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Abstract—Convolutional neural networks (CNNs) have shown
remarkable performance in various real-world applications. Un-
fortunately, the promising performance of CNNs can be achieved
only when their architectures are optimally constructed. The
architectures of state-of-the-art CNNs are typically hand-crafted
with extensive expertise in both CNNs and the investigated data,
which consequently hampers the widespread adoption of CNNs
for less experienced users. Evolutionary deep learning (EDL) is
able to automatically design the best CNN architectures without
much expertise. However, existing EDL algorithms generally
evaluate the fitness of a new architecture by training from
scratch, resulting in the prohibitive computational cost even
operated on high-performance computers. In this paper, an end-
to-end offline performance predictor based on the random forest
is proposed to accelerate the fitness evaluation in EDL. The
proposed performance predictor shows promising performance
in term of the classification accuracy and the consumed compu-
tational resources when compared with 18 state-of-the-art peer
competitors by integrating it into an existing EDL algorithm as a
case study. The proposed performance predictor is also compared
with the other two representatives of existing performance predic-
tors. The experimental results show the proposed performance
predictor not only significantly speeds up the fitness evaluations,
but also achieves the best prediction among the peer performance
predictors.

Index Terms—evolutionary deep learning, performance pre-
dictor, surrogate model, random forest, convolutional neural
network.
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C
ONVOLUTIONAL Neural Networks (CNNs) [1], [2], as

the most dominant deep learning approaches [3], have

been demonstrating their promising performance in addressing

various real-world applications, such as image classification [4],

speech understanding [5], and natural language processing [6],

to name a few. It is well known that the performance of CNNs

highly relies upon their architectures, and a new architecture

must be redesigned if the addressed data has been changed.

Unfortunately, designing architecture with the best performance

for the investigated data requires extensive expertise in both the

CNNs and the data domain [7], which is not necessarily held

by the interested users. Designing the best CNN architecture

for the given data can be seen as an optimization problem,

which can be mathematically formulated by (1):

argmax
Aλ

L(Aλ,Dtrain,Dtest) s.t. λ ∈ Λ (1)

where λ refers to the parameters related to the architectures

of CNNs, such as the number of convolutional layers and the

configurations of pooling layers; Λ refers to the parameter

space, Aλ denotes the CNN algorithm A adopting the architec-

ture parameters λ, and L means the performance measure of Aλ

on the test data Dtest after it has been trained on the training

data Dtrain. Generally, λ is with discrete values, e.g., the

configurations of both convolutional and pooling layers must be

integers, which results in the architecture optimization not being

well-addressed by the exact optimization algorithms. To address

this challenge, researchers have developed algorithms (e.g., [8]–

[14]) to design the best CNN architecture by effectively solving

the problems represented in (1). Among these algorithms,

the evolutionary algorithm-based ones, which are called the

evolutionary deep learning algorithms (EDLs), are much

preferred because EDLs generally consume less computational

resource than other CNN architecture design algorithms [11]–

[14], while still can achieve the promising results. For example,

on the CIFAR10 dataset [15], the evolutionary algorithm-based

Automatic Evolving CNN (AE-CNN) algorithm finds the best

CNN architectures by consuming 22 days using three Graphics

Processing Units (GPUs), and achieves the classification error

rate of 4.7%. However, the reinforcement learning-based neural

architecture search method [9] consumes 28 days using 800

GPUs, while achieves the classification error rate of 6.01%
which is a worse result than AE-CNN.
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Evolutionary algorithm is a type of population-based heuris-

tic computational paradigms [16]–[18], and has been widely

used in addressing various complex optimization problems [19]–

[21], mainly because of its gradient-free and insensitiveness

to local minimum [22]–[24]. In EDLs, each individual is

transformed to a CNN with the corresponding architecture

through the mapping from genotype to phenotype, and then

the weights of the CNN are initialized and iteratively trained

based on Dtrain commonly with stochastic gradient descent

(SGD) [25], [26] given a number of epochs. During each epoch,

the CNN also needs to be trained with multiple iterations

in which the number is determined by the adopted batch

size and the size of Dtrain. Such a single fitness evaluation

typically takes several hours to days. As a result, the potential

promising architecture may not be found through EDLs within a

limited computational budget due to the time-consuming fitness

evaluation. This will become even more severe in the case of

a large population and with a large number of generations,

which is a more widely used configuration of evolutionary

algorithms targeting at finding the better solutions [16], [18],

[27]. Therefore, speeding up the fitness evaluation of CNN is

essential in the design of EDL.

A common way to accelerate the fitness evaluation of CNN

is to use a performance predictor [28]. In 2014, Swersky et al.

proposed the Freeze-thaw Bayesian optimization algorithm [29]

by using a Gaussian process regression [16], which built the

model based on the training performance in the first t epochs

to predict performance at the T (T > t) epoch. Followed by

the same routine, the learning curve extrapolation methods

in [30], [31] employed a set of functions from exponential

families and the Bayesian neural network, respectively, to

build the model based on the training performance in the

first t epochs. Unfortunately, these mentioned performance

predictors are typically based on expensive Markov chain

Monte Carlo sampling procedures and manually designed curve

functions, which are with high computational complexity. In

2017, Deng et al. proposed the Peephole algorithm [32] that

predicted the performance of a CNN based on its architecture

information, where a large number of different CNNs were

trained, and the performance of all sampled networks in each

epoch was collected as the training data, and then a long-short

term memory neural network [33] is used to train the model. In

addition, the train-less accuracy predictor (TAP) [34] and the

accelerating neural network architecture search (ANNAS) [35]

algorithms also employed similar methods to predict the

performance of the given CNNs.

In fact, the optimization problem in EDLs is a type of

computationally expensive problems, which is usually solved by

surrogate-assisted evolutionary algorithms (SAEAs) [36], using

cheap approximated regression and classification models (like

Gaussian process model [37], radial basis function network [38],

etc.) to replace the expensive fitness evaluation [39]. SAEAs

have shown effectiveness and efficiency in various real-world

optimization applications [40]. Generally, the models are

trained from a small number of expensive fitness evaluations

(i.e., the samples with evaluated objective values), and then

the trained models are used as the fitness predictors in the

evolutionary search to accelerate the optimization process [41].

According to [42], SAEAs can be divided into online and

offline algorithms, which depend on whether expensive fitness

evaluations are used to enrich the training data during the

optimization process. Although new training data in online

algorithms can significantly improve the quality of the model

and optimization performance, offline algorithms are more

practical than online algorithms due to the hardness and

high cost in obtaining new data [40]. Without sampling new

training data, offline algorithms can be very fast, and its data

collection and optimization search are completely separated. So

far, the base algorithms commonly applied in offline SAEAs

are data pre-processing [43], data mining [42], and ensemble

learning [44], since they can effectively and robustly address

the problems having limited training data.

Our goal in this paper is to present an effective and

efficient end-to-end performance predictor (in short named

E2EPP) based on random forest [45]. The adoption of random

forest lies in its effectiveness to a limited number of training

samples, applicability to discrete variables, and robustness to

its parameter settings [46], [47]. The proposed E2EPP is able

to directly know the performance of a CNN once it looks at

the new CNN architectures, which is naturally able to speed

up the evolutionary process of EDLs. The contributions of this

paper are summarized below:

1) The training data of the random forest are a set of data

pairs, and each pair is composed of the CNN architecture

and its performance. However, the architecture is modelled

by describing languages, e.g., a paragraph of words, which

cannot be directly used as the input to the random forest.

Therefore, we propose an effective encoding method that

is capable of extracting the features of CNN architectures

as the numerical values, which are further used as the

samples for training the random forest. As a case study,

AE-CNN [48], as the representative of the state-of-the-art

EDLs, is adopted to investigate the details of encoding.

2) The trained random forest is based on a set of samples

of CNN architectures (and their performance) which do

not necessarily cover all the architecture space. If the

performance prediction is adopted from the tree giving

the best performance, the obtained result may be biased.

To this end, we employ a selective ensemble strategy to

choose diverse trees for combination in the local area of

every generation.

3) Considering the two goals in term of using the per-

formance predictor: the efficiency in speeding up the

evolutionary process and the effectiveness in finding the

best CNN architecture, we perform extensive experiments

to verify these aspects.

The remainder of this paper is organized as follows. The

background and related work are introduced in Section II.

This is followed by the algorithm details of the proposed

random forest-based performance predictor in Section III. In

order to validate the effectiveness and the efficiency of the

proposed performance predictor, the experiment designs and

the experimental results are presented in Sections IV and V,

respectively. Finally, the conclusion and future works are

described in Section VI.
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II. LITERATURE REVIEW

In this section, the EDL, AE-CNN and random forest are first

introduced as the base algorithms in Subsection II-A, which

is helpful to know the details of the proposed performance

predictor. Then, the related work to performance predictors

is presented in Subsection II-B, for better justifying the

effectiveness and efficiency of the proposed work.

A. Background

1) EDL: A general framework of EDLs [11]–[14] is com-

posed of the steps shown below:

Step 1: Randomly initialize a population with the predefined

size based on the corresponding genotype-to-phenotype

mapping strategy.

Step 2: Map each genotyped individual to the corresponding

CNN, and train each CNN to obtain the classification

accuracy on the validation dataset as its fitness value.

Step 3: Use tournament selection to select the parent individ-

uals based on the fitness, and then generate the new

offspring achieving the same predefined size through

the crossover and mutation operators.

Step 4: Perform the environmental selection on the combined

population to select a new population surviving into

the next generation.

Step 5: Go to step 3 if the termination condition is not satisfied.

Otherwise, choose the individual with the best fitness

and terminate the evolutionary process.

Indeed, the whole process of an EDL follows the procedure

of an evolutionary algorithm, i.e., population initialization

(Step 1), fitness evaluation (Step 2), offspring generation

(Step 3) and environmental selection (Step 4). Generally, an

evolutionary algorithm involves four parameters: the maximal

generation number for the whole evolutionary process, the

population size for the population initialization and the en-

vironmental selection, and the crossover rate as well as the

mutation rate for the offspring generation. One major factor of

the promising performance of evolutionary algorithms is the

environmental selection to keep individuals with better fitness

in the new population than the previous population. However,

as described in Step 2, the fitness of each individual in EDL is

evaluated through the training of the corresponding CNN. For

a better understanding of the fitness evaluation, the framework

of training a CNN is provided in Algorithm 1.

Generally, the training of a CNN is achieved by using

SGD on a given training dataset through hundreds of epochs

(Steps 5-11). The objective of the training is to maximize the

classification accuracy by adjusting millions of the weights

(Step 8) in CNN. For a moderate CNN on a commonly used

benchmark dataset, e.g., CIFAR10 and CIFAR100 [15], the

training process would take from several hours to days perform-

ing even on the high-performance GPUs. Since evolutionary

algorithms belong to a class of population-based algorithms,

their required numbers of evaluations are larger than that

of SGD, which make the computational cost of EDL even

higher. For example, on the CIFAR10 dataset, the large-scale

evolutionary algorithm [12] consumed 11 days on 250 GPUs,

and the hierarchical evolutionary algorithm [13] spent 1.5 days

Algorithm 1: Fitness Evaluation of A CNN in EDL

Input: The individual p, training dataset Dtrain,

validation dataset Dvalid, training epochs T ,

batch size b, learning rate γ, objective function

L.

Output: The fitness.

1 net← Decode p into the corresponding CNN

architecture;

2 Add the classification layer to the end of net;
3 Randomly initialize the weights w in net;
4 t← 0;

5 while t < T do

6 for each batch data in Dtrain do

7 ∇w ← Compute the gradient by ∂L/∂w;

8 w ← w − γ∇w;

9 end

10 t← t+ 1;

11 end

12 Calculate the classification accuracy of net on Dvalid;

13 Return the fitness.

on 200 GPUs. Such a large number of GPUs may not be

available to many researchers. To address such a challenge,

it is of great importance to reduce the computational cost

for EDLs by developing performance predictors, which could

replace most of those expensive fitness evaluations, to speed

up EDLs relying on limited computational resources.

2) AE-CNN: As the performance predictor is part of EDL

in this research, an EDL method should be provided before

the performance predictor is detailed. In this work, the AE-

CNN algorithm developed by the authors is selected as the

representative EDL, which is mainly based on the reasons that:

1) it shows promising performance among existing EDLs [48],

and 2) the source code of AE-CNN is available to the public.

Noting that the proposed performance predictor is applicable

to any existing EDLs [8]–[14].

The AE-CNN algorithm [48] is an automatic EDL algo-

rithm based on the building blocks of the state-of-the-art

ResNet [49] and DenseNet [50], which has shown the promising

performance on the CIFAR10 and CIFAR100 datasets [15]

compared to state-of-the-art CNNs manually designed and

other semi-automatic and automatic EDL algorithms [48]. The

AE-CNN algorithm used in this work is to prepare samples for

training the random forest, and then the trained random forest

is used as the performance predictor in AE-CNN to verify

the effectiveness and efficiency. In this subsection, we mainly

introduce the genotype-to-phenotype mapping of AE-CNN

for the completeness of the presentation, which enables the

ability of evolutionary algorithms to model CNN architectures.

These CNN architectures are the input to the random forest

(the details of how to feed the architecture information to the

random forest will be discussed in Section III).

The CNN architectures generated by AE-CNN are composed

of the DenseNet Blocks (DBs), ResNet Blocks (RBs) and

Pooling Blocks (PBs). Each DB or RB is composed of multiple

DenseNet Units (DUs) and ResNet Units (RUs), respectively,
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while a PB consists of only one pooling layer. Each DU, RU,

or PB differs in terms of the parameter settings. The parameters

of a DU are the sizes of input and output (denoted by in and

out, respectively), while those of an RU are the same as those

of a DU, in addition to an increasing factor (denoted by k). The

parameter of a PB is only the pooling type (i.e., the maximal
or mean pooling type) because its other parameters are all set

to fixed values. Because a DB/RB is composed of multiple

DUs/RUs, the parameters of a DB/RB are the corresponding

parameters of a DU/RU and the amount (denoted by amount)
of DUs/RUs in a DB/RB. In addition, as the DBs, RBs and PBs

compose a CNN with an order, an extra parameter (denoted by

id) is also used to represent the corresponding position in the

CNN. Obviously, a CNN generated by AE-CNN is composed

of sequential blocks which may be the DUs, RUs or PBs. When

the block is an RB, the parameters are the id, amount, in and

out; when the block is a DB, the parameters are id, amount,
k, in and out; when the block is a PB, the parameter is the

pooling type denoted by type. Noting that the in of the current

RB/DB should be equal to the out of its previous RB/DB for

the reason of constructing a valid CNN.

3) Random Forest: Compared with other learning algorithms,

such as neural networks, the random forest has the advantages

of directly accepting the discrete data as input, almost having

no extra parameters to tune and not relying on a large amount

of training data [50]. These advantages are the exact reason for

employing the random forest in this work. Random forest [45]

is an ensemble learning method by operating a set of decision

trees for classification and regression tasks [46]. During the

training of random forest, each decision tree randomly selects

a part of the whole feature set and then learns the mapping

from the selected features to the corresponding target. During

the predicting process, each decision tree selects the same

features as it selects in the training phase, and then output

the corresponding prediction. The random forest uses the

average output of the selected decision trees as its final output.

Randomly selecting a part of the whole feature set is also the

famous random subspace method [47], which has been shown

to be simple yet effective.

B. Related Work

The existing performance predictors can be classified into

two different categories: performance predictors based on the

learning curve and end-to-end performance predictors, both

of which are based on the training-predicting computational

paradigm. The representatives of these two types are the Freeze-

thaw Bayesian Optimization (FBO) algorithm [29] and the

Peephole algorithm [32].

The FBO algorithm uses a regression model based on

Bayesian Optimization to predict the performance of a CNN.

The regression model is built based on the data sampled from

the learning curve regarding the first t epochs, i.e., a series of

data pairs in different training epochs and the corresponding

performance at these epochs. After the regression model that

has been optimized by the Bayesian Optimization method, it is

used to predict the performance of the same CNN at the T -th

epoch where T > t. The Peephole algorithm uses a number of

CNN architectures and their corresponding performances that

have been achieved by training the CNNs with T epochs, as

the training samples to train a long-short time memory neural

network [33]. The trained neural network directly predicts the

performance of a new CNN based its architecture, which is

called the end-to-end mechanism because the end in the input

is the raw data while the end in the output is the classification

accuracy. Because the architecture cannot be directly used as

the input data of the neural network, the Peephole algorithm

employs the word vector technique to map the CNN architecture

to a numerical value.

The major advantage of the FBO algorithm remains in the

trained-CNN-free nature, i.e., it does not need any trained

CNNs in advance. Because training a CNN is time-consuming,

varying from several days to weeks, the FBO algorithm is

efficient. However, it will not be effective when the learning

curve is not smooth because the curve fitting works under the

assumption that the curve is smooth. In recent deep learning

applications, the learning curve is usually not smooth because

a schedule of learning rates is usually used. Once the learning

rate is changed, the learning curve will have a non-smooth

segment. Another limitation of the FBO algorithm is the non-

end-to-end nature (i.e., in predicting the performance of each

CNN, a part of the training data regarding this CNN must be

collected for training the predictor), which requires much more

labour work when it is used. Owing to the end-to-end nature,

the Peephole algorithm is more convenient for use. However,

the major drawback of Peephole remains in the requirement

of a large number of training samples, which results in added

computational complexity of collecting train samples exceeding

the EDL without using performance predictors. For example,

Peephole used over 8, 000 fully trained CNN architectures as

the training data. However, EDLs generally achieve promising

performance by evaluating only hundreds of individuals. If we

have enough computational resources to evaluate the 8, 000
CNN architectures, we will not need to develop the performance

predictor. Such a limitation is largely caused by its adopted

regression mode, i.e., the neural network-based algorithm,

which typically highly relies on a large amount of labelled

training data.

The proposed performance predictor has the advantages of

the end-to-end manner and relying upon only limited training

data, which address both limitations of the existing performance

predictors discussed above.

III. PROPOSED ALGORITHM

As mentioned, the main challenge of EDL is the high

computational cost of evaluating a single CNN architecture.

Inspired by offline SAEAs, we use random forest [46] as the

fitness predictor to replace the expensive fitness evaluation.

For a better understanding, Fig. 1 shows the framework of the

proposed performance predictor as well as the associated EDL.

The random forest-based performance predictor is learned from

a number of different CNN architectures that have been trained

for a classification task with their accuracy. Compared with

the CNN training process, the random forest construction and

prediction is computationally cheaper and can be repeatedly
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Fig. 1. Main frame of the proposed algorithm.

used throughout the evolutionary optimization. Thus, the high

computational cost in EDL can be relieved.

As shown in Fig. 1 that is composed of three blocks,

i.e., the data collection, E2EPP and EDL. The proposed

E2EPP performance predictor is part of EDL. Firstly, a set of

training data is collected for training the random forest-based

predictor, where the collection is achieved by performing the

corresponding EDL without using E2EPP. Each data sample

is composed of the CNN architecture and the corresponding

classification accuracy that is obtained by training the CNN

from scratch. Secondly, those architectures are encoded into

discrete code (shown in Subsection III-A) for building the

random forest-based predictor pool with a large number (say

K) regression trees (denoted as CARTs) [51] (shown in

Subsection III-B). During each generation of the EDL, the

newly generated CNN architecture is encoded as the input to

the random forest, and then its performance is predicted by

using the adaptive combination of CARTs from the predictor

pool (shown in Subsection III-C). When the EDL terminates,

the CNN architecture that has the best prediction performance

is output. Noting that there is no further CNN training during

the optimization process.

Since the CNN architecture is presented as discrete variables,

random forest [52], which is suited for discrete regression

tasks and also relies on only limited labelled data [53], is

adopted as the fitness predictor in the proposed algorithm.

Also, as a selective ensemble of CARTs considering both

global and local landscape, the random forest-based predictor

is adaptively updated over the generations of the evolutionary

search, where the population is distributed in different local

regions and a fixed random forest cannot guarantee accuracy

in those local regions. In the following subsections, we will

first introduce the details of encoding of the CNN architectures

to the proper format for the random forest, training of the

random forest, and fitness prediction using the trained random

forest in Subsections III-A, III-B and III-C, respectively. Then,

the strength and the weakness of the proposed performance

predictor are summarized in Subsection III-D.

A. Encoding

The encoding operates on the trained CNNs whose architec-

tures are randomly initialized. To collect this data, we use AE-

CNN to randomly generate a set of valid CNN architectures.

A valid CNN architecture means that this architecture can

be trained with a predefined training routine without any

exceptions such as the out-of-memory errors causing a zero

classification accuracy. Based on the description shown in

Subsection II-A2, the collected training data are summarized

as below:

1) RBs and DBs: Each generated CNN architecture is

composed of four RBs and four DBs at most, the number

of output channels of each block varies between [32, 512]
that is set based on the conventions of state-of-the-art

CNNs [50], [54].

2) PBs: Each generated CNN architecture contains four

pooling layers at most. There are two types of PBs: MAX

and MEAN.

Generally, we encode a CNN architecture into a chromosome

with 3Nb + 2Np discrete variables, when the maximal number

of RBs and DBs is Nb and the maximal number of PBs is

Np. For the first 3Nb variables, each RB or DB is encoded
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Algorithm 2: Encoding A CNN Architecture

Input: The CNN architecture A, the maximal number

Bn of DBs and RBs, the maximal number Np

of PBs.

Output: The encoded architecture information.

1 b list← ∅;
2 p list← ∅;
3 l← Calculate the number of blocks in A;

4 for for i← 1 to l do

5 block ← Get the i-th block of A;

6 if block is a RB then

7 Put 1 into b list;
8 Put the values of the out and amount of block

into b list;
9 else if block is a DB then

10 Put the values of the k, out and amount of

block into b list;
11 else

12 if block is a maximal pooling layer then

13 Put 1 to p list;
14 else

15 Put 0 to p list;
16 end

17 Put i to p list;
18 end

19 end

20 Put zero to b list until |b list| = 3Nb;

21 Put zero to p list until |p list| = 2Np;

22 Return b list ∪ p list.

into a triplet as [type, out, amount], where the block type

for RBs is set to 1, and that for DBs are set to 12, 20 and 40
when k is equal to 12, 20 and 40, respectively. Noting that

the parameter of in for each RB/DB is not encoded because it

can be calculated by the out of its previous RB/DB, and the

smaller number of decision variables could result in a better

performance for regression model when the training data is

limited [46]. For the following 2Np variables, each pooling

layer is encoded into a pair as [pooling type, layer position],

the maximal and mean pooling types are presented by 1 and

0, respectively. If a CNN architecture has b RBs and DBs,

and p PBs, then its 3b + 1-th to 3Nb-th variables are set to

zeros, and its 3Nb + 2p+ 1-th to 3Nb + 2Np-th variables are

set to zeros as well. Therefore, the performance predictor by

using random forest is based on the input data with 3Nb+2Np

discrete decision variables, and the output is a continuous value

within the range of [0, 1]. Algorithm 2 shows the details of

encoding a CNN architecture into the data that can be directly

used by the random forest, and | · | is a countable operator.

B. Training of the Random Forest

A large number of CARTs are generated in the predictor

pool. Each CART is trained by the whole training data with a

random subset of features (i.e. discrete variables), where each

discrete variable is assigned a probability of 0.5 in order to

maximize the diversity of the predictor pool [55]. Each node

of a CART presents a rectangle region in the decision space.

The mean squared error of the output of those samples in that

region (node) determines whether this node needs splitting or

not (i.e., whether the mean squared error decrease is smaller

than a set threshold Ts [51], and if so, this node is a leaf node).

When K CARTs are obtained, the predictor pool is ready for

the optimizer. The details of training the CARTs are shown in

Algorithm 3.

Algorithm 3: Performance Predictor Training

Input: The K CARTs, the encoded training data

Dtrain, the feature number m.

Output: The K trained CARTs and their selected

feature ids.

1 I ← ∅;
2 for i← 1 to K do

3 CART ← Select the i-th CART from CARTs;

4 v ∈ Rm ← Randomly generated a vector from

[0, 1];
5 Ii ← Collect the position of the elements whose

values are greater than 0.5 in v;

6 Train CART on the features whose ids are in Ii;
7 I ← I ∪ Ii;
8 end

Output: The K trained CARTs and the corresponding

selected feature ids I .

C. Performance Prediction

Since the computational cost of training a single CNN is

very high, it is impractical to obtain any new training data

for the predictor pool during the optimization process. Thus,

those predictors cannot be updated or validated, which is

the main challenge of offline SAEAs [40]. To deal with the

lack of training data, a large number of surrogate models are

employed as ensemble members in a recent offline SAEA

[44]. The results indicate that a selective ensemble surrogate

can effectively improve the robustness of the obtained solution

when the new training data is unavailable. Also, those ensemble

members are adaptively combined in each generation to provide

local information on the current population. Motivated by

the combination strategy that was originally proposed in our

previous work [44] for addressing decision variables having

continuous values, we employ it to update the random forest-

based predictor in every generation in the proposed algorithm,

i.e., we choose Q CARTs from the predictor pool and then

use their average prediction as the fitness value. Although the

decision variables of the proposed algorithm are discrete, it is

experimentally found that the combination strategy still works

well.

In each generation, all of the K trained CARTs re-estimated

the performance on the CNN Ab that has the best-predicted

fitness value; and then Q out of the K CARTs are uniformly

selected from the K ordered CARTs based on their prediction

values on Ab. The Q CARTs are combined as the ensemble

performance predictor to evaluate both parent and offspring

population. Such selection is based on the performance diversity
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of CARTs around the current best CNN architecture Ab. After

that, the generated CNN architectures A are evaluated by

using the ensemble predictor of Q CARTs. Thus, the adaptive

predictor can balance the global tendency and local information

in the fitness landscape, where the combination of K CARTs

predicts the global average landscape and that of Q diverse

CARTs in a small area refines the local landscape. The details of

the prediction process in a generation are shown in Algorithm 4.

D. Strength and Weakness of E2EPP

As have been introduced in Subsection II-B, the limitations

of the existing performance predictors are the non-end-to-end

nature, the strict assumption on the smoothness of the learning

curve, and the availability of the large training samples. The

proposed method has been carefully designed to address these

limitations.

The proposed algorithm is end-to-end and does not rely on

the learning curve no matter whether it is smooth or not. Firstly,

the end-to-end nature is more convenient in practice because

we do not need to prepare the training data in predicting the

performance of each CNN. Secondly, because the proposed

algorithm does not need to fit the learning curve, the predicted

performance is better than the existing approaches based on

the learning curve. This is theoretically evidenced by the

universal approximation theorem [56] that the learning curve-

based approaches can achieve promising performance only

when the learning curve is smooth. However, in practice, the

learning curve is not always smooth.

On the other hand, the proposed algorithm does not require

a large number of training samples. Most existing approaches

employing deep learning techniques succeed subject to the

availability of a large amount of training data. In the CNN

performance prediction, such training data is collected by

training a lot of CNNs from scratch. However, the training is

time-consuming even if performing on GPUs, while the main

goal of designing performance predictors is to save the time

of training CNNs. If we put enough time to collect a sufficient

amount of training data, the performance predictor design will

lose its original purpose. In the proposed method, we use

the random forest as the base operator to learn the mapping

between the CNN architecture and its performance. The reason

is that random forest can achieve a promising performance on

limited amount of training data, which has been theoretically

proven and practically investigated [45], [46].

Unfortunately, the weakness of the proposed algorithm is

the unknown of the minimal number of training samples for

achieving promising performance, while the minimal number

is case by case for different tasks. In practice, we need to use

an incremental strategy to sample training samples until the

desired performance is achieved.

IV. EXPERIMENT DESIGN

In order to verify the effectiveness and efficiency of the

proposed performance predictor, a series of experiments are

carefully designed and performed. Although the proposed

performance predictor aims at speeding up the fitness evaluation

of EDL, the ultimate goal of the performance predictor is

Algorithm 4: Performance Predicting

Input: The K trained CARTs, the selected features ids

I of each CART, the current best CNN Ab, the

number of most diverse prediction Q, the

generated architectures A to be evaluated.

Output: The fitness values of A.

1 Y ← ∅;
2 Ab

encoded ← Encode Ab based on the details shown in

Subsection III-A;

3 for i← 1 to K do

4 CART ← Select the i-th CART from CARTs;

5 x← From Ab
encoded select the elements whose ids

are in Ii;
6 y ← Use CART predict the classification accuracy

on x;

7 Y ← Y ∪ x;

8 end

9 Y ← Order the elements in Y ;

10 ICART
selected ← Uniformly select Q CARTs based on Y ;

11 for i← 1 to |A| do

12 Fi ←the mean prediction of Q selected CARTs

(ICART
selected) on |Ai|;

13 end

14 Return F .

to find the best CNN architecture that achieves a promising

classification performance on the image data at hand. Therefore,

two experiments are performed in this paper: 1) investigating

the classification performance of the proposed performance

predictor with AE-CNN, and 2) inspecting the efficiency

of the proposed performance predictor. In this section, the

selected peer competitors and benchmark datasets, as well as

the parameter settings for these two types of experiments, are

detailed.

A. Peer Competitors

In comparing the classification performance, the chosen

peer competitors are divided into three different categories:

the state-of-the-art CNNs whose architectures are manually

designed, the state-of-the-art CNN architecture designs based

on non-evolutionary algorithms (mainly based on reinforcement

learning), and the state-of-the-art EDL algorithms. The first

category covers DenseNet [50], ResNet [54], Maxout [57],

VGG [58], Network in Network [59], Highway Network [60],

All-CNN [61], FractaNet [62]. Considering the promising

performance of ResNet, we use its two different versions:

ResNet with the depths of 101 and 1, 202, respectively.

For the convenience of the discussion, they are denoted as

ResNet (depth=101) and ResNet (depth=1,202), respectively.

The second category consists of NAS [9], MetaQNN [8],

EAS [9], and Block-QNN-S [10]. The third category includes

Genetic CNN [11], Large-scale Evolution [12], Hierarchical

Evolution [13], and CGP-CNN [14]. Considering the proposed

performance predictor is introduced in a case study of AE-CNN,

AE-CNN combined with E2EPP (denoted as AE-CNN+E2EPP)

is chosen to perform this experiment.
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Fig. 2. Examples of CIFAR10 and CIFAR100 shown in Figs. 2a and 2b, respectively. Each row represents two samples from the same category and the words
in the left refer to the corresponding category name.

For the second experiment, the selected peer competitors

are the existing performance predictors [30], [32] discussed in

Subsection II-B.

B. Benchmark Datasets

Benchmark datasets are only required by the first experiment.

The CIFAR10 and CIFAR100 datasets are selected as the

benchmark datasets. Both benchmark datasets are selected

mainly because of their wide adoption by the state-of-the-art

CNNs and CNN architecture design algorithms.

CIFAR10 is a 10-category natural object classification

dataset, consisting of a training dataset with 50, 000 images

and a test dataset with 10, 000 images, and each image has the

dimension of 32× 32. In the training dataset, each category

has roughly the equal number of samples, while in the test

dataset, each category has the exact same number of samples.

CIFAR100 is just like CIFAR10, except that it is 100-

category. Because CIFAR100 has the same number of images

in the training images and test images as those of CIFAR10,

each category in CIFAR100 only has one-tenth of images

as that in CIFAR10. Due to the smaller number of training

data in each category and a larger number of classification

categories than CIFAR10, CIFAR100 is a more complex dataset

for classification than CIFAR10.

For each image of both benchmark datasets, the object to be

classified commonly occupies a small area of the entire image,

and also the size, the area, and the position of each object differ

to each other in other images, even when they are from the

same category. An example of these two benchmark datasets

are shown in Fig. 2 for a glance, where each row denotes the

objects from the same category, and the label leading in each

row denotes the ground-truth of the corresponding object.

C. Parameter Settings

In this subsection, the parameter settings for generating the

training data from AE-CNN are detailed at first, and then

those of the proposed performance predictor are introduced

next. Noting that these parameter settings are applied to both

experiments.

Based on the conventions of the deep learning community,

the SGD algorithm is used to train the CNN architectures

whose weights are initialized with the commonly used Xavier

method [63]; the batch size is set to 128; the weight decay

is set to 5 × 10−4; each CNN is trained 350 epochs, and

the learning rate is set to 0.01 for the first epoch and the

151-th to the 249-th epoch, 0.1 for the second to the 150-th

epoch, and 0.001 for the remaining epochs. The classification

accuracy is evaluated on the “validation dataset1”. Because

the used benchmark datasets do not have the corresponding

validation dataset, 20% images are randomly selected from the

corresponding training dataset as the validation dataset based

on the conventions. All the CNNs are trained on three GPUs

with the same model of NVIDIA 1080TI. In addition, we set

both maximal numbers of RB and DB to 4 because of the

limited GPU memory. Because each pooling operation halves

the input size one time, and the input sizes of CIFAR10 and

CIFAR100 are both 32× 32, the maximal number of pooling

layers is set to 4. Furthermore, based on the conventions of

DenseNet, k is selected from {12, 20, 40}, and the maximal

numbers of DUs in a DB are 10 when k = 12 and k = 20, and

5 when k = 40. The maximal number of RUs in an RB is set

to 10. Based on our configuration for generating the training

data, Nb and Np are set equal to 8 and 4, respectively, and the

decision variable length of each training data for the random

forest is 32 (8× 3+4× 2). To build the performance predictor

pool, we generate 1000 CARTs. The threshold of stopping

node splitting is set as 1e− 4× σ2 (σ2 is the variance of the

training data) when growing each CART. In each generation,

100 CARTs are selected to combine the random forest-based

predictor. All the parameter settings are summarized in Table I.

In performing the CNN architecture design by using AE-

CNN and the proposed E2EPP method, we set both the

maximal generation number and the population size to 20,

the probabilities for the crossover and mutation are set to 0.9

and 0.1, respectively, as suggested in AE-CNN. Noting that

before E2EPP is used for each generated CNN architecture,

the CNN architecture is evaluated in the GPUs for one epoch

so that the generated CNN can be normally evaluated by

E2EPP, i.e., the employed GPUs can carry the CNN architecture

and will not lead to an out-of-memory error. This is also for

keeping a similar data distribution between the training data

and the test data for E2EPP. After the evolutionary process, the

individual with the best classification accuracy is chosen and

then fully trained with the same training routine as collecting

1We are aware of different definitions on the validation (data)set from
literature. Based on the convention of the machine learning community, the
validation set is used only for controlling overfitting and model selection, and
the selected model cannot be updated and improved via the validation set. In
evolutionary deep learning, after the individuals (models) are selected based
on their performance of the “validation set”, they are updated and possibly
improved by genetic operators during evolution. So we use the quotation marks
to highlight its different meaning here from its traditional meaning.
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the training data for five independent runs, and the best result is

reported, which is followed the conventions from deep learning

community.

TABLE I
A SUMMARY OF THE PARAMETER SETTINGS.

Parameter name Parameter value

batch size 128

weight decay 5× 10
−4

training epochs 350

learning rate 0.01 for 1, and 151–249 epochs;
0.1 for 2–150 epochs; 0.001 for
251–350 epochs

k of the DB {12, 20, 40}
maximal number of DUs in a DB 10 when k = 12 and k = 20; 5

when k = 40

maximal number of RUs in a RB 10

maximal number of DBs (Np) 4

maximal number of RBs (Nb) 8

generation number 20

population size 20

crossover probability 0.9

mutation probability 0.1

number of CARTs 1000

threshold of stopping node splitting 1e− 4× ρ2 (ρ2 is the variance of
the training data)

number of selected CARTs 100

V. EXPERIMENTAL RESULTS

The results of the designed experiments are presented

and analyzed in this section. Specifically, the classification

performance of AE-CNN+E2EPP, in terms of the classification

accuracy and the consumed GPU days, are elaborated in

Subsection V-A. In order to extensively investigate the proposed

E2EPP performance predictor, its efficiency and effectiveness

are individually tested, and the corresponding experimental

results are shown in Subsections V-B and V-C, respectively. In

addition, the comparision to Radial Basis Network (RBN) has

also been done to show the promising performnace of random

forest employed in the proposed E2EPP performance predictor.

A. Overall Results

Table II presents the experimental results in terms of the

classification accuracy and consumed GPU days of the com-

pared algorithms. Specifically, Table II is divided into five rows:

the second to fourth rows denote the state-of-the-art CNNs

manually designed, the state-of-the-art CNN architecture design

algorithms based on non-evolutionary algorithms, and the

state-of-the-art CNN architecture design algorithms based on

evolutionary algorithms (i.e., the EDL algorithms), respectively;

the last row shows the result of the proposed performance

predictor used in AE-CNN (i.e., AE-CNN+E2EPP). In addition,

the first column shows the names of the compared algorithms;

the second and the third columns show the classification

accuracy on CIFAR10 and CIFAR100, and the fourth column

shows the consumed GPU days for achieving the corresponding

classification accuracy by the corresponding architecture design

algorithms. These architecture design algorithms generally

report their consumed numbers of GPUs and days. For the

convenience of the comparison, we unify them by using “GPU

days” as an indicator expressing the utilized computational

resource. For example, one GPU day means a GPU is fully

consumed in one day to achieve the classification accuracy. All

the results of the peer competitors in this table are extracted

from their seminal papers, in addition to the GPU days that we

convert it by multiplying the number of GPUs with the number

of days taken. The symbol “–” means the corresponding paper

does not provide the corresponding result publicly available.

Noting that the GPU days of AE-CNN+E2EPP is mainly caused

by collecting the training data but not performing E2EPP.

For the classification accuracy obtained by the state-of-the-art

CNN manually designed, on the CIFAR10 benchmark dataset,

AE-CNN+E2EPP achieves, on the average, the classification

accuracy of 1.5% higher than ResNet (depth=101), VGG

and All-CNN, 2.04% higher than ResNet (depth=1, 202) and

Highway Network, and even 3.78% higher than Maxout and

Network in Network, respectively, while slightly lower than

DesnNet (0.04%) and FractalNet (0.06%). On the CIFAR100

benchmark dataset, AE-CNN+E2EPP, whose classification

accuracy is 77.98%, outperforms all other peer competitors that

achieve the classification accuracy varying from 77.70% (by

FractalNet) to 61.40% (by Maxout). AE-CNN+E2EPP demon-

strates the promising performance among peer competitors in

this category.

Compared with non-evolutionary algorithms, AE-

CNN+E2EPP achieves the better classification accuracy

than NAS and MetaQQ, but a little worse than EAS and

Block-QNN-S on CIFAR10; on CIFAR100, the classification

accuracy of AE-CNN+E2EPP is significantly better than that

of MetaQQ while slightly worse than that of Block-QNN-S.

In addition, NAS, MetaQNN and Block-QNN-S achieve

their classification accuracies by consuming 22, 400, 100 and

90 GPU days, respectively, while AE-CNN+E2EPP only

consumes 8.5 GPU days. In addition, AE-CNN+E2EPP also

consumes fewer GPU days than that of EAS.

Compared with other EDLs, AE-CNN+E2EPP shows lower

classification accuracy than that of Hierarchical Evolution,

while higher than those of Genetic CNN, Large-scale Evolution

and CGP-CNN on CIFAR10. On CIFAR100, AE-CNN+E2EPP

shows the highest classification accuracy than others. Further-

more, AE-CNN+E2EPP also consumes the fewest GPU days

than other peer competitors in this category.

In fact, EAS, Block-QNN-S, Hierarchical Evolution and

CGP-CNN are all semi-automatic CNN architecture design al-

gorithms, i.e., they design the CNN architectures based on both

the expertise of manually designed CNNs and the automatic

ways of EDLs. To this end, it is reasonable that CNN+E2EPP

is inferior to them in terms of the classification accuracy.

In summary, AE-CNN+E2EPP wins 26 times out of the 30

classification accuracy comparisons, and also consumes the

least GPU days among all architecture design peer competitors.

B. Efficiency of E2EPP

The experimental results presented in Table II have indicated

that AE-CNN can achieve promising classification accuracy

when the proposed E2EPP is used, which is the ultimate goal

of designing the performance predictor. In this subsection,
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TABLE II
THE COMPARISON OF AE-CNN+E2EPP AND THE PEER COMPETITORS IN TERMS OF THE CLASSIFICATION ACCURACY (%) AND THE CONSUMED GPU

DAYS ON THE CIFAR10 AND CIFAR100 BENCHMARK DATASETS.

Peer Competitors CIFAR10 CIFAR100 GPU Days

state-of-the-art CNNs
manually designed

DenseNet [50] 94.76 75.58 –
ResNet (depth=101) [54] 93.57 74.84 –

ResNet (depth=1,202) [54] 92.07 72.18 –
Maxout [57] 90.70 61.40 –
VGG [58] 93.34 7.95 –

Network in Network [59] 91.19 64.32 –
Highway Network [60] 92.28 67.61 –

All-CNN [61] 92.75 66.29 –
FractalNet [62] 94.78 77.70 –

CNN architecture design algorithms
based on non-evolutionary methods

NAS [9] 93.91 – 22,400
MetaQNN [8] 93.08 27.14 100

EAS [9] 95.77 – 10
Block-QNN-S [10] 95.62 79.35 90

CNN architecture design algorithms
based on evolutionary methods

Genetic CNN [11] 92.90 70.95 17
Large-scale Evolution [12] 94.60 77.00 2,750
Hierarchical Evolution [13] 96.37 – 300

CGP-CNN [14] 94.02 – 27
AE-CNN + E2EPP 94.70 77.98 8.5

we will specifically investigate the efficiency of E2EPP by

disabling and enabling it in AE-CNN. To do a fair comparison,

AE-CNN is performed with the same parameter settings as

those of AE-CNN+E2EPP on both CIFAR10 and CIFAR100.

We record the consumed GPU days of AE-CNN when it has a

new generated CNN architecture whose fitness value satisfies

the condition formulated by (2)

∣

∣

∣

∣

f1 − f2
f2

∣

∣

∣

∣

≤ 0.01 (2)

where f1 denotes the fitness of the new CNN architecture

generated by AE-CNN, and f2 denotes the fitness of AE-

CNN+E2EPP shown in Table II.
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Fig. 3. The consumed GPU days of AE-CNN and AE-CNN+E2EPP when
achieving the same classification accuracy on CIFAR10 and CIFAR100.

Fig. 3 shows the comparisons of the consumed GPU days

when AE-CNN satisfies the condition of (2) on CIFAR10 and

CIFAR100. The numbers above each bar display the consumed

GPU days by the corresponding algorithm. The bars filled with

the symbol of “·” denote the results of AE-CNN+E2EPP, while

the bars filled with the symbol of “◦” denote that of AE-CNN.

Clearly, it can be seen from Fig. 3 that E2EPP has significantly

improved the efficiency of AE-CNN for finding the best CNN

architectures. Particularly, E2EPP saves 214% and 230% fewer

GPU days on CIFAR10 and CIFAR100, respectively, when it

is used in AE-CNN. Therefore, the goal of designing such a

proposed performance predictor, in terms of speeding up the

fitness evaluation, has been achieved.

C. Effectiveness of E2EPP

In order to check the effectiveness of E2EPP, the FBO [30]

and Peephole [32] algorithms, which are the representatives of

existing performance predictors as detailed in Subsection II-B,

are selected to do the quantitative and qualitative comparisons

against E2EPP. For the quantitative comparison, we choose

the Mean Square Error (MSE), Kendall’s Tau (KTau) [64] and

the Coefficient of Determination (CoD) [65] as the indicators

suggested in [32]. Specifically, KTau measures the correlation

between the ranks of the prediction and their true ranks. A

higher KTau value implies the higher correlation and the KTau

value varies between [−1, 1]. The CoD measures the closeness

degree of the prediction to its true value, and its value ranges

from −∞ to 1 where a larger value means the closer degree.

For the qualitative comparison, we scatter the true values with

the corresponding prediction on a 2-dimension space where

the horizontal axis denotes the true values while the vertical

axis denotes the prediction. The parameter settings of FBO and

Peephole are set based on the suggestions in [32]. In addition,

the experiment on each benchmark dataset is performed 10

times.

TABLE III
THE MEAN SQUARE ERROR (MSE), KENDALL’S TAU (KTAU),

COEFFICIENT OF DETERMINATION (COD) AND THE USED TIME OF FBO,
PEEPHOLE, AND E2EPP ALGORITHMS ON THE CIFAR10 DATASET.

MSE KTau CoD Time (seconds)

FBO 0.0077 0.2170 -4.346 3.702
Peephole 0.0019 0.5324 0.3765 359.296
E2EPP 0.0006 0.6604 0.5184 3.813
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Fig. 4. The prediction and the true values of EBO, Peephole and E2EPP on the CIFAR10 dataset. In each subfigure, the horizon axis denotes the true values,
while the vertical axis denotes the corresponding prediction.
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Fig. 5. The prediction and the true values of EBO, Peephole and E2EPP on the CIFAR100 dataset. In each subfigure, the horizon axis denotes the true values,
while the vertical axis denotes the corresponding prediction.

TABLE IV
THE MEAN SQUARE ERROR (MSE), KENDALL’S TAU (KTAU),

COEFFICIENT OF DETERMINATION (COD) AND THE USED TIME OF FBO,
PEEPHOLE, AND E2EPP ALGORITHMS ON THE CIFAR100 DATASET.

MSE KTau CoD Time (seconds)

FBO 0.0078 0.1923 -2.631 3.725
Peephole 0.0024 0.5412 0.3238 458.652
E2EPP 0.0015 0.6501 0.3872 3.514

The quantitative comparison results on CIFAR10 and CI-

FAR100 are shown in Tables III and IV, respectively. In

addition, we also add the consumed time (seconds) measuring

how long E2EPP, FBO and Peephole take to finish the

experiment. Clearly as can be seen from Table III, FBO and

Peephole obtain the MSE of 0.0077, and 0.0019, respectively,

while E2EPP obtains the MSE of 0.0006 that is an order

of magnitude less than FBO and Peephole can. This means

that E2EPP could achieve a better prediction than FBO and

Peephole. For the KTau indicator, FBO, Peephole and E2EPP

achieve the values of 0.2170, 0.5324 and 0.6604, respectively,

which imply that the performance predicted by E2EPP has

the best correlation. For the CoD indicator, E2EPP again wins

the highest value of 0.5184 (-4.346 for FBO and 0.3765 for

Peephole). Based on the definition of CoD, the predicted value

of E2EPP is the closest one to the ground truth value among

the comparisons. In addition, E2EPP uses 3.813 seconds for

the prediction, which is a little worse than FBO that uses 3.702

seconds. However, it is still much better than Peephole that

uses 359.296 seconds. The similar comparison results can also

be investigated from Table IV. Specifically, E2EPP obtains the

MSE of 0.0015 that is about half of that from Peephole and 1/5

of that from FBO, i.e., E2EPP has the minimal prediction error

than the others. Furthermore, FBO obtains the KTau indicator

value of 0.1923, while Peephole and E2EPP obtain the values

of 0.5412 and 0.6501, respectively. For the CoD indicator,

E2EPP achieves the best one, i.e., 0.3872, while FBO and

Peephole acquire -2.631 and 0.3238, respectively. This shows

the best prediction performance of E2EPP on the CIFAR100

dataset. In addition, E2EPP consumes 3.514 seconds to finish

the prediction, which is the best among FBO (3.725 seconds)

and Peephole (458.652 seconds).

The qualitative comparisons on CIFAR10 and CIFAR100

are scattered in Figs. 4 and 5, respectively, where the x axis of

each point (denoted as (x, y)) represents the true value and y
axis denotes the corresponding prediction. For the convenience

of the comparison, we also plot the line y = x in each figure.

The points standing above y = x mean the predictions are

higher than the true values, while the points standing below

y = x means the predictions are lower than the true values.

The more points closer to y = x, the better prediction of the

corresponding performance predictor. As can be clearly seen

from Figs. 4a and 4b, FBO has only half of the total points

that are close to the line of y = x, and Peephole achieves

better results by having more points close to the line of y = x.

However, it is clearly observed from Fig. 4c showing the results

of E2EPP, almost all of the points are close to the line y = x.
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This means that the predicted values of E2EPP have minimal

prediction errors, which is consistent with the quantitative

analysis shown in Table III. From Figs. 5a, 5b and 5c that

show the results performed on CIFAR100 by FBO, Peephole

and E2EPP, respectively, it can be seen that FBO and Peephole

achieve the similar results that have a wide spread of points

around the line of y = x, while the results of E2EPP have the

closer distance to the line y = x. This also shows the same

conclusion from the quantitative analysis observed in Table IV.

D. Comparison to Radial Basis Network (RBN)

In order to demonstrate the promising performance of the

random forest employed by the proposed E2EPP performance

predictor, the comparison to RBN is performed, and the results

are shown and analyzed in this subsection.

Specifically, an RBN is a three-layer neural network, except

that the activation function of each unit in the hidden layer is

a Gaussian function, and the output layer is a linear weight

summation of the output of the hidden layer. The RBN is

often used for regression tasks, which is similar to the function

of random forest used in the proposed E2EPP performance

predictor. Another reason for choosing RBN here for the

comparison is that RBN is the base of our previous work [44]

that motivates the design of E2EPP in this paper. For a fair

comparison, we only replace the random forest by an RBN,

while the other parts are kept the same as that used for the

experiment shown in Subsection V-A. For the convenience of

the discussions, we denote the RBN used by the AE-CNN

algorithm as AE-CNN+RBN.

In the comparison, we only show the classification accuracies

on CIFAR10 and CIFAR100, but not showing the consumed

GPU days since the performance of both AE-CNN+E2EPP

and AE-CNN+RBN does not rely on GPUs. The number of

GPU days shown in Table II of AE-CNN+E2EPP is used for

measuring the validity of the generated CNN architectures

during the evolutionary process. In addition, the number of

hidden units of the RBN is set to the same as the input size

based on the conventions of practice [44]. The comparison

results are shown in Table V.

TABLE V
THE COMPARISON OF AE-CNN+E2EPP AND AE-CNN+RBN IN TERMS OF

THE CLASSIFICATION ACCURACY (%) ON THE CIFAR10 AND CIFAR100
BENCHMARK DATASETS.

CIFAR10 CIFAR100

AE-CNN + E2EPP 94.70 77.98

AE-CNN + RBN 82.33 70.20

It can be seen from Table V that AE-CNN+E2EPP achieves

the classification accuracies of 94.70% and 77.98% on CI-

FAR10 and CIFAR100, respectively, while AE-CNN+RBN

achieves those of 82.33% and 70.20%, respectively. This

implies that the random forest employed in the proposed

E2EPP performance predictor is better than RBN. In fact,

it is easy to find the proof of this conclusion, when the RBN

is used, the mean and standard deviations of the Gaussian

functions are calculated based on the training data. However,

the training data in E2EPP is encoded with some numerical

numbers that do not refer to the real meaning. In addition, the

RBN has been well-known to be suitable for continuous data,

while the training data in E2EPP is discrete. In summary, AE-

CNN+E2EPP outperforms AE-CNN+RBN on the CIFAR10

and CIFAR100 benchmark datasets.

As can be seen above, we have performed four groups of

experiments that are carefully designed to verify the promising

performance of the proposed E2EPP performance predictor.

Particularly, the first is for investigating whether E2EPP

could enable EDL to achieve the competitive performance in

designing the CNN architectures. The second validates whether

E2EPP could accelerate EDL or not. The third quantitatively

and qualitatively investigates whether E2EPP could outperform

the existing approaches regarding the performance prediction,

and the fourth investigates whether the random forest employed

in E2EPP could perform better than the RBN that is another

commonly used regression model. In addition to the third

one, all the others are performed in the case of AE-CNN.

All the experimental results demonstrate the effectiveness

and efficiency of the proposed E2EPP performance predictor.

From these experimental results, we can recognize that the

performance predictor is indeed able to speed up EDL, and the

end-to-end nature is convenient to use in practice by avoiding

manual interventions during the performing of EDL. In addition,

the random forest, as an ensemble approach, achieves the

promising performance but relying on only limited training

samples, which is a good characteristic especially in EDL where

sufficient training data is not easy to obtain. Furthermore, the

random forest could directly use the discrete number as its

input, which is also another good characteristic in predicting

the performance of CNNs when the architecture information is

used as the input data. This implies that the ensemble methods

depend on discrete input data may be a proper choice in

designing the performance predictors, which is not only suitable

to EDL but also other deep learning model selection methods.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to develop an effective and

efficient end-to-end performance predictor, named E2EPP, to

speed up evolutionary deep learning algorithms in designing

the best CNN architectures for given tasks. This goal has

been achieved by proposing a random forest-based offline

surrogate model. In order to enable the random forest to accept

the CNN architectures as its input data, we also develop an

encoding schema that is able to uniquely map the description

of a CNN architecture into a numerical decision variable. In

addition, we took the advantage of random forest in terms

of the ensemble characteristic that each tree in the random

forest randomly selects a subspace of the whole features as its

training data. Furthermore, in order to improve the diversity

of used off-line model, only a part of the decision trees

in the random forest is selected based on their prediction

on the best individual to do the prediction, which in turn

enhances the accuracy of the predicted values. The proposed

performance predictor is firstly examined by integrating it

into an existing evolutionary deep learning algorithm, which is

called AE-CNN+E2EPP, on CIFAR10 and CIFAR100. Through
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the comparisons with eight CNNs whose architecture are

manually crafted, and another eight CNN architecture designs,

AE-CNN+E2EPP shows the very promising results on both

classification accuracy and consumed GPU days. In addition,

the efficiency of the E2EPP is also examined on AE-CNN

by enabling and disabling it. The results show that E2EPP

could save 2/3 of computational time when achieving the same

classification accuracy. Further, the E2EPP is compared with

the other two state-of-the-art performance predictors, namely

FBO and Peephole, on three measurements. E2EPP shows the

best results on these three measurements. Especially, E2EPP

uses only 1/100 computational time of that Peephole uses. It

also shows that E2EPP achieves the best prediction through

the qualitative comparison among these three performance

predictors on both CIFAR10 and CIFAR100 datasets.

The proposed performance predictor is based on the first-

train-then-to-predict paradigm, which requires a set of trained

samples in advance. Theoretically, the more trained samples,

the better prediction results. However, collecting more trained

samples implies consuming more computational resource,

which leads to long processing time. Achieving a better

performance prediction results conflicts to the goal of designing

the performance predictors. Therefore, finding a good balance

between these two objectives may be an efficient way to

use the performance predictor, which is left for future work.

In addition, we will also integrate E2EPP into other CNN

architecture design algorithms to solve some specific tasks,

such as recognizing breast cancer on the BreakHis dataset [66].
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