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Abstract

The increasing use of expensive computer simulations in engineering places a serious computa-

tional burden on associated optimization problems. Surrogate-based optimization becomes standard

practice in analyzing such expensive black-box problems. This paper discusses several approaches

that use surrogate models for optimization and highlights one sequential design approach in partic-

ular, namely, expected improvement. The expected improvement approach is demonstrated on two

electromagnetic problems, namely, a microwave filter and a textile antenna.

Keywords: surrogate model, surrogate-based optimization, expected improvement, kriging, inverse prob-

lem

1 Introduction

For many problems in science and engineering it is impractical to perform experiments on the physical

world directly. Instead, complex, physics-based simulation codes are used to run experiments on computer

hardware. While allowing scientists more flexibility to study phenomena under controlled conditions,

computer experiments require a substantial investment of computation time. This is especially evident for

routine tasks such as optimization, sensitivity analysis and design space exploration [1]. Regardless of the

rapid advances in High Performance Computing (HPC) and multi-core architectures, it is rarely feasible

to explore the complete design space using high-fidelity computer simulations. As a result researchers

have turned to various approximation methods that mimic the behavior of the simulation model as closely

as possible while being computationally cheap(er) to evaluate.
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This work concentrates on the use of data-driven approximations using compact surrogate models

(otherwise known as metamodels or response surface models). Examples of surrogate models include:

rational functions, Gaussian Process (GP) models, and Support Vector Machines (SVM). It is crucial to

stress the distinction between local and global surrogate modeling. With the latter, an approximation

model of the output behavior of the simulator is built over the entire design space. By contrast, local

surrogate models, often used in trust-region optimization frameworks, approximate only a small part of

the design space and are discarded after use.

Most often, surrogate models are used to solve so-called forward problems. The practitioner is inter-

ested in the performance characteristics of a complex system, given the input parameters. The surrogate

models create a mapping between the design space (input parameters) and the performance space (out-

put parameters). In contrast, the focus of the reverse (inverse) problem is on exploring the design space.

Hypothetically, a surrogate model could be created that maps the output parameters to the input pa-

rameters (as opposite to forward modeling) of the complex system over the entire design space. However,

many inverse problems are typically ill-posed. Considering Hadamard’s definition of ill-posedness [2], the

two outstanding problems hampering the creation of a full inverse surrogate model are non-uniqueness

and instability. A good overview of the associated intricacies is presented by Barton in [3]. For all the

above reasons, the inverse problem is often reduced to the task of finding an input parameter combination

for a certain output characteristic. Still, it is possible that,

1. no such input parameter combination exists

2. more than one input parameter combination satisfies the given output characteristic

A popular solution is to convert the inverse problem to a forward optimization problem, as is done in

this paper.

The construction of highly efficient surrogate models is an entire research domain in itself. In order

to arrive at an acceptable model, numerous problems and design choices must be overcome (what data

collection strategy to use, what model type is most applicable, how should the model parameters be

tuned, which variables are relevant, how to integrate problem-specific knowledge, etc.).

This paper describes a popular optimization method for expensive black-box simulators based on

kriging surrogate models, namely, expected improvement (EI) [4]. We provide a freely available imple-

mentation of the EI approach as a data collection (= sequential design) strategy in a flexible research

platform for surrogate modeling, the SUrrogate MOdeling (SUMO) Toolbox1 [5]. The SUMO Toolbox

is used to solve two complex problems both originating from Electromagnetics (EM). Previously, krig-

ing surrogate models have been used for EM device optimization by creating a global accurate kriging

surrogate model [6]. Afterwards, the computational cheap surrogate model is optimized instead of the

1The SUMO Toolbox can be downloaded from: http://sumo.intec.ugent.be. An open source license will be available
soon.
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expensive simulation. Although the EM device has been successful optimized, creating such one-shot

kriging surrogate models does not result in the most efficient use of expensive function evaluations. Siah

et al. [7] try to minimize the number of function evaluations by applying the EI approach on two EM

applications.

Section 2 provides related work of Surrogate-Based Optimization (SBO), including the expected im-

provement (EI) function. In Section 3, this EI approach is used to design and optimize an inter-digital

filter (the forward problem). In Section 4, the material properties of a textile antenna are identified using

EI (the inverse problem).

2 Surrogate-Based Optimization (SBO)

2.1 Introduction

SBO techniques are concerned with accelerating the optimization of expensive simulation problems. To

speedup the optimization process other existing optimization algorithms have been adapted to minimize

the number of function evaluations and to utilize parallel computing. A good overview is given in

[8]. These existing optimization methods can still be significantly improved by taking advantage of

surrogate models. The extra information provided by the surrogate models helps avoiding local optima

and efficiently guides the search to the global optimum. Various directions have been undertaken to

incorporate surrogate models in the optimization process.

In the context of evolutionary optimization surrogate models are used to provide a rough approxima-

tion to guide the global search, or a local accurate surrogate model is used to speedup the local search

step, or a combination of both [9, 10]. For instance, Zhou et al. [11] apply a data parallel Gaussian

Process for the global approximation and a (simple) Radial Basis Function (RBF) model for the local

search. Lim et al. [12] benchmark different local surrogate modeling techniques (quadratic polynomi-

als, GP, RBF and extreme learning machine neural networks) including the use of (fixed) ensembles, in

combination with evolutionary computation.

An important concept in global optimization is trust regions, introduced in surrogate modeling by

[13]. Trust region-frameworks manage local surrogate models throughout the design space. A set of

mathematics based [13] or pure heuristic [14] rules determines the size and location of the surrogate

model. While trust region-frameworks are widely used in large scale optimization problems they have the

disadvantage of sometimes overlooking the global optimum, as only a small part of the design space is

approximated by the local surrogate model. On the other hand, by approximating only one local part of

the design space at a time, it is possible to optimize very complex systems exhibiting non-linear behavior.

If a number of simulation models are available, each with varying accuracy (= fidelity), multi-fidelity

methods [15], also known as variable-fidelity methods, can be used to solve more complex problems. There
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are several approaches to exploit multi-fidelity models. Without loss of generality, we can assume that only

two simulation models are available, a low-fidelity and a high-fidelity model. An additive or multiplicative

scaling factor [16] can be introduced based on a single (or a few) data point(s). The underlying idea is

that these scaling factors correct the output of the low-fidelity model to agree with the output of the high-

fidelity model near the vicinity of these points (zero-order scaling). One may also use higher order scaling

strategies, e.g., where the derivatives of the low-fidelity model are also modified to agree with the high-

fidelity model. A more complex combination of both approaches is also possible; for instance Eldred et

al. [17] propose to write the low-fidelity model as a weighted combination of additive and multiplicative

scaling factors. Alternatively, space mapping methods can be utilized. Instead of approximating the

output space directly, space mapping [18, 19, 20, 21] maps the input space of a low-fidelity model to the

input space of the high-fidelity model, basically employing an input correction between multiple fidelity

models causing the optima to align in the design space. Recently it has been proposed to apply a similar

technique for output correction, denoted by output space mapping [22, 23]. Moreover, combinations of

input and output space mapping are also possible. In addition, recently [24] proposed a new variant called

manifold mapping which can be seen as a generalization to output space mapping. Actually, the co-kriging

surrogate model [25, 26] is inherently a multi-fidelity surrogate model that essentially applies a correction

to the output of the low-fidelity model. Multi-fidelity optimization methods, such as space mapping, are

able to significantly improve on other methods by reducing computation time and/or generating better

optimal designs. However, computational cheap low-fidelity models may not always be available to the

practitioner. In that case, one may turn to pure black-box methods to optimize expensive simulation

codes.

2.2 Expected improvement

Another optimization approach is to use specific tailored adaptive sampling strategies while building

global surrogate models. As the focus of the sampling algorithm is on optimization, global surrogate

models are not necessarily accurate over the whole design space. In engineering, adaptive sampling

strategies are also known as infill criteria. An infill criterion is a function, also known as figure of merit,

that measures how interesting a data point is in the design space. Starting from an initial approximation

of the design space, identifying new data points (infill or update points) to update the approximation

model is then done by optimizing the infill criterion. In global SBO it is crucial to balance between

exploration2 and exploitation3. A well-known infill criterion that is able to effectively solve this trade-

off is Expected Improvement (EI), which has been popularized by Jones et al. [4, 27] as the Efficient

Global Optimization (EGO) algorithm. EI has been suggested in the literature as early as 1978 [28].

Jones wrote an excellent discussion regarding the infill criteria approach in [29]. Subsequently, Sasena

2enhancing the general accuracy of the surrogate model
3enhancing the accuracy of the surrogate model solely in the region of the (current) optimum
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Figure 1: Graphical illustration of a Gaussian Process and expected improvement. A surrogate model
(dashed line) is constructed based on some data points (circles). For each point the surrogate model
predicts a Gaussian probability density function (PDF). At x = 0.5 an example of such a PDF is drawn.
The volume of the shaded area is the probability of improvement and the first moment of this area is the
expected improvement.

compared different infill criteria for optimization and investigated extensions of those infill criteria for

constrained optimization problems in [30].

The EI criterion can easily be interpreted graphically (see Figure 1). At x = 0.5, a Gaussian probability

density function is drawn and expresses the uncertainty about the predicted function value of a sampled

and unknown function y = f(x). Thus, the uncertainty at any point x is treated as the realization of

a random variable Y (x) with mean ŷ = f̂(x) (= prediction) and variance ŝ2 = σ̂2(x) (= prediction

variance). Assuming the random variable Y (x) is normally distributed, then the shaded area under

the Gaussian probability density function is the Probability of Improvement (PoI) of Y (x) over the

intermediate minimum function value fmin(the dotted line), denoted as P (Y (x) ≤ fmin), i.e.,

PoI(x) = P (Y (x) ≤ fmin) =

fmin∫
−∞

φ(Y (x)) dY

= Φ
(
fmin − ŷ

ŝ

)
, (1)

where φ(·) and Φ(·) are the normal probability density function and normal cumulative distribution

function, respectively. The probability of improvement is already a very useful infill criterion. However,

while this criterion describes the possibility of a better minimum function value, it does not quantify how

large this improvement will be.

EI quantifies the improvement by considering the first moment of the shaded area, i.e., every possible
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improvement over fmin multiplied by the associated likelihood. For continuous functions EI is an integral

defined as:

E[I(x)] =

fmin∫
−∞

I(x) · φ(Y (x)) dY, (2)

where

I(x) = max(fmin − Y (x), 0). (3)

Hence, EI can be rewritten in closed form as:

E[I(x)] =


(fmin − ŷ) · Φ

(
fmin−ŷ

ŝ

)
+ ŝ · φ

(
fmin−ŷ

ŝ

)
if ŝ > 0

0 if ŝ = 0
. (4)

EI (Equation 4) and PoI (Equation 1) serve as utility functions, often conceived as figures of merit,

which have to be optimized over x to find the subsequent data point to evaluate. Note, however, that

besides the prediction ŷ = f̂(x) of the surrogate model, a point-wise error estimation ŝ = σ̂(x) of the

surrogate is also required.

Therefore, the original EGO algorithm used kriging [4] as surrogate model of choice, since kriging

provides analytical formulae for prediction as well as a point-wise error estimation. A full mathematical

description of kriging is beyond the scope for this paper. Kriging has been explained many times in the

literature, hence, only a overview of the most influential papers is given here. A good starting point

for kriging are the introductions of Matheron et al. [31] and Sacks et al. [32]. Kriging, in fact, is

part of a broader class of approximation methods, namely, Gaussian Processes (GP). While traditional

approximation methods only predict a single function value, GP methods predict a complete normal

distribution Y (x) ∼ N (ŷ, ŝ) for each point x. The predicted distribution imparts the probability that a

particular function value occurs.

For a full overview of modern GP the reader is referred to the excellent GP reference book of Rasmussen

et al. [33]. Depending on the context some authors coin the term Gaussian Process (temporal) or Gaussian

Random Field Metamodels (GRFM; spatial) [34], however, the underlying methods are the same.

3 Example 1: Microwave filter

3.1 Application

The first example is a microwave inter-digital filter, used for instance in cellular phones. This component

can be analyzed in various ways. Circuit simulation allows for very fast evaluation with reasonable accu-
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Port 1

Port 2

(a) CST model. (b) Top view. The five geometric design parameters define im-
plicitly the length of the microstrips (off1, off2 and off3) and
the spacings between the microstrips (S1 and S2).

Figure 2: Microwave narrow-band filter.

racy, whereas full-wave electromagnetic (EM) simulations provide high accuracy at a high computational

cost. The inter-digital filter presented in this paper has been analyzed and optimized before by Swanson

[35] using a combination of analytic methods, circuit simulation and EM simulations. We use the EI

criterion to optimize the filter, and use the CST MicroWave Studio® (CST MWS) as a full-wave EM

simulation tool. The top view of the filter is shown in Figure 2b and consists of five quarter-wavelength

parallel microstrip resonators. The scalable layout is fully parametrized by S1 = [32, 38] mm, S1 = [40, 48]

mm, off1 = [−3, 9] mm, off2 = [−3, 3] mm and off3 = [−3, 3] mm. The last three parameters define

the offset of the quarter-wavelength microstrip resonators with respect to the horizontal dashed lines. In

particular, off1 is the offset of the outer two strips, off2 of the second and fourth strip and off3 of the

middle strip. In other words, the offsets implicitly define the length of each microstrip. While S1 and

S2 (spacings) denote the gap between the outer two strips and the inner two strips, respectively. This

results in a symmetric structure for the filter. In total, this adds up to five geometric design variables

that must be optimized.

The goal is to design a fifth-order (N = 5) narrow-band filter with a flat passband response centered

around 2.44 GHz and with a 10% bandwidth. In case of a lossless structure, a specific relationship between

the passband ripple and return loss of the the filter allows us to minimize the ripple in the passband by

minimizing the maximum of the S11-parameter curve, i.e., the reflection coefficient, in the frequency

range [2.32, 2.56] GHz. No specific optimization goals were set for the insertion loss and the stopband.

The ’fast S-parameter’ solver in CST MWS is used, and a frequency sweep takes approximately 5 to 10

minutes on a standard laptop.

This optimization problem is used to benchmark several types of kriging surrogate modeling strategies

in conjunction with the EI approach. In addition, this problem serves as an example that black-box SBO

methods are able to find optimal designs that compare favorably with designs obtained using domain-
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specific knowledge [35].

3.2 Experimental setup

Version 6.1 of the SUMO toolbox is used to perform the optimization of the narrow-band filter and is

configured as follows. The initial set of data points is generated by a maximin Latin Hypercube Design

(LHD; implemented as in [36]) of 19 points together with 32 corner points, adding up to a total of 51

initial points. For this particular application the standard EI function (as defined in section 2) is used to

select infill points. The EI function is optimized using the DIviding RECTangles (DIRECT) algorithm

of Jones et al. [37] to determine the next data point to evaluate. A time budget constraint of 24 hours

is applied, i.e., the overall optimization process runs for 24 hours.

The aforementioned configuration is reproduced three times with different types of the kriging sur-

rogate model. The first two cases configure kriging as surrogate model of choice as implemented by the

DACE toolbox [38]. More precisely, in one run the DACE toolbox itself performs the hyperparameter

optimization, which comprises maximum likelihood estimation (MLE) using a modified Hooke & Jeeves

direct search method [39] (pattern search). In another run, the hyperparameters of the kriging model

are identified by Matlab’s Genetic Algorithm (GA) toolbox using 10-fold cross validation to guide the

search. In the last, and final configuration, a custom implementation of blind kriging [40] is employed

(MLE using the DIRECT algorithm).

In addition, the cost function is also optimized using the Matlab pattern search and simulated an-

nealing routines using the default options and initial point x0 = ([TODO]). However, unlike the kriging

configurations, a time budget of 24 hours is not applied, instead the optimization is halted after exceeding

the number of samples that the best kriging configuration reached.

3.3 Results

Figure 3 shows the progress of the optimization process, i.e., the minimum cost function value versus

the number of samples evaluated. The dotted line is the blind kriging configuration and performs worst

in terms of the final solution. Constructing a blind kriging surrogate model is twice as expensive as

standard kriging, hence, less time is available to evaluate the expensive simulation code. On the other

hand, kriging (GA) is able to produce better kriging models due to a large model parameter search with

a genetic algorithm guided by cross validation, and, thus, that configuration finds attracting basins more

quickly. However, due to the cost of cross validation and evolutionary-based strategies it is only able

to evaluate approximately 190 samples before the time budget is exceeded. Yet, at that point it is the

best performing method. The standard kriging configuration finds the best solution. As it is significantly

faster than the other two configurations, it is able to process more simulator runs, which proves to be

more important in this application than a really accurate approximation model. After about 220 function
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Figure 3: Evolution of the minimum cost function value versus the number of samples evaluated in 24
hours. The standard kriging (MLE) surrogate model finds the lowest cost function value. (inter-digital
filter)

method |X| xmin fmin

blind kriging (MLE) 193 (35.03, 41.37, 8.99,−1.14, 0.19) 0.17038
kriging (GA) 145 (36.00, 43.10, 5.90,−3.00,−3.00) 0.13234

kriging (MLE) 344 (36.68, 44.16, 6.16,−2.67,−2.47) 0.11936
pattern search 344 TODO TODO

simulated annealing 344 (37.12, 43.10, 8.39,−1.87, 0.42) 0.18074
reference [35] unknown (37.10, 44.46, 6.30,−2.60,−2.43) 0.12527

Table 1: Final designs of the inter-digital filter. |X| is the number of samples evaluated (in 24 hours),
xmin and fmin are the final solutions and cost function values respectively. (inter-digital filter)

evaluations it finds the best solution in the 5D design space and still has time to select about 100 more

samples to look for an even better solution or to validate the current one. It should be noted that the

usefulness of more expensive surrogate modeling strategies (such as blind kriging) may improve when the

time of a single simulation run would increase to hours or even days. The final solutions found of each

technique are displayed in Table 1, together with the reference optimum, as found by Swanson [35].

Surprisingly, the design found using the EI criterion and the kriging (MLE) surrogate models outper-

forms the reference design, i.e., with respect to the same cost function. To compare the different designs

in a fair way the S11-parameter curves are drawn in Figure 4. The reference design is constructed so that

the ripples in the S11-parameter curve are of equal height (exact equal ripple tuning). This might also

be important as it guarantees consistent performance over the whole frequency range of interest. Note

however that in this paper the cost function does not punish or favor equal ripple tuning. Thus, the

solution found in this paper is better on the cost function but has not exact equal ripples (though very

close to), while the reference design is slightly more consistent over the frequency range with regard to

the ripples.

A huge advantage of SBO is the ability to easily explore the final (and intermediate) approximation

models. The practitioner is able to cheaply analyze the robustness of the solution, locate other interesting
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regions (e.g., local optima), etc. For illustration purposes the kriging (MLE) surrogate model of the cost

function is shown in Figure 5. This plot is a 2D slice of the 5D design space where the offset parameters

are fixed, i.e., off1 = 6.16 mm, off2 = −2.67 mm and off3 = −2.47 mm.

4 Example 2: Textile antenna

4.1 Application

Material property identification is a well-known inverse problem. In particular, we address the charac-

terization of the electrical properties of textile materials for the use in textile antennas. These antennas

are constructed out of a non conductive textile substrate, a conductive ground plane and a conductive

patch as shown in Figure 6. The textile substrate used here has a vegetable cellulose based origin and

has a thickness of 0.805 mm. The textile substrate’s electrical properties of interest are the permittivity

εr and loss tangent tanδ, and together with the patch geometry they determine the antenna performance

indicators such as resonance frequency and bandwidth. The goal is to accurately characterize these two

material properties of the textile antenna substrate based on the measured performance characteristics,

provided by the reflection coefficient measurement of the antenna. The exact knowledge of the textile

substrate’s properties will then be exploited in the computer-aided design of complex wearable antenna

topologies. Previously, manual fitting of the simulated and measured data has been reported in [41] for

extracting the permittivity and loss tangent of the textile substrate. Based on a rough estimation (rule

of thumb) of the textile substrates’ electrical properties a full-wave EM simulation is performed to design

a single-mode textile antenna with a sharp resonance. Therefore, the length L of the patch antenna is

chosen such that a resonance is obtained in the vicinity of 2.4 GHz. Impedance matching is obtained

by optimizing the width W and the coaxial feed positions xf and yf . The resulting patch dimensions

L, W and feed positions xf and yf , based on the estimated permittivity and loss tangent of the textile

substrate are 45.5 mm, 33 mm, 11 mm and 16.5 mm respectively. The way the real resonance peak of

the textile antenna has shifted and changed in form allows to determine the actual permittivity and loss

tangent of the substrate. Therefore, the textile antenna’s reflection coefficient is measured and compared

to simulations for multiple substrate parameters using ADS Momentum in the [2, 3] GHz frequency range.

As a full inverse surrogate model is infeasible, the inverse problem is converted to a forward opti-

mization problem. Specifically, the problem is reduced to the minimization of an error function (= cost

function) between the simulation results y and the measured data ỹ (see Figure 7). The error function

is the popular Mean Squared Error (MSE) defined by,

MSE(y, ỹ) =
1
n

n∑
i=1

(yi − ỹi)2, (5)
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Figure 7: The inverse problem is solved by minimizing the error function between the simulation results
y and the measured data ỹ.

with n = 401 the number of frequency points (samples). In the optimization process εr and tan δ are

bounded by [1.1, 2.5] and [0.020, 0.090], respectively. Hence, the correct material properties are identified

by minimizing the MSE between the simulated S11 curve and the measured S11 curve.

A difficult problem often encountered with inverse problems is the presence of noise in the cost

function. Obviously, the reflection coefficient measurements used in the error function contain noise.

The error function (MSE) reduces the noise in the cost function. Any remaining noise is handled by the

kriging surrogate model.

4.2 Experimental setup

Version 6.2 of the SUMO toolbox is utilized to solve the inverse problem of the textile antenna. The

configuration is quite similar to the previous (forward) problem. An initial set of samples is generated by

an optimal maximin Latin Hypercube Design (LHD; [42]) of 10 points together with four corner points,

adding up to a total of 14 initial points. Subsequently, infill points are selected using the EI as a figure

of merit which is optimized by the DIRECT algorithm. The optimization is halted when the number of

samples exceeds 70.

The surrogate model of choice is a custom implementation of kriging. The hyperparameters are

determined using Maximum Likelihood Estimation (MLE). The actual optimization is accomplished by a

Sequential Quadratic Programming method (SQPLab4 [43]), taking into account derivative information.

4SQPLab is found at http://www-rocq.inria.fr/~gilbert/modulopt/optimization-routines/sqplab/sqplab.html
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Figure 8: Evolution of the minimum cost function value versus the number of samples evaluated. The EI
approach quickly locates the region of the global optimum and, subsequently, explores this region further,
fine-tuning the final solution. (textile antenna)

method |X| εr tan δ MSE

kriging (MLE) 71 1.691 0.054 0.5185
pattern search 71 1.675 0.056 0.8963

simulated annealing 71 1.705 0.065 1.1513
reference unknown 1.694 0.06 0.6974

Table 2: Final material parameters. |X| is the number of samples, εr and tan δ are the material parameters
with the associated cost function value (MSE). (textile antenna)

Finally, kriging is modified to approximate the (noisy) cost function, instead of using interpolation.

To provide a comparison against traditional black-box optimization techniques the cost function is

also optimized using the Matlab pattern search and simulated annealing routines using initial point

x0 = (1.80, 0.05) and the same sample budget as the kriging configuration. The remaining options are

left to their default values.

4.3 Results

An evolution plot of the minimum cost function values versus the number of samples is depicted in Figure

8. Starting from 14 samples the EI criterion quickly locates the region of the global optimum. At 20

samples the EI function starts exploring other parts of the design space (the flat parts), occasionally fine-

tuning the current solution At approximately 45 samples the design space has been sufficiently explored

and the final solution has been found. Still, the sampling continues until the sample budget is met,

though no improvement is made.

The final optimal parameter combinations of each technique are presented in Table 2 along with the

solution obtained through manual fitting and experimentation. The S11 curves of the optimal simulation

run and the measurements are plotted in Figure 9. The solution found in this paper is significantly better

than the reference optimum with respect to the cost function.
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Figure 9: (a) S11-parameter magnitude plots of the identified material parameter combinations. The
design found by kriging (MLE) is significantly more accurate than the reference optimum, being able
capture the measured resonance peak nicely. (b) Contour plot of the final kriging (MLE) surrogate model
of the cost function based on 71 data points. (textile antenna)

Finally, the final kriging surrogate model of the cost function is displayed in Figure 9. As can be seen

in the contour plot, the EI function explored the edges of the design space quite thoroughly, increasing

the accuracy of the kriging model. Afterwards, more attention is paid to the valley, sampling densely

near the region of the global optimum (the cluster of points).

5 Conclusion and future work

This work provides an overview of several Surrogate-Based Optimization (SBO) methods. A SBO ap-

proach based on the Expected Improvement (EI) criterion is implemented in a freely available toolbox,

namely, the SUMO toolbox. The SUMO toolbox is used to benchmark different types of the kriging

surrogate model on a forward EM optimization problem. Subsequently, a novel inverse EM problem is

solved by minimizing the error between simulated data and measured data.

The optimization results of the first application show standard kriging (MLE) to outperform other

types of kriging. In fact, it is demonstrated that the obtained design compares well against a reference

design obtained by a domain expert.

The material property identification (inverse) problem is solved by optimizing an error function. The

kriging surrogate model, adapted for regression, is able to approximate the noisy cost function very

accurately, resulting in the identification of the material parameters with a minimal number of expensive

function evaluations. The final material parameter combination largely agrees with the measured data.

In particular, the identification of the resonance peak of the S11 curve is highly accurately. Any remaining

difference between the measured data and the best solution is due to missing parameters in the simulation,
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e.g., the finite conductivity of the conductive parts is not taken into account.

Future work includes full inverse electrical characterization of textile materials by including the finite

conductivity and extensions to Multi-Objective Surrogate-Based Optimization (MOSBO) [44] methods.
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