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Faculty of Information Technology
FI-40014 University of Jyvaskyla, Finland
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Abstract—We tackle three different challenges in solving a
real-world industrial problem: formulating the optimization
problem, connecting different simulation tools and dealing with
computationally expensive objective functions. The problem to
be optimized is an air intake ventilation system of a tractor and
consists of three computationally expensive objective functions.
We describe the modeling of the system and its numerical
evaluation with a commercial software. To obtain solutions in
few function evaluations, a recently proposed surrogate-assisted
evolutionary algorithm K-RVEA is applied. The diameters of
four different outlets of the ventilation system are considered as
decision variables. From the set of nondominated solutions gener-
ated by K-RVEA, a decision maker having substance knowledge
selected the final one based on his preferences. The final selected
solution has better objective function values compared to the
baseline solution of the initial design. A comparison of solutions
with K-RVEA and RVEA (which does not use surrogates) is also
performed to show the potential of using surrogates.

I. INTRODUCTION

Optimization problems involving multiple conflicting ob-
jectives are common in engineering design. Typically they
have multiple optimal solutions referred to as Pareto optimal
solutions with different trade-offs among objectives. A deci-
sion maker (DM) who is an expert in the application domain
can determine one among them as the final solution based on
her/his preference information.

In this article, we focus on addressing three major chal-
lenges which often occurr in solving real-world problems:

1) the formulation of the multiobjective optimization prob-
lem,

2) modeling of the problem and connecting different pieces
of commercial simulation software for numerical evalua-
tion and

3) dealing with computationally expensive objective func-
tions.

The formulation of a real-world optimization problem is
usually an iterative task between an expert of the problem
domain and an analyst who is familiar with optimization
algorithms. In the literature, most of the algorithms developed
are tested on benchmark problems, where the formulation of
the problem is already known. In case of real-world problems,
a meaningful formulation of the optimization problem is not
necessarily straightforward and may need several iterations
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and efforts to be able to verify the appropriateness of the
formulation.

We focus on multiobjective shape optimization of a com-
ponent in the air intake ventilation system of a tractor. The
particular component, shown in Figure 1, is used to heat the
cabin and defrost the windscreen. Here, the main goal of the
DM is to find a design of a cooling pipe ventilation system,
where the outflow of air among all outlets is the same and
the pressure loss is as low as possible. For considering these
conflicting goals, we formulate a multiobjective optimization
problem (MOP) involving three objectives. We describe dif-
ferent phases of formulating the objectives and the ones that
eventually were selected.

After formulating the optimization problem, the next chal-
lenge is to combine different pieces of software to obtain
objective function values. In contrast to benchmark problems,
where analytical forms of the objective functions are available,
real-world problems can have a black-box nature and need
different simulation tools or software for function evaluation.
For instance, in this study, we do meshing of the geometry in
one software and then export it to another one for numerical
evaluation. The output generated with the numerical evaluation
software is connected with the optimization algorithm. There-
fore, the challenge of combining different pieces of software
is relevant in real-world problems and usually not addressed
in the literature in using evolutionary algorithms.

The next challenge is finding a solution with a limited
computation budget. The computation time to find a solution
in real-world problems like problems involving computational
fluid dynamics (CFD) simulations can be substantial [1]. In
such cases, one can afford only few function evaluations.

The problem considered in this article is computationally
expensive and involves CFD simulations. For this problem, the
computation time for one function evaluation on a computer
with Intel Xeon CPU E5-1607 v3 and 32 GB RAM is three to
five minutes. To address the challenge of a limited computation
budget, one can employ surrogates (or metamodels or response
surface approximations) with evolutionary algorithms. Several
algorithms have been proposed in the literature, e.g. ParEGO
[2], SMS-EGO [3] and MOEA/D-EGO [4] to obtain a set of
solutions in few function evaluations. For more details about
these algorithms and their main characteristics, see [5], [6].



Recently, Chugh et al. [7] have proposed a surrogate-
assisted algorithm called K-RVEA for computationally expen-
sive optimization problems involving three or more objective
functions and demonstrated its efficiency. Kriging models have
been popular in solving computationally expensive MOPs [8],
[9] and are also used in K-RVEA to alleviate the computational
cost of evaluating objective functions. The main focus in K-
RVEA is to efficiently manage the surrogates and reduce the
training time of the surrogates. The algorithm uses a set of
reference vectors for managing the surrogates to obtain a di-
verse set approximating Pareto optimal solutions. The potential
of the algorithm was shown in [7] on several benchmark
problems by comparing with the state-of-the-art surrogate-
assisted evolutionary algorithms.

We divide the consideration of the shape optimization
problem into three phases. In the first phase, we focus on
formulating the multiobjective optimization problem. In the
next phase, we apply K-RVEA to find a representative set of
Pareto optimal solutions. In the final phase, the DM who is the
design expert in the automobile industry selects one solution
of the set based on his preferences after a careful investigation.

The rest of this article is organized as follows. In Sec-
tion II, we introduce some relevant characteristics of the air
intake ventilation system in a tractor. Next, in Section III,
we describe details and challenges occurred in formulating
the optimization problem. In Section IV, we describe the
modeling and numerical evaluation of objective functions with
two pieces of commercial software. We briefly outline the
K-RVEA algorithm used for solving the problem in Section
V and present the results obtained in Section VI. Finally, in
Section VII we draw conclusions.

II. AIR INTAKE VENTILATION SYSTEM

In this section, we introduce the use of an air intake
ventilation system in a tractor. The air intake is a part of
a ventilation system in a tractor cabin and plays a crucial
role in maintaining a uniform temperature. As can be seen
in Figure 1, the component of the system considered in this
study consists of four outlets leading to different branches
of the ventilation system. Each outlet has its own role in
maintaining the temperature. In an ideal scenario, flow rates
from all these outlets should be the same to provide the best
uniformity in the temperature. However, maintaining an equal
flow rate from each outlet is not possible in practice as each
outlet has a different shape and consequently, has a different
hydraulic resistance.

For any component, the pressure loss AP in a passage is
defined as

AP = A-Pf'riction + A-Plocaly (D

where APypiction 18 the pressure loss caused by the friction
resistance and APj,.q; is the pressure loss caused by local
resistance. The friction resistance APfcrion OCcurs because
of a momentum transfer to the solid walls [10]. Its numerical
value can be estimated by Darcy’s empirical formula:

Outlet 4

Outlet 3

Outlet 1

Fig. 1. CATIA 3D model of the component considered
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where f is the Moody friction factor, / and Dj; are the length
and the hydraulic diameter of the passage, respectively, p is
the fluid density and @ is the mean velocity of the flow.

The local resistance AP, is due to the dissipation of
mechanical energy (by whirls etc.), and can be described by
the Weisbach formula:
pu

- (©)

APloccbl = 9

where ( is the coefficient of local resistance.

In fact, the coefficients f and ¢ are functions of both the
passage shape and the Reynold’s number. The dimensionless
Reynold’s number Re represents the ratio between momentum-
related force and viscous shear force, and is defined in [11]
as:

Re =22, @
n

where u is the fluid velocity, p the fluid density, 7 the fluid
viscosity and L the so-called characteristic length. The values
of the hydraulic resistance coefficients f and ¢ can be obtained
by multiple means: experimentally or numerically through
CFD. For many "standard" shapes, they can also be found
in the literature, e.g. in [10].

Generally, the pressure loss increases with an increasing
velocity. This is because of the quadratic member p@? in (2)
and (3). Now that some basic concepts of the ventilation sys-
tem have been introduced, we can formulate the multiobjective
optimization problem to be considered.

IIT. MOP FORMULATION

In this section, we first discuss the challenges occurred in
formulating the multiobjective optimization problem and then
present the objective functions formulated.
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Fig. 2. An illustration of the optimization problem formulation in real-world
problems

A. Challenges in formulating the problem

As mentioned in the introduction, formulating a meaningful
representation of the optimization problem which reflects the
needs and is understandable for the DM is not necessarily
straightforward. It is very important to mention this par-
ticular challenge as most of the evolutionary algorithms in
the literature are tested on benchmark problems, where no
effort for the formulation of the optimization problem is
needed. A typical illustration of the formulation and solving
a real-wold optimization problem is presented in Figure 2.
To summarize, in this study, first, a problem was formulated
after an initial discussion with the expert who was the DM
in the application domain and the optimization analyst. After
solving the problem, the solutions were shown to the DM
and the problem was revised and reformulated e.g. by adding,
removing and modifying the objective functions. After these
several iterations, a final formulation was selected.

We finalized the formulation after three iterations with
the DM. First, we formulated a five objective optimization
problem. Solutions obtained after solving this problem were
not providing any extra value in terms of objective functions
to the DM. Therefore, we modified the problem to have two
objectives. Solutions of this biobjective optimization problem
were meaningful to the DM and were also providing better
values in terms of objective functions e.g. a good balance in
the flow rates from different outlets and low pressure losses.
However, the flow rate from one of the outlets was very low
because of its small diameter. Therefore, we reformulated the
problem to have three objectives by adding an extra objective
considering the flow rate from the outlet with the smallest
diameter. The DM was satisfied with the solutions and finally
selected one solution based on his preferences. Next, we define
the objective functions and decision variables of the final
formulation of the multiobjective optimization problem.

B. Objective functions and decision variables

As mentioned in Section II, the pressure loss depends on
hydraulic resistance and the mean velocity u. All the outlets

Fig. 3. CFD results of the initial design

open into a surrounding with the same pressure. Therefore, the
pressure loss, i.e. the difference of pressures at inlet and outlet,
must be the same for all the outlets. If the hydraulic resistances
of different outlets are not the same, the velocities and thus the
flow rates must be different according to equations (2) and (3).
Also, flow rates from outlets 2 and 4 are significantly lower
when compared to other outlets. This is mainly caused by the
characteristic of the flow in case of outlet 2, and by the small
diameter (small diameter leads to a high velocity) of outlet 4.
A CFD simulation of the initial design given by the DM is
shown in Figure 3. In the following, we denote the solution
corresponding to the initial design as the baseline solution.

Maximizing the balance in the flow rates and minimizing
pressure losses are two major goals in the optimization. As
the flow rates are different from different outlets because of
the hydraulic resistances (the higher the resistance, the smaller
the flow rate), a balance in the flow rate can be accomplished
in two ways:

1) decreasing the high hydraulic resistances or

2) increasing the low hydraulic resistances.

Since the pressure loss is mostly determined by the narrow-
est parts of the passage, the diameters of the outlets play a key
role. A smaller diameter leads to a high hydraulic resistance
and vice-versa. Decreasing the hydraulic resistances would be
good for both balances in the flow rates and reducing the
pressure losses. Therefore, the diameters of the outlets can be
used as the decision variables. To ease the solution process,
we use the scaling factors of the initial design as the decision
variables i.e.

D;
Dgznztzal)
where D; is the diameter of the i*" outlet and D™l s the
diameter of the i outlet in the initial design. The diameters
of the outlets were also prolonged as shown in Figure 3
for numerical evaluation using CFD simulations. This was
easily accomplished using the custom 7c¢l scripts of ANSYS
ICEM. Such a simplification is only accurate if changes in
diameters are not greater than the original ones. However, for
the solution process, we used the following bounds of the
decision variables:

méb =00 for i =1,...,4,
ot =15 fori=1,...,4,

T, = for 1 =1,...,4, 4)

(6)



where :céb and :I:fb are the lower and upper bounds of the
decision variables.

In addition to maximizing the balance in flow rates and
minimizing the pressure losses, a third objective considering
the flow rate from the outlet 4 was considered because of
its smallest diameter. Finally, we finalized the following three
objectives:

/1 : Minimize variance between flow rates at outlets 1 to 3
: Minimize var(Q,3)
f2 : Minimize pressure loss of the air intake
: Minimize Pjpier — Poutlet
f3 : Minimize the difference between the flow rate at outlet 4

and the average of the flow rates at outlets 1 to 3

: Minimize avg(Q13) — Qu,

where Q) represents the flow rate from the %' outlet,

avg(Q1,3) the average flow rate value from outlets 1-3 and
Pinier and P,y are the pressure values at the inlet and the
outlet, respectively. As already mentioned, decision variables
are the scaling factors of the diameters of the initial design
given in (5).

For numerical evaluation of the designs, the ANSYS CFX
[12] solver was used for CFD simulations. For some standard
shapes such as elbows or pipes, it would be easier to use
empirical values for hydraulic resistance coefficients. But in
this particular case, CFD takes into account both the exact
shape of the design and a mutual interaction of the outlets. This
allows for a higher precision in the numerical evaluation. Next,
we provide a detailed description of modelling and numerical
evaluation.

IV. MODELLING AND NUMERICAL EVALUATION

For the CFD analysis, a three dimensional model of the
component was built in the modelling software CATIA [13] as
shown in Figure 4. The model was then exported to ANSYS
ICEM [14] for meshing and a tetra mesh with prism layers
was created. For a better numerical stability, the inlet and
outlet parts were extended as shown in the figure (the gray
zones). However, these extensions could cause differences in
the relative flow rates, and therefore they were considered as
free-slip walls. The boundary conditions were set as Mass
Flow at the inlet and Relative Pressure at the outlets, with
a k-e turbulence model.

The parametric model was realized using ANSYS ICEM,
ANSYS CFX and custom scripts. For the sake of simplicity,
the original CATIA model and the mesh were fixed in the
parametric model. Changing the diameters was instead ap-
proximated by changing the diameters of the extended outlet
parts. This approximation was easily realized through ICEM
Tcl scripts and gave accurate results for 2; < 1 (because
the pressure loss mostly depends on the narrowest part). For
z; > 1, the fixed part of the model plays an important role
and increasing x; in such a case does not decrease the pressure
loss significantly.

outlet 1 outlet 3

outlet 4

outlet 2

Fig. 4. Parametric CFD model

Meshing
with ICEM

Decision variable
values

Optimization
loop

CFD with
CFX solver

Objective function values

Fig. 5. Tllustration of the optimization loop

As mentioned, outlet 4 has the smallest diameter as can be
seen in Figure 4 and achieving a high flow rate from this outlet
is difficult. Therefore, a special attention was paid towards
this outlet while formalizing the objective functions. The mesh
generated using ICEM was then exported to CFX for CFD
simulations. When using the CFX tools, the values of pressure
loss and flow rates were recorded. In order to automate the
process during optimization, different scripts were written in
Python and Matlab to connect different tools and optimization
algorithm.

An illustration of the optimization loop used in this study
is shown in Figure 5. First, the meshing is done for a given
shape of the component using ANSYS ICEM. After meshing,
CFD simulations are performed with the solver ANSYS CFX.
Based on this numerical evaluation, K-RVEA produces new
values for the decision variables and a new shape is created
which then goes for meshing. The loop continues for a prefixed
number of evaluations and nondominated solutions of all the
evaluated ones are used as the final set of solutions. Next, we
provide a brief outline of K-RVEA which was used to solve
the problem formulated.

V. SURROGATE-ASSISTED EVOLUTIONARY ALGORITHM

The K-RVEA algorithm [7] has been developed for com-
putationally expensive many-objective optimization problems.



However, the efficiency of the algorithm was also demon-
strated on three objective optimization problems in [7]. The
algorithm uses elements from its underlying evolutionary algo-
rithm RVEA [15] and Kriging models as surrogates. It consists
of three phases as presented in Algorithm 1. Nondominated
solutions from all the evaluated ones stored in an archive A2
are used as final solutions.

Algorithm 1: K-RVEA
Input: FE™**, maximum number of expensive function
evaluations
QOutput: nondominated solutions of all evaluated ones
from A2
*Initialization*
1. Create an initial population P generated with some
design of experiment technique
2. Initialize the number of function evaluations FE = 0
and two empty archives Al = A2 = ¢
3. Evaluate the population P with the original expensive
functions and add them to A/ and A2, update FE = FE +
|P|
while FE < FE™* do
4. Train surrogates for each objective function by
using individuals in A1
*Using the surrogates with RVEA*
5. Run RVEA with Kriging models to find the
individuals to update the surrogates
*Updating the surrogates*
6. Select individuals from the previous step using a
selection strategy and denote the set by /
7. Re-evaluate I with the original expensive functions
and update FE = FE + |I|, update A1 = A1U [ and
A2 =A2U1
8. Remove extra individuals from Al using
management of training archive
| 9. Go to step 4

In the initialization phase, an initial population is generated
e.g. using the Latin hypercube sampling [16]. This population
is then evaluated with the original expensive functions and
added to two archives Al and A2. Individuals in Al are used
to build surrogates for each objective function in step 4. The
archive A2 is used to store all the evaluated solutions.

When using the surrogates with RVEA [15], we use mean
values of Kriging models as objective function values. In ad-
dition, uncertainty information of the approximated solutions
is obtained which is further used in updating the surrogates.
Solutions generated are then used to select individuals for re-
evaluation with the original expensive objective functions for
updating the surrogates.

Updating the surrogates is very important in model man-
agement [6], [17]. Individuals for updating the surrogates
should be selected in such a way that they enhance both
convergence and diversity. In K-RVEA, these two criteria
are taken care of with the help of reference vectors and the

0.5 =
Solutions with K-RVEA

Baseline solution
=~ Final selected solution

Flow rate (Kg/sec)

Outlet index

Fig. 7. Flow rates corresponding to nondominated solutions

uncertainty information from the Kriging models. Individuals
with a maximum uncertainty are selected whenever diversity
is needed. If a satisfactory degree of diversity has already been
achieved, individuals with a minimum angle penalized distance
are selected, which is one of the selection criteria in RVEA
that contributes to convergence. Once these individuals have
been selected, they are re-evaluated with the original expensive
functions and added to archives Al and A2. As the size of
the data set can influence the training time, to decrease the
computation time further, some of the individuals are removed
from A1 in step 8. To be able to do that, reference vectors are
used to identify the extra individuals which were not needed
for training the surrogates. The individuals in A1 are then used
to re-train the surrogates in step 4 and the algorithm is run
until a maximum number of expensive function evaluations
has been reached. For full details about the selection strategy
and the management of the training archive, see [7]. Next,
we present the results obtained with K-RVEA on the given
problem.

VI. RESULTS AND DISCUSSION

In this section, we report the results and an analysis of the
solutions obtained with K-RVEA. Parameters used are given in
Table I, where n represents the number of decision variables.
Also, note that we ran the optimization solution process only
for one run due to a limited computation budget.

TABLE I
PARAMETER VALUES USED

| Parameter | Value |
Number of function evaluations 200
Size of the training data set 11n—1
Number of reference vectors 105
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To protect confidential data, objective function values ob-
tained are normalized in the following way:
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where Poyiginai 18 the absolute pressure value of the initial
geometry.

Nondominated solutions obtained are shown in Figure 6 in
the objective and decision spaces. For a given pressure loss, a
better balance in the flow rates from outlets 1-3 was obtained.
However, pressure losses were high for a high flow rate from
the outlet 4. This is due to the fact that outlet 4 has a very
small diameter when compared to the other outlets. Solutions
are also compared with the baseline solution of the initial

geometry as shown in Figure 6. Many solutions obtained with
K-RVEA dominate the baseline solution.

As can be seen in the decision space, the algorithm tries to
find solutions with a high diameter especially for outlets 1 and
4. This is due to the reason that in the initial geometry, outlet
4 had the smallest diameter and increasing it was the only
option of increasing Q4. The outlet 1 might seem a bit counter-
intuitive at first, because in the baseline solution Q7 > Q.
We assume this is caused by pursuing the minimization of
pressure loss and the complexity of the flow, where each outlet
can slightly influence the other ones.

We also present the corresponding flow rates from all four
outlets in Figure 7. These flow rates are normalized as follows:

Qg
Qr = )

Qin[mt
where Qinpyt 1S the flow rate at the inlet of the component.
It can be seen that for the baseline solution, flow rate values
from different outlets were very different from each other and
maintaining a uniform temperature was not easily achievable.
K-RVEA produced a diverse set of flow rate values as shown
in the figure except for outlets 1 and 4. The reason for this is
the same as mentioned above i.e. a small diameter for outlet
4 and a low pressure loss from outlet 1.

A projection of the solutions obtained for the second and
third objectives is shown in Figure 8. It can be clearly observed
the fo and f3 are conflicting objectives, i.e. a high flow rate
from outlet 4 causes high pressure losses and consequently,
the flow rates from other outlets are decreased. In other words,
the diameters for outlets 1-3 decrease less for a high flow rate
from outlet 4. For fs > 0.46, all four outlets were active or
in other words, all the outlets were fully open. For fs; < 0.46,
outlets 1-3 were inactive and pressure losses were increased.
This is the reason why two solutions were not contributing to
the trade-off between the second and the third objective.

Finally, 40 solutions were shown to the DM and he selected
his most preferred solution. The baseline solution and the
solution selected by the DM are shown in Figures 6, 7 and 8.
As can be seen, the results confirm the original assumptions

for k=1,...,4,



Fig. 9. The design of the final solution selected by the DM

of the necessary of trade-offs between flow rates and pressure
loss. Considering the flow rate from outlet 4 as an additional
objective did also prove to be a useful decision.

The CFD simulation of the final solution selected by the
DM is shown In Figure 9. The solution has a very small
variance between flow rates from outlets 1-3 for an equivalent
pressure loss compared to the baseline solution. Also, the flow
rate from outlet 4 is comparable to flow rates from other
outlets. As the balance in flow rates has been increased in
the final selected solution, more air flow can be delivered into
the cabin using the same fan. This will improve the cooling
and heating properties of the cabin which usually improves
customer satisfaction.

The DM was happy with the solution obtained. However,
out of academic interest, we also compared the solutions of
the single run of K-RVEA and RVEA to show the efficiency
of using surrogates. We ran RVEA for the same number of
function evaluations. The nondominated solutions obtained
with both algorithms in the objective space are shown in Figure
10. As can be seen, K-RVEA produced a better distribution
of solutions than RVEA. The hypervolume with the number
of function evaluations for both algorithms is presented in
Figure 11. We used the worst objective function values from
nondominated solutions of both algorithms as a reference point
(f7) in calculating the hypervolume. The values obtained were
normalized by dividing with Hle £, k being the number of
objectives. For a given number of function evaluations, K-
RVEA performed better than RVEA in terms of the hypervol-
ume. We also used coverage [18] and inverted generational
distance (IGD) [19] as other two performance metrics to
compare the results. The values of all three performance
metrics after 200 function evaluations are given in Table II.
The coverage metric is usually used to compare solutions
based on their dominance. For instance, in Table II, 0.5152
means that 51.52 % of the solutions with RVEA are dominated
by the ones with K-RVEA. To calculate IGD, we combined
nondominated solutions from both algorithms and used this
union as the reference set in calculating the values. In all these
performance metrics, K-RVEA performed better than RVEA
which shows that using surrogates efficiently with evolutionary
algorithms can be helpful in getting better quality solutions
with a limited computation budget. Comparing K-RVEA with

Fig. 10. Nondominated solutions with algorithms K-RVEA and RVEA
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in a single run

other surrogate-assisted evolutionary algorithms will be our
future work.

TABLE 1T
HYPERVOLUME, COVERAGE AND IGD OF SOLUTIONS WITH K-RVEA
AND RVEA

| Algorithm | Hypervolume | Coverage | IGD |

| K-RVEA 0.3656 | 0.5152 | 0.0881 |
| RVEA | 03563 | 02059 |0.3320 |

VII. CONCLUSIONS

A multiobjective shape optimization problem of an air
intake ventilation system of a tractor with four outlets was for-
mulated, implemented and solved. Thus, three main challenges
in solving real-world problems. formulating the optimization
problem, combining optimization and different simulation
tools and dealing with computationally expensive objective



functions were emphasized. A description about the modelling
of the given problem and solving with a CFD solver was
also detailed. To alleviate the computational cost, a recently
proposed surrogate-assisted evolutionary algorithm K-RVEA
was applied. It was selected as it had shown a very good
performance when compared to other surrogate assisted algo-
rithms. A diverse set of solutions representing the balance in
flow rates from outlets 1-3, low pressure losses and a high
flow rate from outlet 4 were obtained. Among the solutions
obtained, a final solution was selected by the DM. The selected
solution is significantly better in two objectives and similar in
the third objective compared to the baseline solution.

To show the efficiency of K-RVEA, solutions were also
compared with its underlying evolutionary algorithm RVEA.
K-RVEA performed better than RVEA in terms of hypervol-
ume, coverage and IGD which shows the benefits of using
surrogates in dealing with (computationally expensive) real-
world problems. Additionally, practitioners in industry usually
face the challenges of formulating the optimization problem
and connecting different pieces of simulation tools. Therefore,
the current approach by focusing on these two challenges and
solving the formulated MOP having computationally expen-
sive objective functions may be helpful in providing insight
to formulate the optimization problem and solving it with an
appropriate algorithm.

In this article, all the nondominated solutions generated
were shown to the DM. However, a better way of interacting
with the DM with a good visualization of solutions is needed.
As the problem is computationally expensive, interacting with
the DM may also save the computational resources when not
all nondominated solutions are of interest. Thus, developing
an interactive algorithm using surrogates will be our future
work.
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