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Abstract: Meta-heuristic algorithms are widely used in complex problems that cannot be solved by
traditional computing methods due to their powerful optimization capabilities. However, for high-
complexity problems, the fitness function evaluation may take hours or even days to complete. The
surrogate-assisted meta-heuristic algorithm effectively solves this kind of long solution time for the
fitness function. Therefore, this paper proposes an efficient surrogate-assisted hybrid meta-heuristic
algorithm by combining the surrogate-assisted model with gannet optimization algorithm (GOA)
and the differential evolution (DE) algorithm, abbreviated as SAGD. We explicitly propose a new
add-point strategy based on information from historical surrogate models, using information from
historical surrogate models to allow the selection of better candidates for the evaluation of true fitness
values and the local radial basis function (RBF) surrogate to model the landscape of the objective
function. The control strategy selects two efficient meta-heuristic algorithms to predict the training
model samples and perform updates. A generation-based optimal restart strategy is also incorporated
in SAGD to select suitable samples to restart the meta-heuristic algorithm. We tested the SAGD
algorithm using seven commonly used benchmark functions and the wireless sensor network (WSN)
coverage problem. The results show that the SAGD algorithm performs well in solving expensive
optimization problems.

Keywords: gannet optimization algorithm; differential evolutionary algorithm; surrogate model;
add-point strategy

1. Introduction

WSNs are a product of the new era, combining elements of computing, communica-
tion, and sensors to provide monitoring functions. A WSN consists of many sensor nodes
forming a multi-hop self-organizing network using wireless communication. The WSN
collaboratively senses, collects, and processes information in the signal coverage area and
sends it to an observer to achieve the monitoring of the target area. Compared to traditional
networks, WSNs have the advantage of being easy to deploy and fault-tolerant. Users can
quickly deploy a practical WSN with limited time and conditions. Once deployed success-
fully, WSNs do not require much human effort, and the network automatically integrates
and transmits information. Therefore, WSNs are widely used in various environments to
perform monitoring tasks such as searching, battlefield surveillance, and disaster relief
through the transmission of signals.

In a WSN, coverage is the ratio of the signal coverage of sensor nodes to the detection
area. Since the number of sensors and the signal radius of a single sensor are limited,
researchers are very interested in maximizing the detection of the target area under the
premise of a limited number of sensors [1]. Optimizing the location of sensor nodes
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can improve network coverage and save costs. Various meta-heuristic algorithms are
now used to solve the sensor node deployment problem. For example, Zhao et al. [2]
used a particle swarm optimization algorithm and variable domain chaos optimization
algorithm to find the optimal locations of sensors to improve the coverage in a two-
dimensional environment. As the research progresses, the deployment of 3D WSN nodes
applicable to the real environment is getting more and more attention. However, as the
two-dimensional problems become three-dimensional problems, increasing the solution’s
dimensions increases the computational difficulty and computational time, so we need to
seek more suitable methods to solve such problems.

The meta-heuristic algorithm does not depend on the structure and characteristics
of the problem and has a powerful search capability in dealing with non-convex and
nondifferentiable problems. It can give relatively optimal solutions for practical problems
in a certain time and is therefore, widely used in many engineering problems, such as
speed reducer design [3,4], cantilever beam design [5,6], and wireless sensor network
design [7–9]. However, meta-heuristic algorithms to optimize various problems require the
computation of fitness values, the time consumption of which usually increases significantly
with the complexity of the problem, such as finite element analysis [10] and 3D WSN node
deployment [11]. Trying to solve such problems is time-consuming and it often takes hours
or even days to obtain a satisfactory result, which is a waste of resources and a challenge
to the researcher’s patience. Therefore, to address this problem of long solution time for
complex fitness functions, researchers have proposed a surrogate-assisted meta-heuristic
algorithm to improve the utility of meta-heuristic algorithms for expensive problems [12].

Surrogate-assisted meta-heuristic algorithms have been developed rapidly in recent
years, and they have been studied by many researchers and are widely used in real-world
problems. The surrogate-assisted meta-heuristic algorithm fits the fitness function using
a surrogate model (also called an approximation model or meta-model). Nowadays, the
widely used surrogate models are the Gaussian process (GP) or Kriging process [13,14],
the polynomial approximation model [15], the support vector regression model [16], the
radial basis function (RBF) model [17,18], etc., along with hybrid surrogate models that
combine some of the models mentioned above [19,20]. Many papers have evaluated various
surrogate models [21,22]. As the dimensionality of the optimization problem increases,
the RBF surrogate model can obtain a relatively good performance, and the subsequent
contents of this paper involve the RBF surrogate model.

The surrogate-assisted meta-heuristic algorithm can be classified according to the use
of all samples or local samples when constructing the surrogate model. That is, it can be one
of three types: a global, local, or hybrid surrogate-assisted meta-heuristic algorithm. Yu et al.
[23] proposed a global surrogate model combined with a social learning particle swarm
optimization algorithm, restart strategies, and generation-based and individual-based
model management methods into a coherently operating whole. Pan et al. [24] proposed
an effective, local, surrogate-assisted hybrid meta-heuristic algorithm that finds the nearest
neighbors of an individual from a database based on Euclidean distance and uses this local
information to train the surrogate model, introducing a selection criterion based on the
best and top set of information to choose suitable individuals for true fitness evaluation.
Wang et al. [25] proposed a hybrid surrogate-assisted particle swarm optimization algo-
rithm whose global model management strategy is inspired by active learning based on
committees. The local surrogate model is built from the best samples. The local surrogate
model is run when the global model does not improve the optimal solution, and the two
models are alternated.

The process of generating samples that enable constructing a surrogate model is called
infill criteria (sampling). The performance of the surrogate model depends heavily on
the quality and quantity of the samples in the database, which can affect how well the
surrogate model fits the true fitness function. As the sampled data points need to be
evaluated by the true fitness before they can be added to the database, each act of adding
points brings a high computational cost. Therefore, we must investigate the infill criteria to
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expect better samples to build the surrogate model. The sampling strategies are broadly
classified into static and adaptive sampling (add-point). Static sampling means that the
training points required to build the surrogate model are drawn simultaneously. Currently,
the widely used static sampling methods include Latin hypercube sampling (LHS) [26,27],
full factorial design [28], orthogonal arrays [29], central composite design [30], etc. Since
the sample points and the constructed surrogate model are independent in static sampling,
static sampling cannot obtain helpful information for unknown problems. Static sampling
hopes that the samples can regularly cover the whole solution space. LHS is a hierarchical
sampling method which can avoid the aggregation of sample points in a small area and
will use fewer samples when the same threshold is reached while making the computation
less complicated. We use LHS to initialize the surrogate model.

Infill criteria are the product of combining static sampling with an add-point strategy.
Static sampling techniques first establish the initial surrogate model, and the samples are
updated using a meta-heuristic algorithm guided by the current surrogate model. Then,
the samples are sampled according to the add-point strategy, and the surrogate model is re-
updated to improve the overall accuracy of the current surrogate model. Finally, the above
process is repeated until the maximum number of true fitness evaluations is satisfied. As
the add-point strategy uses the previous experimental results as a reference for subsequent
sampling, adaptive sampling can construct a more accurate surrogate model using a small
number of samples compared to the inexperience of static sampling. Modern scientists
are interested in the study of add-point strategies. They have proposed the statistical
lower bound strategy [31], the maximizing probability of improvement strategy [32,33],
and the maximizing mean squared error strategy [34,35]. Based on the above discussion,
this paper proposes a new adaptive sampling strategy based on the historical surrogate
model information.

Several aspects, such as the choice of the surrogate model, the choice of the add-point
strategy, and the choice of the meta-heuristic algorithm, determine the performance of
the surrogate-assisted meta-heuristic algorithm. Among these, the meta-heuristic algo-
rithm’s choice largely determines the surrogate-assisted algorithm’s performance. The
surrogate-assisted meta-heuristic algorithm also performs differently when we choose dif-
ferent meta-heuristic algorithms. In recent years, researchers have proposed more and more
meta-heuristic algorithms inspired by certain phenomena or natural laws in nature, from
the classical GA [36,37], DE [38], and PSO [39–41] to the recently proposed GOA [42] and
PPE [43]. PPE is a population evolution algorithm that imitates the evolution rules of phas-
matodea populations, that is, the characteristics of convergent evolution, path dependence,
population growth, and competition. These algorithms have shown powerful optimization
capabilities. Using a single meta-heuristic algorithm to solve complex problems may follow
a similar update strategy to update the samples and thus fall into a local optimum. There-
fore, many researchers consider hybrid algorithms a research hotspot, such as combining
the structures of two algorithms or connecting them in series. Zhang et al. [44] proposed
a strategy to combine the WOA and SFLA algorithms, i.e., combining the powerful opti-
mization capability of WOA with the interpopulation communication capability of SFLA,
and the hybrid algorithm obtained a more powerful optimization capability than when
the two algorithms were run separately. However, few hybrid algorithms have been ap-
plied to surrogate-assisted meta-heuristic algorithms to deal with costly problems. We
combined the recently proposed GOA with the DE algorithm to design a surrogate-assisted
meta-heuristic algorithm.

We propose a surrogate-assisted hybrid meta-heuristic algorithm based on the histori-
cal surrogate model add-point strategy, the main work for which was as follows.

1. An add-point strategy is proposed, in which the useful information in the historical
surrogate model is retained and will be compared with the information in the latest
surrogate model to select the appropriate sample points for true fitness evaluation.
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2. Combining GOA and DE algorithms, we make full use of the powerful exploration
ability of GOA and the exploitation ability of DE, and propose an escape-from-the-
local-optimum control strategy to control the selection of the two algorithms.

3. Generation-based optimal restart strategies are incorporated, and some of the best
sample information is used to construct local surrogate models.

4. The SAGD algorithm was tested in seven benchmark functions and compared with
other surrogate-assisted and meta-heuristic algorithms, including statistical analy-
sis and iterative curves. The SAGD algorithm was applied to the 3D WSN node
deployment problem to improve the network signal coverage.

The rest of this paper is organized as follows. Section 2 introduces the RBF surrogate
model, GOA, DE algorithm, and 3D WSN node deployment problem. Section 3 describes
the proposed surrogate-assisted hybrid meta-heuristic algorithm based on the historical
surrogate model add-point strategy. Section 4 compares the SAGD algorithm with other
algorithms on seven benchmark functions and shows how it has been applied to the 3D
WSN node deployment problem. Finally, conclusions are given in Section 5.

2. Related Techniques
2.1. RBF Surrogate Model

The radial basis function is a real-valued function that takes its value only in relation
to the distance from the origin, which can be expressed as Φ(x) = Φ(‖x‖). If the origin
here is some other special point c, the formula can be defined as Φ(x, c) = Φ(‖x− c‖), ‖.
‖ means the calculation of the distance, commonly used as the Euclidean distance. The
common radial basis functions include Gaussian basis functions, linear basis functions,
cubic basis functions, etc.

The RBF model performs well for nonlinear problems with small-scale data and
scales well for large-scale problems [21]. Therefore, we use the RBF surrogate model to
approximate the expensive objective function. The RBF surrogate model used in this paper
is in the form of interpolation, defined as follows, given the data points x1, x2, . . . , xn ∈ RD

and their fitness values f (x1), f (x2), . . . , f (xn). The radial basis function can be fitted to
the given data points and their fitness values using Equation (1).

f̂ (x) =
n

∑
i=1

ωi ϕ(‖x− xi‖) + p(x) (1)

where ϕ(.) and ‖.‖ denote the basis function and distance, respectively—the cubic basis
function and Euclidean distance are used in this paper; and ωi denotes the weight coefficient
of the cubic basis function interpolation for the point xi. p(x) is a linear polynomial that
satisfies ∑n

i=1 ωi p(xi) = 0 . The unknown term in the radial basis function interpolation
formula can be found in Equation (2).(

Φ P
PT 0

)(
w
b

)
=

(
F
0

)
(2)

where Φ is a matrix with n rows and n columns, each element of the matrix Φi,j =

ϕ
(∥∥xi − xj

∥∥), i, j = 1, 2, . . . , n; b = (b1, b2, . . . , bD+1)
T is the parameter vector of p(x) and

F = ( f (x1), f (x2), . . . , f (xn))
T ; P is the matrix of basis functions of p(x) at the interpolation

points. An RBF model is obtained when the rank of P is D + 1.

2.2. Gannet Optimization Algorithm

The GOA is a new meta-heuristic algorithm inspired by the predatory behavior of
gannet in nature. It mainly consists of two phases, exploration and exploitation. The explo-
ration phase mathematizes the gannet’s U- and V-shaped diving strategies, the exploitation
phase focuses on the gannet’s sudden rotation and random swimming characteristics, and
the two stages are run alternately to search for the best area in the search space.
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2.2.1. Initialization Phase

The GOA starts from a set of randomly initialized solutions X and chooses whether to
perform an exploration or exploitation phase according to probability. The GOA contains
a memory matrix MX. When updates are performed using each update strategy, the new
position found is not immediately updated for the current position. Still, the new position
is compared with the fitness value of the current position, and the individual with the
better fitness value is retained in the X matrix. The initialization phase assigns X to MX.

2.2.2. Exploration Phase

When hunting, gannets often observe their prey in the air and choose where prey is
dense to glide and rush into the water. After rushing into the water, gannets have two
types of diving, namely, U-shaped dives and V-shaped dives. A U-shaped dive is a long
and deep one, and a V-shaped dive has a short and shallow shape. Equation (3) is used
here to represent the shape of the U-shaped dive of the gannet, and Equation (4) represents
the shape of the V-shaped dive.

a = 2× cos(2× π × r1)× t (3)

b = 2× V(2× π × r2)× t (4)

t = 1− It
Tmax_iter

(5)

V(x) =
{
− 1

π × x + 1, x ∈ (0, π)
1
π × x− 1, x ∈ (π, 2π)

(6)

where cos is MATLAB’s cosine function, r1 and r2 are random numbers between 0 and 1, It
is the current number of iterations, and Tmax_iter is the maximum number of iterations
specified. As can be seen, t slowly decreases throughout the iterations until it reaches 0.

Once the two dive shapes are defined, the gannet updates its positions according to
these two dive shapes. Since the gannet chooses both dive shapes with the same probability
when feeding, a random number q is defined to indicate which dive shape is chosen.

MXi(t + 1) =

{
Xi(t) + u1 + u2 , q ≥ 0.5
Xi(t) + v1 + v2 , q < 0.5

(7)

u2 = A× (Xi(t)− Xr(t)) (8)

v2 = B× (Xi(t)− Xm(t)) (9)

A = (2× r3 − 1)× a (10)

B = (2× r4 − 1)× b (11)

where u1 and v1 are random numbers between [−a,a] and [−b,b], respectively; Xi(t) is
the ith individual in the current population; Xr(t) is a randomly selected individual in
the current population; and Xm(t) is the average position of individuals in the current
population. r3 and r4 are random numbers between 0 and 1.

2.2.3. Exploitation Phase

When a gannet hunts in the water, a flexible fish often performs a sudden turning
action to escape from the pursuit. A parameter C is defined for the capture ability, which
decreases with the number of iterations (see Equation (12)); cf indicates the centripetal force
of the fish in the water.

C =
1

c f × t2
(12)

t2 = 1 +
It

Tmax_iter
(13)
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c f =
M× vs.el2

L
(14)

L = 0.2 + (2− 0.2)× r5 (15)

where M = 2.5 kg is the common weight of the gannet in reality, vel = 1.5 m/s is the speed
of the gannet diving in the water, and r5 is a random number between 0 and 1.

Define a constant c. If the gannet’s capture capacity C is greater than or equal to c, then
the algorithm executes the strategy of a sudden turn to update the current position of the
gannet. Otherwise, it means that the gannet does not have enough energy to complete the
pursuit of the cunning fish at this time, so it carries out the strategy of random wandering
to update the position of the gannet—that is, Equation (16).

MXi(t + 1) =

{
t× delta × (Xi(t)− XBest (t)) + Xi(t) , C ≥ c
XBest (t)− (Xi(t)− XBest (t))× P× t , C < c

(16)

delta = C× |Xi(t)− XBest (t)| (17)

P = Levy(Dim) (18)

where XBest (t) is the best individual in the current population, and Levy() is the Levy
flight function used to model the behavior of individuals wandering randomly, which can
be found in Equation (19).

Levy(Dim) = 0.01× µ× σ

|v|
1
β

(19)

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2

(
β−1

2

)


1
β

(20)

where µ ∼ N
(
0, σ2), vs. ∼ N(0, 1) , β = 1.5 is a pre-defined constant, Γ is the gamma

function that comes with MATLAB, and Dim is the dimensional size of the problem.
The GOA consists of two stages: exploration and exploitation, and each stage contain

two update strategies. Algorithm 1 gives the pseudo-code of the GOA.
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Algorithm 1 Pseudo-code of the GOA.

Input: N: population size; Dim: problem dimension; Tmax_iter: maximum number of
iterations;

Output: The position of the best individual and its fitness value;
1: Initialize the population X randomly ,r and q are all random numbers from 0 to 1;
2: Generate memory matrix MX;
3: Calculate the fitness value of X;
4: while stopping condition is not met do
5: if r > 0.5 then
6: for MXi do
7: if q ≥ 0.5 then
8: Update the location Gannet using Equation (7),where q ≥ 0.5;
9: else

10: Update the location Gannet using Equation (7),where q < 0.5;
11: end if
12: end for
13: else
14: for MXi do
15: if C ≥ 0.2 then
16: Update the location Gannet using Equation (16),where C ≥ 0.2;
17: else
18: Update the location Gannet using Equation (16),where C < 0.2;
19: end if
20: end for
21: end if
22: for MXi do
23: Calculate the fitness value of MXi;
24: If the value of MXi is better than the value of Xi, replace Xi with MXi;
25: end for
26: end while

2.3. Differential Evolutionary Algorithm

The DE algorithm was proposed by American scientist Rainer et al. to solve problems
with Chebyshev polynomials, and it is widely used in shop scheduling, transportation, and
engineering design problems. It has fast convergence, good robustness, and few control
parameters. The DE algorithm has four basic steps: initialization, variation, crossover, and
selection; and three important operations, variation, crossover, and selection, are performed
cyclically. Mutation and crossover change the individuals, and the selection keeps the good
individuals and eliminates the bad ones. The above operations lead the whole population
to the optimal solution. These four steps are described in detail below.

The initialization of the population is the first step to be performed by the meta-
heuristic algorithm. The DE algorithm is the same as most algorithms, in that it generates a
population X by random initialization within predefined bounds. The second step is the
generation of the mutation vector by the mutation operation. A mutation operation is an
operation that selects several individuals and changes the basis vector given the difference
between them. There are many kinds of mutation operations, and the common ones are
shown in Equations (21)–(24).

vt
i = xt

rand1 + f ·
(
xt

rand2 − xt
rand3

)
(21)

vt
i = xt

best + f ·
(
xt

rand1 − xt
rand2

)
(22)

vt
i = xt

rand1 + f ·
[(

xt
rand2 − xt

rand3
)
+
(
xt

rand4 − xt
rand5

)]
(23)

vt
i = xt

best + f ·
[(

xt
rand1 − xt

rand2
)
+
(

xt
rand3 − xt

rand4
)]

(24)
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where f is a scaling factor to control the scale of mutation; xt
rand1, . . . , xt

rand 5 denotes the
random individuals in generation t; rand1, rand2, rand3, rand4, and rand5 are different
from each other; xt

best is the best individual in generation t. Thus, Equation (22) means that
the best individual on the current population is the base vector, and two individuals are
randomly selected to make the difference to form the difference vector, and the base vector
is perturbed by the difference vector. This mutation operation is used later in this article.

The third step is the crossover operation, which uses the mutation vector generated in
the second step to crossover with the target vector to generate the test vector. Two com-
mon crossover methods are binomial crossover and exponential crossover. The binomial
crossover can be described as Equation (25).

trt
i,j =

{
vt

i,j, if
(

rand i,j(0, 1) ≤ CR or j = jrand
)

xt
i,j, otherwise

(25)

where CR = 0.9 is a predefined crossover probability; randi,j(0, 1) is a random number
between 0 and 1. The above two variables jointly determine how many dimensions in the
trial vector have information from the mutation vector. jrand is a random integer uniformly
distributed in the interval [1,D], which is used to ensure that at least one dimension is
updated in each crossover operation, and D represents a total of D dimensions.

The final selection operation uses the idea of greed by comparing the fitness values of
the target vector and the test vector and selecting the one with the better fitness value for
the next iteration. The pseudo-code of the DE algorithm is given in Algorithm 2.

Algorithm 2 Pseudo-code of the DE.

Input: N: population size; Dim: problem dimension; Tmax_iter: maximum number of
iterations; F: scaling factor; CR: crossover probability;

Output: The position of the best individual and its fitness value;
1: Initialize the population X randomly;
2: Calculate the fitness value of X;
3: while stopping condition is not met do
4: for xt

i do
5: The mutation vector vt

i is generated using the mutation operation shown in
Equation (22) for individual xt

i ;
6: end for
7: for xt

i do
8: A test vector trt

i,j is generated for individual xt
i and variance vector vt

i using the
crossover operation shown in Equation (25);

9: end for
10: Calculate the fitness value of the function for each trial vector trt

i,j;
11: for xt

i do
12: Generate the next generation of individuals xt+1

i using the selection operation
for individual xt

i and trial vector trt
i,j;

13: end for
14: end while

2.4. 3D Wireless Sensor Network Node Deployment

Wireless sensor networks are considered the second largest network after the Internet
and one of the most influential technologies of the 21st century [45]. The optimization of
WSNs includes routing and deployment optimization [46–48]. With a limited number of
sensors, improving node coverage in WSNs has always been an important issue. Optimiz-
ing the coverage of WSNs is important for the rational allocation of network resources and
better-accomplishing tasks such as environmental sensing and information acquisition. The
research on 2D planar node deployment has achieved many desireable, and the application
to 3D spatial coverage strategy has also gradually attracted the attention of scholars. Using
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meta-heuristic algorithms to study sensor deployment problems in 3D environments is
a highly time-consuming study, so using surrogate-assisted meta-heuristic algorithms to
solve such problems is a good direction.

When a sensor detects the area around it, the emitted signal may be blocked by
intermediate obstacles and thus unable to detect things within its coverage, so the signal
coverage of the whole sensor network is affected. Here we use Bresenham’s line of sight
(LOS) [11] algorithm to detect whether there is a spatial obstruction between two points.
As shown in Figure 1, if there is a protruding obstacle between sensor node S and a point
L within its communication radius, it blocks the detection of the point L by sensor node
S. If no other sensor node detects this location either, then this location is a blind area for
the whole sensor network. We use the 0-1 model to optimize the WSN coverage. In the
0-1 model, the sensing radius is set to Rs. If the Euclidean distance between sensor node
S and detection point L is less than the radius Rs and there is no obstruction in between,
the probability of the model is one. In the inverse situation, the probability is 0. It can be
expressed as Equation (26).

F(S, L) =
{

1, (D(S, L) < RS) and if no obstacle
0, else

(26)

where function D is used to calculate the Euclidean distance between S and L.

Figure 1. Three-dimensional terrain node signal obstruction example.

3. Proposed SAGD Method

This section introduces our proposed algorithm, which consists of four main parts:
population initialization, surrogate model building or updating, execution of the hybrid
meta-heuristic algorithm, and execution of the add-point strategy. The general framework
of the algorithm SAGD is given in Figure 2, where the sample database (SDB) holds the
data samples and their true fitness values, and the surrogate model database (SADB) keeps
the information of all the surrogate models. The black line represents the algorithm stream,
the green dashed line represents the surrogate model data stream, and the yellow dashed
line represents the sample data stream.
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Figure 2. Framework of the algorithm SAGD.

First, in the population initialization phase, we initialize the solution space using the
LHS method, where the LHS method uses the lhsdesign function that comes with MATLAB.
The fitness values are then calculated for all individuals and the mean individual using
the true fitness function. All individuals, the mean individual, and their fitness values are
saved to the SDB, as shown in flow 1© of Figure 2, for subsequent surrogate modeling
and meta-heuristic algorithm initialization. The number of initial individuals is consistent
with the population size of the meta-heuristic algorithm. The population size, ps, was set
to 5 × D for the expensive optimization problems in 10, 20, and 30 dimensions. For the
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expensive optimization problems in 50 and 100 dimensions, the population size ps was set
to 100 + bD/10c.

The second step is the creation or updating of the surrogate model, where the data
in the SDB are used for modeling, as shown in flow 2© in Figure 2. The predictive power
of the surrogate model is very important for the whole algorithm, so we want to build
a good surrogate model with good performance. In general, the global surrogate model
can fit the contour of the problem well, but it is difficult to apply the global surrogate
model for high-dimensional problems, so we used local data to build the surrogate model
in this study. The local surrogate model can speed up the search for promising regions and
improve the accuracy of the surrogate model. When selecting the data for building the
local surrogate model, the method of sample selection and the size of the data volume are
both important. Here, we used the sample of neighbors of the current population in the
SDB to build the local radial basis function surrogate model; the number of neighbors per
individual was set to 5 × D for 10, 20, and 30 dimensions; and the number of neighbors
was set to D for 50 and 100 dimensions, as shown in Algorithm 3. When updating the
local surrogate model, we saved the information of the surrogate model at this time to the
surrogate model database SADB and then updated the surrogate model. At the same time,
the information was not saved when the surrogate model was built for the first time, as
shown in flow 3© in Figure 2.

Algorithm 3 Pseudo-code for constructing a local radial basis function model.

1: if update the local surrogate model then
2: The information of the local surrogate model at this time is kept for the add-point

strategy;
3: end if
4: for each xt

i do
5: Use Euclidean distance to find the n nearest neighbors of the individual from the

database and form the set NPi;
6: end for
7: Merge the sets generated by each individual to form the training set NP;
8: Constructing a new local surrogate model with the training set NP;

The third step is to evolve the population using GOA and DE algorithms. The fitness
function used here is the function fitted by the RBF surrogate model in the third step,
as shown in flow 4© in Figure 2. The GOA has a strong global search ability and better
performance in high dimensions, and the position update model of the GOA can make
its escape from a local optimum. Still, the GOA is more complicated. DE has good local
searching and is fast. Still, it mostly perturbs the optimal individual, so the effect is not
ideal when solving high-dimensional multimodal problems, and it will fall into a local
optimum. Therefore, we combine the GOA and DE; i.e., we use the GOA or DE to evolve
alternately. We propose a control strategy for alternate execution of the algorithms, where
we start the DE algorithm if the locations of the individuals in the population updated by
the GOA are present in the SDB and vice versa. We start the DE algorithm if the GOA does
not find a better solution, and vice versa.

Here we add the optimal restart strategy based on generations after performing K
generations. We select the individuals in the population at this time by the add-point
strategy. We add the selected individual and the true fitness value to the SDB. At this time,
the data in the database have changed. We select the best ps individuals from the database
as the initialized population of the meta-heuristic algorithm to restart the evolution, as
shown in flow 5© in Figure 2. This generation-based optimal restart strategy prevents the
GOA and DE from being misled by the errors generated by the fitted surrogate models.
Using the best individual information in the SDB helps search for promising regions quickly.
Again, because the local RBF model is updated every K generations, both meta-heuristic
algorithms can fully explore the approximate fitness landscape.
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As the evaluation of fitness is time-consuming in many complex problems, it is unac-
ceptable for us to evaluate the true fitness value for unimportant individuals or individuals
with no future, so it is important to select the appropriate individuals for evaluation. After
K generations of meta-heuristic algorithm updates, our new add-point strategy for selecting
appropriate individuals for true fitness evaluation kicks in. As the surrogate model is a fit
to the real function, the historical surrogate model also contains useful information, and
the predictive ability of the new surrogate model is usually better than that of the historical
surrogate model. Thus, we use the information from the surrogate model database SADB
for the sample selection, as shown in flow 6© in Figure 2. If the fitness value obtained on
the new surrogate model is better than that obtained on the historical surrogate model, the
individual is proved to be more promising.

First, select the optimal individual in the population optimized by the GOA and DE
algorithms, then randomly generate an integer tpc in the range of [1, ps] and calculate the
average value of the first tpc individuals. The fitness values of the optimal individuals
and the mean individuals are calculated using the historical surrogate model and the new
surrogate model, respectively. Suppose the new surrogate model’s fitness value is better
than the historical surrogate model’s. In that case, the fitness value of this individual on
the true fitness function is calculated, and this individual and its true fitness value are
saved in the SDB. Finally, suppose both the optimal individual and the mean individual
are not added to the SDB. In that case, the fitness values of the new surrogate model for
both individuals are inferior to the fitness values of the historical surrogate model. One
individual is randomly selected among the first third of the entire population to calculate
its true fitness value, and the random individual and its fitness value are saved to the SDB,
as shown in flow 7© in Figure 2. The pseudo-code of add-point strategy based on historical
surrogate model is given in Algorithm 4.

Algorithm 4 Add-point strategy based on historical surrogate model information.

1: Historical surrogate model information has been saved in SADB
2: Obtain the best individual in the current population (best), the mean of the top tpc

individuals (mean), and the random individual in the top third (rand).
3: The fitness values of the optimal individual, the mean individual and the random

individual were calculated using the new RBF surrogate model RBF_NEW and the
historical RBF surrogate model RBF_OLD, respectively.

4: if RBF_NEW(best) < RBF_OLD(best) then
5: Then the best individual and its true fitness value are saved to the SDB.
6: end if
7: if RBF_NEW(mean) < RBF_OLD(mean) then
8: Save the mean individual and its true fitness value to SDB.
9: end if

10: if Both the best individual and the mean individual were not added to the SDB then
11: Then the rand individual and its true fitness values are saved to the SDB.
12: end if

It is worth noting that one or two sample points are added at a time in this add-point
strategy. In the above steps, population initialization and surrogate model building are run
only once. Then, surrogate model updating, hybrid meta-heuristic algorithm optimization,
and the add-point strategy are executed iteratively. The process stops when the actual
number of function calculations reaches the specified maximum number. We define that
FESmax = 11×D when D ≤ 30, and FESmax = 1000 when 50 ≤ D ≤ 100. Algorithm 5
gives the pseudo-code of the proposed SAGD algorithm.
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Algorithm 5 Pseudo-code for the SAGD algorithm.

Input: RunGOA = 1; FES = ps + 1; gen = 0; K = 30; r: random values between 0 and 1;
Output: Optimal solution and its fitness value;

1: The solution space is initialized by Latin hypercube sampling;
2: Use the real fitness function to calculate the fitness value for all individuals and the

average individual;
3: while FES < FESmax do
4: Initialize the population with the first ps samples in the SDB;
5: if FES > ps + 1 then
6: Preserving the information of the local surrogate model and constructing the

local surrogate model using Algorithm 3;
7: else
8: Putting populations and mean individuals and their true fitness values into a

database;
9: end if

10: while gen < K do
11: if RunGOA = 1 then
12: for Xi do
13: if r > 0.5 then
14: Execution of Equation (7);
15: else
16: Execution of Equation (16);
17: end if
18: A local RBF surrogate model is used to estimate the fitness values of the

evolved individuals and the original individuals, and the individuals with high fitness
values are retained;

19: end for
20: gen = gen + 1;
21: else
22: for Xi do
23: Generation of a mutated individual by Equation (22);
24: Generation of test individuals by Equation (25);
25: A local RBF surrogate model is used to estimate the fitness values of the

evolved individuals and the original individuals, and the individuals with high fitness
values are retained;

26: end for
27: gen = gen + 1;
28: end if
29: end while
30: if When the meta-heuristic algorithm updates the location of the population indi-

viduals that are all present in the SDB then
31: then invert the value of RunGOA;
32: else

Calculating the true fitness value by selecting individuals using the add-point
strategy of Algorithm 4 to update the SDB;

33: if The meta-heuristic algorithm did not find a better solution then
34: Invert the value of RunGOA;
35: else
36: Retain the value of RunGOA;
37: end if
38: end if
39: end while
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4. Experimental Results and Analysis
4.1. Benchmark Test Functions and Comparison Algorithms

In this section, we measure our algorithm using seven commonly used benchmark
functions with different properties, the details of which are given in Table 1. These have
been widely used to test the effectiveness of surrogate-assisted meta-heuristic algorithms.
We followed the comparison method of the literature [23] in 10, 20, and 30 dimensions using
the first five benchmark functions and in 50 and 100 dimensions for all benchmark functions
except for Rastrigin. These functions are all minimization problems, and comparing the
minima can help us evaluate the optimization algorithm’s effectiveness.

We compare the SAGD algorithm with the surrogate-assisted meta-heuristic algorithms
that have been proposed and the ordinary meta-heuristic algorithms, where the surrogate-
assisted meta-heuristic algorithms include GORS-SSLPSO [23] and FHSAPPSO [49], and
the ordinary meta-heuristic algorithms include the GOA [42] algorithm and the DE [38] al-
gorithm, which make up the SAGD algorithm. Among them, the GORS-SSLPSO algorithm
uses generation-based evolutionary control and optimal restart strategy and combines so-
cial learning particle swarm for optimization; the FHSAPPSO algorithm uses a three-layer
surrogate model, which is fuzzy surrogate-assisted, local surrogate-assisted, and global
surrogate-assisted, and combines probabilistic particle swarm for optimization. Note that
the GORS-SSLPSO and DE algorithms can be downloaded online, and the original authors
provide the codes of FHSAPPSO and GOA.

All experiments were conducted on a computer with a 3.60 GHz Intel(R) Core(TM)
i3-8100 CPU and 24.0 GB of RAM in a hardware environment and WIN10 operating system
and MATLAB2021a in a software environment. For a fair comparison of the algorithms, we
ran them 20 times and averaged them for comparison. We limited the number of iterations
and the initial population size of all algorithms. The maximum number of iterations was
11 × D for dimensions 10, 20 and 30, and 1000 for dimensions 50 and 100. The population
size ps was set to 5 × D for expensive optimization problems in 10, 20, and 30, dimensions;
and 100 + bD/10c for expensive optimization problems in 50 and 100 dimensions. We
set the number of generations, K, to the same value as in the literature [23], i.e., K = 30.
Other setup parameters for the GORS-SSLPSO, FHSAPPSO, GOA, and DE were used as
recommended in the original paper.

Table 1. Characteristics of seven benchmark functions.

Description Dimension Global Optimum Characteristics

(Ellipsoid) f (x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

10, 20, 30, 50, 100 0 Uni-modal
(Rosenbrock) f (x) = ∑n−1

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

10, 20, 30, 50, 100 0 Multimodal with narrow valley

(Ackley) f (x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 10, 20, 30, 50, 100 0 Multimodal

(Griewank) f (x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 10, 20, 30, 50, 100 0 Multimodal

(Rastrigin) f (x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

10, 20, 30, 50, 100 0 Multimodal
Shifted Rotated Rastrigin (SRR,Cost function see F10 in [50]) 10, 20, 30, 50, 100 −330 Very complicated multimodal
Rotated Hybrid composition function with a
Narrow Basin for the Global Optimum (RHC,Cost function see F19 in [50]) 10, 20, 30, 50, 100 10 Very complicated multimodal

4.2. Experimental Results on 10D, 20D, and 30D Benchmark Functions

The experimental statistical results of the SAGD algorithm and the comparison algo-
rithms GOA, DE, GORS-SSLPSO, and FHSAPPSO in 10, 20, and 30 dimensions, including
the mean, best, worst, and standard deviation values obtained from multiple runs of each
algorithm, are given in Tables 2–4. To statistically validate the results obtained by SAGD,
we used the Wilcoxon rank sum test to discern whether the SAGD algorithm is significantly
different from the other algorithms. The Wilcoxon rank sum test was performed at a signifi-
cance level of alpha equal to 0.05. Using the symbol “+” indicates that SAGD is statistically
significantly different from and better than the comparison algorithm. “=” indicates that
SAGD is not statistically significantly different from the comparison algorithm. “−” indi-
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cates that SAGD is statistically significantly different from and inferior to the comparison
algorithm. The Wilcoxon rank sum test results are also given in Tables 2–4.

Tables 2–4 show that the SAGD algorithm achieved promising results on all five
benchmark functions relative to the other comparison algorithms. Specifically, the SAGD
algorithm outperformed the other comparison algorithms on all 15 test problems. The
SAGD algorithm not only achieved better average fitness values but also showed good
stability by comparing standard deviations. This is because the SAGD algorithm combines
two meta-heuristic algorithms to balance exploration and exploitation. The add-point
strategy based on the historical surrogate model selected better sample points for the true
fitness value calculation. For the common meta-heuristic algorithm, the surrogate-model-
based meta-heuristic algorithm achieved better results on all test problems due to the
inclusion of the surrogate model. The surrogate model can perform model estimation
based on the evaluation of the true function and can better approximate the solution of the
real function.

To compare SAGD with the other algorithms more intuitively, we used the iteration
curves of the average fitness values of the algorithms for a visual comparison. We can
compare each algorithm’s convergence speed and ability on different benchmark functions
through the convergence curve plots, as shown in Figures 3–5. The horizontal axis is
the number of iterations, and the vertical axis is the natural logarithm of the average
fitness value.

Table 2. Comparison of statistical results on 10D.

Function Method Mean Best Worst Std. WS Rank-Test

Ellipsoid

GOA 32.05986 231.7146 139.4887 53.92827 +
DE 106.5104 225.3724 152.0998 39.62943 +
GORS-SSLPSO 0.002595 0.113398 0.045255 0.034015 +
FHSAPPSO 0.7728 8.68944 3.14932 2.43648 +
SAGD 4.07× 10−7 0.000191 6.05× 10−5 7.55× 10−5 /

Rosenbrock

GOA 93.29924 1163.463 579.0592 378.2185 +
DE 408.0515 1489.294 847.2024 350.04 +
GORS-SSLPSO 11.5727 31.6099 20.2086 7.74637 +
FHSAPPSO 41.0687 82.0577 59.6458 12.6012 +
SAGD 8.78181 8.88456 8.83557 0.034997 /

Ackley

GOA 16.8616 20.3729 18.8738 1.19643 +
DE 19.2459 20.6187 19.8791 0.414064 +
GORS-SSLPSO 3.27872 7.94311 5.13048 1.56844 +
FHSAPPSO 7.54282 11.3165 9.58837 1.36459 +
SAGD 0.003649 0.361466 0.190619 0.131978 /

Griewank

GOA 23.3198 130.8887 88.14022 34.36457 +
DE 36.35064 154.4768 108.8823 33.02842 +
GORS-SSLPSO 0.292505 1.03913 0.676105 0.281672 +
FHSAPPSO 1.0836 1.69394 1.32715 0.184562 +
SAGD 0.002149 0.110366 0.024866 0.033259 /

Rastrigin

GOA 73.54777 134.3728 100.5732 17.1564 +
DE 85.33661 129.4805 104.5171 14.1654 +
GORS-SSLPSO 10.0731 76.0396 32.594 19.3827 +
FHSAPPSO 46.1198 86.8938 74.9257 12.5114 +
SAGD 8.45× 10−8 0.003516 0.000478 0.001099 /
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Table 3. Comparison of statistical results on 20D.

Function Method Mean Best Worst Std. WS Rank-Test

Ellipsoid

GOA 260.4076 1073.858 768.2923 212.7306 +
DE 696.4224 1084.811 865.7986 112.3264 +
GORS-SSLPSO 0.102103 0.43027 0.247098 0.119181 +
FHSAPPSO 6.24626 23.0675 14.9304 5.13703 +
SAGD 9.50× 10−9 3.21× 10−5 1.17× 10−5 1.16× 10−5 /

Rosenbrock

GOA 538.3364 3697.224 2064.123 989.6387 +
DE 2525.756 4328.362 3342.573 556.2642 +
GORS-SSLPSO 30.18328 74.89486 48.28018 16.5743 +
FHSAPPSO 66.58076 116.4849 96.65638 16.72317 +
SAGD 18.62779 18.76486 18.72371 0.036755 /

Ackley

GOA 13.266 20.394 18.8016 2.5611 +
DE 19.8995 20.6231 20.362 0.208332 +
GORS-SSLPSO 1.127967 10.49669 4.345661 2.535612 +
FHSAPPSO 6.635 9.6644 7.79167 1.01214 +
SAGD 0.007337 0.106095 0.039336 0.034759 /

Griewank

GOA 170.0912 381.3964 269.2433 60.03781 +
DE 217.6609 367.7392 315.7809 46.80688 +
GORS-SSLPSO 0.153632 0.471566 0.354487 0.092308 +
FHSAPPSO 1.35794 2.17352 1.7729 0.269687 +
SAGD 6.05× 10−5 0.023478 0.004428 0.007241 /

Rastrigin

GOA 128.1745 277.8843 221.5422 45.55824 +
DE 238.623 276.5483 257.252 10.93466 +
GORS-SSLPSO 14.9283 188.9656 47.43567 50.62116 +
FHSAPPSO 117.9776 183.3136 151.9138 21.55732 +
SAGD 1.04× 10−9 5.03× 10−6 6.67× 10−7 1.58× 10−6 /

Table 4. Comparison of statistical results on 30D.

Function Method Mean Best Worst Std. WS Rank-Test

Ellipsoid

GOA 579.2367 2232.486 1627.833 489.0814 +
DE 1817.55 2406.832 2064.727 173.2234 +
GORS-SSLPSO 0.385622 1.571643 0.779207 0.364867 +
FHSAPPSO 13.79 47.3297 31.8983 12.7156 +
SAGD 3.55× 10−9 1.99× 10−5 4.67× 10−6 6.60× 10−6 /

Rosenbrock

GOA 837.2743 6979.094 3869.061 1987.883 +
DE 5140.722 6290.092 5771.844 376.0112 +
GORS-SSLPSO 63.59973 127.6547 98.75162 20.6104 +
FHSAPPSO 57.4259 110.7273 84.94207 19.11291 +
SAGD 28.56271 28.65047 28.59987 0.028426 /

Ackley

GOA 19.1749 20.4097 20.0264 0.36001 +
DE 20.1485 20.7053 20.5006 0.181577 +
GORS-SSLPSO 3.425043 7.808269 5.337117 1.479306 +
FHSAPPSO 6.41898 8.41473 7.44667 0.604243 +
SAGD 0.00084 0.035894 0.014072 0.014881 /

Griewank

GOA 173.2629 587.0626 365.7254 135.9223 +
DE 435.1658 613.6942 539.3535 55.08831 +
GORS-SSLPSO 0.254231 0.535432 0.359967 0.102317 +
FHSAPPSO 1.98647 3.32629 2.44664 0.470472 +
SAGD 5.57× 10−6 0.005237 0.001074 0.001853 /

Rastrigin

GOA 281.1905 407.6522 365.2696 37.05603 +
DE 360.4444 426.2734 401.811 21.96221 +
GORS-SSLPSO 43.8226 106.875 64.03726 21.26781 +
FHSAPPSO 187.2826 291.9423 253.7202 26.74184 +
SAGD 2.35× 10−11 1.57× 10−6 2.06× 10−7 4.87× 10−7 /
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In Figures 3–5, we can see that our proposed algorithm has better convergence speed
and convergence ability than other algorithms. The surrogate-assisted meta-heuristic al-
gorithms all achieved relatively better solutions than ordinary meta-heuristic algorithms.
Our algorithm had promising results on most of the tested problems, showing its supe-
riority. The GORS-SSLPSO algorithm achieved better performance than the FHSAPPSO
algorithm in most cases. With the information from the algorithm iteration comparison
graphs, we can say that SAGD effectively solves low and medium-dimensional expensive
optimization problems.

(a) (b) (c)

(d) (e)

Figure 3. Convergence curves of SAGD, GOA, DE, GORS-SSLPSO, and FHSAPPSO for 10D bench-
mark functions. (a) Ellipsoid. (b) Rosenbrock. (c) Ackley. (d) Griewank. (e) Rastrigin.

(a) (b) (c)

Figure 4. Cont.
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(d) (e)

Figure 4. Convergence curves of SAGD, GOA, DE, GORS-SSLPSO, and FHSAPPSO for 20D bench-
mark functions. (a) Ellipsoid. (b) Rosenbrock. (c) Ackley. (d) Griewank. (e) Rastrigin.

(a) (b) (c)

(d) (e)

Figure 5. Convergence curves of SAGD, GOA, DE, GORS-SSLPSO, and FHSAPPSO for 30D bench-
mark functions. (a) Ellipsoid. (b) Rosenbrock. (c) Ackley. (d) Griewank. (e) Rastrigin.

4.3. Experimental Results on 50D and 100D Benchmark Functions

To further test the scalability of the SAGD algorithm in higher dimensions, we compared
the SAGD algorithm with GOA, DE, GORS-SSLPSO, and FHSAPPSO in two dimensions,
50D and 100D. The mean, best, worst, and standard deviation are given in Tables 5 and 6, in
regard to results for using a significance level alpha of 0.05 in Wilcoxon’s rank sum test. In
Tables 5 and 6, SRR is an abbreviated form of the shifted rotated rastrigin function, and
RHC is an abbreviated form of the rotated hybrid composition function.

From Tables 5 and 6, we can conclude that although the mean value of the GORS-
SSLPSO algorithm on the 50 dimensions of the SSR benchmark function is not as good as
that of the SAGD algorithm, it obtained a better standard deviation. The GORS-SSLPSO
algorithm achieved better results than the SAGD algorithm on the 100 dimensions of the
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Rosenbrock and SSR benchmark functions. The SAGD algorithm has achieved good aver-
age fitness values on other test problems and has strong stability. Surrogate meta-heuristic
algorithms also achieved more competitive results than GOA and DE. Our algorithm
achieved no statistically significant difference in the 50 dimensions of the Rosenbrock func-
tion compared with GORS-SSLPSO. Our algorithm generated no statistically significant
difference in the 100 dimensions of the SRR function compared with FHSAPPSO.

Table 5. Comparison of statistical results on 50D.

Function Method Mean Best Worst Std. WS Rank-Test

Ellipsoid

GOA 343.7796 4456.966 2216.847 1485.085 +
DE 6217.867 7707.067 6902.88 528.7414 +
GORS-SSLPSO 0.002329 471.9035 84.07133 178.5927 +
FHSAPPSO 5.968347 10.16186 8.153771 1.424026 +
SAGD 4.08× 10−12 0.000424 4.99× 10−5 0.000133 /

Rosenbrock

GOA 1236.391 7156.267 3824.757 1677.912 +
DE 9785.587 14020.26 12205.94 1375.941 +
GORS-SSLPSO 42.27734 95.48175 56.43726 20.29723 =
FHSAPPSO 49.46244 74.56512 55.93361 8.948982 +
SAGD 47.10447 48.33749 47.91033 0.453592 /

Ackley

GOA 7.96162 20.5933 14.9695 4.83463 +
DE 20.4389 20.8575 20.7208 0.123546 +
GORS-SSLPSO 2.81405 6.351879 4.09504 1.037834 +
FHSAPPSO 2.934269 4.308483 3.708659 0.445261 +
SAGD 7.79× 10−11 3.01× 10−7 3.06× 10−8 9.50× 10−8 /

Griewank

GOA 13.56748 815.6762 353.2857 333.8933 +
DE 776.5821 1066.333 939.6976 87.98558 +
GORS-SSLPSO 2.81× 10−5 0.017321 0.003338 0.005807 +
FHSAPPSO 1.065466 1.253401 1.153893 0.062102 +
SAGD 1.06× 10−12 8.05× 10−8 8.09× 10−9 2.54× 10−8 /

SRR

GOA 699.6644 1088.573 866.0672 121.4055 +
DE 881.3973 1155.842 1087.913 78.80308 +
GORS-SSLPSO −135.396 −24.3956 −73.1469 35.7645 +
FHSAPPSO -80.0944 292.118 102.1862 108.9186 +
SAGD −212.506 249.6789 −110.814 133.0928 /

RHC

GOA 1315.821 1438.554 1379.788 40.68161 +
DE 1365.368 1450.478 1421.531 33.20405 +
GORS-SSLPSO 948.3738 1128.276 1051.301 65.45301 +
FHSAPPSO 1031.219 1177.053 1080.808 45.1294 +
SAGD 910 910.0001 910 3.22× 10−5 /

The comparison graphs of the average fitness value iteration curves are given in
Figures 6 and 7. The horizontal axis is the number of iterations, and the vertical axis
represents the natural logarithm of the average fitness value. The vertical axis of the SRR
function represents the average fitness value. From Figures 6 and 7, it can be seen that the
SAGD algorithm has achieved a huge advantage over ellipsoid, Ackley, Griewank, and
RHC benchmark functions, which shows a strong ability to explore and escape local optima.
For the Rosenbrock and SRR benchmark functions, there was no significant gap between
the proposed algorithm and the GORS-SSLPSO and FHSAPPSO algorithms in the later
iteration curves. The SAGD algorithm won on the 50 dimensions of the Rosenbrock and
SRR benchmark functions, and the GORS-SSLPSO algorithm won with 100 dimensions.

The above analysis shows that the SAGD algorithm is equally effective in high-
dimensional expensive problems. In conclusion, the SAGD algorithm provides good
solutions to low, medium, and high-dimensional expensive optimization problems. There
are several reasons why our algorithm can provide better solutions. The first is that the
combination of GOA and DE algorithms enhances the local exploitation ability and global
search ability of the surrogate model; the control strategy of escaping the local optima
subtly controls the alternation of GOA and DE. Secondly, the add-point strategy based
on the database of the surrogate model can again select the appropriate samples for true
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evaluation. Finally, the generation-based restart strategy makes the surrogate model better
use the information in the sample database.

Table 6. Comparison of statistical results on 100D.

Function Method Mean Best Worst Std. WS Rank-Test

Ellipsoid

GOA 1435.995 18014.61 8009.537 5426.974 +
DE 30937.04 34202.67 32093.35 925.4301 +
GORS-SSLPSO 1.340528 2450.227 514.2376 813.412 +
FHSAPPSO 64.20482 121.9 85.32166 15.5251 +
SAGD 1.39× 10−8 0.003632 0.000573 0.001138 /

Rosenbrock

GOA 5404.478 29669.03 15022.01 7685.385 +
DE 29923.21 33170.58 31613.67 1138.18 +
GORS-SSLPSO 96.21071 147.2883 102.529 15.74872 −
FHSAPPSO 130.4009 186.9138 153.22 17.92665 =
SAGD 97.88537 98.00564 97.96917 0.045568 /

Ackley

GOA 8.32222 20.6833 17.6219 4.57513 +
DE 20.9042 21.051 20.965 0.049507 +
GORS-SSLPSO 6.227734 13.78327 10.19949 2.843565 +
FHSAPPSO 5.12329 8.938998 6.382234 1.180745 +
SAGD 0.002207 0.019305 0.009207 0.005136 /

Griewank

GOA 91.09843 1946.847 875.4752 677.6542 +
DE 2156.578 2457.735 2313.977 105.8374 +
GORS-SSLPSO 0.095989 90.34198 18.22478 37.98808 +
FHSAPPSO 3.323062 7.230652 4.446424 1.069094 +
SAGD 2.51× 10−5 0.004696 0.001563 0.001654 /

SRR

GOA 1974.117 2836.632 2346.489 323.2095 +
DE 2536.289 3086.053 2879.253 180.671 +
GORS-SSLPSO 1005.055 1266.676 1133.157 94.69411 −
FHSAPPSO 1106.103 1564.587 1382.903 139.4766 +
SAGD 1054.448 1697.692 1406.459 209.4309 /

RHC

GOA 1338.608 1581.625 1457.951 81.98479 +
DE 1470.638 1578.847 1528.803 29.61393 +
GORS-SSLPSO 1371.871 1482.253 1436.112 32.37645 +
FHSAPPSO 1282.987 1360.504 1309.62 23.53878 +
SAGD 910 910.0125 910.0023 0.0043 /

(a) (b) (c)

Figure 6. Cont.
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(d) (e) (f)

Figure 6. Convergence curves of SAGD, GOA, DE, GORS-SSLPSO, and FHSAPPSO for 50D bench-
mark functions. (a) Ellipsoid. (b) Rosenbrock. (c) Ackley. (d) Griewank. (e) SRR. (f) RHC.

(a) (b) (c)

(d) (e) (f)

Figure 7. Convergence curves of SAGD, GOA, DE, GORS-SSLPSO, and FHSAPPSO for 100D bench-
mark functions. (a) Ellipsoid. (b) Rosenbrock. (c) Ackley. (d) Griewank. (e) SRR. (f) RHC.

4.4. Effects of the Hybrid of GOA and DE

To verify the validity of GOA and DE algorithms for SAGD, we performed validity
analysis on 50 and 100 dimensions for both Griewank and SRR functions. The three
algorithms compared were SADE, SAGOA, and SAGD. SADE the SAGD without the
GOA, and SAGOA the SAGD without the DE algorithm. The average convergence curves
obtained for these three algorithms in 20 independent runs are shown in Figures 8 and 9. In
the 50-dimension Griewank function plot, we can see that the three algorithms converged
with similar performance in the early iterations. Still, our proposed algorithm showed
strong competitiveness in the late iterations because the SAGD algorithm combines the
unique advantages of the two algorithms and can balance exploration and exploitation well.
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(a) (b)

Figure 8. Convergence curves of SADE, SAGOA, and SAGD over 50D Griewank and SRR functions.
(a) Griewank. (b) SRR.

(a) (b)

Figure 9. Convergence curves of SADE, SAGOA, and SAGD over 100D Griewank and SRR functions.
(a) Griewank. (b) SRR.

In the Griewank function plot in 100 dimensions, we can see that SAGOA outper-
formed the SAGD algorithm, which is due to the low exploration ability of the DE algorithm
in higher dimensions, and the operation of the DE algorithm in the SAGD algorithm limits
the number of GOA runs. The SRR plots for 50 and 100 dimensions show smoother declines
of all three curves, but the SAGD algorithm outperformed the other two algorithms. The
SADE was better than the SAGOA in lower dimensions, and the SAGOA was better than
the SADE algorithm in higher dimensions. The above analysis shows that the combination
of GOA and DE algorithms can compensate for the disadvantages of individual algorithms
and improve the algorithm’s performance in most cases.

4.5. Application on Node Deployment in a Wireless Sensor Network

We used the SAGD algorithm to solve the node deployment problem in 3D sensor
networks, using each individual in the SAGD algorithm to represent a combination of
sensor node deployments at a time. The 3D terrain is projected downward into a 2D
plane, and the first and second dimensions in each individual represent the horizontal
and vertical position of the first sensor, the third and fourth dimensions represent the
horizontal and vertical position of the second sensor, and so on. When the horizontal and
vertical coordinates of the sensors are determined, corresponding to the 3D terrain shown
in Figure 10, the height of the sensor nodes is also determined. Now, the whole terrain is
divided into one pixel by one, and the signal coverage of the WSN can be expressed using
Equation (27).

rate =
1
A

A

∑
a=1

(
B

∑
b=1

F(Sb, La)

)
(27)
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where A denotes the number of pixels over the entire terrain area and B denotes the number
of sensor nodes; F(Sb, La) can be calculated by Equation (26).

Figure 10. Deployment of 3D topographic maps of sensor nodes.

To verify the effectiveness of the SAGD algorithm in solving this problem, we com-
pare SAGD with C-PGDRC [51], EBH [52], and MSAALO [53]. All three comparison
algorithms were used to solve the 3D sensor node deployment problem. MSAALO is a
surrogate-assisted meta-heuristic; the remaining two are improved meta-heuristic algo-
rithms. Experiments for all four algorithms were conducted on the same simulated terrain.
To better compare our algorithm with these three algorithms, we set up 30, 40, 50, and
60 sensors for each experiment and ran the experiment 20 times to take the average. The
experimental results are shown in Table 7, where N represents the unknown data. The
number of real evaluations was 1000 for the SAGD algorithm and MSAALO algorithm and
more than 1000 for both the EBH algorithm and the C-PGDRC algorithm.

Table 7. Comparing results with different numbers of nodes.

Num EBH C-PGDRC MSAALO SAGD (STD)

30 48.01% 47.55% 47.56% 51.36% (0.0166)
40 57.85% 57.40% 59.45% 62.72% (0.0191)
50 65.06% 64.99% 66.87% 71.36% (0.0179)
60 71.26% 71.27% N 77.08% (0.0180)

From Table 7, we can see that as the number of nodes increases, the coverage rate
of the WSN also increases. Surrogate-assisted meta-heuristic algorithms have significant
advantages over ordinary meta-heuristic algorithms. Our algorithm showed promising
results on all node numbers compared to the other three algorithms. The standard deviation
was not given in the original paper of the comparison algorithms, so only the standard
deviation of the SAGD algorithm is provided here. Through the standard deviation of the
SAGD algorithm, we can see that the SAGD algorithm has strong stability when solving
such problems, showing its superiority.

5. Conclusions

Our method uses some excellent sample information to construct local surrogate
models, and we proposed an add-point strategy based on the information from historical
surrogate models. The information of each constructed surrogate model was stored in the
database. We can select more competitive individuals for real fitness evaluation through
the information of historical surrogate models. Two efficient meta-heuristic algorithms,
GOA and DE, train the samples. The combination of GOA and DE algorithms enhances
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the surrogate model’s local exploitation ability and global search ability, and the algorithm
can escape from the local optima through the control strategy. A generation-based restart
strategy is also incorporated for selecting better samples to avoid GOA and DE being
misled by overfitted surrogate models. RBF models are updated every K generations,
allowing both meta-heuristic algorithms to be fully explored.

We tested the SAGD algorithm using seven commonly used benchmark functions,
and the experimental results show that the SAGD algorithm obtains good results in several
dimensions. Finally, the SAGD algorithm was used to solve the deployment problem of 3D
sensor nodes. It would be good to apply the SAGD algorithm to more practical problems in
future work; the degree of fit of various meta-heuristic algorithms and different surrogate
models is also worth considering.
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Abbreviations
The following abbreviations are used in this manuscript:

GOA Gannet optimization algorithm
DE Differential evolution
SAGD Combining surrogate-assisted model with GOA and the DE algorithm
WSN wireless sensor network
RBF Radial basis function
GP Gaussian process
LHS Latin hypercube sampling
GA Genetic algorithm
PSO Particle swarm optimization
PPE Phasmatodea population evolution
WOA Whale optimization algorithm
SFLA Shuffled frog leaping algorithm
CR Crossover probability
LOS Line of sight
SDB Sample database
SADB Surrogate model database
ps Population size
tpc An integer tpc in the range of [1, ps]
FESmax Maximum number of iterations
GORS-SSLPSO Generation-based optimal restart strategy for

surrogate-assisted social learning particle swarm optimization.
FHSAPPSO Fuzzy hierarchical surrogate assists

probabilistic particle swarm optimization
SRR Shifted rotated rastrigin
RHC Rotated hybrid composition
SADE Part of SAGD without the GOA
SAGOA Part of SAGD without the DE algorithm
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C-PGDRC Parallel gases brownian motion optimization
EBH Enhanced black hole
MSAALO Mahalanobis surrogate-assisted ant lion optimization
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