave a higher rating to the conjunctive statement

because the instance Linda was more representative of (that is, more similar to

members of) the conjunctive category ‘bank-teller and active-feminist’ than the

single category ‘bank-teller’.

Although the representativeness heuristic remains the routine explanation

of the conjunction fallacy in introductory textbooks, a number of experimental

results give convincing evidence against this account. Notice that the repre-

sentativeness heuristic only applies when a question asks about the probability

of membership of an instance in a conjunctive category, and only applies when

knowledge about representative members of that category is available. Evidence

against representativeness comes from results showing that the conjunction fal-

lacy occurs frequently when these requirements do not hold. For example, a

series of studies by Osherson, Bonini and colleagues have shown that the con-

junction fallacy occurs frequently when people are asked to bet on the occurrence

of unique future events: such bets are not questions about membership of an

instance in a category, and so representativeness cannot explain the occurrence

of the fallacy in these cases (Sides et al., 2002b, Tentori et al., 2004b, Bonini

et al., 2004). Gavanski and Roskos-Ewoldsen (1991) found that the conjunction

fallacy occurred frequently when people are asked about categories for which

no representativeness information is available (questions about imaginary aliens

on other planets). Gavanski and Roskos-Ewoldsen (1991) also found that the

fallacy occurred frequently when the probability question was not about the
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membership of an instance in a conjunctive category, but about the member-

ship of two separate instances in two separate single categories (rather than

asking about the probability of Linda being a bank teller and active feminist,

such questions might ask about the probability of Bob being a bank teller and

Linda being an active feminist). Again, representativeness cannot explain the

occurrence of the conjunction fallacy for such questions (see Nilsson et al., 2009,

for a review of research in this area).

The Minerva-DM account gives an alternative explanation for the conjunc-

tion fallacy that is based on the role of similarity in retrieval (Dougherty et al.,

1999). Minerva-DM estimates the probability of some event by counting the

number of stored items in memory whose similarity to the probe event is greater

than the similarity criterion parameter. For a conjunction A ∧ B, stored items

that are members of A alone or members of B alone can be similar enough to the

conjunction A∧B to be (mistakenly) counted as examples of that conjunction.

If there are a large number of such similar-but-irrelevant items, the conjunctive

probability estimate PE(A∧B) may be higher than the lower constituent prob-

ability PE(A), producing a conjunction fallacy response. Note, however, that

because this similarity-based account always increases probability estimates, it

cannot explain the disjunction fallacy (which occurs when a disjunctive proba-

bility estimate is lower than one of its constituent probabilities).

Other accounts have been proposed where people compute conjunctive prob-

abilities PE(A∧B) from consituent probabilities PE(A) and PE(A) using some

equation other than the standard equation of probability theory. In early ver-

sions of this approach the conjunctive probability was taken to be the average of

the two constituent probabilities (Fantino et al., 1997, Carlson and Yates, 1989).

This averaging approach does not apply to disjunctive probabilities. More re-

cently Nilsson, Juslin and colleagues (Nilsson et al., 2009, Juslin et al., 2009)

have proposed a more sophisticated ‘configural cue’ model where conjunctive

probabilities are computed by a weighted average of constituent probability val-
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ues, with a greater weight given to the lower constituent probability, and where

disjunctive probabilities are computed by a weighted average with greater weight

given to the higher constituent probability.

Since the average of two numbers is always greater than the minimum of

those two numbers and less than the maximum (except when the numbers are

equal), these averaging accounts predict that the conjunction fallacy will oc-

cur for almost every conjunction (except when the two constituents have equal

probabilities). This is clearly not the case, however: there are many conjunc-

tions for which these fallacies occurs rarely if at all. To address this problem,

Nilsson et al.’s model also includes a noise component which randomly perturbs

conjunctive probability estimates, sometimes moving the conjunctive probabil-

ity below the lower constituent probability and so eliminating the conjunction

fallacy for that estimate. This model thus predicts that fallacy rates should

be inversely related to the degree of random variation in people’s probability

judgments, with fallacy rates being highest when random variation is low and

lowest when random variation is high. This contrasts with our account, which

predicts that fallacy rates should be high when random variation is high and

low when random variation is low. We assess these competing predictions in

Section 4.3.

Finally, we should mention an earlier model for the conjunction fallacy pro-

posed by one of the authors (Costello, 2009a). Just as in our current account,

this earlier model proposed that people’s probability estimates followed prob-

ability theory but were subject to random variation: this random variation

caused conjunction fallacy responses to occur when constituent and conjunctive

probability estimates were close together. Apart from that commonality, the

two models are quite different. Unlike our current account, this earlier model

was not based on the idea of noise causing random errors in retrieval from

memory: instead, that model assumed that estimates PE(A) for some event A

were normally distributed around the correct value P (A), and so the average
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estimate PE(A) was equal to the true value P (A). That earlier model was there-

fore unable to account for the patterns of conservatism and subadditivity seen

in people’s probability estimates. Also unlike our current account, that earlier

model assumed that conjunctive and disjunctive probabilities were computed

by applying the equations of probablity theory to constituent probability esti-

mates, so that PE(A∧B) = PE(A)×PE(B|A). This contrasts with the current

model, which computes PE(A ∧ B) by retrieving episodes of the event A ∧ B

from memory.

3 Experiment 1

Our noisy recall model of probability estimation can explain various patterns

of bias in people’s probability judgements, and also explain some specific sit-

uations in which those biases vanish (when probabilities are close to 0.5, for

conservatism; and when two complementary probabilities sum to 1, for subad-

ditivity). We now present a third situation in which our model predicts that

bias will disappear.

Consider an experiment where we ask people to estimate, for any pair of

events A andB, the probabilities of A, B, A∧B and A∨B. For each participant’s

estimates for each pair of events A and B, we can compute a derived sum

XE(A,B) = PE(A) + PE(B)− PE(A ∧B)− PE(A ∨B)

We can make a specific prediction about the expected value of XE(A,B) for all

events A and B: this value will be

XE(A,B) = PE(A) + PE(B)− PE(A ∧B)− PE(A ∨B)
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From Equation 3 we get

XE(A,B) = [P (A) + d− 2dP (A)] + [P (B) + d− 2dP (B)]

−[P (A ∧B) + d− 2dP (A ∧B)]− [P (A ∨B) + d− 2P (A ∨B)]

= (1− 2d)[P (A) + P (B)− P (A ∧B)− P (A ∨B)]

However, probability theory requires P (A) +P (B)−P (A∧B)−P (A∨B) = 0

for all events A and B, and so XE(A,B) = 0. Our prediction, therefore, is that

the average value of XE(A,B) across all pairs of events A and B will be equal

to 0. Note that this prediction is invariant: it holds for all pairs of events A

and B, irrespective of the degree of co-occurrence or dependency between those

events.

What is the distribution of values of XE(A,B) around this average of 0?

Speaking generally, we would expect this distribution to be unimodal and roughly

symmetric around the mean of 0 for any pair A,B, since the positive and

negative terms in the expression XE(A,B) are symmetric: P (A) + P (B) =

P (A ∧B) + P (A ∨B).

We examined this expectation in detail via Monte Carlo simulation, by writ-

ing a program that simulates the effects of random noise in recall on probability

estimations for a given set of probabilities. This program took as input three

probabilities P (A), P (A ∧ B) and P (¬A ∧ B) (notA and B). The program

constructed a ‘memory’ containing 100 items, each item containing flags A, B,

A∧B and A∨B indicating whether that item was an example of the given event.

The occurrence of those flags in memory exactly matched the probabilities of the

given event as specified by the three input probabilities (so the occurrence of B,

for example, matched the sum of input probabilities P (A∧B) and P (¬A∧B)).

This program also contained a noise parameter d (set to 0.25 in our simulations);

when reading flag values from memory to generate some probability estimate

PE(A), the program was designed to have a random chance d of returning the

incorrect value.
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We carried out this simulation process for a representative set of values for

the input probabilities P (A), P (A ∧ B) and P (¬A ∧ B). These set consisted

of every possible assignment of values from {0, 0.1, . . . , 0.9, 1.0} to each input

probability, subject to the requirement that both P (A∧B) ≤ P (A) and P (¬A∧

B) ≤ 1.0 − P (A) must both hold. This requirement ensures that every set

of input probabilities was consistent with the rules of probability theory. In

total there were 286 sets of input probabilities that were consistent with these

requirements. For each such set of input probabilities the program carried out

10, 000 runs, on each run generating noisy estimates PE(A), PE(B), PE(A∧B)

and PE(A∨B) and using those estimates to calculate a value for the expression

XE(A,B). These runs give us a picture of the distribution of values ofXE(A,B).

The distribution of XE values was essentially the same for all these sets

of input probabilities: unimodal, approximately symmetric, and centered on 0,

just as expected. Figure 1 graphs the frequency distributions of all XE values

across all probability sets. Given that this distribution appears to be essentially

independent of the probability values used in our simulations, our prediction is

that in an experiment, the distribution of XE(A,B) across all pairs of events A

and B will be unimodal and approximately symmetric around the mean of 0.

One possible concern with this simulation comes from the common observa-

tion that, when estimating probabilities, participants tend to respond in units

that are multiples of 0.05 or 0.10 (Budescu et al., 1988, Wallsten et al., 1993,

Erev et al., 1994). To test the impact of this rounding, we modified our sim-

ulation program to include a rounding parameter u such that each calculated

probability estimate was rounded to the nearest unit of u. We ran the simulation

as before but with u set to 0.01, 0.05 and 0.1, and examined the distribution of

XE values for each run: the distribution was essentially the same as that shown

in Figure 1, confirming our original simulation results.
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3.1 Testing the predictions

We tested these predictions using data from an experiment on conjunction and

disjunction fallacies (Experiment 3 in Costello, 2009b). The original aim of this

experiment was to examine an attempt by Gigerenzer to explain away the con-

junction fallacy as a consquence of people being asked to judge the probability

of one-off, unique events (Gigerenzer, 1994). Gigerenzer argued that from a

frequentist standpoint the rules of probability theory apply only to repeatable

events and not to unique events, and so people’s deviation from the rules of

probability theory for unique events are not, in fact, fallacious. To assess this

argument, the experiment examined the occurrence of fallacies in probability

judgements for conjunctions and disjunctions of canonical repeatedly-occurring

events: weather events such as ‘rain’, ‘wind’ and so on. Contrary to Gigeren-

zer’s argument, participants in these experiments often committed conjunction

and disjunction fallacies; these fallacies thus cannot be dismissed as an artifact

of researchers using unique events in their studies of conjunctive probability.

This experiment gathered estimates PE(A), PE(B), PE(A∧B) and PE(A∨

B) from 83 participants for 12 pairs A,B of weather events. Two sets of weather

events (the set ‘cloudy, windy, sunny, thundery’ and the set ‘cold, frosty, sleety’)

were used to form these pairs. These sets were selected so that they contained

events of high, medium and low probabilities. Conjunctive and disjunctive

weather events were formed by pairing each member of the first set with every

member of the second set and placing ‘and’/‘or’ between the elements as re-

quired, generating weather events such as ‘cloudy and cold’, ‘cloudy and frosty’,

and so on. One group of participants (N = 42) were asked questions in terms

of probability, of the form

• What is the probability that the weather will beW on a randomly-selected

day in Ireland?

for some weather event W . This weather event could be a single event such as
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‘cloudy’, a conjunctive event such as ‘cloudy and cold’ or a disjunctive event

such as ‘cloudy or cold’. The second group (N = 41) were asked questions in

terms of frequency, of the form

• Imagine a set of 100 different days, selected at random. On how many of

those 100 days do you think the weather in Ireland would be W?

where the weather events were as before. These two question forms were used

because of a range of previous work showing that frequency questions can reduce

fallacies in people’s probability judgments; the aim was to check whether this

question form could eliminate fallacy responses for everyday repeated events.

Participants were given questions containing all single events and all con-

junctive and disjunctive events, with questions presented in random order on

a web browser. Responses were on an integer scale from 0 to 100. There was

little difference in fallacy rates between the two forms of question, so we collapse

the groups together in our analysis. There were 996 distinct conjunction and

disjunction responses in the experiment (83 participants ×12 conjunctions): a

conjunction fallacy was recorded in 49% of those responses and a disjunction

fallacy in 51%.

For every pair of weather events A,B used in the experiment, each par-

ticipant gave estimates for the two constituents A and B, for the conjunction

A∧B and for the disjunction A∨B. Each participant gave these estimates for

12 such pairs. For each participant we can thus calculate the value XE(A,B)

for 12 pairs A,B, and so across all 83 participants we have 996 distinct values

of XE(A,B). Our prediction is that the average of these values will equal 0 and

that these values will be approximately symmetrically distributed around this

average.
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3.2 Results

Figure 2 graphs the raw frequency of occurrence of values for XE(A,B) in the

experimental data and the average frequency in groups of those values. It is

clear from the graph that these values are symmetrically distributed around the

mean, just as expected. The mean value of XE was 0.66 (SD=27.1), within

1 unit of the predicted mean on the 100-point scale used in the experiment

and within 0.025 standard deviations of the predicted mean. The predicted

mean of 0 lay within the 99% confidence interval of the observed mean. This

is in strikingly close agreement with our predictions. Note that the sequence of

higher raw frequency values (hollow circles) in Figure 2 fall on units of 5, and

represent participants’ preference for rounding to the nearest 5 (the nearest unit

of 0.05) in their responses: approximately 55% of all responses were rounded in

this way.

To examine the relationship between conjunction and disjunction fallacy

rates and XE values we compared the total number of conjunction and disjunc-

tion fallacies produced by each participant with the average value of XE for

that participant. Figure 3 graphs this comparison. There was no significant

correlation between the average value of XE produced by a participant and the

number of fallacies produced by that participant (r = −0.1074, p = 0.34).

3.3 Discussion

The above result is based on a specific expression XE that cancels out the effect

of noise in people’s probability judgements. When noise is cancelled in this

way, we get a mean value for XE that is almost exactly equal to that predicted

by probability theory. This close agreement with probability theory occurs

alongside significant conjunction and disjunction fallacy rates in the same data,

with values of XE close to zero even for participants with high conjunction

and disjunction fallacy rates (Figure 3). This cancellation of bias is difficult to
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explain in the heuristics view: to explain this cancellation, the heuristics view

would require some way of ensuring that, when using heuristics to estimate the 4

probabilities P (A), P (B), P (A∧B) and P (A∨B) individually, the various biases

in those 4 estimates are calibrated to give overall cancellation. Note that from

both the conservatism results and the binary complementarity results described

earlier, we know that the bias in estimates PE(A) and PE(B) will tend to cancel

only when PE(A) = 1 − PE(B) (that is, when A and B are complementary).

For the heuristics account to explain cancellation of bias across the 4 terms in

XE , therefore, it is not enough to say that people overestimate P (A ∧ B) and

underestimate P (A∨B): it is necessary to calibrate the varying degrees of bias

affecting all 4 probability estimates for P (A), P (B), P (A ∧B) and P (A ∨B).

Further, to ‘know’ that the bias in these 4 probabilities should cancel out in

this way requires access to the rules of probability theory (as embodied in the

addition law). These results therefore show that that people follow probability

theory when judging probabilities, and that the observed patterns of bias are

due to the systematic distorting influence of noise: when distortions due to noise

are cancelled out as in expression XE , no other systematic bias remains.

In the next section we describe a new experiment re-testing this result and

testing similar predictions for a range of other expressions.

4 Experiment 2

Our prediction for the derived expression XE holds because the associated ex-

pression X is identically 0, and because there are an equal number of positive

and negative terms in the expression (these two requirements are necessary to

cancel out the d or noise terms in the expression). We now give another expres-

sion where these requirements both hold, and so for which the same prediction

follows.

Consider an experiment where we ask people to estimate, for any pair of
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events A and B, the probabilities of A, B, A∧B, A∨B, A∧¬B (A and not B)

and B ∧¬A (B and not A). One derived sum which involves these probabilities

is

YE(A,B) = PE(A) + PE(B ∧ ¬A)− PE(B)− PE(A ∧ ¬B)

whose expected value will be

YE(A,B) = PE(A) + PE(B ∧ ¬A)− PE(B)− PE(A ∧ ¬B)

From Equation 3 we get

YE(A,B) = [P (A) + d− 2dP (A)] + [P (B ∧ ¬A) + d− 2dP (B ∧ ¬A)]

−[P (B) + d− 2dP (B)]− [P (A ∧ ¬B) + d− 2P (A ∧ ¬B)]

= (1− 2d)[P (A) + P (B ∧ ¬A)− P (B)− P (A ∧ ¬B)]

However, probability theory requires P (A) + P (B ∧ ¬A) = P (B) + P (A ∧ ¬B)

(because each side of the expression is equal to P (A ∨ B)) and so we have

P (A) + P (B ∧ ¬A) − P (B) − P (A ∧ ¬B) = 0 for all events A and B, and

again we predict that the average value of YE across all participants and event

pairs will equal to 0. Since the positive and negative terms in the expression

YE(A,B) are symmetric (just as in XE), we again expect values for YE(A,B) to

be symmetrically distributed around this mean, just as with XE (this prediction

is supported by Monte Carlo simulations similar to those described earlier).

Finally, since both XE and YE have the same mean of 0, we predict that the

larger combined set of all values of XE and YE across all participants and event

pairs will also have an mean of 0, and will be symmetrically distributed around

that mean.

We can also consider other derived sums whose values in probability theory

are 0, but where there is not an equal number of positive and negative terms in

the expression (and so not all d or noise terms will be cancelled out). Four such
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expressions are

Z1E(A,B) = PE(A) + PE(B ∧ ¬A)− PE(A ∨B)

Z2E(A,B) = PE(B) + PE(A ∧ ¬B)− PE(A ∨B)

Z3E(A,B) = PE(A ∧ ¬B) + PE(A ∧B)− PE(A)

Z4E(A,B) = PE(B ∧ ¬A) + PE(A ∧B)− PE(B)

For the first expression Z1E(A,B), Equation 3 gives

Z1E(A,B) = [P (A) + d− 2dP (A)] + [P (B ∧ ¬A) + d− 2dP (B ∧ ¬A)]

−[P (A ∨B) + d− 2P (A ∨B)]

= (1− 2d)[P (A) + P (B ∧ ¬A)− P (A ∨B)] + d

= d

since from probability theory P (A) + P (B ∧ ¬A)− P (A ∨B) = 0 for all A and

B. We get the same result for the expressions Z2, Z3 and Z4, and so we have

expected values of

Z1E(A,B) = Z2E(A,B) = Z3E(A,B) = Z4E(A,B) = d

for all pairs A,B. Our prediction, therefore, is that expressions Z1 . . . Z4 should

all have the same average value in our experiment.

Two other such derived sums are

Z5E(A,B) = PE(A ∧ ¬B) + PE(B ∧ ¬A) + PE(A ∧B)− PE(A ∨B)

Z6E(A,B) = PE(A ∧ ¬B) + PE(B ∧ ¬A) + PE(A ∧B) + PE(A ∧B)

−PE(A)− PE(B)

Similiar computations for these expressions tell us that Z5 will have an expected

value of Z5E(A,B) = 2d and Z6E will have an expected value Z6E(A,B) = 2d

for all pairs A,B. Our prediction, therefore, is that expressions Z5 and Z6

should have the similar average values in our experiment, and that this average
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should be twice the average for Z1 . . . Z4. Note that since these expressions are

not symmetric (all have ‘leftover’ d terms) we do not expect the values of these

expressions to be symmetrically distributed.

These last predictions are somewhat similar to the subadditivity results de-

scribed earlier, in that both involve leftover d terms. The subadditivity results

only applied to disjunctions of exclusive events (events that did not co-occur).

The current predictions are more general in that they hold for all pairs of events

A and B, irrespective of the degree of co-occurrence or dependency between

those events.

4.1 Method

Participants. Participants were 68 undergraduate students at the School of

Computer Science and Informatics, UCD, who volunteered for partial credit.

Stimuli. This experiment gathered people’s estimates for P (A), P (B), P (A∧

B), P (A ∨B), P (A ∧ ¬B) and P (B ∧ ¬A) for 9 different pairs A,B of weather

events such as ‘rainy’,‘windy’ and so on. We constructed sets of three weather

events each (the set ‘cold, rainy, icy’ and the set ‘windy, cloudy, sunny’), selected

so that each set contained events of high, medium and low probabilities. Note

that some of these pairs have positive dependencies (it is more likely to be rainy

if it is cloudy), some had negative dependencies (it is less likely to be cold if it is

sunny), and others were essentially independent: our predictions apply equally

across all cases.

Conjunctive and disjunctive weather events were formed from these sets by

pairing each member of the first set with every member of the second set and

placing ‘and’/‘or’ between the elements as required, generating weather events

such as ‘cold and windy’, ‘cold or cloudy’ and so on. Weather events describing

conjunctions with negation were constructed by pairing each member of the first

set with every member of the second set, taking the two possible orderings of
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the selected elements, and for each placing ‘and not’ between the elements in

each ordering. This generated events such as ‘cold and not windy’ and ‘windy

and not cold’ for each pair of events.

Procedure. Participants judged the probability of all single events and all

conjunctions, disjunctions and conjunctions with negations. Questions were

presented in random order on a web browser. One group of participants (N =

35) were asked questions in terms of probability, of the form

• What is the probability that the weather will beW on a randomly-selected

day in Ireland?

for some weather event W . This weather event could be a single event such as

‘cloudy’, a conjunctive event such as ‘cloudy and cold’, a disjunctive event such

as ‘cloudy or cold’, or a conjunction and negation event such as ‘cloudy and not

cold’ or ‘cold and not cloudy’. The second group (N = 33) were asked questions

in terms of frequency, of the form

• Imagine a set of 100 different days, selected at random. On how many of

those 100 days do you think the weather in Ireland would be W?

where the weather events were as before. Responses were on an integer scale

from 0 to 100. The experiment took around 40 minutes to complete.

4.2 Results

Two participants were excluded (one because they gave responses of 100 to

all but 4 questions and the other because they gave responses of 0 to all but

2 questions), leaving 66 participants in total. There were thus 594 distinct

conjunction and disjunction responses for analysis in the experiment (66 par-

ticipants ×9 conjunctions): a conjunction fallacy was recorded in 46% of those

responses and a disjunction fallacy in 40%.

For every pair of weather events A,B used in the experiment, each partic-

ipant gave probability estimates for the two constituents A and B, for A ∧ B
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and A∨B, and for A∧¬B and B ∧¬A. Each participant gave these estimates

for nine such pairs. For each participant we calculated the value XE(A,B),

YE(A,B) and Z1E(A,B) . . . Z6E(A,B) for nine pairs A,B, and so across all 66

participants we have 594 distinct values for each of those expressions.

4.2.1 Expressions XE and YE

The mean value of XE was −3.90 (SD=27.7) and the mean value of YE was

3.82 (SD=30.08). Figure 4 graphs the raw frequency of occurrence of values of

XE and YE in the experimental data and the average frequency in groups of

those values, as in Figure 2. It is clear that these values are again unimodal and

symmetrically distributed around their mean, as predicted. Averaging across

all values of XE and YE we get a mean of −0.01 (SD=29.2); the predicted mean

of 0 lies with the 99.9% confidence interval of this observed mean. (Again, the

sequence of higher raw frequency values (hollow circles) in Figure 4 fall on units

of 5, and represent participants’ preference for rounding to the nearest 5 in their

responses: approximately 55% of all responses were rounded in this way.)

To examine the relationship between conjunction and disjunction fallacy

rates and XE and YE values we compared the total number of conjunction and

disjunction fallacies produced by each participant with the average XE and

YE values for that participant. As in the previous experiment, there was no

significant correlation between the average values produced by a participant

and the number of fallacies produced by that participant (r = −0.073 and

r = −0.018 respectively); the results showed values of XE and YE close to zero

even for participants with high conjunction and disjunction fallacy rates.

As before, these cancellation of bias results are difficult for the heuristics

view to explain: they would require some way of ensuring that, when using

heuristics to estimate the 4 constituent probablities inXE , and the 4 constituent

probabilities in YE , the resulting biases are precisely calibrated to give overall

cancellation. Further, to know that the bias in these probabilities should cancel
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requires access to the rules of probability theory, which the heuristics view does

not have.

4.2.2 Expressions Z1E , . . . , Z4E

Recall that in our model estimates for expressions Z1, . . . , Z4 should on average

all have the same biased value, equal to d (the noise rate). Table 1 gives the

average values for these expressions calculated from participant’s probability

estimates; it is clear that these values are closely clustered (all are less than one

tenth of an SD from the mean) just as predicted.

4.2.3 Expressions Z5E and Z6E

Recall that in our model estimates for expressions Z5E and Z6E should on aver-

age have the same biased value, equal to 2d (twice the noise rate). Our prediction

therefore is that values for Z5E and Z6E should fall close together, and should

fall close to twice the overall mean obtained for expressions Z1E , . . . , Z4E (as in

Table 1). Table 2 gives the average values for these expressions calculated from

participant’s probability estimates, and compares with twice the overall mean

of Z1E , . . . , Z4E . It is clear that these values are closely clustered around that

predicted value (both are less than one-twentieth of an SD from the predicted

value, and their mean is less than 0.001 SD from that predicted value).

According to our model, the mean values of expressions Z1E , . . . , Z4E are

equal to the average value of d, the rate of random error in recall from mem-

ory, and the mean values of expressions Z5E and Z6E are equal to twice that

value. This raises the interesting possiblity of using the values of expressions

Z1E , . . . , Z6E for a given participant to estimate a value of d for that partici-

pant, and so estimate the degree of variability due to noise in that participant’s

probability estimates. We discuss this possibility in the next section.
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4.3 Random variation and fallacy rates across participants

In our model the rate of occurrence of the conjunction fallacy is related to the

degree of random variation: if there were no random variation in participant’s

estimates the fallacy would never occur, while if there is a high degree of random

variation the fallacy would occur frequently. The same prediction applies to the

disjunction fallacy.

In this section we test these predictions using the data from our Experi-

ment 2. In this analyis we use each participant’s average values for expressions

Z1E . . . Z6E to estimate a value of d, the rate of random variation in recall

for that participant. For each participant we can compute 6 estimates for that

participant’s value of d, by taking that participant’s average value for each ex-

pression Z1E , . . . , Z6E (and dividing the averages for Z5E and Z6E by 2). To

examine the consistency of these estimates, we computed the pairwise corre-

lation across participants between values of d estimated from each expression.

Every pairwise correlation was significant at the p < 0.0001 level, and the aver-

age level of correlation was relatively high (mean r = 0.79), indicating that the

values for d estimated for each participant from each of these expressions were

consistent with each other.

Given this consistency we can produce an average estimate for d for each

participant i:

di =
Z1i + Z2i + Z3i + Z4i + Z5i/2 + Z6i/2

6

where Z1i represents the average value of the derived sum Z1E(A,B) com-

puted from participant i’s probability estimates for the nine pairs A,B. This

gives a reasonable measure of the degree of random variation in recall for that

participant.

To test our prediction that conjunctive and disjunctive fallacy rates will

rise with the degree of random variation, we measure the correlation between

conjunction and disjunction fallacy rates and the di random variation measure,
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across participants. There was a significant positive correlation between con-

junction fallacy rates and the random variation measure (r = 0.57, p < 0.0001)

and between disjunction fallacy rates and the random variation measure (r =

0.43, p < 0.0005), demonstrating that fallacy rates rise with random variation

as in our model. This result goes against Nilsson et al.’s model, which predicts

that conjunction and disjunction fallacy rates will fall with random variation

(Nilsson et al., 2009).

5 Conjunction error rates in averaged estimates

In this section we consider the occurrence of the conjunction (and disjunction)

fallacy in values that are produced by averaging across a set of probability esti-

mates. Recall that Tversky & Kahneman’s initial investigation found that the

average probability rankings given to a conjunction A∧B by one group of par-

ticipants was reliably higher than the average rankings given to a constituent A

by another group of participants, producing a conjunction error (Tversky and

Kahneman, 1983). More recently Nilsson et al. (2009) carried out a detailed

study on the occurrence of conjunction and disjunction fallacies in averaged

probability estimates. In Nilsson et al.’s experiments, participants assessed the

probability of conjunctions, disjunctions, and constituent events in a ‘test-retest’

format, with each participant being asked to assess each probability twice, once

in block 1 and once in block 2. Nilsson et al. calculated the average probability

estimate given by each participant for each constituent, conjunction and dis-

junction, and found that conjunction and disjunction fallacies in the averaged

estimates were more frequent than conjunction and disjunction fallacies in the

individual probablity estimates. In this section we show that our model can

account for this pattern of results. We first discuss the factors in our model

that cause this pattern, and then give simulation results demonstrating their

occurrence in the model.
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Consider a series of repeated experiments where in each experiment we

gather N estimates for A and A ∧ B. For each experiment, the sample means

P̂E(A) and P̂E(A ∧ B) represent averages of the N probability estimates ob-

tained in that experiment. Across experiments, these sample means will vary

randomly around their population means PE(A∧B) and PE(A), with different

experiments giving different sample means, just as individual estimates PE(A)

and PE(A ∧B) vary randomly around those same population means. The con-

junction and disjunction fallacy results described for individual estimates in

Section 2.3, which depended on this random variation in individual estimates,

thus also apply to sample means; the only difference between the two situa-

tions is that the degree of random variation in sample means will decline as the

sample size N increases.

The chance of a conjunction fallacy in sample means (that is, the chance

of getting P̂E(A) < P̂E(A ∧ B) in an experiment) depends on various factors.

One factor is is the number of individual estimates N being averaged; another is

the difference between the probabilities P (A) and P (A∧B) being estimated. If

P (A∧B) and P (A) are far apart, then population means PE(A∧B) and PE(A)

will also be far apart and a conjunction fallacy can only occur when there is a

large degree of variation in the sample means (that is, when N is low). On the

other hand, if P (A∧B) and P (A) are close, then the population means will be

close, and a conjunction fallacy can occur even when the degree of variation in

sample means is low (that is, when N is high). In other words, as sample size

N increases, conjunction fallacy rates in sample means will decrease, with the

rate of decrease depending on the difference between P (A) and P (A ∧B).

When P (A ∧B) = P (A) the situation is different. Recall that in our model

the distribution of individual probability estimates for some event depends only

on the number of occurrences of that event in memory (see Equation 2). When

P (A∧B) = P (A) the number of occurrences of A∧B is the same as the number

of occurrences of A, and so the distribution of estimates for A is identical to the
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distribution for A ∧ B. This means that P̂E(A) and P̂E(A ∧ B) have the same

random distribution around the same population mean. Because population

means and distributions are the same, the chance of getting P̂E(A) < P̂E(A∧B)

is exactly the same as the chance of getting P̂E(A) > P̂E(A∧B). Since the first

of these two possibilities produces a conjunction fallacy in the averaged data,

the chance of getting a conjunction fallacy is

1− Eq

2
(7)

where Eq represents the chance of getting exactly the same values for P̂E(A) and

P̂E(A∧B). If we assume that P̂E(A) and P̂E(A∧B) are continuous rather than

discrete variables, then Eq is negligible, and we see that when P (A∧B) = P (A)

the chance of getting a conjunction fallacy in averaged data is 0.5 for all sample

sizes N .

Consideration of the chance of getting exactly the same values for two sample

means P̂E(A) and P̂E(A∧B) brings us to a third factor influencing conjunction

error rates: rounding in participant responses. Recall our earlier observation

that when estimating probabilities, participants tend to respond in units that

are multiples of 0.05 or 0.10. For small N this rounding of estimates produces

sample means that are not continuous variables, but instead only take on a

limited range of values; for example, if individual estimates are rounded to units

of 0.10, then for N = 1 sample means can only have values that are multiples of

0.10, for N = 2 sample means can only have values that are multiples of 0.05,

for N = 3 sample means can only have values that are multiples of 0.03333, and

so on. This limitation on the range of possible values for sample means increases

the chance of getting exactly the same values for P̂E(A) and P̂E(A∧B); that is,

increases the value of Eq. Eq is highest when N is small (when there is only a

small range of possible values for the sample means) and declines as N increases.

Since a high value for Eq means a low conjunction fallacy rate in sample means

(Equation 7), this rounding effect causes the rate of conjunction fallacies in
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sample means to increase with increasing sample size N . This rounding effect

can thus explain the increase in conjunction fallacy rate when averaging across

multiple estimates that was observed by Nilsson et al. The same reasoning

applies to disjunctions.

5.1 Simulation of Nilsson et al.’s Experiments

To test this explanation for Nilsson et al.’s results we use an extension of the

simulation program described earlier (see Section 3). This extension simulates

Nilsson et al.’s Experiment 2, which directly compared averaged conjunction

error rate against individual conjunction fallacy rate.

The stimuli in Nilsson et al.’s Experiment 2 consisted of 180 components,

90 conjunctions and 90 disjunctions that were constructed by randomly pair-

ing those components. Components were constructed using a list of 188 coun-

tries: each component consisted of a proposition stating that a given country

had a population greater than 6, 230, 780 (the median population for the list).

For example, a component could read “Sweden has a population larger than

6,230,780”: participants in the experiment were asked to indicate whether they

thought that statement was true or false, and to give their confidence in that

judgment on a 5 point scale going from 50% to 100%.

A unique sample of components was created for each participant by ran-

domly sampling, with replacement, from the set of components. Conjunctions

and disjunctions were constructed by randomly pairing components (excluding

duplication) so one conjunction could read “Sweden has a population larger

than 6,230,780 and Spain has a population larger than 6,230,780”: partici-

pants were asked to indicate whether they thought that statement was true or

false, and to give their confidence in that judgment on a 5 point scale going

from 50% to 100%.

Participants’ responses were transformed to a 0% to 100% scale by subtract-
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ing from 100 the confidence rating for those items where the participants gave a

‘false’ response. This experiment thus necessarily rounds participants’ responses

to units of 10%. The experiment had a ‘test-retest’ design, where each partic-

ipant was asked to estimate the probability for every component, conjunction

and disjunction twice, in two separate blocks. Nilsson et al.’s primary result

was that there was a higher rate of conjunction and disjunction fallacy occur-

rence when estimates were averaged across the two blocks than there was in the

individual blocks alone.

Participant responses in Nilsson et al.’s experiment represent judgments in

the confidence that a given country’s population is above the median (or, for

conjunctions, that a pair of countries are above the median). To simulate this

experiment we start with a representation of the ‘true’ confidence that a given

population is above the median. This true confidence is then input to our

simulation program, which models the effect of random error in causing variation

in that confidence. To mirror Nilsson et al.’s experiment as closely as possible,

we simulate these true confidence values using a list of 188 highest country

populations fromWikipedia2, and the median population for those countries. To

construct simulated confidence judgments analogous to those given by Nilsson

et al.’s participants, we took pi to represent the population of country i and pm

to represent the median population, and reasoned that the greater the difference

between pi and pm, the greater the confidence there should be in judging that

country i has a population greater (or less) than the median. For countries with

populations greater than the median we therefore took

0.5 +
pi − pm

2×max(pi, pm)

to represent a simulated measure of confidence in the country’s population being

greater than the median. Similarly, for countries with populations less than the

2http://en.wikipedia.org/wiki/List_of_countries_by_population, accessed Feb 20,

2014
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median we took

0.5 +
pm − pi

2×max(pi, pm)

to represent a simulated measure of confidence in the country’s population being

less than the median. Note that both these confidence measures run from 0.5 to

1, just as in Nilsson et al.’s experiment. Finally, we transformed these simulated

confidence measures onto a 0 to 1 scale by following Nilsson et al.’s procedure

and subtracting from 1 the confidence measure for countries with population

less than the median. For every country i, this procedure gave a component

probability

P (i > median) = 0.5 +
pi − pm

2×max(pi, pm)

that corresponds to a simulated measure of confidence that the population of

country i is greater than the median (and where values less than 0.5 represent

countries whose population is less than the median). To construct conjunctive

and disjunctive probabilities we simply applied the probability theory equations

for conjunction and disjunction to those component probabilities, under the

assumption that component probabilities were independent.

On each run our simulation program took as input 180 randomly selected

‘true’ confidence judgments for components (values P (A), P (B)) constructed

by applying the calculations described above to 180 randomly-selected coun-

tries, and 90 conjunctive and disjunctive confidence judgments (P (A ∧ B) and

P (A ∨ B)) calculated by applying the equations of probability theory to those

components. For each set of components, conjunctive and disjunctive values,

the program constructed a ‘memory’ containing 100 items, each item containing

flags A, B, A∧B and A∨B indicating whether that item was an example of the

given event. The rate of occurrence of those flags in memory matched the values

specified by the input probabilities. The program contained a noise parameter

d (set to 0.25 as before) and a rounding parameter set to u = 0.1 to match

the rounding to units of 10% in Nilsson et al.’s experiment. To match the test-
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retest format in Nilsson et al.’s experiment, the program obtained two separate

estimates of PE(A), PE(B), PE(A ∧ B) and PE(A ∨ B) for each set of input

probabilities. For each run the program returned the proportion of conjunction

(and disjunction) fallacy responses in the individual blocks, and the proportion

of conjunction (and disjunction) fallacy responses in the averages across those

two blocks.

Each run of the program thus corresponded to a simulated participant in

Nilsson et al.’s experiment. We ran the program 1000 times and compared the

proportion of conjunction and disjunction fallacy responses in the individual

blocks against the proportion of conjunction and disjunction fallacy responses

in the averages. Just as in Nilsson et al.’s experiment, there was a higher

rate of conjunction fallacy responses in averages (M = 0.19, SD=0.04) than in

individual blocks (M = 0.16, SD=0.03, t(1998) = 18.76, p < 0.0001), and a

higher rate of disjunction fallacy responses in averages (M = 0.19, SD=0.04)

than in indidual blocks (M = 0.15, SD=0.03, t(1998) = 20.13, p < 0.0001).

These simulation results show that our model is consistent with the pattern

seen in Nilsson et al.’s experiment.

6 General Discussion

We can summarise the main results of our experiments as follows: when dis-

tortions due to noise are cancelled out in people’s probability judgments (as in

XE), those judgements are, on average, just as required by probability theory

with no systematic bias. This close agreement with probability theory occurs

alongside significant conjunction and disjunction fallacy rates in people’s re-

sponses. This cancellation of bias cannot be explained in the heuristics view:

to explain this cancellation, the heuristics view would require some way of en-

suring that, when applying heuristics to estimate the various probabilities in

expressions like XE , the biases produced by heuristics are precisely calibrated

44



to give overall cancellation.

Note that cancellation in the expressionXE is required because of probability

theory’s addition law (Equation 1), which is equivalent to

P (A ∨B) = P (A) + P (B)− P (A ∧B)

(the probability theory equation for disjunction). If the heuristics view were

able to ensure cancellation for XE , then that would mean the heuristics were

embodying this addition law; or in other words, that the heuristics were imple-

menting the probability theory equation for disjunction. However, this under-

mines the fundamental idea of the heuristics view, which is that people do not

reason according to the rules of probability theory. Since the assumption in the

heuristics view is that people do not follow probability theory when estimating

probabilities, there is no way, in the heuristics view, to know that the terms in

XE should cancel. To put this point another way: if heuristics were selected

in some way to ensure cancellation of bias for XE , they would no longer be

heuristics: they would simply be instantiations of probability theory.

Furthermore, our results show that when one noise term is left after cancel-

lation (as in expressions Z1E . . . Z4E), a constant ‘unit’ of bias is observed in

people’s probablity judgments, and when two noise terms are left after cancel-

lation (as in expressions Z5E and Z6E), twice that ‘unit’ of bias is observed in

people’s judgments, just as predicted in our simple model. Again, these results

cannot be explained by an account where people estimate probabilities using

heuristics: such an account would not predict agreement in the degree of bias

across such a range of different expressions. Together, these results demonstrate

that people follow probability theory when judging probabilities in our experi-

ments and that the observed conjunction and disjunction fallacy responses are

due to the systematic distorting influence of noise and are not systematically

influenced by any other factor.

It is worth noting that, while our results demonstrate that people’s proba-
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bility estimates given in our experiments followed probability theory (when bias

due to noise is cancelled out), we do not think people are consciously aware of

the equations of probability theory when estimating probabilities. That is evi-

dently not the case, given the high rates of conjunction and disjunction fallacies

in people’s judgments. Indeed we doubt whether any of the participants in our

experiment were aware of the probablity theory’s requirement that our various

derived sums should equal 0 or would be able to apply that requirement to

their estimations. Instead we propose that people’s probability judgments are

derived from a ‘black box’ module of cognition that estimates the probability

of an event A by retrieving (some analogue of) a count of instances of A from

memory. Such a mechanism is necessarily subject to the requirements of set

theory and therefore implicitly embodies the equations of probability theory.

We expect this probability module to be based on observed event frequen-

cies, and to be unconscious, automatic, rapid, parallel, relatively undemanding

of cognitive capacity and evolutionarily ‘old’. Support for this view comes from

that fact that people make probability judgments rapidly and easily and typi-

cally do not have access to the reasons behind their estimations, from extensive

evidence that event frequencies are stored in memory by an automatic and

unconscious encoding process (Hasher and Zacks, 1984) and from evidence sug-

gesting that infants have surprisingly sophisticated representations of probabil-

ity (Cesana-Arlotti et al., 2012). Other support comes from results showing that

animals effectively judge probabilities (for instance, the probability of obtaining

food from a given source) and that their judged probabilities are typically close

to optimal (Kheifets and Gallistel, 2012).

We also expect this probability module to be subject to occasional interven-

tion by other cognitive systems, and particularly by other conscious and sym-

bolic processes that may check the validity of estimates produced. We expect

this type of intervention to be both rare and effortful. To quote one participant

in an earlier experiment where participants had to bet on a single event or on
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a conjunction containing that event: ‘I know that the right answer is always to

bet on the single one, but sometimes I’m really drawn to the double one, and

it’s hard to resist’.

6.1 Comparing models of probabilistic reasoning

The heuristics and biases approach proposes that people do not follow the rules

of probability theory when estimating probabilities: instead they use various

heuristics that sometimes give reasonable judgments but sometimes lead to se-

vere errors in estimation. The results given above directly contradict this pro-

posal, showing that when bias due to noise is cancelled, people’s probability

estimates closely follow the fundamental rules of probability theory. This can-

cellation of bias cannot be explained in the heuristics view, because to know

that the bias in a given probabilistic expression should cancel requires access

to the rules of probability theory. It is important to stress that these results

are the central point in our argument against the view that people estimate

probabilities via heuristics. We are not arguing that the heuristics and biases

approach is incorrect because our simple model of noisy retrieval from memory

can explain four well-known biases (there are many other biases in the litera-

ture which our model does not address: base-rate neglect, the hard-easy effect,

confirmation bias, the confidence bias, and so on; see Hilbert (2012) for a re-

view). Instead, our main point is that our experimental results demonstrate

that the fundamental idea behind the heuristics view (that people do not follow

the rules of probability theory) is seen to be incorrect when we use our simple

model to cancel the effects of noise. Our results also argue against models where

people reason about probability using equations different to those of probabil-

ity theory (Carlson and Yates, 1989, Fantino et al., 1997, Nilsson et al., 2009).

Our results give support for models where people follow probability theory in

their probabilistic reasoning, but are subject to the biasing effects of random
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noise; models such as Minerva-DM (Dougherty et al., 1999) and Hilbert’s ‘noisy

channel’ model (Hilbert, 2012).

We presented our account under the assumption that, for any event A, there

is a clear-cut binary criterion for membership in A: a given memory trace is

either an instance of A or it is not. Given the complexity of event representation

and the graded nature of most natural categories, this assumption is unrealis-

tic: it is more likely that stored instances vary in their degree of membership

in the category A, and that the process of retrieval from memory would reflect

this. Equally, our simple account assumes that there is only one point at which

random noise influences probability estimation: the point at which memory is

queried for stored instances of event A. Again, this is unrealistic: it is more

likely that noise has an influence on initial perceptual processes, on event encod-

ing, on retrieval, on subsequent processing and on decision-making and action.

Further, our account applies only to unconditional probabilities, not to condi-

tional probabilities P (B|A) (the probability of B given that A has occurred).

An important aim for future work is to see whether any useful predictions could

be derived by applying an extended version of our model to conditional proba-

bilities.

Clearly, a generalised version of our account, taking all of these factors into

account, would give give more a realistic description of the processes of proba-

bility estimation. This realism would come at the cost of increased complexity,

however: a more complex generalised model would have various interacting

components and parameters that could be tuned in different ways to match

behaviour. Because of this complexity, it would be difficult to derive clear and

testable predictions from such a model. This is the main advantage of our ac-

count: its simplicity allows us to derive clear, specific and verifiable predictions

about the impact of random variation on human probabilistic reasoning.
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6.2 Concluding Remarks

The focus in our work has been on people’s estimation of simple, unconditional

probabilities. Our results show that patterns of systematic bias in these esti-

mates can be explained via noise in recall, and that when this noise is cancelled,

people’s estimates match the requirements of probability theory closely, with

no further systematic bias. This result has general implications for research on

people’s use of heuristics in reasoning. A frequent pattern in that research is to

identify a systematic bias in people’s responses, and to then take that bias as

evidence that the correct reasoning process is not being used. We believe that

this inference is premature: as we have shown, random noise in reasoning can

cause systematic biases in people’s responses even when people are using the

correct reasoning process. To demonstrate conclusively that people are using

heuristics, researchers must show that observed biases cannot be explained as

the result of random noise. To put it simply: biases do not imply heuristics, and

even a rational reasoning process can produce systematically biased responses

solely due to random variation and noise.
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Table 1: Average values of expressions Z1E , . . . , Z4E and difference from overall

mean.

expression M SD Diff. from overall mean (in units of SD)

Z1E 25.37 31.50 0.007

Z2E 22.51 28.25 -0.093

Z3E 26.50 27.95 0.048

Z4E 26.23 29.12 0.037

Overall mean 25.15 29.26
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Table 2: Average values of expressions Z5E , Z6E and difference from predicted

value of twice the overall mean of Z1E . . . S4E , or 2× 25.15 = 50.3.

expression M SD Diff. from 50.3 (in units of SD)

Z5E 48.74 42.24 -0.037

Z6E 52.72 49.98 0.048

overall mean 50.73 46.30 0.001
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Figure 1: Frequency of different values of XE(A,B) in the Monte Carlo sim-

ulations. This scatterplot shows the raw frequency of occurrence of different

values of XE(A,B) as observed in the Monte Carlo simulations, across runs

for a range of different probability values P (A), P (B), P (A ∧B) and P (A ∨B)

(there were 286 sets of probability values, with 10, 000 XE values calculated for

each set). The critical point here is that the distribution of these values is essen-

tially the same across different probability values: unimodal and symmetrically

distributed around 0. A −1 to +1 probability scale is used here: note that later

figures use the 100 point rating scale from the experiments.
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Figure 2: Frequency of different values of XE(A,B) in Experiment 1. This

scatterplot shows the raw frequency of occurrence of different values ofXE(A,B)

as observed in the experimental data (hollow circles), and the average frequency

across grouped values of XE(A,B) where each group contained 10 values of

XE(A,B) from v−5 . . . v+5 for v from −100 to 100 in steps of 10 (filled circles).

(The sequence of higher raw frequency values (hollow circles) fall on units of 5,

and represent participants rounding to the nearest 5 in their responses). The

critical point here is that these values are symmetrically distributed around 0

as predicted in our model.
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Figure 3: Relationship between conjunction and disjunction fallacies and aver-

age XE(A,B) value in Experiment 1. This scatterplot shows the total number

of conjunction and disjunction fallacies produced by each participant versus the

average values of XE(A,B) across all pairs for that participant. The critical

point here is that the fallacies occur frequently even when XE(A,B) = 0.
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Figure 4: Frequency of different values of XE(A,B) and YE(A,B) in Exper-

iment 2. This scatterplot shows the raw frequency of occurrence of different

values of XE(A,B) and YE(A,B) as observed in the experimental data (hollow

circles), and the average frequency across groups of 10 values as in Figure 1.

The critical point here is that these values are symmetrically distributed around

0 as predicted in our model.
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Figure 5: Computed variance in estimates PE(A) in Monte Carlo simulations

withm = 100, for values of P (A) from 0 to 1 in steps of 0.01, and for d = 0.4, 0.3,

0.2 and 0.1. For each value of P (A) and each value of d, the simulation produced

10, 000 estimates PE(A): each point in the graph represents the variance of one

such set of 10, 000 estimates. The critical point here is that this variance is

independent of P (A) and, for a given value of d, is equal to the predicted value

d(1 − d)/m. For d = 0.4, 0.3, 0.2 and 0.1, predicted variances are 0.0024,

0.0021, 0.0016 and 0.0009 respectively: the computed variances in the graph

agree almost exactly with those predictions.
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Appendix:

Variance in probability estimates in the model

In our model, for any event A the count C(A) of the number of flags in memory

that are read as 1 is made up of two components: (i) the number of flags whose

value is 1 and which are read correctly as 1 and (ii) the number of flags whose

value is 0 but which are read incorrectly as 1. Since the probability of a flag

being read incorrectly is d, the first component is a binomial random variable

with distribution TA − B(TA, d) (where TA is the number of flags whose true

value is 1 and B(TA, d) represents the binomal distribution of the number of

those flags that are incorrectly read) and the second component is a binomial

random variable with distribution B(m − TA, d) (since there are m − TA flags

whose true value is 0 and B(m− TA, d) represents the binomial distribution of

the number of those flags that are incorrectly read as 1). We thus have

C(A) = TA −B(TA, d) +B(m− TA, d)

Since the mean of a binomial distribution B(n, p) is pn, this gives

PE(A) =
TA − dTA + d(m− TA)

m

= (1− 2d)P (A) + d

as in Equation 3. Since the expected variance of a binomal B(n, p) is p(1− p)n,

the expected variances of these two distributions are d(1−d)TA and d(1−d)(m−

TA) respectively. Since each read of a flag is an independent Bernoulli trial with

probability d, these two distributions are independent. For two independent dis-

tributions the variance of their difference is equal to the sum of their individual
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variances and so the expected variance of C(A) is

V (C(A)) = d(1− d)(TA +m− TA)

= d(1− d)m

Finally, since variance is defined as the average squared difference from the

mean, and since PE(A) = C(A)/m, we get

V (PE(A)) =
V (C(A))

m2
= d(1− d)/m

and the expected variance in the distribution of PE(A) is a constant d(1−d)/m

for all values of P (A).

It is useful to check this result via simulation. We did this using a program

that simulates the effects of random noise in recall on probability estimations

for a given set of probabilities (as in Sections 3 and 5). This program took as

input an event probability P (A) and constructed a ‘memory’ containing m =

100 items, each item containing a flag indicating whether that item was an

example of the given event. The occurrence of those flags in memory matched

the given probability P (A). This program also contained a noise parameter

d; when reading flag values from memory to generate an estimate PE(A), the

program was designed to have a random chance d of returning the incorrect

value. For each input probability P (A) ranging from 0 to 1 in steps of 0.01 the

program generated 10, 000 noisy estimates PE(A) and used these 10, 000 values

to estimate V (PE(A)).

We carried out this simulation process for a range of values of d (0.1, 0.2,

0.3 0.4). Figure 5 graphs the average variance for these 10, 000 noisy estimates

PE(A) for each value of P (A) and for each of those values of d. As is clear from

the graph, the calculated variance in the simulation was independent of P (A)

and equal to d(1− d)/m, as expected.
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