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Over the last decade, Evolutionary Algorithms (EAs) have emerged as a
powerful paradigm for global optimization of multimodal functions. More re-
cently, there has been significant interest in applying EAs to engineering de-
sign problems. However, in many complex engineering design problems where
high-fidelity analysis models are used, each function evaluation may require a
Computational Structural Mechanics (CSM), Computational Fluid Dynamics
(CFD) or Computational Electro-Magnetics (CEM) simulation costing min-
utes to hours of supercomputer time. Since EAs typically require thousands
of function evaluations to locate a near optimal solution, the use of EAs often
becomes computationally prohibitive for this class of problems. In this paper,
we present frameworks that employ surrogate models for solving computa-
tionally expensive optimization problems on a limited computational budget.
In particular, the key factors responsible for the success of these frameworks
are discussed. Experimental results obtained on benchmark test functions and
real-world complex design problems are presented.

1 Introduction

Design of complex engineering systems encompasses a wide range of activities
whose goal is to determine the optimum characteristics of a product before
it is manufactured. A strong capability to engineer reliable and high quality
products is necessary in all engineering design companies to stay competitive
in an increasingly global economy, which is constantly exposed to high com-
mercial pressures. Good engineering design know-how results in lower time to
market and better quality at lower cost.

In many areas such as aerospace design, the design process has been trans-
formed by the introduction of massive computing power and advances in in-
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formation technology, computational sciences and artificial intelligence. These
advances are leading to interesting new ways of managing the design process
yielding reduction in design cycle times, cost saving and improvements in
product quality. Engineering design optimization is an emerging technology
whose application both shortens design-cycle time and identifies new designs
that are not only feasible, but also increasingly optimal with respect to pre-
specified design criteria.

In recent years, Evolutionary Algorithms (EAs) have been applied with
a great degree of success to complex design optimization problems [1], [2],
[3]. Their popularity lies in their ease of implementation and the ability to
locate close the globally optimum designs. However, for many real-life de-
sign problems, thousands of calls to the analysis codes may be required to
locate a near optimal solution when conventional evolutionary algorithms are
employed. A continuing trend in science and engineering is the use of increas-
ingly high-fidelity accurate analysis codes in the design process. For example,
modern Computational Structural Mechanics (CSM), Computational Electro-
Magnetics (CEM) and Computational Fluid Dynamics (CFD) solvers have
been shown to be astonishingly accurate. Such analysis codes play a central
role in the design process since they aid designers and scientists in validating
designs and also enable them to study the effect of altering key design param-
eters on product performance. However, moves towards the use of accurate
analysis models results in high computational costs in the design optimization
process, which consequently leads to longer design cycle times.

In many application areas coupled multidisciplinary system design analy-
sis requiring CSM, CEM or CFD simulations may take up many minutes to
hours of supercomputer time. Hence, the overwhelming part of the total run
time in such complex engineering design optimization process is taken up by
runs of the computationally expensive analysis codes. This poses a serious im-
pediment to the practical application of high-fidelity analysis codes driven by
evolutionary design optimization to complex design problems in science and
engineering. It is thus desirable to retain the appeal of evolutionary design
optimization algorithms that can handle computationally expensive design
problems and produce high quality designs under limited computational bud-
gets. Since the design optimization cycle time is directly proportional to the
number of calls to the analysis solvers, an intuitive way to reduce the search
time of evolutionary optimization algorithms is to replace as often as possi-
ble calls to the computationally expensive high-fidelity analysis solvers with
lower-fidelity models that are computationally less expensive.

In this chapter, our focus is on surrogate-assisted evolutionary frameworks
for solving computationally expensive optimization problems under limited
computational budgets. Some key factors responsible for the success of these
frameworks are presented. Further, since a nearly linear improvement in design
search efficiency may be achieved via straightforward parallelism of popula-
tion based EAs, all design points within a single EA population should be
evaluated simultaneously across multiple compute nodes. Parallelism is thus
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considered a desirable feature of any framework for optimization of computa-
tionally expensive engineering design problems.

The remainder of this chapter is organized as follows. We begin with a
brief overview of surrogate-assisted optimization in complex engineering de-
sign. Section 3 presents an overview of surrogate modeling techniques com-
monly used in the literature. Section 4 presents in greater detail some of the
evolutionary frameworks recently proposed for optimization of computation-
ally expensive problems on a limited computational budget using surrogate
models. In particular, the key factors responsible for the success of these frame-
works are discussed. Experimental results obtained on synthetic functions and
real-world complex design problems are also presented. Finally, section 6 sum-
marizes our main conclusions.

2 Surrogate-Assisted Design Optimization

Optimization is a mature technology that has been studied extensively by
many researchers over the last decade. Over the years, it has evolved con-
siderably and many algorithms and implementations are now available and
used in the engineering optimization community. Optimization algorithms in
the literature can be broadly classified into three categories: (1) conventional
numerical optimization methods, (2) stochastic optimization methods and
(3) hybrid methods. In this section, we present a brief overview of surrogate-
assisted optimization strategies. In particular, we consider a general nonlinear
programming problem of the form:

Minimize : f(x)
Subject to : gi(x) ≤ 0, i = 1, 2, . . . , p (1)

xl ≤ x ≤ xu

where x ∈ Rd is the vector of design variables, and xl and xu are vectors
of lower and upper bounds, respectively, while p is the number of inequality
constraints.

Here, our focus is on cases where the evaluation of f(x) and/or g(x) is
computationally expensive, and it is desired to obtain a near optimal solution
on a limited computational budget.

2.1 Conventional Numerical Optimization

In conventional numerical optimization methods, it is now standard prac-
tice for computationally cheap surrogate models to be used in lieu of exact
models to reduce computational cost. Conventional numerical methods com-
monly used in engineering design include steepest-descent methods, conjugate-
gradient, quadratic programming, pattern search methods and linear approx-
imation methods [4], [5], [6].
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Gradient-based optimization algorithms make use of line searches to locate
a new iterate and hence the issue of range of validity of the approximation
models or the control of approximation errors is directly addressed by using
ad hoc move limits or a trust region framework. As shown by Alexandrov
et al. [7], the trust-region strategy for adaptively controlling the move limits
guarantees convergence under some mild assumptions on the accuracy of the
surrogate model. Other general surrogate-assisted frameworks for managing
the use of approximation models in non-gradient based numerical optimization
methods algorithms such as pattern search algorithms have also been proposed
in the literature; see, for example, Booker et al. [8] and Serafini [9]. One
important reason these frameworks have been widely accepted and used is
attributed to the theoretical guarantee of convergence to a local optima of
the exact problem. Surrogate-assisted conventional numerical optimization
methods have been applied with much success to complex engineering design
optimization problems, see for example, [8], [9], [10], [11], [12], [13]. A more
detailed survey of the state-of-the-art can be found in Simpson et al. [14]

2.2 Evolutionary Optimization

Conventional numerical optimization methods have the known advantage of
their efficiency, however, they are very sensitive to the starting point selection
and are very likely to stop at non-global optima. The search for algorithms
that are capable of escaping from local optima has led to the development of
stochastic optimization techniques via the introduction of probabilistic factors
in the search process that encourage global exploration. In addition, stochastic
techniques, unlike conventional numerical optimization methods, produce new
design points that do not use information about the local slope of the objective
function and are thus not prone to stalling at local optima. Further, they
have shown considerable potential in the solution of optimization problems
characterized by non-convex and disjoint or noisy solution spaces. Modern
stochastic optimizers which have attracted much attention in recent years
include simulated annealing; tabu search; genetic algorithms; evolutionary
programming and evolution strategies [15], [16], [17], [18].

These stochastic methods have been successfully applied to mechanical and
aerodynamic problems, including turbine blade design [19], multi-disciplinary
rotor blade design [20], multi-level aircraft wing design [3], military airframe
preliminary design [21] and large flexible space structures design [22]. However,
a well-known drawback of EAs in complex engineering design optimization is
the need for a large number of calls to the computationally expensive analysis
solver in order to locate a near optimal solution. The history of recent de-
velopments in conventional numerical optimization methods for engineering
design problems indicates that the most influential factor for their widespread
use has been the ease with which surrogate models can be incorporated to
achieve substantial savings in the computational cost. Hence, the question of
how to integrate such approximation models with evolutionary search pro-
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cedures needs to be addressed in order to study their practical applicability
for design problems, where computational cost is a critical issue. It should
be noted that global surrogate models can readily be used with any search
method. They can however be inefficient as problem dimension rises. They
are also more difficult to set up and tune when compared to local models.

A study of the literature reveals that few studies have addressed the issue
of incorporating local approximation models in design procedures based on
EAs. One main reason being that since EAs make use of probabilistic recom-
bination operators, controlling the step size of design changes (to control the
accuracy of approximate fitness predictions) in any surrogate-assisted evolu-
tionary algorithm will not be as straight-forward as in conventional numerical
optimization algorithms. Hence earlier research efforts related to evolution-
ary optimization have focused on the use of problem specific knowledge to
increase the computational efficiency [23],[24]. Even though such problem spe-
cific heuristics can be effectively used to achieve performance improvements,
there are finite limits to the improvements achievable by such techniques.
Robinson and Keane demonstrated the use of variable-fidelity analysis models
in EAs for aeronautical design [25]. A computational framework for integrat-
ing a class of single-point approximation models with GAs was also proposed
in [26]. However, these frameworks are restricted to a special class of approx-
imation models that are domain specific.

For more general surrogate-assisted evolutionary frameworks, several ef-
forts have been made over recent years, particularly using GAs. Ratle [27]
examined a strategy for integrating GAs with Kriging models or Design and
Analysis of Computer Experiments (DACE) approximations. This work uses a
heuristic convergence criterion to determine when an approximate model must
be updated. The same problem was revisited by El-Beltagy et al. [28], where it
is argued that the issue of balancing the concerns of optimization with those of
design of experiments must be addressed. Jin et al. [29] presented a framework
for coupling ES and neural network-based surrogate models. This approach
uses both the expensive and approximate models throughout the search, with
an empirical criterion to decide the frequency at which each model should
be used. In Song [30], a real-coded GA was coupled with Kriging in firtree
structural optimization.

2.3 Hybrid Evolutionary Optimization

Evolutionary algorithms are capable of exploring and exploiting promising
regions of the search space. They can, however, take a relatively long time to
locate the exact local optimum in a region of convergence (and may some-
times not find the optimum with sufficient precision). Torn and Zilinskas [31]
observe that two competing goals govern the design of global search methods:
exploration is important to ensure global reliability; i.e., every part of the do-
main is searched enough to provide a reliable estimate of the global optimum;
however, exploitation is also important since it concentrates the search effort



6 Y. S. Ong, P. B. Nair, A. J. Keane and K. W. Wong

around the best solutions found so far by searching their neighborhoods to
produce better solutions.

Many recent search algorithms achieve these two goals using a combina-
tion of dedicated global and local searches. These are commonly known as
hybrid methods. Hybrid Evolutionary Algorithm-Local Search methods (EA-
LSs), which incorporate local improvement procedures with traditional EAs
may thus be used to improve the performance of EAs in search. Such hy-
brids have been used successfully to solve a wide variety of engineering design
problems and experimental studies show that they not only often find better
solutions than simple GAs, but also that they may search more efficiently
[31], [32], [33], [34], [35]. In diverse contexts, hybrid EA-LSs are also known
as Memetic Algorithms. There are two basic strategies for using Memetic
Algorithms: Lamarckian learning forces the genotype to reflect the result of
improvement by placing the locally improved individual back into the pop-
ulation to compete for reproductive opportunities; and Baldwinian learning,
where the improvement procedures are only used to change the fitness land-
scape, but the solution that is found is not encoded back into the genetic
string.

A strategy for coupling ES with local search and quadratic response surface
methods was proposed in Liang et al. [36]. However the use of the exact anal-
ysis codes to perform local searches results in significantly high computational
costs. Further, when working with multimodal high dimensional problems the
accuracy of quadratic models may become questionable. A parallel hybrid EA
framework that leverages surrogate models for solving computationally expen-
sive design problems with general constraints was proposed by the authors in
[1] and further extended in [37] to incorporate gradient information.

3 Surrogate Modeling

Surrogate models or metamodels are (often statistical) models that are built to
approximate computationally expensive simulation codes. Surrogate models
are orders of magnitude cheaper to run, and can be used in lieu of exact
analysis during evolutionary search. Further, the surrogate model may also
yield insights into the functional relationship between the input x and the
output y. If the true nature of a computer analysis code is represented as

y = f(x), (2)

then a surrogate model is an approximation of the form

ŷ = f̂(x), (3)

such that y = ŷ + ε, where ε represents the approximation error.
There exist a variety of techniques for constructing surrogate models; see,

for example, the texts by Vapnik [38] and Bishop [39] for excellent expositions
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of this area. One popular approach in the design optimization literature is
least-squares regression using low-order polynomials, also known as response
surface methods. A statistically sound alternative for constructing surrogate
models of deterministic computer models is Bayesian interpolation, which is
sometimes referred to as design and analysis of computer experiments (DACE)
modeling in the statistics literature [40], Gaussian process regression in the
neural networks literature [41] and Kriging in the geostatistics literature. Ar-
tificial neural networks, including Multi-layer Perceptions, Radial Basis Func-
tions (RBF) Networks and multivariate regression splines [42] have also been
employed for constructing surrogate models in engineering design optimiza-
tion. A comprehensive review of different approximation concepts is provided
in [43] and a comparison of various techniques can be found in [14], [44], [45].

Here, we will be primarily concerned with approximating deterministic
computer models that we assume do not suffer from numerically induced con-
vergence or discretization noise, and hence perfectly interpolating models are
most germane to our concerns. Thus we present only a brief overview of in-
terpolation using RBFs, gradient-enhanced RBFs and Bayesian interpolation.
Of course, in many real-world applications care must be taken to deal with
any numerical noise present in the solution and how this may be dealt with.

3.1 Radial Basis Function Interpolation

Let D = {xi, yi, i = 1, 2, . . . , n} denote the training dataset, where x ∈ Rd is
the input vector and y ∈ R is the output. An interpolating RBF model for
the dataset D can be written in the form

ŷ(x) =
n∑

i=1

αiK(||x− xi||), (4)

where K(||x−xi||) : Rd → R is a radial basis kernel and α = {α1, α2, . . . , αn} ∈
Rn denotes the vector of weights.

Typical choices for the kernel include linear splines, cubic splines, multi-
quadrics, thin-plate splines, and Gaussian functions [39]. The structure of
some commonly used radial basis kernels and their parameterization are
shown in Table 1. Given a suitable kernel, the weight vector can be com-
puted by solving the linear algebraic system of equations Kα = y, where
y = {y1, y2, . . . , yn} ∈ Rn denotes the vector of outputs and K ∈ Rn×n de-
notes the Gram matrix formed using the training inputs (i.e., the ijth element
of K is computed as K(||xi − xj ||)).

For problems with multiple outputs, for example, problems with multiple
objectives and constraints, the weight vector can be efficiently computed for
all the outputs of interest once the matrix K is decomposed.
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Table 1. Radial Basis Kernels

Linear Splines ||x− ci||
Thin Plate Splines ||x− ci||kln||x− ci||k
Cubic Splines ||x− ci||3

Gaussian e
− ||x−ci||2

βi

Multiquadrics
√

1 + ||x−ci||2
βi

Inverse Multiquadrics (1 + ||x−ci||2
βi

)−
1
2

3.2 Hermite Interpolation Using Radial Basis Functions

In areas such as CFD, it is possible to efficiently compute the sensitivities of
the objective and constraint functions using adjoint methods. For such prob-
lems, it may be useful to construct gradient-enhanced RBF approximations
using the idea of Hermite interpolation. Clearly, this would lead to surro-
gate models that are more accurate than those which are constructed using
function values only.

To illustrate the idea of Hermite interpolation, let us denote the training
dataset by Dg = {xi, y(xi,∇y(xi)}, i = 1, 2, . . . , n, where ∇y = {∂y/∂x1,
∂y/∂x2, . . . , ∂y/∂xd} ∈ Rd denotes the partial derivatives of the output y(x)
with respect to the components of the input vector. Then, a Hermite inter-
polant can be written in terms of a set of RBFs as follows

ŷ(x) =
n∑

i=1

αiK(||x− xi||) +
n∑

i=1

d∑

j=1

α̃ij
∂K(||x− xi||)

∂xj
, (5)

where αi and α̃ij i = 1, 2, . . . , n, j = 1, 2, . . . , d are a set of n(d + 1) undeter-
mined weights.

It is worth noting here the implicit assumption that the kernel K is differ-
entiable at least twice. Now since the training dataset contains y(x) and∇y(x)
at n points, we can arrive at a total of n(d + 1) linear algebraic equations.
This set of equations can be solved to compute the undetermined weights
in the Hermite interpolant. It can also be noted that in comparison to the
standard RBF approximation approach presented earlier, the Hermite inter-
polation technique results in a much larger system of equations; for details
see [53].

3.3 Bayesian Interpolation and Regression

A statistically rigorous alternative to RBF approximation is the idea of
Bayesian interpolation or regression which is also referred to as Gaussian
process regression in the neural networks literature and Kriging in the geo-
statistics literature. The standard starting point for a Bayesian regression
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model assumes the presence of an unknown true modeling function y(x) and
an additive noise term ν to account for anomalies in the observed data, i.e.,

ŷ(x) = y(x) + ν (6)

The standard analysis requires the specification of a prior probability on the
modeling function and the noise model. From a stochastic process viewpoint,
the collection y = {y1, y2, . . . , yn} is called a Gaussian process if any subset
of y has a joint Gaussian distribution. More specifically,

P (y|Cn, D}) =
1
Z

exp
(
−1

2
(y − µ)T C−1

n (y − µ)
)

(7)

where Cn ∈ Rn×n is a covariance matrix parameterized in terms of hyper-
parameters θ, i.e., Cn(i, j) = K(xi,xj ; θ) and µ is the process mean. The
Gaussian process is characterized by this covariance structure since it incor-
porates prior beliefs both about the true underlying function as well as the
noise model. Note that any positive-definite parameterized radial basis kernel
K can be employed as a covariance function. Most studies in the literature
use the following Gaussian correlation function

K(xi,xj) = exp
(−(xi − xj)T Θ(xi − xj)

)
+N , (8)

where Θ = diag{θ1, θ2, . . . , θd} ∈ Rd×d is a diagonal matrix of undetermined
hyperparameters. N is a noise model employed for regression problems; for
example, when the noise is assumed to be output dependent, N = θd+1, where
θd+1 is an additional hyperparameter.

The hyperparameters in the Bayesian surrogate model can be estimated
using the evidence maximization framework in which the following maximum
likelihood estimation (MLE) problem is solved to determine the most probable
hyperparameters θMP for the given data.

Maximize
θ

L(θ) = −1
2

log detCn − 1
2
yT

nC−1
n yn − n

2
log 2π (9)

where L(θ) denotes the log likelihood for a Gaussian process.
Since computing L(θ)) and its gradients involves inverting a dense n ×

n covariance matrix (requiring O(n3) resources) at each iteration, MLE of
θ using a gradient based optimizer can be prohibitively expensive even for
moderately sized data (e.g., say a few thousand data points). Further, the
likelihood function may also be multimodal.

Once the hyperparameters have been computed by solving the MLE prob-
lem, predictions can be readily made for a new testing point. To illustrate
this, assume that yn represents the set of n targets, Cn the corresponding
covariance matrix and that the process to be modeled has zero mean, i.e.,
µ = 0. Given a new point xn+1, it can be shown that the prediction yn+1 has
a conditional probability distribution given by :
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P (yn+1|D,Cn,xn+1) =
1
Z

exp
(
− (yn+1 − ŷn+1)2)

2σ̂2

)
(10)

where,

ŷn+1 = kT
n+1(x)C−1

n yN (11)

σ2 = K(xn+1,xn+1;θ)− kT
n+1(x)C−1

n kn+1, (12)

where ŷn+1 and σ2 is the prediction for the posterior mean and the variance,
respectively, and kn+1 = {K(xn+1,x1), K(xn+1,x2), . . . , K(xn+1,xn)} ∈ Rn.
The posterior variance can be interpreted as an error bar on the predictions
made using the Bayesian interpolation model.

4 Surrogate-Assisted Evolutionary Optimization

In spite of the increasing research effort on surrogate-assisted evolutionary
optimization frameworks, existing strategies for integrating approximation
models with EAs have met with limited success in applications to real-world
problems. Some of the key factors responsible for this are:

• The curse of Dimensionality results in significant difficulties in construct-
ing accurate surrogate models.

• The lack of massive parallelism in the existing strategies.
• The inability to handle problems with general nonlinear inequality and

equality constraints.
• Little emphasis on the global convergence properties of surrogate-assisted

evolutionary optimization frameworks.

In this section, we present an overview of some of the recent evolutionary
frameworks proposed to address these limitations.

4.1 Surrogate-Assisted Coevolutionary Search

In recent years, coevolutionary computation has been applied with a great de-
gree of success to function optimization, neural network training, and concept
learning [46], [47]. Its success lies in the ability to apply divide-and-conquer
strategies. For example, in the context of optimization, the variables in the
original problem are decomposed into a number of subsets. Subsequently,
species that independently handle each subset of variables are evolved simul-
taneously to locate the optima of the original problem. Since coevolutionary
search is based on the divide-and-conquer paradigm, it may be possible to
circumvent the curse of dimensionality inherent in surrogate modeling tech-
niques.

The RBF surrogate-assisted coevolutionary search procedure proposed in
[48] represents an effort to tackle the curse of dimensionality, which has lim-
ited the success of global surrogate modeling on multimodal problems with
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many variables. The steps involved in the proposed surrogate-assisted coevo-
lutionary optimization algorithm are outlined in Figure 1. In the proposed
search procedure, standard coevolutionary search proceeds with the initial-
ization of a population of designs for s number of species. The search space
of each species is then decomposed into clusters using the standard k-means
algorithm and augmented with the elite member as representatives from the
other species before fitness evaluations based on the exact analysis model
are conducted. Subsequently, evaluation of individuals is based on surrogate
models that are constructed on the fly at each ecosystem generation inde-
pendently and for each species using RBF approximation. The search process
within each specie switches back to the exact analysis code when the coevolu-
tionary search on the surrogates stalls. This algorithm has two user specified
parameters - (1) the number of species, s, and (2) the number of cluster cen-
ters, m. It is found that the accuracy of the surrogate model is improved when
m is increased. In the limiting case, when m equals the population size for a
species, the fitness of all the individuals is evaluated exactly. Similarly when
s is unity the process becomes a traditional evolutionary algorithm.

By dividing the original problem variables among multiple species, the
number of inputs and hence the dimensionality of each surrogate model is
greatly reduced since each species handles only a subset of the original de-
sign variables. However, while this divide-and-conquer approach enables us to
tackle the curse of dimensionality, a well-known property of coevolutionary
search [49] is that high epistatic interactions between the variables can lead to
a significant degradation of the convergence rate. In the GA literature, epis-
tasis refers to the variable interdependencies or linkages between the variables
of a function. A function of n variables has zero epistasis when there are no
interdependencies between the variables.

Studies on the applicability of the RBF surrogate-assisted coevolutionary
algorithm to solve computationally expensive optimization problems under
limited computational budget were conducted on benchmark test functions
in [48] for varying degrees of epistasis. The average convergence trends over
20 runs of the standard Genetic Algorithm (GA), standard Coevolutionary
Genetic Algorithm (CGA for s=10) and Surrogate Coevolutionary Genetic
Algorithm (SCGA s=10 and m=5) when applied to the low epistasis 20-
variable Rastrigin function are summarized in Figure 2. We see that the SCGA
converges significantly sooner to near global optimal in comparison to the
standard GA and CGA. Further studies on the convergence rate obtained
with different m were found to be insignificant. Subsequent investigations
conducted on the same Rastrigin function with high epistasis show that in
spite of the induced epistasis, the SCGA continues to perform much better
than both the GA and CGA on such problems, see Figure 3.

Application of the RBF surrogate-assisted coevolutionary algorithm to
the design of a realistic space structure also arrives at a higher quality design
than the conventional GA and CGA when a constraint is imposed on the
computational budget available for optimization. Figure 4 shows the average
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BEGIN
Initialize: Generate population of designs for s species.
Set fitness function:= Surrogate for all species.
While (computational budget not exhausted)

For species i = 1 to s
Choose representatives from all the other species. The elite member of
each species is used.
If (fitness function == Surrogate)
· Decompose the design subspace into m cluster centers using the k-

means algorithm.
· Form collaboration between cluster centers with the representatives

from other species and evaluate them using the exact analysis model.
· Build Surrogate based on the m exact points.

For each individual j in population i
Form collaboration between individual j with the representatives
from other species.
Evaluate new individual j using Surrogate.
End For

Else
For each individual j in population i
Form collaboration between individual j with the representatives
from other species.
Evaluate new individual j using the exact model.
End For

End If
If (Surrogate Stalls)

fitness function := Exact Model
Else

fitness function := Surrogate
End If
If (Implement Elitism)

Apply standard EA operators to create a new population for species
i.

End If
End For

End While
END

Fig. 1. Surrogate Assisted Coevolutionary Optimization
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Fig. 2. Convergence trends of GA, CGA with species sizes s=10 and SCGA with
s=10 and m=5 when applied on the low epistasis 20-Variable Rastrigin function.

 

Fig. 3. Convergence trends of GA, CGA with species sizes s=10 and SCGA with
s=10 and m=2 when applied on the high epistasis 20-Variable Rastrigin function.
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convergence trends of the conventional GA, CGA and SCGA (for s=2 and
m=15) as a function of the number of exact analysis.

 

Fig. 4. Convergence trends of GA, CGA and SCGA with s=2 and m=15 when
applied to the design of a two-dimensional non-periodic cantilevered space structure
to achieve passive vibration suppression.

The space structure considered is a two-dimensional cantilevered structure,
subjected to transverse excitation at joint F near the fixed end, see Figure 5.
The objective of the design problem is to suppress the vibration response at
joint R over the frequency range 100-200Hz. This isolates any instrumentation
package mounted at joint R on the space structure from external vibrations
arising in the main body of the satellite. The design is parameterized in terms
of the coordinates of the structural joints, which are allowed to vary between
± 0.25 m from the baseline values, with the coordinates of joint R being kept
fixed. This leads to a nonlinear multi-modal design problem of 40 geometric
design variables with high epistatic linkages among some of the variables. A
finite element method is used to compute the free-vibration natural frequencies
and mode shapes of the structure. The exact analysis method takes about 100
seconds to compute. In comparison, each RBF approximation takes less than
a fraction of a second. The initial space structure and optimized design of the
structure using SCGA are illustrated in Figure 5.

4.2 Local Surrogate-Assisted Hybrid Evolutionary Search

Another promising approach to mitigate the effect of the curse of dimen-
sionality is the idea of employing local surrogate models that are constructed
using design data points that lie in the vicinity of an initial guess [1]. This
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F 

Fig. 5. Initial (represented by dotted lines) and Optimized Shape of the Two-
Dimensional Space Structure.

local learning technique may be regarded as an instance of the transductive
inference paradigm, which has been the focus of recent research in statistical
learning theory [38], [50].

Traditionally, surrogate models are constructed using inductive inference,
which involves using a training dataset to estimate a functional dependency
and then using the computed model to predict the outputs at the points of
interest. However, when constructing surrogate models for optimization, we
are specifically interested in ensuring that the models predict the objective
and constraint function values accurately at the sequence of iterates generated
during the search - how well the model performs at other points in the param-
eter space is of no concern in this specific context. Transductive inference thus
offers an elegant solution to this problem by directly estimating the outputs
at the point of interest in one step; the reader is referred to Vapnik’s text [38]
for a detailed theoretical analysis of its superior generalization capabilities
over standard inductive inference.

Surrogate-assisted evolutionary algorithms using local models can be found
in [1], [2], [37]. This idea of constructing local models is similar in spirit to
the multipoint approximation technique proposed by Toropov et al. [51] and
the moving least-squares approximation technique [52].

RBF Local Surrogate-Assisted Hybrid Genetic Algorithm

The essential backbone of the framework proposed in [1] is a parallel evolu-
tionary algorithm coupled with a feasible sequential quadratic programming
(SQP) solver in the spirit of Lamarckian learning. Further a trust-region ap-
proach is used for interleaving use of the exact models for the objective and
constraint functions with computationally cheap surrogate models during lo-
cal search. The basic steps of the proposed algorithm are outlined in Figure
6. In the proposed algorithm, local surrogate models were constructed using
radial basis functions motivated by the principle of transductive inference.
Transduction is implemented by constructing radial basis networks using data
points in the local neighborhood of an optimization iterate. In other words,
instead of constructing global surrogate models, a local model is created on
the fly whenever the objective and constraint functions must be estimated at
a design point during local search. The localized training data can be readily
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selected from a search engine database containing previous iterates, which is
continuously updated as the search progresses.

BEGIN
Initialize: Generate a database containing a population of designs.
(Optional: upload a historical database if one exists)
While (computational budget not exhausted)

Evaluate all individuals in the population using the exact models.
For each non-duplicated individual in the population
· Apply trust-region enabled feasible SQP solver to each individual in the

population by interleaving the exact and local surrogate models for the
objective and constraint functions.

· Update the database with any new design points generated during the
trust-region iterations and their exact objective and constraint function
values.

· Replace the individuals in the population with the locally improved so-
lution in the spirit of Lamarckian learning.

End For
Apply standard EA operators to create a new population.

End While
END

Fig. 6. Proposed algorithm for integrating local surrogate models with hybrid EAs
for optimization of computationally expensive problems.

Studies on the commonly used Rastrigin benchmark test problem for vari-
ous sizes of nearest neighbor design point sets (employed to construct the local
surrogate model) on the convergence behaviors were conducted and compared
with the global surrogate framework proposed by Ratle [27], see Figures 7.
The results obtained on commonly used benchmark test functions show that
the global surrogate framework displays early sign of stalling. This is con-
sistent with other independent studies in the literature [27], [28], [29] which
suggest that when global surrogate models are applied to high-dimensional
and multimodal functions, the search generally tends to stall early on. Such
an effect is a result of the curse of dimensionality, which often leads to early
convergence at false global optima of the surrogate model. In contrast, the
results obtained using the proposed algorithm clearly demonstrate that solu-
tions close to the global optima can be obtained on a limited computational
budget. As surrogates are used only for local searches, i.e., as the exact model
is used for all analysis conducted at the EA level, the chances for conver-
gence to false global optima are greatly reduced. In addition, the use of the
trust-region framework maintains convergence close to the local optima of the
original problem during the SQP steps. Preliminary studies on the number
of nearest neighbors design points employed to construct the local surrogate
model seems to indicate that using more neighboring points leads to faster
convergence during the early stages of search, but has a tendency to stall at
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later stages [1]. Hence, a simple strategy for adaptively selecting the number
of nearest neighbors during the search was proposed as:

m = (mmin + mmax)
tc
tt

(13)

where mmin is the population size and mmax is the maximum number of
design points to be used in surrogate modeling. tc and tt are the current time
spent and the computational budget specified by the user, respectively.
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Fig. 7. Averaged convergence trends for various sizes of nearest neighbors design
point for construction of local surrogate model; 100, 150 and 200, in comparison
with the Traditional GA and Global Surrogate Modeling algorithm in [27] on the
20-Variable Rastrigin function.

Application of a RBF Local Surrogate-Assisted Hybrid GA was further
demonstrated in [1] based on a realistic transonic civil transport aircraft wing
design problem. The objective of the design problem is minimization of wing
D/q as calculated by using the linearized potential code VSAERO, with target
lift, wing weight, volume, pitch-up margin and root triangle layout chosen to
be representative of a 220 seat wide body airliner. The parameters used to
describe the design problem considered consist of the free-stream velocity
and coefficient of lift of the wing together with a number of wing geometry
variables. The planform geometry is shown in Figure 8 and has 11 design
parameters in total. In order to prevent the optimizer from driving the designs
to unworkable extremes, four nonlinear inequality constraints are placed on
the wings designed.

From these studies, a higher quality design satisfying all the constraints
was obtained at a much lower computational budget as compared to the stan-
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Fig. 8. Transonic civil transport aircraft wing planform geometry.

dard GA. The convergence trends of the best run on the wing problem are
presented as a function of wall time in Figure 9.

Fig. 9. Optimal convergence trends as a function of wall time for the Aerodynamic
Wing Design Problem using the VSAERO code and surrogate models.

These timing plots were based on a total of eight processors being used
for parallel computations, due to the availability of only eight licenses for the
VSAERO code. VSAERO is a linearized potential code with coupled viscous
boundary layer and as employed here, with added correction for compress-
ibility. It is computationally expensive requiring approximately 11 minutes of
computational time per drag evaluation. It is worth noting that during local
search, surrogate models were constructed for the objective function and the
four inequality constraints simultaneously.
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Gradient-enhanced Local Surrogate-Assisted Hybrid Genetic
Algorithm

In an extension to [1], Ong et al. [53] consider using adjoint CFD solvers
and gradient-enhanced Hermite Interpolating RBF for approximation. Since
an adjoint CFD solver is used, all the derivatives of the objective and con-
straint functions at any given design point (including the initial guess) with
respect to the design variables can be directly available at a low computa-
tional cost. The key idea in [53] is to employ Hermite interpolation techniques
to construct gradient-enhanced radial basis function networks so that more
accurate surrogate models can be found than those based on function values
only.

Numerical studies on airfoil parametric design showed that in comparison
to the traditional GA, both the RBF Local Surrogate-Assisted GA and the
Gradient-enhanced Hermite Interpolating RBF Local Surrogate-Assisted GA
converge to better designs on a limited computational budget [53]. Figure 10
summarizes their design histories on a 2D airfoil design problem.
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Fig. 10. Convergence trends of traditional GA, Local Surrogate-Assisted GA,
Gradient-enhanced Local Surrogate-Assisted GA on 2D airfoil design problem.

The 2D airfoil problem considered (for Mach number 0.5 and 2-degree
Angle of Attack (AOA)) is an inverse pressure design problem with 24 design
variables and constitutes a good synthetic problem for validating the global
convergence guarantee of the proposed algorithm, as the chosen target solution
of a NACA 0015 airfoil is known in advance. In the synthetic problem, a single
exact Adjoint CFD analysis takes approximately 30 minutes to compute while
local surrogate model construction using Gaussian RBF takes a fraction of a
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second. Based on the empirical results presented, the search using a traditional
GA fails to converge to the target optimal design; see Figures 10 and 11.
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Fig. 11. Comparison of target shapes and final design using the Traditional GA,
Local Surrogate-Assisted GA and Gradient-enhanced Local Surrogate-Assisted GA
at end of 300, 290 and 50 design cycles, respectively.

The local surrogate-assisted GA converges to the exact NACA 0015 target
shape within 290 design cycles, requiring much less computational effort than
the traditional GA. On the other hand, the use of exact gradient information in
the Hermite Interpolating RBF Gradient-enhanced Local Surrogate-Assisted
GA implementation leads to significantly faster convergence, i.e., taking only
50 design cycles. The faster convergence is attributed to the improvement in
the accuracy of the local surrogate models.

4.3 Convergence Properties

Global convergence is often defined in the surrogate-assisted optimization lit-
erature as the mathematical assurance that the iterates produced by an algo-
rithm, when started from an arbitrary initial guess, will converge to a station-
ary point or local optima of the original high-fidelity expensive analysis code.
It is of theoretical interest to make general mathematical statements about
the analytical robustness of any surrogate-assisted evolutionary algorithm in
optimization. However, to-date few studies on global convergence guarantees
on surrogate-assisted EAs have appeared in the literature. [1] and [37] rep-
resent recent efforts to develop EAs that inherit the convergence properties
or mathematical robustness of the trust region framework for generalized ap-
proximation models.

Alexandrov et al [7] showed that to guarantee global convergence, the
following consistency conditions need to be satisfied by the approximation
model at the initial guess.
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f̂(xk
c ) = f(xk

c ) (14)

∇f̂(xk
c ) = ∇f(xk

c ) (15)

If an interpolating surrogate model is used only the zero-order consis-
tency condition, i.e., Eqn. 14, is satisfied at the initial guess. To satisfy Eqn.
15, the exact sensitivities of the objective and constraint functions are re-
quired, which would be computationally prohibitive for many complex design
problems. Convergence analysis of trust-region algorithms when only inexact
gradient information is available has been considered by Carter [54] and Toint
[55]. Leveraging these results, Arian et al. [56] presented a theoretical analy-
sis for unconstrained optimization using surrogates to show that under mild
assumptions, convergence can still be guaranteed. In particular, the condition
the surrogate model needs to satisfy is that the predicted direction of descent
approximates the ’true’ direction sufficiently well in the limit. This result can
be readily extended to nonlinear programming problems with general con-
straints by adopting an augmented Lagrangian formulation on the lines of
that presented by Rodriguez et al. [57]. In summary, global convergence can
be guaranteed only when some assumptions are made regarding the descent
direction computed using the surrogate model.

On the other hand, if Hermite interpolants are employed as surrogates
during local search [37], both the zero-order and first-order consistency condi-
tions are met. Hence, global convergence can be guaranteed provided sufficient
number of iterations are carried out during local search. It is worth pointing
out here that these observations on global convergence are of theoretical in-
terest alone since in practical situations the specified computational budget
may not allow for a large number of iterations.

5 Conclusions

The study of surrogate-assisted optimization algorithms for tackling compu-
tationally expensive high-fidelity engineering design problems is a research
area that has attracted much attention in recent years. Much of the earlier
work in this area has concentrated on using surrogates, mainly in conventional
numerical optimization techniques. In contrast, surrogate-assisted evolution-
ary optimization is a relatively new research topic that is yet to draw suffi-
cient attention. Nevertheless, an increasing amount of activity in this area is
now evident. In this chapter, we have briefly reviewed some of these existing
frameworks. Further, we have highlighted some of the key factors that are
responsible for the limited success of Surrogate-Assisted evolutionary opti-
mization frameworks on real world applications. An overview of recent frame-
works designed to mitigate these problems is also presented. Experimental
results obtained on benchmark test functions and real-world complex design
problems are presented. These studies indicate that the approaches presented
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here allow for the possibility of arriving at near-optimal solutions on limited
computational budgets in a range of scenarios.

A well-known strength of evolutionary algorithms is their ability to par-
tition the population of individuals among multiple compute nodes. It would
be important for any surrogate-assisted evolutionary framework to retain or
further extend the intrinsic parallelism of traditional evolutionary algorithms.
Grid Computing [58] has recently been perceived as the enabling technology
for collaborative design and the embarrassing parallelism in the evolutionary
search [59]. The benefits of Grid computing in the context of evolutionary
design optimization are expected to be numerous. Besides the ability to tap
into vast compute power, it provide access to almost limitless heterogenous
resources. For example, specialized analysis codes, approximation tools and
optimization algorithms possessed by different design teams that span across
geographically distributed locations may be shared and better utilized. Hence
it makes good sense to pursue further research on Grid-enabled Surrogate-
Assisted Evolutionary Optimization Frameworks as a cost-effective and com-
putationally tractable solution in high-fidelity complex engineering design.
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