
Surrogate-Based Optimization using Multifidelity

Models with Variable Parameterization

by

Theresa D Robinson

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 18, 2007

Certified by. .
Karen Willcox

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .

Robert Haimes
Principal Research Engineer

Thesis Supervisor

Certified by. .
Dimitri Bertsekas

McAfee Professor of Engineering
Thesis Committee Member

Accepted by .

Jaime Peraire
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

2

Surrogate-Based Optimization using Multifidelity Models

with Variable Parameterization

by

Theresa D Robinson

Submitted to the Department of Aeronautics and Astronautics
on May 18, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Engineers are increasingly using high-fidelity models for numerical optimization. How-
ever, the computational cost of these models, combined with the large number of
objective function and constraint evaluations required by optimization methods, can
render such optimization computationally intractable. Surrogate-based optimization
(SBO) - optimization using a lower-fidelity model most of the time, with occasional
recourse to the high-fidelity model - is a proven method for reducing the cost of
optimization. One branch of SBO uses lower-fidelity physics models of the same sys-
tem as the surrogate. Until now however, surrogates using a different set of design
variables from that of the high-fidelity model have not been available to use in a
provably convergent numerical optimization. New methods are herein developed and
demonstrated to reduce the computational cost of numerical optimization of variable-
parameterization problems, that is, problems for which the low-fidelity model uses a
different set of design variables from the high-fidelity model. Four methods are pre-
sented to perform mapping between variable-parameterization spaces, the last three
of which are new: space mapping, corrected space mapping, a mapping based on
proper orthogonal decomposition (POD), and a hybrid between POD mapping and
space mapping. These mapping methods provide links between different models of
the same system and have further applications beyond formal optimization strategies.
On an unconstrained airfoil design problem, it achieved up to 40% savings in high-
fidelity function evaluations. On a constrained wing design problem it achieved 76%
time savings, and on a bat flight design problem, it achieved 45% time savings. On a
large-scale practical aerospace application, such time savings could represent weeks.

Thesis Supervisor: Karen Willcox
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Robert Haimes
Title: Principal Research Engineer

3

4

Acknowledgments

I would like to acknowledge my advisor, Professor Karen Willcox, for providing the

right balance of high expectations and support during my PhD program. She is

an excellent advisor and I learned much, both about technical matters and life in

academia, from her. I would like to thank my co-advisor, Bob Haimes, for both his

technical help, especially getting various pieces of software working, and his blunt

honesty. Professor Dimitri Bertsekas, the third member of my thesis committee, has

taught me much about optimization methods.

Thank you to Michael Eldred of Sandia National Laboratories for our collabora-

tion over the last few years. Mike directly contributed to the development of corrected

space mapping and the hybrid POD/space mapping. He provided many useful im-

provements to the text of this thesis. Thank you to Natalia Alexandrov of NASA

Langley, whose work on trust region methods provided much of the foundation of

this work, and who provided numerous detailed comments on this thesis. Dr. David

Willis developed the aerodynamic codes used both for the wing design problem and

for the flapping-flight problem. He spent many hours developing and debugging these

programs, and helping me interpret the solutions found by my algorithms. Thank

you to Dr. Chris Kuklewicz for helping me develop and debug some early test code.

I would like to acknowledge the financial support of the Computational Engi-

neering Programme of the Singapore/MIT Alliance. Also, I would like to thank the

Computer Science Research Institute at Sandia National Laboratories for sponsor-

ing my research for one summer, providing me with an opportunity to interact with

the excellent research staff in the Sandia Optimization and Uncertainty Quantifica-

tion Group. Thank you to Krzysztof Fidkowski, Garrett Barter, and Todd Oliver

for keeping the computers running, and running the needed software, in the ACDL.

Many thanks to Jean Sofronas for all the work she does in support of the laboratory.

Finally, I would like to extend my deepest thanks to my husband, Andrew Lefoley

Robinson. His help and support have been invaluable, and I appreciate that he

continued to have confidence in me, even when I did not.

5

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Surrogate–Based Optimization . 21

1.3 Present Limitations on SBO . 23

1.4 Mapping . 25

1.5 Terminology . 26

1.6 Research Contributions . 27

1.7 Thesis Summary . 27

2 Trust–Region Model Management 29

2.1 Unconstrained Algorithm . 30

2.1.1 Assumptions for Provable Convergence 31

2.1.2 Generating a Surrogate: Single Parameterization 32

2.1.3 Generating a Surrogate: Variable Parameterization 36

2.1.4 Computing the trial step . 39

2.2 Constrained Algorithms . 39

2.2.1 General Algorithm . 40

2.2.2 Augmented Lagrangian Method 43

2.2.3 Direct Surrogate Optimization 45

2.2.4 SQP–like method . 45

2.2.5 MAESTRO . 46

2.2.6 Surrogates of Lagrangian functions 48

2.3 Choice of Design Space . 50

7

2.3.1 Algorithm in the low–fidelity space 50

2.3.2 Proof of Convergence . 51

2.4 Conclusion . 59

3 Mapping Methods 61

3.1 Space mapping . 62

3.1.1 Standard space–mapping methods 63

3.1.2 Corrected space mapping . 64

3.1.3 Solving the subproblem in the low–fidelity space 66

3.2 POD mapping . 67

3.2.1 Proper Orthogonal Decomposition 68

3.2.2 Gappy POD . 68

3.2.3 POD mapping . 70

3.3 Hybrid POD/Space Mapping Method 71

3.4 Application of Mapping to TRMM 74

3.4.1 Construction of the surrogate 74

3.4.2 Evaluation of the surrogate 75

3.5 Comparison of Mapping Methodology 75

4 Unconstrained Problems 77

4.1 Two–Dimensional Rosenbrock Problem 77

4.1.1 Problem Description . 77

4.1.2 Results . 78

4.2 Rosenbrock Problem: Variable parameterization 81

4.3 Airfoil Design Problem . 83

4.3.1 High–fidelity analysis . 84

4.3.2 Low–fidelity analysis . 84

4.3.3 Generation of Results . 87

4.3.4 Results . 89

4.3.5 Chapter Summary . 92

8

5 Barnes Problem 93

5.1 Problem Description . 93

5.2 Low–fidelity Model . 96

5.3 Constraint–management Methods . 96

5.4 Variation of Parameters . 98

5.4.1 Low–fidelity objective function 98

5.4.2 Low–fidelity constraints . 99

5.4.3 Trust–region algorithm parameters 101

5.4.4 Initial algorithm parameters 106

5.4.5 POD mapping parameters . 109

5.5 Chapter summary . 109

6 Constrained Design Problems 113

6.1 Wing Design Problem . 113

6.2 Flapping–flight problem . 116

6.2.1 Problem Description . 117

6.2.2 High–fidelity analysis . 118

6.2.3 Low–fidelity analysis . 120

6.2.4 Results . 121

7 Conclusion 125

7.1 Thesis Summary . 125

7.2 Conclusions . 126

7.3 Contributions . 127

7.4 Future Work . 128

9

10

List of Figures

1-1 Visualization of the low–fidelity design variables for the supersonic

business jet. Image courtesy I. Kroo. 24

1-2 Visualization of the high–fidelity design variables for the supersonic

business jet. Image courtesy I. Kroo. 24

3-1 Demonstration of simultaneous vs. sequential data fitting and enforce-

ment of first–order accuracy . 65

4-1 Contours of the Rosenbrock function. The minimum, at x = (1, 1), is

marked with an ‘x’. 78

4-2 Contours of a simple quadratic function 79

4-3 Path of the benchmark method, the multifidelity method with cor-

rected space mapping, and the multifidelity method with POD map-

ping, on the two–dimensional Rosenbrock problem. 80

4-4 Objective function of the benchmark quasi–Newton method, the mul-

tifidelity method with corrected space mapping, and the multifidelity

method with POD mapping, on the two–dimensional Rosenbrock prob-

lem. 80

4-5 Objective function of the benchmark quasi–Newton method, the mul-

tifidelity method with corrected space mapping, and the multifidelity

method with POD mapping, on the six–dimensional Rosenbrock prob-

lem. 82

4-6 Initial and goal airfoils, along with their coefficient of pressure distri-

butions. 84

11

4-7 For the high–fidelity model, Hicks–Henne bump functions are used to

parameterize the airfoil geometry. 85

4-8 The unit circle in the upper plot is transformed to the airfoil in the

lower plot using the Joukowski transform. 86

4-9 Singular values of the snapshot matrix for the airfoil design problem,

showing that the first two are much more significant than the others. 87

4-10 The high-fidelity and corrected low-fidelity functions as a function of

variable x23 for an airfoil close to the goal airfoil. 88

4-11 The high-fidelity and corrected low-fidelity functions as a function of

variable x23 for an airfoil close to the goal airfoil, over a smaller range

than Figure 4-10. 88

4-12 The high–fidelity and corrected low–fidelity functions as a function of

variable x1 for an airfoil close to the goal airfoil. 90

4-13 Convergence of quasi–Newton method, multifidelity with POD map-

ping, and multifidelity with corrected space mapping on the airfoil

design problem. 90

4-14 Convergence of multifidelity with POD mapping on airfoil design prob-

lem varying the number of basis vectors 91

4-15 Convergence of multifidelity with POD mapping on airfoil design prob-

lem varying the initial airfoil. 92

5-1 Objective function contours and constraints of the Barnes problem.

Local and global optima are indicated with an ‘x’. 95

5-2 Objective function contours and constraints of the low–fidelity approx-

imation to the Barnes problem. Optima of the high–fidelity problem

are indicated with an ‘x’. 95

5-3 Optimization paths, in the high–fidelity space, of direct surrogate opti-

mization, using POD mapping, varying the low–fidelity objective func-

tion. 100

12

5-4 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the low–fidelity ob-

jective function. 100

5-5 Optimization paths, in the high–fidelity space, of direct surrogate op-

timization, using POD mapping, varying the low–fidelity constraints. 102

5-6 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the low–fidelity con-

straints. 102

5-7 Optimization paths, in the high–fidelity space, of the augmented La-

grangian multifidelity method, using separate corrections to the objec-

tive and the constraints and POD mapping, varying the low–fidelity

constraints. 103

5-8 Objective function and maximum constraint violation of the augmented

Lagrangian multifidelity method, using separate corrections to the ob-

jective and the constraints and POD mapping, varying the low–fidelity

constraints. 103

5-9 Corrected surrogates to constraints for the first four trust–region iter-

ations of direct surrogate optimization, using POD mapping. 104

5-10 Optimization paths, in the high–fidelity space, of direct surrogate op-

timization, using POD mapping, varying the trust–region algorithm

parameter c2. 105

5-11 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the trust–region algo-

rithm parameter c2. 105

5-12 Optimization paths, in the high–fidelity space, of the augmented La-

grangian multifidelity method, using separate corrections to the objec-

tive and each constraint and POD mapping, varying the trust–region

algorithm parameter r1. 107

13

5-13 Objective function and maximum constraint violation of the augmented

Lagrangian multifidelity method, using separate corrections to the ob-

jective and each constraint and POD mapping, varying the trust–region

algorithm parameter r1. 107

5-14 Optimization paths, in the high–fidelity space, of direct surrogate op-

timization, using POD mapping, varying the trust–region algorithm

parameter r2. 108

5-15 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the trust–region algo-

rithm parameter r2. 108

5-16 Optimization paths, in the high–fidelity space, of direct surrogate opti-

mization, using POD mapping, varying the initial trust–region radius

∆0. 110

5-17 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the initial trust–region

radius ∆0. 110

5-18 Optimization paths, in the high–fidelity space, of direct surrogate op-

timization, using POD mapping, varying the number of POD basis

vectors d. 111

5-19 Objective function and maximum constraint violation of direct surro-

gate optimization, using POD mapping, varying the number of POD

basis vectors d. 111

6-1 Initial and final wing planforms . 115

6-2 Objective function value and constraint violation of each of a single–

fidelity SQP method and an SQP–like multifidelity method using cor-

rected space mapping. 116

14

6-3 Marker locations on a Cynopterus brachyotis, or short–nosed fruit bat,

outfitted for testing in the Harvard Concord Field Station Wind Tun-

nel. Figure courtesy of Kenneth Breuer and Sharon Swartz, Brown

University. 117

6-4 Results of the high–fidelity analysis of a flapping wing, showing the

airfoil position, the trailing vortex, and the forces in the x and y direc-

tions. 120

6-5 Results of the low–fidelity analysis of a flapping wing, showing the

airfoil position, angle of attack, and resultant forces in the x and y

directions. 122

6-6 Objective function value and constraint violation for the flapping–

wing problem, for the single–fidelity method and SQP–like multifidelity

method with corrected space mapping. 123

15

16

List of Tables

2.1 Four major classes of constrained trust–region methods. Shown are

the objective and constraints of the trust–region subproblem, the merit

function used to manage the radius of the trust region, and the trial

step acceptance criterion. 42

3.1 Advantages and disadvantages of mapping methods 76

5.1 Convergence of various optimization methods, with both POD map-

ping and corrected space mapping, from three starting points. 97

6.1 Design variables and results for flapping–wing problem 118

17

18

Chapter 1

Introduction

1.1 Motivation

Simulation–based design optimization methods can be used in many settings within

the conceptual and preliminary design of engineering systems. For example, in air-

craft design, multidisciplinary design optimization (MDO) methods have been used

to achieve systematic exploration of the design space, thus offering the potential of

increased aircraft performance and profitability [48]. Examples of large multidisci-

plinary aerospace problems solved with MDO methods are described in [66], [40] and

[38]. A broad class of design applications of interest can be described numerically by

simulation models that depend on a set of design variables, x, which represent the

design decisions over which the designer has control, and a set of state variables, y,

which describe the physical state of the system. For this class of applications, the

design problems can be formulated as a nonlinear programming problem

min
x,y

f(x,y) (1.1)

Subject to R(x,y) = 0, (1.2)

g(x,y) ≤ 0, (1.3)

h(x,y) = 0, (1.4)

xLB ≤ x ≤ xUB. (1.5)

19

The design vector x ∈ Rn contains design variables, or numerical quantities over

which the designer has control. The objective function f(x,y) is the quantity the

designer wishes to minimize. Examples of objective functions in aircraft design include

drag, weight, cost, and combinations thereof. The set of state equations R(x,y)

describe the physical governing equations that the system must satisfy and establish

the interpendence of the state variables and design variables. They are normally a set

of equations approximating physical phenomena. For instance, in the aerodynamic

portion of an aircraft design problem, the state equations can use computational

fluid dynamics to relate state variables such as air velocities and pressures to design

variables defining the outer mold line of the aircraft. The constraint vectors g(x)

and h(x) represent conditions that must be satisfied by the design. Examples of

constraints include that lift is equal to weight or that stress in a structural member

does not exceed some fraction of the material’s strength. The bounds xLB and xUB

on the design variables specify the range of allowable values of x. For example, these

can specify minimum thicknesses of structural members.

Here, the design problem is formulated using a reduced space optimization ap-

proach. That is, it is assumed that the state equation (1.2) can be solved explicitly

for the state variables y as a function of the design variables x. This permits the

replacement of minx,y with minx f(y(x)) = minx f(x), where the dependence of y on

x is implicit through the state equation (1.2). In addition, each equality constraint

in Equation (1.4) can be replaced by two inequality constraints, and the bounds on

the design variables in (1.5) are a special case of inequality constraints. The problem

can then be written

min
x

f(x) (1.6)

Subject to c(x) ≤ 0.

The computational expense of solving problem (1.6) is a result of potentially

numerous factors. This work addresses two of those factors: firstly, the time taken

20

to evaluate a given design, i.e. to evaluate f(x) and c(x), may be large. Secondly,

there may be a large number of design variables, causing n, the dimension of x, to be

large. This typically increases the number of function evaluations required to solve the

problem. In addition, many engineering codes do not provide analytic gradients, and

finite differences are required to compute the derivative information required for use

in a gradient–based optimization solver. For example, a finite difference calculation

of df
dx

requires O(n) function evaluations. Two AIAA white papers on MDO, [34] and

[1], note the significant computational challenges presented by applying optimization

to models with high fidelity and high computational costs.

1.2 Surrogate–Based Optimization

Surrogate–based optimization (SBO) has been proposed as one method to achieve

high–fidelity design optimization at reduced computational cost. In SBO, a surrogate

— or less expensive and lower–fidelity model — is used to perform the majority of

the optimization, with recourse less frequently to the high–fidelity model. The deter-

mination of when to use the high–fidelity model is based on some rigorous procedure

for deciding the appropriate level of fidelity.

Past work has focused on providing lower–fidelity models — f̂ for f and ĉ for c —

that are computationally efficient to evaluate. These models can be roughly divided

into three categories: data fit surrogates, typically using interpolation or regression

of the high–fidelity model evaluated at one or more sample points [70]; reduced–order

models, derived using techniques such as proper orthogonal decomposition (POD) and

modal analysis; and hierarchical models, also called multifidelity, variable–fidelity, or

variable–complexity models. In this last case, a physics–based model of lower fidelity

and reduced computational cost is used as the surrogate in place of the high–fidelity

model. The multifidelity case can be further divided based on the means by which

the fidelity is reduced in the lower–fidelity model. The low–fidelity model can be the

same as the high–fidelity, but converged to a higher residual tolerance [33]; it can be

the same model on a coarser grid [7]; or it can use a simpler engineering model that

21

neglects some physics modeled by the high–fidelity method [5].

Much work has been performed on developing SBO methods that are provably

convergent to an optimum of the high–fidelity problem. Ref. [58] reviews a broad

spectrum of SBO work. One promising group of methods is based on trust–region

model management (TRMM), which imposes limits on the amount of optimization

performed using the low–fidelity model, based on a quantitative assessment of that

model’s predictive capability. TRMM evolved from classical trust–region algorithms

[57], which use quadratic surrogates, and have more recently been used for surrogates

of any type [50]. These TRMM methods are provably convergent to an optimum

of the high–fidelity model [22, 32], provided the low–fidelity model is corrected to

be at least first–order consistent with the high–fidelity model. Correcting to second–

order or quasi–second–order consistency provides improved performance [27]. Ref [73]

presents a survey of unconstrained trust–region methods.

A number of researchers have developed SBO methods for constrained problems.

Booker et al. developed a direct–search SBO framework that converges to a minimum

of an expensive objective function subject only to bounds on the design variables,

and that does not require derivative evaluations [18]. Audet et al. extended that

framework to handle general nonlinear constraints [11] using a filter method for step

acceptance [10]. Rodriguez et al. developed a gradient–based TRMM augmented–

Lagrangian strategy using response surfaces, and showed that using separate response

surfaces for the objective and constraints provided faster convergence than using a

single response surface for the augmented Lagrangian [60]. Alexandrov et al. de-

veloped the MAESTRO class of methods, which use gradient based optimization

and trust region model management, and compared them to a sequential quadratic

programming (SQP)–like TRMM method [7]. Under fairly mild conditions on the

models, these methods are also convergent to a local minimum of the constrained

high–fidelity problem [26, 22]. Ref. [62] reviews a broad spectrum of trust–region

methods for constrained optimization and [22] has an extensive bibliography relating

to both classical trust–region methods and to more recent TRMM methods, for both

the unconstrained and the constrained case.

22

1.3 Present Limitations on SBO

The SBO methods developed to date achieve computational gain by performing most

of the analysis on the low–fidelity model; however, they require that the high– and

low–fidelity models operate with the same set of design variables. For practical de-

sign applications however, multifidelity models are often defined over different design

spaces. That is, the low–fidelity model f̂(x̂) takes x̂ 6= x as an input. The dimension

of x̂, in this work called n̂, can be different from n, the dimension of x. For example,

the variable–fidelity supersonic business jet problem considered by Choi et al. [21]

is to optimize the aerodynamic performance of a low–supersonic–boom aircraft. The

low–fidelity model uses classical supersonic aerodynamics and vortex lattice–methods,

and operates on an aircraft defined by 16 design variables: the wing area, aspect ratio,

and sweep, the location of the wing root leading edge, the thickness to chord length

at three locations on the wing, the minimum cockpit diameter, the minimum cabin

diameter, and the fuselage radii at six locations. The geometric model of the aircraft

used for the low–fidelity analysis is shown in Figure 1-1. The high–fidelity model uses

126 design variables: leading and trailing edge droop, twist, and 15 camber Hicks–

Henne bumps at each of 7 locations on the wing. The geometric model of the aircraft

used for the high–fidelity analysis is shown in Figure 1-2. The high–fidelity analysis

uses the Euler equations and provides the gradient through the adjoint method.

However, because existing SBO methods cannot be applied to problems where

the low– and high–fidelity models use different design variables, Choi et al. used the

two models sequentially, optimizing first using the low–fidelity model, with Kriging

corrections applied, and using the result of that optimization as a starting point for

optimization using the high–fidelity model. This also required an additional step of

mapping the low–fidelity optimum to the high–fidelity space, in order to provide a

starting point for high–fidelity optimization.

New methodology is therefore required for expanding surrogate–based design op-

timization to the case where the low– and high–fidelity models use different design

variables. Further, combining a low–fidelity model with a coarser parameterization of

23

Figure 1-1: Visualization of the low–fidelity design variables for the supersonic busi-
ness jet. Image courtesy I. Kroo.

Figure 1-2: Visualization of the high–fidelity design variables for the supersonic busi-
ness jet. Image courtesy I. Kroo.

24

the design offers the opportunity for additional reduction in computational complex-

ity and cost beyond current SBO methods. To achieve this, new design methodology

is required that incorporates variable–parameterization models into SBO methods.

1.4 Mapping

This thesis specifically addresses this need for new methodology by developing meth-

ods for mapping between design spaces. These mapping methods allow for SBO to be

applied to the case where the low– and high–fidelity models use different design vari-

ables. These mapping methods eliminate the need to perform sequential optimization

of each model: the low– and high–fidelity analyses are used in a single optimization.

While optimization methods have predominantly been used in the preliminary and

detailed design phases, there is an increasing drive to include higher–fidelity mod-

els, such as simulation–based physics models, in the conceptual phase of the design

process. This drive stems from a desire to make better design decisions when those

decisions can still be made: the more knowledge available earlier in the design pro-

cess, the better the ultimate design. An additional benefit of these mapping methods

is that even in the case where the low– and high–fidelity analyses are performed se-

quentially, the mapping can be applied after using the low–fidelity analysis, to convert

the optimum in the low–fidelity space to a starting point in the high–fidelity space.

Further, these mappings allow optimization paths in one space to be converted to

paths in another space. If one space is more suitable for optimization, and another

for human–computer interaction, this allows improved insight into the design process.

Moreover, in the design of complex engineering systems, such as an aircraft, different

levels of analysis are often used at different times by different groups. Mapping can

provide a systematic way to translate results from one analysis setting to another,

even outside the purview of formal optimization.

25

1.5 Terminology

Since the majority of the literature addresses single–parameterization problems, ex-

isting terminology may be inconsistent with new ideas presented in this thesis. The

following is how terms are used in this work.

The fidelity of a mathematical or computational model is the degree to which the

model accurately reflects reality. Higher–fidelity models correspond more closely to

observed experimental results. Some models may be higher–fidelity in some regions

of the design space than others. For the purposes of this thesis, it is assumed that

it is trivial to list models in order of decreasing fidelity, and that this order stays

constant over the design space of interest.

The computational cost of a model is the amount of time it takes a computer to

find the outputs f(x) and c(x), given a single set of design variables x.

It is assumed in this thesis that higher fidelity models have higher computational

cost than lower–fidelity models. This is not always the case. However, when the

higher–fidelity model has less computational cost than the lower–fidelity model, it

should be used. There is no reason to incorporate a model with both lower fidelity

and higher computational cost.

A variable–fidelity design problem is a physical problem for which at least two

mathematical or computational models exist. One model has both higher fidelity and

higher computational cost than the other model.

A single–fidelity optimization method is a method that uses only one model of the

physical system in order to minimize an objective function, possibly subject to some

constraints.

A multifidelity optimization method is a method that uses more than one model of

a variable–fidelity problem. Normally, the goal of a multifidelity optimization method

is to find the optimum of the higher–fidelity model at reduced computational cost. It

uses the low–fidelity model for some portion of the analysis as a means to that end.

The parameterization of a model is the set of design variables used as inputs to

the model.

26

A variable–parameterization problem is a variable–fidelity problem in which each

of the models has a different parameterization.

A mapping is a method for linking the design variables in a variable–parameterization

problem. Given a set of design variables in one parameterization, it provides a set of

design variables in another parameterization.

The dimension of a model is the number of design variables.

A variable–dimensional problem in which each of the models has a different di-

mension.

1.6 Research Contributions

The contributions of this thesis are to:

1. Develop techniques for mapping between analysis models with different design

parameterizations.

2. Develop a provably–convergent optimization framework for multifidelity models

with variable parameterizations for both unconstrained and constrained opti-

mization problems.

3. Compare these new mapping methods and optimization techniques with one

another and existing techniques.

4. Demonstrate these new mapping methods and optimization techniques on en-

gineering design problems within the context of aerospace engineering.

1.7 Thesis Summary

Chapter 2 presents existing TRMM methods for optimization, and expands their

applicability to variable–parameterization problems. It also presents a new TRMM

method for optimization — including proof of convergence — that solves the trust–

region subproblem in the low–fidelity space. Chapter 3 details the four methods

27

used to perform mapping between variable–parameterization spaces: space mapping,

corrected space mapping, a mapping based on the proper orthogonal decomposition

(POD), and a hybrid space mapping/POD method. Chapter 4 contains the results of

these new methods applied to two unconstrained problems — the Rosenbrock problem

and an airfoil design problem — and compares the results to existing methods applied

to the same problems. Chapter 5 presents detailed results of these new methods

applied to the Barnes problem, including a comparison against existing methods. It

also presents the results of varying the constraint–management method and a number

of algorithm parameters. Chapter 6 shows the results of these new methods applied

to two constrained design problems — the planform design of a wing and a flapping

flight problem — and compares the results to existing methods applied to the same

problems. Finally, Chapter 7 presents conclusions and some avenues for future work.

28

Chapter 2

Trust–Region Model Management

Surrogates can be incorporated into optimization by using a formal model–management

strategy. One such strategy is a trust–region model–management (TRMM) frame-

work [6]. TRMM imposes limits on the amount of optimization performed using

the low–fidelity model, based on a quantitative assessment of that model’s predictive

capability. TRMM developed from the classical trust–region optimization method

based on quadratic Taylor series models [23].

TRMM methods are provably convergent to an optimum of the high–fidelity

model, provided that the models satisfy a small number of assumptions, described

in Section 2.1.1 below. The general approach in TRMM is to solve a sequence of

optimization subproblems using only the low–fidelity model, with an additional con-

straint that requires the solution of the subproblem to lie within a specified trust

region. The radius of the trust region is adaptively managed on each subproblem

iteration using a merit function to quantitatively assess the predictive capability of

the low–fidelity model.

Based on test results to date with variable–resolution and variable–fidelity physics

models in CFD, TRMM has achieved 2– to 7–fold reductions in high–fidelity function

evaluations [7]. In general, the savings depend on the relative properties of models.

The improvement factor appears to increase with the dimension of the underlying

governing equations. The technique performs well even in cases in which the gradients

of the objective function in the two models have opposite directions [2].

29

This chapter first addresses the unconstrained algorithm. It shows the general

algorithm without specifying the nature of the surrogate, and lists the assumptions

required for convergence. It then details how to construct appropriate surrogates

in each of the single–parameterization and variable–parameterization unconstrained

cases. It then moves on to the constrained algorithm, discussing constrained TRMM

in general and each of four constrained TRMM algorithms specifically. Finally, it

introduces an algorithm that takes steps in the lower–complexity space, including a

proof of convergence.

2.1 Unconstrained Algorithm

This algorithm solves an unconstrained optimization problem

min
x∈Rn

f(x), (2.1)

where the objective function f(x) is a real–valued twice–continuously differentiable

function, which is bounded below.

Algorithm 1: Unconstrained TRMM Method

• Step 0: Initialization Choose an initial point x0 and an initial trust–region

radius ∆0 > 0. Set k = 0. Choose constants η > 0, 0 < c1 < 1, c2 > 1,

0 < r1 < r2 < 1, ∆∗ ≥ ∆0.

• Step 1: Surrogate definition Choose a surrogate f̃k that satisfies

f̃k(xk) = f(xk) and ∇xf̃
k(xk) = ∇xf(xk). The specific means for generating

this model will be discussed later in this chapter: in Section 2.1.2 for single–

complexity problems and in Section 2.1.3 for variable–complexity problems.

• Step 2: Step calculation Compute a step sk such that ‖sk‖ ≤ ∆k and that

satisfies the fraction of Cauchy decrease condition (described in Equation (2.7)

below). The computation of this step uses only the surrogates and is discussed

30

in Section 2.1.4. It is the solution of the trust–region subproblem

min
s

f̃(xk + s) (2.2)

Subject to ‖s‖ ≤ ∆k.

• Step 3: Acceptance or rejection of the trial point Compute f(xk + sk)

and define the trust–region ratio

ρk =
f(xk) − f(xk + sk)

f(xk) − f̃k(xk + sk)
. (2.3)

If ρk ≥ η accept the step and define xk+1 = xk + sk; otherwise reject the step

and define xk+1 = xk. Define a successful iterate as one in which the step is

accepted; otherwise it is an unsuccessful iterate.

• Step 4: Trust–region radius update Set

∆k+1 =

c1‖s
k‖ if ρk < r1,

min(c2∆
k, ∆∗) if ρk > r2,

‖sk‖ otherwise.

(2.4)

Increment k by 1 and go to Step 1.

Typical values for the algorithm parameters are η = 0.01, r1 = 0.2, r2 = 0.9,

c1 = 0.25 and c2 = 2.5.

2.1.1 Assumptions for Provable Convergence

Chapter 6 of Conn, Gould, and Toint [22] proves that the sequence of iterates gen-

erated by the algorithm above converges to a local minimum of the high–fidelity

function under a number of assumptions, which are enumerated there. Those on the

high–fidelity problem are relatively mild and satisfied by the majority of functions.

The two assumptions of most interest in this work are

31

1. On each iteration, the surrogate f̃k(x) is zeroth– and first–order consistent with

the high fidelity function f(x) at the center of the trust region. That is,

f̃k(xk) = f(xk), (2.5)

∇xf̃
k(xk) = ∇xf(xk). (2.6)

2. Each trial step must satisfy the fraction of Cauchy decrease (FCD) condition on

the surrogate. That is, there must exist numbers ζ > 0 and C > 0 independent

of k such that

f̃k(xk) − f̃k(xk + sk) ≥ ζ‖∇xf̃
k(xk)‖min

(

∆k,
‖∇xf̃

k(xk)‖

C

)

. (2.7)

2.1.2 Generating a Surrogate: Single Parameterization

When both the high–fidelity and low–fidelity models are defined over the same design

variables, that is, when x̂ = x, the problem is single–parameterization. The TRMM

framework is well–established and thoroughly tested for this case. This section will

review the creation of a surrogate for a single–parameterization set of variable–fidelity

models.

The standard method for creating a surrogate is to use the low–fidelity model

along with a simple polynomial correction. One of the requirements for provable

convergence of the TRMM algorithm is that surrogate is first–order consistent with

the high–fidelity function at the center of the trust region. A surrogate that satisfies

this condition can be created using a low–fidelity model and a correction function.

The correction can be additive, multiplicative, or a convex combination of the two,

and it can be of any order [27]. The corrections can be additive or multiplicative.

In [27], based on the problem and correction sample, additive corrections have been

shown to work better for a greater number of problems.

In the sections below, the high–fidelity function is denoted β, the low–fidelity

function is β̂, and the corrected surrogate is β̃. In the unconstrained case β = f ,

32

β̂ = f̂ and β̃ = f̃ ; however, in future sections, other functions will be corrected, and

therefore these corrections are presented generally.

Additive Correction

In an additive correction, the difference between the high–fidelity and the low–fidelity

models is approximated by a Taylor series.

An exact additive correction is the difference between the high– and low–fidelity

models

A(x) = β(x) − β̂(x). (2.8)

The surrogate in the additive case is then given by

β̃A(x) = β̂(x) + A(x), (2.9)

where A(x) is a second–order Taylor series expansion of A(x) around xk:

A(x) = A(xk) + ∇xA(xk)T (x − xk) +
1

2
(x − xk)T∇2

xA(xk)(x − xk). (2.10)

Each of the terms of the expansion is calculated using

A(xk) = β(xk) − β̂(xk), (2.11)

∇xA(xk) = ∇xβ(xk) −∇xβ̂(xk), (2.12)

∇2
xA(xk) = ∇2

xβ(xk) −∇2
xβ̂(xk). (2.13)

In Equation (2.13), exact Hessian matrices can be used if they are available. Otherwise

the BFGS approximation to the Hessian matrix, described below, or another quasi–

Newton approximation can be used.

33

Multiplicative Correction

In a multiplicative correction, the quotient of the high–fidelity and the low–fidelity

models is approximated by a Taylor series. An exact multiplicative correction function

is defined as

B(x) =
β(x)

β̂(x)
. (2.14)

The surrogate in the multiplicative case is

β̃B(x) = β̂(x)B(x), (2.15)

where B(x) is the second–order Taylor series expansion of B(x) around xk:

B(x) = B(xk) + ∇xB(xk)T (x − xk) +
1

2
(x − xk)T∇2

xB(xk)(x − xk). (2.16)

Each of these terms is calculated using

B(xk) =
β(xk)

β̂(xk)
, (2.17)

∇xB(xk) =
β̂(xk)∇xβ(x)k − β(xk)∇xβ̂(xk)

β̂2(xk)
, (2.18)

∇2
xB(xk) =

[

β̂2(xk)∇2
xβ(xk) − β(xk)β̂(xk)∇2

xβ̂(xk)

− ∇xβ̂(xk)β̂(xk)(∇xβ(xk))T + ∇xβ̂(xk)β(xk)(∇xβ̂(xk))T
]

(2.19)

/ β̂3(xk).

Combination Additive/Multiplicative Corrections

Since both the additive and the multiplicative corrections result in a surrogate which

is consistent at the center of the trust region, a convex combination of the two is also

34

be consistent. Such a combination is

β̃C(x) = Γβ̃A(x) + (1 − Γ)β̃B(x), (2.20)

where 0 ≤ Γ ≤ 1. The parameter Γ can be chosen a number of ways. One is to

choose a point, in addition to the center of the current trust region, at which to

exactly match the surrogate to the high–fidelity model.

Approximate Hessian matrices

These derivations have shown second–order corrections. For engineering problems,

exact Hessian matrices ∇2
xβ(xk) and ∇2

xβ̂(xk) are often unavailable. They can be

estimated using finite differences or approximated through quasi–Newton approxi-

mations , such as the Broyden–Fletcher–Goldfarb–Shanno [19, 31, 36, 64] (BFGS)

update. The BFGS approximation to the Hessian matrix requires only function value

and gradient information. It provides an improved estimate of the Hessian matrix

as the gradient becomes known at more points. The initial estimate of the Hessian

matrix is

H0 =
(y0)Ty0

(y0)T s0
I, (2.21)

where s0 is the step on the first trust–region iteration

s0 = x1 − x0, (2.22)

y0 is the yield of the first step,

y0 = ∇xβ(x1) −∇xβ(x0), (2.23)

and I is the identity matrix. The estimate is then updated, each time the gradient is

evaluated at a new point, using

Hk+1 = Hk −
Hksk(sk)THk

(sk)THksk
+

yk(yk)T

(yk)T sk
, (2.24)

35

where sk is the step on the kth trust–region iteration

sk = xk+1 − xk, (2.25)

and yk is the yield

yk = ∇xβ(xk+1) −∇xβ(xk). (2.26)

The BFGS update requires safeguarding against numerical failures due to small

denominators in Equation (2.24). The update is therefore skipped if

|(yk)T sk| < 10−6(sk)THksk or (sk)THksk < 10−10. For first–order corrections (suffi-

cient to ensure provable convergence of the SBO method), ∇2
xA(xk) and ∇2

xB(xk) are

neglected in Equations (2.10) and (2.16). However, quasi–second–order corrections

improve the convergence speed of the algorithm [27] and are therefore used in the

majority of the work in this thesis.

2.1.3 Generating a Surrogate: Variable Parameterization

In a variable–parameterization problem, the low–fidelity model is defined over a set of

design variables different from those of the high–fidelity model. In this case, surrogate

creation requires two components: correction and design variable mapping. Past

work on the TRMM framework has focused on the single parameterization case. This

section addresses correction, while design variable mapping is covered in Chapter

3. For this section, assume that a mapping exists of the form x̂ = P (x) and that

first and second–order derivatives of the mapping are available. This section details

the newly–derived corrections to the mapped low–fidelity model for use in variable–

parameterization optimization.

Additive Corrections

For some low–fidelity function β̂(x̂), the corresponding high–fidelity function β(x),

and a mapping x̂ = P (x), the kth additive–corrected surrogate is defined as

β̃k(x) = β̂ (P (x)) + Ak(x). (2.27)

36

In order to obtain quasi–second–order consistency between β̃k(xk) and β(xk), we

define the correction function, Ak(x), using a quadratic Taylor series expansion of the

difference A(x) between the two functions β and β̂, about the point xk:

Ak = A(xk) + ∇xA(xk)
T
(x − xk) +

1

2
(x − xk)T∇2

xA(xk)(x − xk). (2.28)

The elements in this expansion are calculated using

A(xk) = β(xk) − β̂
(

P (xk)
)

, (2.29)

∂A(xk)

∂xp

=
∂β

∂xp

(xk) −
n̂
∑

j=1

∂β̂

∂x̂j

(

P (xk)
) ∂x̂j

∂xp

, (2.30)

p = 1 . . . n,

(2.31)

∂2A(xk)

∂xp∂xq

= Hk
pq −

n̂
∑

j=1

(

∂β̂

∂x̂j

(

P (xk)
) ∂2x̂j

∂xp∂xq

+
n̂
∑

ℓ=1

Ĥk
jℓ

∂x̂j

∂xp

∂x̂ℓ

∂xq

)

, (2.32)

p = 1 . . . n, q = 1 . . . n,

where xp denotes the pth element of the vector x, Hk is the BFGS approximation to the

Hessian matrix of the high–fidelity function β at xk, Ĥk is the BFGS approximation

to the Hessian matrix of the low–fidelity function β̂ at P (xk), and Hk
pq denotes the

pqth element of the matrix Hk.

For each subproblem k, Equation (2.29) computes the difference between the value

of the high–fidelity function and the low–fidelity function at the center of the trust

region. Using the chain rule, Equation (2.30) computes the difference between the

gradient of the high–fidelity function and the gradient of the low–fidelity function

at the center of the trust region, where the gradients are computed with respect to

37

the high–fidelity design vector x. The second term in (2.30) therefore requires the

Jacobian of the mapping,
∂x̂j

∂xp
. Similarly, Equation (2.32) computes the difference

between the BFGS approximation of the Hessian matrices of the high–fidelity and

low–fidelity functions at the center of the trust region. Once again, derivatives are

required with respect to x and are computed using the chain rule.

Multiplicative Corrections

For some low–fidelity function β̂(x̂), the corresponding high–fidelity function β(x),

and a mapping x̂ = P (x), the kth multiplicative–corrected surrogate is defined as

β̃k(x) = β̂ (P (x))Bk(x). (2.33)

In order to obtain quasi–second–order consistency between β̃k(xk) and β(xk), we

define the correction function, Bk(x), using a quadratic Taylor series expansion of

the quotient B(x) of the two functions β and β̂, about the point xk:

Bk(x) = B(xk) + ∇xB(xk)
T
(x − xk) +

1

2
(x − xk)T∇2

xB(xk)(x − xk). (2.34)

The elements in this expansion are calculated using

B(xk) =
β(xk)

β̂(P (xk))
, (2.35)

∂B(xk)

∂xi

=
β̂(P (xk))∂β(xk)

∂xi
− β(xk)

∑n̂
p=1

∂β̂(P (xk))
∂x̂p

∂x̂p

∂xi

β̂(P (xk))2
, (2.36)

∂2B(xk)
∂xi∂xj

= 1

β̂(P (xk))

∂2β(xk)
∂xi∂xj

(2.37)

− 1
β̂2(P (xk))

∑n̂
p=1

[

∂β̂(P (xk))
∂x̂p

(

∂x̂p

∂xj

∂β(xk)
∂xi

+ ∂x̂p

∂xi

∂β(xk)
∂xj

)

+ β(xk)∂β̂(P (xk))
∂x̂p

∂2x̂p

∂xi∂xj

]

+ β(xk)

β̂2(P (xk))

∑n̂
p=1

∑n̂
q=1

(

2∂β̂(P (xk))
∂x̂p

∂β̂(P (xk))
∂x̂q

∂x̂p

∂xi

∂x̂q

∂xj
− β̂(P (xk))∂2β̂(P (xk))

∂x̂p∂x̂q

∂x̂p

∂xi

∂x̂q

∂xj

)

.

38

2.1.4 Computing the trial step

After the generation of the surrogate, Step 2 in Algorithm 1 is the computation of

the trial step. As stated in Section 2.1.1, this step must meet the fraction of Cauchy

decrease condition on the surrogate. In order for the TRMM algorithm to meet the

goal of a reduction in computational time, the step calculation must use only the

surrogate, and not rely on the high–fidelity model.

While the algorithm will converge as long as each step satisfies the FCD condi-

tion, it achieves superior convergence rates if the surrogate reduction is larger. One

approach is to decrease the surrogate as much as possible while remaining within the

trust region. To this end, the algorithm generates the kth trial step sk by solving the

trust–region subproblem

min
s

f̃(xk + s) (2.38)

Subject to ‖s‖ ≤ ∆k.

This finds a step that minimizes the surrogate over the trust region. The norm in

Equation (2.2) can be any norm uniformly equivalent to the Euclidean 2–norm. Such

norms include the 2–norm itself, the 1–norm and the infinity–norm. The 2–norm is

preferred for computational efficiency of the solution of the trust region subproblem

(2.38), and the infinity norm is trivial to apply when simple bounds on the design

variables exist.

The trust–region subproblem can be solved using any standard constrained opti-

mization method. In this work the algorithm uses a sequential quadratic programming

method. Its solution is accelerated if the gradient of the surrogate is available.

2.2 Constrained Algorithms

To this point, the algorithm introduced has been for the solution of unconstrained op-

timization. The goal of constrained TRMM is to solve the design problem introduced

39

in Chapter 1 as Problem (1.6),

min
x

f(x) (2.39)

Subject to c(x) ≤ 0,

where f ∈ R represents the scalar objective to be minimized and x ∈ Rn is the vector

of n design variables that describe the design, and c ∈ Rm is the vector of constraint

functions.

There are a number of methods of solving problem (2.39) using TRMM. First,

the general constrained TRMM algorithm will be explained, and then each of four

methods will be described in more detail.

2.2.1 General Algorithm

A general constrained TRMM method consists of the following key steps on each

iteration k. For subproblem k, we denote the center of the trust region by xk and the

radius of the trust region by ∆k.

Algorithm 2: General Constrained TRMM method

• Step 0: Initialization Choose an initial point x0 and an initial trust–region

radius ∆0 > 0. Set k = 0. Choose constants η > 0, 0 < c1 < 1, c2 > 1, 0 < r1 <

r2 < 1, ∆∗ ≥ ∆0. Choose any other initial values or constants required by the

constraint–management method, such as initial values for Lagrange multipliers,

penalty parameters, and the penalty parameter decrease constant.

• Step 1: Surrogate definition Choose an appropriate surrogate of the high–

fidelity model. The constrained methods differ in the surrogates they create.

Provable convergence of these methods requires first–order consistency between

the surrogate and the high–fidelity model at xk, the center of the trust region.

• Step 2: Problem creation Create the kth subproblem, which consists of an

optimization problem using the surrogate and a constraint that the solution

40

remain within the trust region, i.e. ‖x − xk‖2 ≤ ∆k. The constrained methods

differ in the formulation of the subproblem, but all include the trust–region

constraint.

• Step 3: Step calculation Approximately solve the kth subproblem in order

to generate a trial step, sk. It is required that the step satisfy some variant of

the FCD condition.

• Step 4: Acceptance or rejection of the trial point Compute f(xk + sk).

Accept or reject the trial step xk
∗, according to some step acceptance criterion. If

the trial step is accepted, xk+1 = xk +sk. If the trial step is rejected, xk+1 = xk.

Two step acceptance criteria are described in Section 2.2.1.

• Step 4: Trust–region radius update Calculate the trust–region ratio

ρk =
ξ(xk) − ξ(xk + sk)

ξ(xk) − ξ̃k(xk + sk)
, (2.40)

where ξ(x) is a merit function and ξ̃ is a surrogate of that merit function. The

definition of the merit function varies between methods. Set

∆k+1 =

c1‖s
k‖ if ρk < r1,

min(c2∆
k, ∆∗) if ρk > r2,

‖sk‖ otherwise.

(2.41)

• Update other algorithm parameters Calculate new values for any parame-

ters needed by the constraint–management method, such as Lagrange multipli-

ers, penalty parameters, and intermediate constraint tolerances. These param-

eters change somewhat from method to method. Increment k by 1 and go to

Step 1.

Constrained trust–region methods differ from one another in three key aspects: the

surrogate subproblem solved to generate the trial step, the step acceptance criterion,

41

and the merit function used to size the trust region. Table 2.1 shows four major

classes of methods — augmented Lagrangian methods, direct surrogate optimization,

SQP–like methods, and MAESTRO — and highlights their key differences.

Method Minimize Subject to Merit function Acceptance

Augmented Surrogate of Trust region Augmented Augmented
Lagrangian augmented constraint only Lagrangian Lagrangian

Lagrangian

Direct surrogate Surrogate of Surrogate of Augmented Filter
optimization objective function constraints Lagrangian

SQP–like Surrogate of Linearized high– Lagrangian Filter
Lagrangian fidelity constraints

MAESTRO 1. Norm of 1. Constraint 1. Norm of 1. Norm of
constraints trust region constraints constraints
2. Objective 2. Constraints 2. Objective 2. Objective

constant

Table 2.1: Four major classes of constrained trust–region methods. Shown are the
objective and constraints of the trust–region subproblem, the merit function used to
manage the radius of the trust region, and the trial step acceptance criterion.

Step Acceptance Criteria

As shown in Table 2.1, two methods can be used to determine whether to accept a

trial point xk
∗ generated by the solution of the subproblem. The first is identical to

the acceptance criterion of the unconstrained method, that is, to use the trust–region

ratio ρ, calculated from the merit function ξ. In this case,

xk+1 =

xk
∗ if ρk ≥ η

xk if ρk < η,

(2.42)

where η is a small positive number.

The second method is a filter method. This uses dominance, a concept borrowed

from multiobjective optimization [67]. A point x1 dominates a point x2 if both the

42

following conditions are satisfied:

f(x1) ≤ f(x2), (2.43)

‖c+(x1)‖2 ≤ ‖c+(x2)‖2,

where c+(x) is a vector with elements defined by

c+
i (x) = max(0, ci(x)). (2.44)

A filter is a set of points, none of which dominate any other. In a filter method, the

initial filter is empty. A trial point xk
∗ is accepted, and added to the filter, if it is not

dominated by any point in the filter. If any element of the filter dominates the trial

point, the trial point is rejected and not added to the filter. Significant detail on filter

methods is available in Chapter 5 of [22].

2.2.2 Augmented Lagrangian Method

One method to solve constrained optimization problems is to formulate an aug-

mented Lagrangian of the problem and solve the resulting unconstrained problem.

The first constrained optimization method combines this approach with the uncon-

strained TRMM method of section 2.1. The algorithm is modified from Ref. [59],

with the construction of the response surface in that work replaced by the correction

of the low–fidelity model to be consistent with the high–fidelity model.

The high–fidelity augmented Lagrangian is given by

L(x, λ, µ) = f(x) + λTc(x) +
1

2µ

m
∑

i=1

(Ψi(x, λ, µ))2 , (2.45)

where

Ψi(x, λ, µ) = max (ci(x),−µλi) i = 1, . . . , m, (2.46)

and µ is a penalty parameter.

Algorithm 3: Augmented Lagrangian TRMM optimization method

43

The augmented Lagrangian algorithm is as follows

• Step 0: Initialization. Choose an initial guess x0, a vector of Lagrange

multiplier estimates λ0, an initial penalty parameter µ0 < 1, initial convergence

tolerances ω0 > 0 and η0 > 0, and the penalty parameter decrease coefficient

τ < 1. Set k = 0.

• Step 1: Create a surrogate for the augmented Lagrangian. There

are two methods for creating a surrogate for an augmented Lagrangian, both

described in Section 2.2.6. Each of them results in a surrogate which is zeroth–

and first– order consistent with the high–fidelity function.

• Step 2: Inner iteration. Approximately solve the problem

min
x

L(x, λk, µk) (2.47)

using Algorithm 1, the unconstrained variable–fidelity TRMM. The inner algo-

rithm stops if

‖∇xL(xk, λk, µk)‖ ≤ ωk. (2.48)

If ‖c(xk+1)‖ ≤ ηk proceed to Step 3. Otherwise, proceed to Step 4.

• Step 3: Update Lagrange multiplier estimates. Choose new Lagrange

multiplier estimates λk+1 by minimizing the residual in the Karush–Kuhn–

Tucker optimality conditions. That is, we solve the problem

λk+1 = arg min
λ

‖∇xf(xk) +
∑

i∈Sk λi∇xci(x
k)‖2

2 (2.49)

subject to λ ≥ 0,

where Sk is the set of active constraints for subproblem k. The optimiza-

tion problem (2.49) is a nonnegative least–squares constraint problem, which is

solved using the method of Ref. [49]. Also set ωk+1 = ωkµk and ηk+1 = ηk(µk)0.9.

Go to Step 1.

44

• Step 4: Reduce the penalty parameter. Set λk+1 = λk and

µk+1 = τµk. (2.50)

Also set ωk+1 = ωkµk and ηk+1 = ηk(µk)0.1. Go to Step 1.

2.2.3 Direct Surrogate Optimization

Direct Surrogate Optimization (DSO) solves a series of subproblems that minimize

the surrogate objective subject to the surrogate constraints [28]. It implements the

general algorithm, as described in Section 2.2.1 above. In Step 1, the surrogates

generated are f̃k(x), a surrogate for f(x), and c̃i
k(x), i = 1 . . .m, a surrogate for each

constraint ci(x). These follow the general correction method described in section 2.1.2

for single–parameterization problems or 2.1.3 for variable–parameterization problems.

The subproblem created in Step 2 and solved in Step 3 is

min
x

f̃k(x)

subject to c̃k(x) ≤ 0 (2.51)

‖ x − xk
c ‖

∞
≤ ∆k.

The merit function, used in the step acceptance of Step 4, is the augmented

Lagrangian, defined in Equation (2.45). The trust–region ratio is therefore defined

by Equation (2.40), with ξ = L, and the size of the trust region is managed using

the (2.41). The Lagrange multipliers and penalty parameters are also updated using

Equations (2.49) and (2.50) in order to calculate the merit function.

2.2.4 SQP–like method

The SQP–like method is modified from Ref. [7]. It is similar to sequential quadratic

programming (SQP) in that on each subproblem it minimizes a surrogate of the La-

grangian subject to linear approximations to the high–fidelity constraints. It follows

the general algorithm in section 2.2.1. As for DSO, the required surrogates generated

45

in Step 1 are f̃k(x), and c̃k(x).

The subproblem generated in Step 2 and solved in Step 3 is

min
x

L̃k(x, λk)

subject to ck(xk
c) + ∇xc

k(x)T (x − xk
c) ≤ 0 (2.52)

‖ x − xk
c ‖

∞
≤ ∆k,

The Lagrangian is defined as

L(x, λ) = f(x) + λTc(x), (2.53)

where λ is the vector of Lagrange multipliers, and L̃k is a surrogate to the Lagrangian

using

L̃k(x, λ) = f̃k(x) + λT c̃k(x). (2.54)

The step acceptance criteria in Step 4 and the trust–region radius update in Step

5 use the Lagrangian as the merit function.

The Lagrange multipliers are updated by solving the nonnegative least–squares

constraint problem

min
λ

‖∇xf(xk
0) +

∑

i∈S λi∇xci(x
k
0)‖

2
2 (2.55)

subject to λ ≥ 0,

where S is the set of active constraints, using the method on page 161 of Ref. [49].

2.2.5 MAESTRO

The MAESTRO method was developed by Alexandrov in order to solve multidisci-

plinary design optimization (MDO) problems that include constraints from a number

of disjoint disciplines, and that are possibly calculated on separate nodes of a dis-

tributed system. It is described without model management in Ref. [3] and with

model management in Ref. [4]. The major difference between MAESTRO and the

46

other trust–region methods is that MAESTRO solves two problems on each iteration:

one to minimize the norm of the constraints and another to minimize the objective

function. The step used is then the sum of the steps found from the solutions to those

two problems. Separate trust regions are maintained for the objectives and for the

constraints.

The MAESTRO method requires only equality constraints; therefore the inequal-

ity constraints are converted to equality constraints using squared slack variables.

The ith inequality constraint, ci, is converted to an equality constraint, hi, using

hi(x) = ci(x) + z2
i = 0, (2.56)

where zi is the corresponding slack variable. The vector of resulting equality con-

straints is denoted h(y). The new set of design variables is then the concatenated

original variables and slack variables

y =

x

z

 . (2.57)

Each subproblem is broken down into two parts. The first part minimizes the Eu-

clidean norm of the surrogates of the constraints, subject to the bounds on the solution

provided by the trust region:

min
y

‖ h̃k(y) ‖2

subject to ‖ y − yk ‖ ≤ ∆k
con, (2.58)

(2.59)

where h̃k is the surrogate model of h for the kth subproblem, yk is the vector of

concatenated variable values at the center of the trust region, and ∆k
con is the trust–

region size for the kth constraint subproblem. The solution to this problem is denoted

yk
1 . The constraint trust–region ratio is calculated as:

47

ρk
con =

‖ h(yk) ‖2 − ‖ h(yk
1) ‖2

‖ h̃(yk) ‖2 − ‖ h̃k(yk
1) ‖2

. (2.60)

The new solution yk
1 is accepted if ρk

con > η and rejected otherwise. The constraint

trust region radius ∆k
con is updated using (2.41) with ρk

con as the trust–region ratio.

The second part of the subproblem minimizes the objective, subject to the condi-

tions that the solution remains within the objective trust region and that improvement

in the constraints is maintained:

min
y

f̃k(y)

subject to ‖ y − yk
1 ‖ ≤ ∆k

obj , (2.61)

h̃k(y) = h̃k(yk
1).

The solution to the problem (2.61) is denoted (yk
2). The objective trust–region ratio

is calculated as

ρk
obj =

f(yk
1) − f(yk

2)

f̃(yk
1) − f̃k(yk

2)
. (2.62)

The new solution yk
2 is accepted if ρk

obj > η and rejected otherwise, and the objective

trust region size ∆k
obj is updated using (2.41) with ρk

obj as the trust–region ratio.

2.2.6 Surrogates of Lagrangian functions

When using a method that requires surrogates of the Lagrangian or augmented La-

grangian function, there are two approaches to forming a corrected surrogate. The

distinction between these approaches was suggested by Rodriguez et al. [59].

In the first approach, the entire augmented Lagrangian is approximated with a

single surrogate. That is, an surrogate L̃ of L is created using a BFGS quasi–second–

order additive correction to the augmented Lagrangian of the low–fidelity model, L̂,

defined by

L̂(x̂, λ, µ) = f̂(x̂) + λT ĉ(x̂) +
1

2µ

m
∑

i=1

(

Ψ̂k
i (x̂, λ, µ)

)2

, (2.63)

48

where

Ψ̂i(x̂, λ, µ) = max (ĉi(x̂),−µλi) , i = 1, . . . , m. (2.64)

The surrogate augmented Lagrangian for each subproblem is then obtained by cor-

recting the low–fidelity augmented Lagrangian,

L̃k(x, λ, µ) = L̂(P (x), λ, µ) + Ak(x, λ, µ), (2.65)

where Ak is defined in Equations (2.28) through (2.32), using β(x) = L(x, λk, µk) and

β̂(x̂) = L̂(x̂, λk, µk).

The second approach to forming the surrogate augmented Lagrangian uses sep-

arate corrected surrogates of the objective and of the constraints. The surrogate

augmented Lagrangian is therefore given by

L̃k(x, λ, µ) = f̃k(x) + λT c̃k(x) +
1

2µ

m
∑

i=1

(

Ψ̃k
i (x, λ, µ)

)2

, (2.66)

where

Ψ̃k
i (x, λ, µ) = max

(

c̃k
i (x),−µλi

)

, i = 1, . . . , m, (2.67)

and f̃k and c̃k are obtained using additive corrections,

f̃k(x) = f̂(P (x)) + Ak(x), (2.68)

and

c̃k
i (x) = ĉi(P (x)) + Bk

i (x), i = 1 . . .m. (2.69)

The correction function Ak is defined in Equations (2.28) through (2.32), using β(x) =

f(x) and β̂(x̂) = f̂(P (x)). Each correction function Bk
i is defined similarly, with

β(x) = ci(x) and β̂(x̂) = ĉi(P (x)), ensuring quasi–second–order consistency between

the surrogate constraints and the high–fidelity constraints at the center of the trust

region.

Creating a surrogate L̃ for the Lagrangian L can also be accomplished via two

49

methods strictly analogous to those described above for the augmented Lagrangian.

2.3 Choice of Design Space

Solving the subproblems in the low–fidelity space has the advantage of reducing the

dimension in which the algorithm is operating. This can be advantageous when,

for instance, finite differences are required in the calculation of gradients. Because

the gradient is in the low–fidelity space it requires a smaller number of high–fidelity

function evaluations to approximate. In addition, the trust–region subproblem is in

a lower–dimensional space and can be solved more efficiently.

An extension of the framework to variable design spaces requires a mapping from

the low–fidelity design space to the high–fidelity design space, that is

x = Q(x̂). (2.70)

Define J as the Jacobian matrix of the mapping Q, or elementwise

Jij =
∂xi

∂x̂j

. (2.71)

Define T(x̂) elementwise as

Tij(x̂) =
d2f

dx̂idx̂j
=

n
∑

p=1

∂f

∂xp

∂2xp

∂x̂i∂x̂j
+

n
∑

p=1

n
∑

q=1

∂xp

∂x̂i

∂xq

∂x̂j

∂2f

∂xp∂xq
, (2.72)

which is expanded using the chain rule.

2.3.1 Algorithm in the low–fidelity space

This algorithm solves the unconstrained optimization problem 2.1. This differs from

the original TRMM method described in Section 2.1 in that the trust–region sub-

problem is defined in the low–fidelity space. That is, the center of the trust region

x̂k and the step ŝk are of dimension n̂ rather than n.

50

Algorithm 4: TRMM optimization, with the trust–region subproblem

solved in the low–fidelity space

Step 0: Initialization Choose an initial point x̂0 and an initial trust–region

radius ∆̂0 > 0. Set k = 0. Choose constants η > 0, 0 < c1 < 1, c2 > 1, 0 < r1 < r2 <

1, ∆̂∗ ≥ ∆̂0.

Step 1: Surrogate definition Choose a surrogate f̃k(x̂) that satisfies f̃k(x̂k) =

f(Q(xk)) and ∇x̂f̃
k(x̂k) = JT∇xf(Q(x̂k)). Please note that Chapter 3 will detail the

construction of this surrogate.

Step 2: Step calculation Compute a step ŝk such that ‖ŝk‖ ≤ ∆̂k and that sat-

isfies the fraction of Cauchy decrease condition (described in Equation (2.80) below).

Step 3: Acceptance or rejection of the trial point Compute f(Q(x̂k + ŝk))

and define

ρk =
f(Q(x̂k)) − f(Q(x̂k + ŝk))

f(Q(x̂k)) − f̃k(x̂k + ŝk)
. (2.73)

If ρk ≥ η define x̂k+1 = x̂k + ŝk; otherwise define x̂k+1 = x̂k. Define a successful

iterate as one in which the step is accepted; otherwise it is an unsuccessful iterate.

Step 4: Trust–region radius update. Set

∆̂k+1 =

c1‖ŝ
k‖ if ρk < r1,

min(c2∆̂
k, ∆̂∗) if ρk > r2,

‖ŝk‖ otherwise.

(2.74)

Increment k by 1 and go to Step 1.

2.3.2 Proof of Convergence

We require the method to converge to a stationary point of the high–fidelity function.

Achieving convergence when solving the subproblems in the low–fidelity space requires

a number of assumptions, some of which are identical to some listed in [22], some of

which are analogous to some in [22], and two of which, being assumptions on the

mapping, are new.

51

Assumptions for Provable Convergence

The assumptions required for the algorithm to be provably convergent to a minimum

of the high–fidelity function are:

1. The high–fidelity function function f(x) is twice continuously differentiable onRn.

2. The function f(x) is bounded below on Rn, that is, there exists a constant κlbf

such that, for all x ∈ Rn,

f(x) ≥ κlbf . (2.75)

3. The norm of the Hessian matrix ∇2
xf(x) of the high–fidelity function must be

bounded, independent of k, for all values that lie between any two iterates of

the algorithm. This is satisfied, for instance, by the requirement that over the

level set {x ∈ Rn|f(x) ≤ f(x0)},

‖∇2
xf(x)‖ ≤ κufh. (2.76)

4. The mapping x = Q(x̂) is twice continuously differentiable over Rn̂.

5. The matrix T defined in (2.72) is bounded on Rn̂. That is,

‖T(x̂)‖ ≤ κubT . (2.77)

6. On each iteration, the surrogate f̃k(x̂k) is zeroth– and first–order consistent

with the high–fidelity function, That is, f̃k(x̂k) = f(Q(x̂k)) and ∇x̂f̃
k(x̂k) =

JT∇xf(Q(x̂k)).

7. The low–fidelity function function f̃(x̂) is twice continuously differentiable onRn̂.

8. On each iteration, the Hessian matrix ∇2f̃k(x̂k + ŝ) of the surrogate is bounded

52

for all ‖ŝ‖ ≤ ∆̂k. That is, over the trust region,

‖∇2
xf̃

k(x̂k + ŝ)‖ ≤ κuah − 1, (2.78)

where κuah is a constant independent of k and 1 is subtracted for later notational

convenience.

9. On each trust region, over the entire trust region, the mapping must be twice

continuously differentiable.

10. The mapping must be defined in such a way that, for some number α > 0,

independent of k,

‖JT∇xf(Q(x̂k))‖ ≥ α‖∇xf(Q(x̂k))‖. (2.79)

The mapping method must be dynamic in order to satisfy this condition. Dif-

ferences between static and dynamic mappings will be defined in Chapter 3.

11. Each trial step must satisfy the fraction of Cauchy decrease (FCD) condition.

That is, there must exist numbers ζ > 0 and C > 0 independent of k such that

f̃k(x̂k) − f̃k(x̂k + ŝk) ≥ ζ‖∇x̂f̃
k(x̂k)‖min

(

∆k,
‖∇x̂f̃

k(x̂k)‖

C

)

. (2.80)

Gratton et al. have developed a similar algorithm for use in optimization of

systems governed by discretized approximations to infinite–dimensional partial dif-

ferential equations [37]. They also determine that Assumption 10 is required in order

to ensure convergence. Algorithm 4 enforces Assumption 10 at every trust–region it-

eration through use of a dynamic mapping. The algorithm in [37] evaluates whether

Assumption 10 is satisfied at each iteration. If it is satisfied the algorithm uses the

multilevel algorithm; otherwise it uses a conventional second–order Taylor series sur-

rogate defined in the high–fidelity space.

53

Bound on the Approximation Error

Define a point x̂k in the low–fidelity space and a map x = Q(x̂). If the gradient of the

high–fidelity function ∇xf(Q(x̂k)) is zero, then the algorithm has found a stationary

point. If it is non–zero, then by Assumption 6, ∇x̂f̃
k(x̂k) = JT∇xf(Q(x̂k)). Then, by

Assumption 10, ‖∇x̂f̃
k(x̂k)‖ = ‖JT∇xf(Q(x̂k))‖ ≥ α‖∇xf(Q(x̂k))‖ > 0. Combining

this with the FCD Assumption 11, we have that sk 6= 0 and f̃k(xk + sk) < f̃k(xk).

Therefore, as long as the iterate is not a stationary point, Equation (2.73) for the

trust region ratio ρk is well–defined.

Using Assumptions 1 and 9, that is, that both the high–fidelity function f(x) and

the mapping Q(x̂) are continuously twice differentiable, the composition f ◦Q is also

continuously twice differentiable. Using this and Assumption 7, we apply the mean

value theorem. There exists an ξ̂k between x̂k and x̂k + ŝk such that

f(Q(x̂k + ŝk)) = f(Q(x̂k)) + (ŝk)TJT∇xf(Q(x̂k)) +
1

2
(ŝk)TT(ξ̂k)ŝk (2.81)

and a χ̂k between x̂k and x̂k + ŝk such that

f̃k(x̂k + ŝk) = f̃k(x̂k) + (ŝk)T∇x̂f̃
k(x̂k) +

1

2
(ŝk)T∇2

x̂f̃
k(χ̂k)ŝk. (2.82)

Subtracting Equation (2.82) from (2.81)

f(Q(x̂k + ŝk)) − f̃k(x̂k + ŝk) = f(Q(x̂k)) − f̃k(x̂k) (2.83)

+ (ŝk)TJT∇x̂f(Q(x̂k)) − (ŝk)T∇x̂f̃
k(x̂k)

+
1

2

(

(ŝk)TT(ξ̂k)ŝk − (ŝk)T∇2f̃k(χ̂k)ŝk
)

.

Using Assumption 1,

f(Q(x̂k + ŝk)) − f̃k(x̂k + ŝk) =
1

2

(

(ŝk)TT(ξ̂k)ŝk − (ŝk)T∇2f̃k(χ̂k)ŝk
)

. (2.84)

54

Using the boundedness of the Hessian matrices of both the high–fidelity function

and the surrogate (Assumptions 3 and 8), and the Cauchy–Schwarz inequality,

|f(Q(x̂k + ŝk)) − f̃k(x̂k + ŝk)| ≤
1

2
(κufh + κuah − 1)‖ŝk‖2. (2.85)

Using the fact that the algorithm restricts the steps to within the trust region,

|f(Q(x̂k + ŝk)) − f̃k(x̂k + ŝk)| ≤
1

2
(κufh + κuah − 1)‖∆k‖2. (2.86)

This shows that the approximation error decreases quadratically with the trust–

region radius. Thus, we can show that as long as the current iterate is not a stationary

point, there is a finite trust region size for which the step is accepted.

Trust–Region Size at which Trust Region is Expanded from a Non–Stationary

Point

Suppose that the current iterate is not a stationary point. Therefore by Assumptions

6 and 10, ‖∇x̂f̃(x̂k)‖ > 0. Suppose further that the trust region size

∆̂k ≤ ‖∇x̂f̃(x̂k)‖min

(

2(1 − r2)ζ

κubT + κuah

,
1

C

)

, (2.87)

where ζ and C are the parameters introduced in the FCD condition (2.80) and 0 <

r2 < 1 is one of the algorithm parameters defining the trust region sizing decision

process (2.74). Since

∆̂k ≤
‖∇x̂f̃(x̂k)‖

C
, (2.88)

the FCD condition (2.80) now becomes

f̃k(x̂k) − f̃k(x̂k + ŝk) ≥ ζ‖∇x̂f̃(x̂k)‖∆̂k. (2.89)

Subtracting 1 from Equation (2.73) and applying absolute values

|ρ − 1| =
|f̃(x̂k + ŝk) − fk(x̂k + ŝk)|

|f̃k(x̂k) − f̃k(x̂k + ŝk)|
. (2.90)

55

Using Equation (2.86) in the numerator and (2.89) in the denominator of Equation

(2.90) results in

|ρ − 1| ≤
|1
2
(∆̂k)2(κufh + κuah − 1)|

|ζ‖∇x̂f̃(x̂k)‖∆̂k|
. (2.91)

All the terms in Equation (2.91) are positive. Simplifying,

|ρ − 1| ≤
∆̂k(κufh + κuah − 1)

2ζ‖∇x̂f̃(x̂k)‖
. (2.92)

Using Equation (2.74)

∆̂k ≤
2(1 − r2)ζ‖∇x̂f̃(x̂k)‖

κufh + κuah − 1
, (2.93)

we have

|ρ − 1| ≤ 1 − r2 (2.94)

or

ρ ≥ r2. (2.95)

Therefore, using the rules of equation (2.74), ∆̂k+1 ≥ ∆̂k. Note also that since

r2 > η, this shows that, given a small enough trust region, there will always be a

successful step.

Lower Bound on Trust–Region Size

Now we will prove that the trust–region radius has a lower bound as long as the

algorithm has not approached a stationary point too closely. To this end, we assume

that we are not “too near” a stationary point, that is, there is a constant κlbg > 0

such that

‖∇x̂f(x̂k)‖ ≥ κlbg (2.96)

for all k. The proof proceeds by contradiction. Assume that iteration k is the first

iteration for which

∆̂k+1 ≤ r1κlbg min

(

2(1 − r2)ζ

κufT + κuah
,

1

C

)

. (2.97)

56

We know from equation (2.74) and Assumption (2.96) that

∆̂k ≤
∆̂k+1

r1
≤ ‖∇x̂f(x̂k)‖min

(

2(1 − r2)ζ

κufT + κuah
,

1

C

)

, (2.98)

which we have just shown implies that ∆̂k+1 ≥ ∆̂k, contradicting the assumption that

iteration k is the first to satisfy (2.97). Therefore, we know that for all k,

∆̂k ≥ r1κlbg min

(

2
(1 − r2)ζ

κufT + κuah
,

1

C

)

= κlbd, (2.99)

establishing a lower bound κlbd on the trust region size away from a stationary point.

Stationarity of Limit Point for Finitely Many Successful Iterations

If there is a finite sequence of successful iterates, there is a last successful iterate klast

and all iterates after that one are unsuccessful. Since all iterations after iteration klast

are unsuccessful, the trust–region update rules (2.74) imply that the sequence {∆̂k}

must therefore converge to zero. However, we showed in section 2.3.2 that as long

as ‖∇xf(xklast+1)‖ > 0, below a certain trust region size there will be a successful

iteration. As {∆̂k} converges towards zero, it will fall below that limit, resulting in an

eventual successful iteration with k > klast +1. This implies that ‖∇xf(xklast+1)‖ = 0

and the method converges to a stationary point.

Existence of Stationary Point in Set of Limit Points

Now we will prove that at least one point of an infinite sequence of successful iterates

must be a stationary point. This proof is by contradiction. Therefore, we assume

that, for all k and some ǫ > 0,

‖∇xf(xk)‖ ≥ ǫ. (2.100)

Consider a successful iteration with index k. Since the iteration was successful, we

know that

f(Q(x̂k)) − f(Q(x̂k+1)) ≥ η(f̃k(x̂k) − f̃k(x̂k + ŝk)) (2.101)

57

and by the FCD condition (2.80)

f̃k(x̂k) − f̃k(x̂k + ŝk) ≥ ζ‖∇x̂f̃
k(x̂k)‖min

(

∆̂k,
∇x̂f̃

k(x̂k)

C

)

, (2.102)

leading, along with Assumption 6 to

f(Q(x̂k)) − f(Q(x̂k+1)) ≥ ζη‖JT∇xf(Q(x̂k))‖min

(

∆̂k,
‖JT∇xf(Q(x̂k))‖

C

)

.

(2.103)

Using Assumption 10

f(Q(x̂k)) − f(Q(x̂k+1)) ≥ ζηα‖∇xf(Q(x̂k))‖min

(

∆̂k,
α‖∇xf(Q(x̂k))‖

C

)

, (2.104)

which, using Equations (2.100) and (2.99) results in

f(Q(x̂k)) − f(Q(x̂k+1)) ≥ ζηǫαmin
(

κlbd,
αǫ

C

)

> 0. (2.105)

If σk is the number of successful iterations up to iteration k, then

f(Q(x̂0)) − f(Q(x̂k+1)) ≥ σkζηǫαmin
(

κlbd,
αǫ

C

)

(2.106)

but, since in this case we have assumed that there are an infinite number of successful

iterations, we have that

lim
k→∞

σk = ∞ (2.107)

leading to

lim
k→∞

(

f(Q(x̂0)) − f(Q(x̂k+1))
)

= ∞, (2.108)

which contradicts Assumption 2, that f is bounded below. Thus we have found a

contradiction, and have shown that

lim inf
k→∞

‖∇xf(Q(x̂k))‖ = 0. (2.109)

58

2.4 Conclusion

This chapter described TRMM as applied to both unconstrained and constrained

optimization, with the subproblem defined in the high–fidelity space. It also showed

a proof of convergence of unconstrained optimization with the subproblem defined

in the low–fidelity space. The constrained methods can also be combined with the

lower–dimensional subproblems, though that has not been detailed here.

The algorithms described in this chapter show two levels of fidelity. It could be

extended to use several analyses with a hierarchical set of fidelity models by nesting

the algorithm. That is, when solving the surrogate problem, a model–management

scheme could be used, with yet a lower level of geometric fidelity to speed up the

optimization. This could be extended to any number of analysis models.

The variable–parameterization portions of this chapter assumed the availability

of a mapping between the high–fidelity and low–fidelity design variables. The next

chapter presents four mapping methods to use in conjunction with TRMM: space

mapping, corrected space mapping, POD mapping, and a hybrid POD/space map-

ping.

59

60

Chapter 3

Mapping Methods

SBO methods have until now been applicable only to models in which both the high–

fidelity model f(x), c(x) and the low–fidelity model f̂(x̂), ĉ(x̂) are defined over the

same space x = x̂. In order to use a low–fidelity model with a different number of

design variables as the high–fidelity function to be optimized, it is necessary to find

a relationship between the two sets of design vectors, that is, x̂ = P (x) or x = Q(x̂).

In the first case, in which the trust–region subproblem is solved in the high–fidelity

space, f̂(P (x)) is corrected to a surrogate for f(x) and ĉ(P (x)) is corrected to a

surrogate for c(x). In the second case, the subproblem is solved in the low–fidelity

space, and f̂(x̂) is corrected to a surrogate for f(Q(x̂)) and ĉ(x̂) is corrected to a

surrogate for c(Q(x̂)).

In some cases, this design space mapping can be obvious and problem–specific. For

instance, if the high– and low–fidelity models are the same set of physical equations,

but on a fine and coarse grid, and the design vectors in each case are geometric

parameters defined on that grid, the low–fidelity design vector can be a subset of the

high–fidelity design vector, or the high–fidelity design vector can be an interpolation

of the low–fidelity design vector. However, in other problems, there is no obvious

mathematical relationship between the design vectors. In this case, an empirical

mapping is needed. One example of a problem without an obvious mapping is the

airfoil design problem described in Section 4.3. Another is the multifidelity supersonic

business jet problem used by Choi et al. [21], described in Chapter 1.

61

This chapter presents four mapping methods, the last three of which are new:

space mapping (SM), corrected space mapping, a mapping based on the proper or-

thogonal decomposition (POD), and a hybrid POD/SM mapping. The use of mapping

to construct surrogates for TRMM algorithms is detailed, showing that the resulting

surrogates are at least first–order consistent with the high–fidelity problem at the

center of the trust region. A preliminary comparison of the mapping methodologies

is then presented. Later chapters provide experimental comparisons.

3.1 Space mapping

Space mapping, first introduced by Bandler [14], links the high– and low–fidelity

models through their input parameters. The goal of space mapping is to vary the

input parameters to the low–fidelity model in order to match the output of the high–

fidelity model. In microwave circuit design, where space mapping was first developed,

it is often appropriate to make corrections to the input of a model, rather than to its

output.

The first space–mapping–based optimization algorithm used a linear mapping

between the high– and low–fidelity design spaces. It used a least–squares solution

of the linear equations resulting from associating corresponding data points in the

two spaces. Space mapping optimization consists of optimizing in the low–fidelity

space and inverting the mapping to find a trial point in the high–fidelity space. New

data points near the trial point are then used to construct the mapping for the next

iteration. This process is repeated until no further progress is made. While this

method can result in substantial improvement, as demonstrated by several design

problems, most in circuit design [12], but some in other disciplines [13], it is not

provably convergent to even a local minimum of the high–fidelity space. In fact,

while improvement in the high–fidelity model is often possible when the low–fidelity

model is accurate, it is not guaranteed.

Space mapping was further improved with the introduction of aggressive space

mapping [15]. Aggressive space mapping descends more quickly towards the optimum

62

than space mapping, but requires the assumptions that the mapping between the

spaces is bijective and that it is always possible to find a set of low–fidelity design

vectors that, when fed into the low–fidelity model, provide an output almost identical

to the high–fidelity model evaluated at any given high–fidelity design vector. It also

requires that the design variables are the same dimension in both spaces.

The space–mapping examples available in the literature consider only the case

where the design vectors have the same length. Therefore, this work expands it to

include the variable–parameterization case, including when the design vectors are not

the same length.

3.1.1 Standard space–mapping methods

In space mapping, a particular form is assumed for the relationship P between the

high– and low–fidelity design vectors. This form is described by some set of space–

mapping parameters, contained here in a vector p, that are found by solving an

optimization problem

p = arg min
p

q
∑

i=1

(

||β(xi) − β̂
(

P (xi,p)
)

||2

)

. (3.1)

This optimization problem seeks to minimize the difference between some high–fidelity

function β(x) and the corresponding low–fidelity function β̂ (x̂) = β̂ (P (x,p)) over

a set of q sample points xi, where xi denotes the ith sample point. Both the choice

of sample points and the particular form of the mapping P are left to the imple-

mentation. Because the method does not ensure first–order accuracy, the proofs of

convergence of trust–region methods do not extend to those methods using space

mapping. However, Madsen and Søndergaard have developed a provably convergent

algorithm by using a hybrid method in which the surrogate is a convex combination

of the space–mapped low–fidelity function and a Taylor series approximation to the

high–fidelity function [51].

In the implementation employed in this work, the sample points used in Equation

(3.1) are the previous q accepted steps in the TRMM algorithm, xk−q+1 . . .xk, at

63

which high–fidelity function values are already available. A linear relationship is

chosen for the mapping P :

x̂ = P (x) = Mx + b, (3.2)

where M is a matrix with n × n̂ elements and b is a vector of length n̂ for a total of

n̂ × (n + 1) space–mapping parameters. It should be noted that other forms of the

mapping could also be used. The space mapping parameters must be determined at

each iteration of the TRMM method by solving the optimization problem (3.1).

3.1.2 Corrected space mapping

Because space mapping does not provide provable convergence within a TRMM frame-

work, but any surrogate that is first–order accurate does, one approach is to correct

the space–mapping framework to at least first order. This can be done with the cor-

rections in Section 2.1.3. However, if the input parameters are first selected in order

to match the output function at some number of control points, and a correction (ei-

ther additive or multiplicative) is subsequently applied, it is likely that the correction

will unnecessarily distort the match performed in the space–mapping step. This can

be resolved by performing the space mapping and correction steps simultaneously,

which is achieved by embedding the correction within the space mapping.

This concept is illustrated in Figure 3-1. In this figure, the available data points

are marked with black circles, and the center of the trust region with a red ‘x’. The

dotted magenta curve is a cubic function found with a least–squares fit to the available

data. It provides no consistency at the trust region center. The dashed cyan curve

shows the result of adding a linear additive correction to that fit, in order to enforce

first–order accuracy at the center of the trust region. The local correction distorts

the global data fitting. The solid blue curve is also a cubic function, generated by

first enforcing first–order accuracy at the center, and then performing a least–squares

fit with the remaining degrees of freedom. This last curve is more globally accurate

than the sequential fitting and correction steps.

Using this concept, corrected space–mapping performs the space mapping and

64

Data points

Trust region center

Least squares fit

Fit with additive correction

Constrained fit

Figure 3-1: Demonstration of simultaneous vs. sequential data fitting and enforce-
ment of first–order accuracy

65

correction steps simultaneously. That is, it incorporates a correction, and with the

remaining degrees of freedom, performs the best match possible to the control points

by varying the input mapping.

The corrected space mapping optimization problem is

pk = arg min
p

q
∑

i=1

||β(xi) − β̃k
(

P (xi,p)
)

||2. (3.3)

Equation (3.3) is the same as Equation (3.1), with β̂, the uncorrected low–fidelity

function, replaced by β̃k, the corrected surrogate to the high–fidelity function on the

kth subproblem. The optimization problem (3.3) seeks to minimize the difference

between the high–fidelity and surrogate objective functions over a set of k sample

points xi, where xi denotes the ith sample (or control) point. Both the choice of

sample points and the particular form of the mapping P is left to the implementation.

It should be noted that when using corrected space mapping, the correction func-

tion must be re–evaluated with each new value of p, since the low–fidelity function

values, the low–fidelity gradient, and the first– and second–order derivatives of the

mapping needed in Equations (2.29)–(2.32) change with the space–mapping parame-

ters. Since the resulting corrected function is at least first–order accurate at the center

of the trust region, the resulting trust–region optimization is provably convergent to

a local minimum of the high–fidelity problem.

3.1.3 Solving the subproblem in the low–fidelity space

Since space mapping is a dynamic mapping, changing from point to point over the

course of the optimization, it is an appropriate selection for working in the low–fidelity

space. It works as follows. As described in Section 2.3.2, one of the requirements of

the mapping for working in the low–fidelity space is

‖JT∇β(Q(x̂k))‖ ≥ α‖∇β(Q(x̂k))‖, (3.4)

66

where Q is the map from the low– to the high–fidelity space, J is the Jacobian of the

mapping, x̂k is the center of the trust–region (defined in the low–fidelity space) on

the kth trust–region iteration, and α is a small positive number.

Equation (3.4) specifies that the gradient of the high–fidelity function is not or-

thogonal to the mapping. It is expected that larger values of α will cause the optimiza-

tion method to converge more quickly; that is, the closer the high–fidelity gradient is

to being orthogonal to the mapped space, the slower the convergence of the method.

This optimization algorithm — like all methods discussed in this work — is designed

for general non–linear programming, where the gradient is expected to change from

point to point during optimization. Therefore, in order to satisfy Equation (3.4), the

mapping is required to be dynamic, that is Q(xk) must change as xk changes.

The corrected space mapping optimization problem to ensure condition (3.4) is

given by

min
p

∑k
i=1 ||β(Q(x̂i,p)) − β̃k(x̂i,p)||2, (3.5)

Subject to ‖JT∇β(Q(x̂k))‖ ≥ α‖∇β(Q(x̂k),p))‖.

The corrected surrogate, β̃, must satisfy the consistency conditions 2.5 and 2.6, and

can for example be computed using an additive correction

β̃k(x̂) = β̂ (P (x̂)) + Ak(x), (3.6)

where the correction function, Ak, is a quadratic Taylor series centered at xk of the

difference between the two functions β(Q(x̂)) and β̂(x̂).

3.2 POD mapping

The third mapping methodology is based on the gappy POD method of reconstructing

data sets. This, in turn, is based on the POD method [45, 65], also known as principal

components analysis and Karhunen–Loève expansions, which yields a set of basis

vectors that provides the least–squares optimal representation of a given data set.

67

3.2.1 Proper Orthogonal Decomposition

The POD method of snapshots, developed by Sirovich [65], finds the basis vectors

empirically. In this method, a set of q snapshots x1,x2, . . . ,xq, or column vectors

describing different states of a system, is computed. The POD basis vectors, φj, j =

1, 2, . . . , q, can then be computed as the left singular vectors of the matrix X, defined

as

X =
[

[x1 − x̄] [x2 − x̄] · · · [xq − x̄]
]

, (3.7)

where x̄ is the mean of the snapshots and the ith column of X contains the ith snapshot

minus the mean.

The singular values of X indicate the relative importance of the corresponding

basis vector in representing the snapshots. Therefore, only the d basis vectors corre-

sponding to the largest singular values are used. A low–dimensional representation

of a solution x is thus given by

x ≈ x̄ +

d
∑

i=1

γiφ
i, (3.8)

where γi is the coefficient describing the contribution of the ith POD mode φi to the

solution x.

Omitting the remaining d − q vectors from the basis leads to an error, given by

the sum of the squares of the singular values corresponding to those neglected modes,

in the reduced–basis representation of the original snapshot set.

3.2.2 Gappy POD

The gappy POD method allows one to reconstruct data from a “gappy” data set,

that is, a set in which some of the data are unknown or missing [30, 20]. The first

step is to define a mask vector, which describes for a particular solution vector where

data are available and where data are missing. For the solution x, the corresponding

68

mask vector n is defined as follows:

ni =

0 if xi is missing,

1 if xi is known.

(3.9)

Point–wise multiplication is defined as (n,x)i = nixi. Then the gappy inner product

is defined as (u,v)n = ((n,u), (n,v)), and the induced norm is (‖v‖n)
2 = (v,v)n.

Let there also exist a set of snapshots in which all the components are known.

Perform the POD basis generation on that set to obtain a set of basis vectors φi,

i = 1 . . . q. For a vector x that has some unknown components, it is assumed that

the repaired vector x̌ can be represented by the expansion

x̌ ≈

d
∑

i=1

γiφ
i. (3.10)

The POD coefficients γi are chosen to minimize the error between the available

and reconstructed data. This error can be defined as

e = ‖x − x̌‖2
n, (3.11)

using the gappy norm so that only the known data elements in x are compared. The

coefficients γi that minimize the error e can be found by differentiating (3.11) with

respect to each of the γi in turn. This leads to the linear system of equations

Eγ = g, (3.12)

where the ijth component of E is given by

Eij =
(

φi, φj
)

n
(3.13)

and the ith component of g is given by

gi =
(

[x − x̄], φi
)

n
. (3.14)

69

Solving Equation (3.12) for γ, and then using (3.10) gives the repaired vector x̌.

Finally, the missing elements of x are replaced with the corresponding elements of

the repaired vector x̌. That is,

xrepaired
i =

x̌i if ni = 0,

xi if ni = 1.

(3.15)

3.2.3 POD mapping

The gappy POD method provides a way to map between high– and low–fidelity design

space data: the high–fidelity vector is treated as the known data, and the low–fidelity

as the unknown data, or vice versa. In the mapping application, the POD basis

vectors must span both low– and high–fidelity design space. This is achieved by

generating a set of q training pairs, for which the low– and the high–fidelity vectors

describe the same physical system. These training pairs are combined in the following

way to form the snapshot matrix:

X =

[

x̂1 − ¯̂x
] [

x̂2 − ¯̂x
]

· · ·
[

x̂q − ¯̂x
]

– – –

[x1 − x̄] [x2 − x̄] · · · [xq − x̄]

, (3.16)

where now the ith column of X contains both the ith low– and the ith high–fidelity

snapshots, and ¯̂x denotes the mean of the low–fidelity snapshot set.

The left singular vectors of this snapshot matrix provide the corresponding POD

basis vectors, which are partitioned in the same way as the snapshot vectors. That

is,

Φ =

φ̂1 φ̂2 · · · φ̂q

– – –

φ1 φ2 · · · φq

, (3.17)

where φi is the portion of the ith POD basis vector corresponding to x and φ̂i is

the portion corresponding to x̂. Equation (3.8) can then be decomposed into two

70

equations,

x̂ = ¯̂x +

d
∑

i=1

γiφ̂
i, (3.18)

x = x̄ +
d
∑

i=1

γiφ
i. (3.19)

Using the gappy POD formulation, Equation (3.19) can be solved in a least squares

sense in order to find the coefficients γ that best represent a given high–fidelity vector

x. Those coefficients can then be used in Equation (3.18) to calculate the low–fidelity

vector. Alternatively, if a mapping is desired from the low–fidelity space to the high–

fidelity space, the coefficients are found from Equation (3.18) and used in (3.19).

Unlike for space mapping, a single POD mapping is used for the objective and all

constraints in all constraint–management methods. When incorporating this method

into the TRMM framework, an additive or multiplicative correction must be used

to ensure at least first–order consistency. These corrections are applied as shown in

Section 2.1.3.

POD mapping is static in that the mapping stays the same over the course of

the optimization. Because the mapping is not recalculated on each step, this leads

to less computational overhead. As described in Section 3.1.3, space mapping and

corrected space mapping are dynamic. Therefore, when the sub–problem is solved in

the low–fidelity space, corrected space mapping is chosen.

3.3 Hybrid POD/Space Mapping Method

Performing space mapping or corrected space mapping in the high–fidelity space

requires the solution of the O(n̂n) optimization problem (3.3) on each trust–region

iteration. If n, n̂, or both are large, this can contribute to significant overhead on each

optimization step. POD mapping, on the other hand, has significantly less overhead.

However, POD mapping is static, and can therefore not be used for optimization in

the low–fidelity space. A method was therefore developed to combine the advantages

of corrected space mapping with the lower overhead of POD mapping. This method

71

is a hybrid between POD mapping and corrected space mapping.

Hybrid POD/space mapping can be interpreted as space mapping in the POD

space. The POD basis vectors are constructed, but instead of using the POD coef-

ficients calculated from Equation (3.18) in Equation (3.19), separate coefficients are

linked through space mapping. That is, Equation (3.19) remains the same,

x = x̄ +
d
∑

i=1

γiφ
i, (3.20)

but Equation (3.18) becomes

x̂ = ¯̂x +

d
∑

i=1

γ̂iφ̂
i. (3.21)

The new high–fidelity POD coefficients γ are calculated by solving Equation (3.20)

in a least–squares sense. Then, the low–fidelity coefficients γ̂ are found using space–

mapping.

The matrix E and vector g are defined as in the POD mapping method; that is

Eij =
(

φi, φj
)

n
, (3.22)

gi =
(

[x − x̄], φi
)

n
. (3.23)

The high–fidelity POD coefficients γ can then be calculated using:

γ = E−1g. (3.24)

Then, the low–fidelity POD coefficients are calculated using space mapping

γ̂ = Mγ + b (3.25)

and the low–fidelity design parameters are reconstructed using the POD–mapping

rules with the new low–fidelity POD coefficients

x̂ = ¯̂x + Φ̂γ̂. (3.26)

72

The mapping x̂ = P (x,M,b) is now defined, except for the definition of the space

mapping parameters M and b. The corrected surrogate can now be defined, using

the mapping, as

β̃(x,M.b) = β̂(P (x,M,b)) + A(x,M,b), (3.27)

where A is the standard additive correction function of some order, defined such that

β̃(x,M,b) is at least first–order consistent with β(x) at the center of the trust region.

The space–mapping parameters M,b in Equation (3.25) are chosen by solving the

optimization problem

M,b = arg min
M,b

k
∑

i=1

||β(xi) − β̃(xi,M,b)||2. (3.28)

Each variable–complexity correction scheme described in 2.1.3 requires the Jaco-

bian, or first derivative, of the mapping. The Jacobian of this mapping is

J = Φ̂ME−1ΦT . (3.29)

In the case where the dimension of x or x̂ is very large, space mapping involves

calculating the elements of M and b by solving an optimization problem in O(nn̂)

dimensions, which can be prohibitive. The hybrid space mapping optimization prob-

lem has O(r2) dimensions. The reduced space mapping problem size corresponds to

reduced flexibility in the mapping. This in turn may correspond to more trust–region

sub–problems, each with a high–fidelity function call. Therefore, on large problems,

the computational savings realized from reducing the dimension of the space–mapping

problem may outweigh the cost of the increased number of high–fidelity function calls

resulting from there being more trust–region sub–problems. In addition, space map-

ping requires enough data points to uniquely determine the elements of M and b,

which can be a very large number in the case of large problems. Hybrid POD/space

mapping reduces the number of data points required. Hybrid POD mapping there-

fore represents another option in the designer’s toolbox: appropriate for use when

the problem is very large and where the high–fidelity function calls are inexpensive

73

relative to the time it takes to solve the space–mapping optimization problem.

3.4 Application of Mapping to TRMM

Each of the TRMM algorithms in Chapter 2 requires the construction of a surrogate

β̃k(x) to some high fidelity function β(x) with specified properties. This surrogate re-

quires a low–fidelity model β̂(x̂), a mapping x̂ = P (x), and a correction function. The

surrogate construction and evaluation below show additive corrections. Modifications

for multiplicative and combination corrections are straightforward.

3.4.1 Construction of the surrogate

This process is performed once per trust–region iteration and results in a surrogate

β̃k(x) that is zeroth– and first–order consistent with the high fidelity function β(x).

1. Calculate the high–fidelity function value β(xk) and gradient ∇xβ(xk) at the

center xk of the kth trust region. The value β(xk) is already available from

evaluating the center of the trust region as a trial point in the calculation of the

trust–region ratio, in Equation 2.3 or 2.40.

2. In the case of a dynamic mapping, such as corrected space mapping, calculate

the mapping P (x). In the case of a static mapping, such as POD mapping, use

the existing pre–calculated mapping.

3. Calculate the value β̂(P (xk)) and the gradient ∇x̂β̂(P (xk)) of the low–fidelity

function at the mapped center of the trust region.

4. If using a quasi–second–order correction function, update the estimate of the

Hessian matrix of both the high– and low–fidelity functions, using the equations

in Section 2.1.2.

5. Calculate the correction function Ak(x) using the equations of Section 2.1.3.

Ak(x) is a Taylor series of at least first order of A(x) = β(x)− β̂(P (x)) around

the center xk of the trust region.

74

3.4.2 Evaluation of the surrogate

Recall that the surrogate is minimized using a standard constrained minimization

algorithm. These algorithms evaluate the surrogate and its gradient at a number

of points. Below is the series of steps required to evaluate the surrogate β̃k(·) at a

particular point x.

1. Calculate the point x̂ in the low fidelity space by applying the mapping x̂ = P (x)

2. Evaluate the low–fidelity function at that point, to obtain β̂(x̂)

3. Apply the correction. For example, in the additive case, the value of the surro-

gate is β̃k(x) = β̂(P (x))+Ak(x) where Ak(x) is the additive correction function

described in Section 2.1.3.

This provides the surrogate β̃k(x), which, since the correction function is at least

a first–order Taylor series of the difference between the mapped low–fidelity function

and the high–fidelity function, is at least first–order consistent with the high–fidelity

function at the center of the trust region. Therefore, as long as the high–fidelity func-

tion meets the other mild requirements for convergence, and the inner optimization

algorithm generates a trial step that satisfies the FCD condition, the algorithms in

Chapter 2 are provably convergent to a local minimum of the high–fidelity problem.

3.5 Comparison of Mapping Methodology

Before presenting results, some observations about the differences between the map-

ping methods above can be made.

Space mapping is dynamic, changing from point to point over the course of the

optimization. It requires no initial setup work. However, it requires a solution of a

least–squares problem on every trust–region iteration. This problem is over a param-

eter space of size O(n̂n). Depending on the number of design variables in the high–

and low–fidelity models, this can be a very large number. It can be concluded, there-

fore, that the space–mapping and corrected–space–mapping procedures have a high

75

overhead, and this overhead increases with the square of the size of the underlying

problem. However, in the case of high–fidelity analyses of large engineering systems

of interest, a single high–fidelity function evaluation is normally much more costly

than the overhead required by the optimization algorithm or the mapping method.

The metric of interest is therefore the number of high–fidelity function evaluations

required to find the optimum.

POD mapping is static, remaining constant during an optimization. Therefore,

only simple algebraic manipulation is required on each trust–region iteration, resulting

in low overhead. However, it requires significantly more setup work before solving the

optimization problem. Training pairs must be generated and POD basis functions

computed. An in–depth knowledge of the problem and significant human intervention

may be required to generate the training pairs.

The hybrid mapping reduces the overhead of space mapping on large problems,

while allowing a dynamic mapping. The tradeoff, however, is that it, like POD

mapping, requires training pairs and some upfront algebraic work.

Table 3.1 presents these advantages and disadvantages of each method compactly.

Mapping Provable Convergence Initial Work Overhead
Space mapping No Low High

Corrected space mapping Yes Low High
POD mapping Yes High Low

Hybrid mapping Yes High Medium

Table 3.1: Advantages and disadvantages of mapping methods

Further chapters will apply these mapping methods, in combination with TRMM

optimization methods, to both analytic models and engineering models, for both con-

strained and unconstrained problems. Chapter 4 presents the unconstrained prob-

lems, Chapter 5 presents a constrained analytic problem, and Chapter 6 presents two

constrained design problems.

76

Chapter 4

Unconstrained Problems

The methods were first tested on three unconstrained problems: two analytic prob-

lems using the Rosenbrock function and an unconstrained airfoil design problem.

4.1 Two–Dimensional Rosenbrock Problem

4.1.1 Problem Description

For the first example, the dimension of the problem is the same in both the high–

fidelity and low–fidelity models. The high–fidelity problem is the minimization of the

Rosenbrock function

min
x

f(x) = (x1 − 1)2 + 100(x2 − x2
1)

2. (4.1)

Figure 4-1 show the contours of the Rosenbrock function. The optimal solution

of the problem is x1 = 1, x2 = 1, with an optimal objective function value of zero.

The Rosenbrock problem is a well–known test function for numerical optimization. It

was first used by Rosenbrock in 1960 [61] and is widely used as a benchmark for both

evolutionary algorithms and gradient–based optimization algorithms [72, 47, 39].

The minimum is in a long, narrow valley, and methods based on unscaled steepest

descent tend to work poorly. Due to its shape, the Rosenbrock function often serves

as a test case for premature convergence [47, 39, 35]. While this problem is not

77

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x
2

Figure 4-1: Contours of the Rosenbrock function. The minimum, at x = (1, 1), is
marked with an ‘x’.

representative of real–world design problems, it serves as a good first test problem to

evaluate the method for the expected superlinear convergence.

For this simple test, a quadratic function was used as the low–fidelity model:

f̂(x̂) = x̂2
1 + x̂2

2. (4.2)

Figure 4-2 shows contours of this function.

4.1.2 Results

The benchmark method is the unconstrained medium–scale unconstrained optimiza-

tion method implemented by MATLAB c©. This is a quasi–Newton method, using

the BFGS formula for updating the approximation to the Hessian matrix. The line

search algorithm is a safeguarded mixed quadratic and cubic polynomial interpolation

and extrapolation method.

The initial point is x = (−2,−2). The multifidelity method was then run, using

both corrected space mapping and POD mapping. Corrected space mapping used

78

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x̂1

x̂2

Figure 4-2: Contours of a simple quadratic function

eight sample points. POD mapping used 100 snapshots distributed in a grid from -3

to 3 in both design variables. Two POD basis vectors were used.

Both the low–fidelity and high–fidelity models used analytic gradients. When

counting the number of high–fidelity function calls, one call includes the calculation

of both the function and the gradient.

Since, in this case, the sum of the quadratic low–fidelity function and a quasi–

second–order additive correction still provides a quadratic model, the expected con-

vergence rate of the multifidelity TRMM framework is the same as that of the direct

high–fidelity optimization, which uses approximations based on a quasi–second–order

Taylor series. The multifidelity methods are therefore not expected to provide signif-

icant computational savings for this case, nor is a mapping from high– to low–fidelity

space required in this simple case where x = x̃; however, super–linear convergence

on this problem verifies that the combination of the multifidelity method and the

mapping behaves as expected.

Figure 4-3 shows the paths each of the methods took in the design–variable space.

The benchmark quasi–Newton method and the multifidelity method with POD map-

79

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x
2

Quasi−Newton

Multifidelity with Corrected Space Mapping

Multifidelity with POD Mapping

Figure 4-3: Path of the benchmark method, the multifidelity method with cor-
rected space mapping, and the multifidelity method with POD mapping, on the
two–dimensional Rosenbrock problem.

0 10 20 30 40 50 60
10

−20

10
−15

10
−10

10
−5

10
0

10
5

High−fidelity function evaluations

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Quasi−Newton

Multifidelity with corrected spacemapping

Multifidelity with POD mapping

Figure 4-4: Objective function of the benchmark quasi–Newton method, the multifi-
delity method with corrected space mapping, and the multifidelity method with POD
mapping, on the two–dimensional Rosenbrock problem.

80

ping took very similar paths, while the multifidelity method with corrected space map-

ping took a slightly different path initially before rejoining the path of the other two

methods. Figure 4-4 shows the objective function versus the number of high–fidelity

function evaluations. All three methods converge super–linearly. The multifidelity

method, with either choice of mapping, provides modest computational gains over the

benchmark. For example, it takes the quasi–Newton method 52 high–fidelity func-

tion calls to get to an objective function below 10−10, while it takes the multifidelity

method, with either mapping, 46 high–fidelity function calls. This is a computational

savings of 11.5%. While it is promising that the method provides computational

savings even on a simple problem, it is more reassuring that the method converges

super–linearly, as expected.

4.2 Rosenbrock Problem: Variable parameteriza-

tion

The second example is a simple analytic problem for which the high– and low–fidelity

design vectors have different dimension. The high–fidelity problem is the minimization

of a six–dimensional extended Rosenbrock function

min
x

f(x) = (x1 − 1)2 + 100

6
∑

i=2

(xi − x2
i−1)

2. (4.3)

This problem has a global minimum at xi = 1, i = 1 . . . 6 [63]. The low–fidelity model

is a two–dimensional Rosenbrock function

f̂(x̂) = (x̂1 − 1)2 + 100(x̂2 − x̂2
1)

2. (4.4)

For all presented results, an initial guess of xi = −2, i = 1, 2, . . . , 6 was used.

This problem was chosen to confirm that the methods are convergent when the

low–fidelity and high–fidelity models are of different dimension. As in the previous

section, the benchmark was MATLAB’s implementation of a quasi–Newton method

81

with mixed quadratic and cubic line searches. The multifidelity method with corrected

space mapping and POD mapping were compared to this benchmark. For corrected

space mapping, eight sample points were used. For POD mapping, 100 snapshots

were generated. The low–fidelity portion of the snapshots were generated using a grid

extending from -3 to 3 in each variable. The high–fidelity portion of each snapshot

was created by setting x1 = x̂1, x2 = x̂2, x3 = x̂1, x4 = x̂2, x5 = x̂1, and x6 = x̂2.

Two POD basis functions were used.

0 50 100 150 200 250 300 350
10

−9

10
−6

10
−3

10
0

10
3

10
6

High−fidelity function evaluations

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Quasi−Newton

Multifidelity with corrected space mapping

Multifidelity with POD mapping

Figure 4-5: Objective function of the benchmark quasi–Newton method, the multifi-
delity method with corrected space mapping, and the multifidelity method with POD
mapping, on the six–dimensional Rosenbrock problem.

Figure 4-5 shows the objective function of each of the methods as a function of

the number of high–fidelity function evaluations. All three methods converge super–

linearly. The multifidelity method with corrected space mapping converged at nearly

an identical rate to the benchmark method, providing small computational gains

only late in the optimization. The multifidelity method with POD mapping performs

exceptionally well in the first 50 steps, before entering the super–linear phase. It

maintains its lead, and, using a convergence tolerance of 10−8, achieves approximately

50% savings in high–fidelity function evaluations. These results show that the method

82

is super–linearly convergent, even in the case where the high–fidelity problem and

the low–fidelity problem are of different dimension. Furthermore, it shows that the

multifidelity method has the potential for computational savings, particularly using

the POD mapping method.

4.3 Airfoil Design Problem

The next problem is an airfoil design problem. It was chosen to represent a realistic

engineering design problem with a low–fidelity model that neglects physics contained

in the high–fidelity model. The two models have different numbers of design variables

due to differences in the geometric parameterization of the problem. The difference

in the number of design variables is significant: the low–fidelity model has two, and

the high–fidelity model has thirty–six.

The goal of this problem is to design an airfoil that matches a target pressure

distribution. The pressure distribution of the NACA 2412 airfoil was chosen as the

target. The objective function is the difference between the pressure distribution on

an airfoil and the target pressure distribution

f =

∫ 1

0

(

CP − CPtarget

)2
ds, (4.5)

where CP is the coefficient of pressure and CPtarget
is the coefficient of pressure of

the goal airfoil. The integral is over the unit chord and is approximated using trape-

zoidal integration. The gradients necessary to solve the optimization problem were

calculated using finite differences. When tallying high–fidelity function calls, those

required to generate finite–difference gradients are also included. The initial and tar-

get airfoils, and the corresponding coefficient–of–pressure distributions, are shown in

Figure 4-6.

83

0 0.2 0.4 0.6 0.8 1
−1

0

1

Chord

C
P

Initial airfoil

Goal airfoil

Figure 4-6: Initial and goal airfoils, along with their coefficient of pressure distribu-
tions.

4.3.1 High–fidelity analysis

The high–fidelity analysis uses XFOIL [24] in inviscid mode. The inviscid formulation

of XFOIL uses a linear–vorticity stream–function panel method. The equations are

closed with an explicit Kutta condition. The high–fidelity geometry vector consists

of the magnitudes of 36 Hicks–Henne bump parameters [43], 18 of which perturb the

thickness of the airfoil and 18 of which perturb the camber, as shown in Figure 4-7.

They are evenly distributed across the airfoil at 18 control points.

4.3.2 Low–fidelity analysis

The low–fidelity analysis is an analytic solution to a Joukowski transform [8]. The

Joukowski transform is a conformal map that maps the points on a unit circle to points

on the surface of an airfoil. Only two variables are needed to describe a Joukowski

airfoil: µx and µy, the x and y coordinates of the center of the circle used in the

Joukowski transform.

84

Exaggerated bump function in camber

Exaggerated bump function in thickness

Figure 4-7: For the high–fidelity model, Hicks–Henne bump functions are used to
parameterize the airfoil geometry.

The transform is

z = ζ +
1

ζ
, (4.6)

where z = x + iy is the complex number representing the coordinates of a point on

the airfoil in the new space and ζ = χ + iη is the complex number representing a

point on the circle in the original space. Figure 4-8 shows one Joukowski airfoil and

the corresponding circle. The circle encloses the origin, where the conformal map has

a singularity, and intersects the point z = 1.

The transform is used to solve for the two–dimensional potential flow around the

Joukowski airfoil. The complex velocity W̃ around the circle in the ζ plane is

W̃ = V∞eiα +
iΓ

2π(ζ − µ)
−

V∞R2eiα

(ζ − µ)2
, (4.7)

where µ = µx + iµy is the complex coordinate of the center of the circle, V∞ is the

freestream velocity of the fluid, α is the angle of attack of the airfoil with respect to the

freestream flow, R is the radius of the circle, calculated using R =
√

(1 − µx)2 + µ2
y,

and Γ is the circulation, found using the Kutta condition, which reduces in this case

85

to

Γ = 4πV∞R sin
(

α + sin−1
(µy

R

))

. (4.8)

The complex velocity W around the airfoil in the z plane is, according the rules

of conformal mapping,

W =
W̃
dz
dζ

(4.9)

=
W̃

1 − 1
ζ2

. (4.10)

The coefficient of pressure is then calculated using

CP (ζ) = 1 −
‖W (ζ)‖2

V 2
∞

(4.11)

at each point on the surface of the airfoil.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

0.15

Figure 4-8: The unit circle in the upper plot is transformed to the airfoil in the lower
plot using the Joukowski transform.

86

4.3.3 Generation of Results

100 snapshots were created using a grid in the Joukowski parameter space, varying µx

from 0.01 to 0.3, and µy from 0 to 0.5. The corresponding high–fidelity design vectors

were produced by solving an optimization problem to determine the magnitudes of

the 36 Hicks–Henne bump functions that best matched the desired Joukowski airfoil.

Specifically, the bump functions were chosen so as to minimize the integral over the

chord length of the square of the difference between the airfoils defined in each space.

0 5 10 15 20 25 30 35 40
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

i

σ i

Figure 4-9: Singular values of the snapshot matrix for the airfoil design problem,
showing that the first two are much more significant than the others.

Figure 4-9 shows the singular values of the POD snapshot matrix. The relative

magnitudes of the singular values indicate the importance of the corresponding POD

basis vectors in representing the snapshot data. The first two singular values are more

than an order of magnitude larger than the third; therefore, only the first two basis

vectors were used in the POD mapping.

Figures 4-10 to 4-12 show the behavior of the objective function for some selected

cuts in the high–fidelity design space. These cuts correspond to an iterate near

the end of the optimization process, that is, for an airfoil that is close to the goal

airfoil. Figures 4-10 and 4-11 show the variation of the objective function with the

87

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

−4

x
23

f

High−fidelity

Corrected low−fidelity

Trust region center

Figure 4-10: The high-fidelity and corrected low-fidelity functions as a function of
variable x23 for an airfoil close to the goal airfoil.

−10 −9 −8 −7 −6 −5 −4 −3

x 10
−3

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
x 10

−4

x
23

f

High−fidelity

Corrected low−fidelity

Trust region center

Figure 4-11: The high-fidelity and corrected low-fidelity functions as a function of
variable x23 for an airfoil close to the goal airfoil, over a smaller range than Figure
4-10.

88

variable x23, which corresponds to the magnitude of a thickness bump function located

approximately a third of the chord behind the leading edge, near the thickest part

of the airfoil. Figure 4-10 shows that the corrected low–fidelity function matches the

high–fidelity function well over a range of values. Figure 4-11 shows a more detailed

section of the same plot — it can be seen that the high–fidelity function is noisy,

while the corrected low–fidelity function is smooth. The corrected low–fidelity model

is able to capture the second–order trend of the data even when noise is significant.

Further interrogation of the design space shows that the high–fidelity function is

even noisier along variables defining the leading and trailing edges than those near the

center of the airfoil. Figure 4-12 shows the variations in the corrected low–fidelity and

high–fidelity functions with the variable x1, which corresponds to a bump function

in camber near the leading edge. Compared with Figure 4-11, the oscillations in the

high–fidelity function are much larger.

Figures 4-10 to 4-12 indicate that it is unrealistic to expect an optimization method

to result in objective function values of lower than O(10−4) for this problem. At this

point, the noise in the high–fidelity function becomes significant and the progress

of the optimization method is likely to be impaired due to an inability to compute

gradient information accurately with finite differences. A convergence criteria of 10−4

was therefore applied to optimization results.

4.3.4 Results

As in previous problems, a quasi–Newton method was used as the benchmark. Fig-

ure 4-13 shows the multifidelity method with each of corrected space mapping and

POD mapping, along with the benchmark quasi–Newton method. The benchmark

method takes 924 high–fidelity function evaluations, including those required for

finite–difference gradients, to achieve an objective function value of 10−4. The mul-

tifidelity method with corrected space mapping takes 814 function calls to get to

the same value, which is a savings of 12%, and the multifidelity method with POD

mapping takes 554 function calls, a savings of 40%.

Figure 4-14 shows the varying rates of convergence of the POD method as the

89

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−4

x
1

f

Cut along x
1
 centred at −0.001021

High−fidelity

Corrected low−fidelity

Figure 4-12: The high–fidelity and corrected low–fidelity functions as a function of
variable x1 for an airfoil close to the goal airfoil.

0 200 400 600 800 1000 1200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Quasi−Newton

Multifidelity with POD mapping

Multifidelity with Space Mapping

Figure 4-13: Convergence of quasi–Newton method, multifidelity with POD mapping,
and multifidelity with corrected space mapping on the airfoil design problem.

90

0 200 400 600 800 1000 1200 1400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

High−fidelity function evaluations

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

d=0

d=1

d=2

d=3

d=6

Figure 4-14: Convergence of multifidelity with POD mapping on airfoil design prob-
lem varying the number of basis vectors

number of basis vectors is varied. The curve labeled d = 0 effectively uses a con-

stant for the low–fidelity analysis. With zero basis vectors, the low–fidelity analysis

always evaluates the mean airfoil. Thus, the resulting corrected surrogate function

is a second–order Taylor series about the center of the trust region using the BFGS

approximation to the Hessian matrix. The remaining curves show convergence with

increasing numbers of basis vectors. This shows that nearly the entire mapping re-

lationship is captured by the first basis vector and the remaining basis vectors add

very little information and do not significantly improve the convergence rate.

As is generally true for optimization of non–convex functions, the locally–optimal

solution to which the algorithm converges depends on the initial choice of design

variables. The convergence rates of the multifidelity methods presented here also

depend on the initial solution. In most cases, the multifidelity methods were found

to yield substantial computational savings when compared with direct high–fidelity

optimization; however, for some choices of initial design the improvement was not

significant. The multifidelity method was applied to a number of different initial

designs. Figure 4-15 shows three representative convergence plots. It can be seen

91

0 200 400 600 800 1000
10

−5

10
0

High−fidelity function calls
O

b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

0 200 400 600 800100012001400
10

−5

10
0

High−fidelity function calls

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

0 200 400 600 800 1000
10

−5

10
0

High−fidelity function calls

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

Quasi−Newton

Multifidelity with POD mapping

Figure 4-15: Convergence of multifidelity with POD mapping on airfoil design prob-
lem varying the initial airfoil.

that the POD multifidelity method is more efficient than the quasi–Newton method

for these cases, although for the second case there is very little improvement.

4.3.5 Chapter Summary

This chapter applied the unconstrained multifidelity methods, using both POD map-

ping and corrected space mapping, to three unconstrained optimization problems.

The first problem was a two–dimensional Rosenbrock problem for which the dimen-

sion of the design vector was the same in both the high–fidelity and low–fidelity

models. The second was a six–dimensional Rosenbrock problem for which the low–

fidelity model had fewer design variables than the high–fidelity model. The third

problem was a design of an airfoil, for which the low–fidelity model had two design

variables and the high–fidelity model had 36 design variables.

In all cases, the multifidelity method achieved the optimum with satisfactory

convergence. The computational savings varied from nearly none to approximately

40%. On average, the multifidelity method using POD mapping achieved greater

computational savings than that using corrected space mapping.

92

Chapter 5

Barnes Problem

The previous chapter applied and confirmed the new multifidelity methods on two

constrained problems: a simple analytic problem and a real–world design problem.

They have shown varying amounts of computational savings, from small to signifi-

cant. Next the methods will be demonstrated and verified on constrained problems:

first, in this chapter, on a simple analytic problem; then, in the next chapter, on

real–world design problems. The goal is to verify that the methods converge to a

local minimum of the high–fidelity model and determine which methods provide re-

duced computational costs, relative to one another and to a benchmark single–fidelity

method.

The Barnes problem was chosen as the simple analytic problem because it is

two–dimensional and therefore easy to visualize. It also has a number of interesting

starting points, thereby allowing a demonstration of tradeoffs between minimizing

the objective and satisfying the constraints. The Barnes problem has also been used

in previous studies.

5.1 Problem Description

This problem was originally developed by G. Barnes [16] as part of an M.S. thesis.

It was then used as a demonstration problem in a textbook [44], and has since been

used a number of times to demonstrate optimization approaches [60, 55, 56, 54].

93

The objective function is

f = −75.196 + 3.81x1 − 0.126x2
1 + 2.5056 × 10−3x3

1

− 1.034 × 10−5x4
16.83x2 − 0.0302x1x2

+ 1.281 × 10−3x2x
2
1 − 3.525 × 10−5x2x

3
1

+ 2.266 × 10−7x2x
4
1 − 0.256x2

23.46 × 10−3x3
2 (5.1)

− 1.35 × 10−5x4
2 +

28.106

x2 + 1
+ 5.237 × 10−6x2

1x
2
2

+ 6.3 × 10−8x3
1x

2
2 + 1.663 × 10−6x1x

3
2 + 2.867e0.0005x1x2 .

The constraints and variable bounds are

c1 = −(x1x2/700 − 1) ≤ 0, (5.2)

c2 = −(x2/5 − x2
1/625) ≤ 0, (5.3)

c3 = −(x2/50 − 1)2 − (x1/500 − 0.11) ≤ 0, (5.4)

0 ≤ x1 ≤ 80, (5.5)

0 ≤ x2 ≤ 80. (5.6)

The problem has a global minimum at x = (80, 80) with an objective value of

f = −132.876 and a local minimum at x = (49.526, 19.622) with an objective value of

f = −31.6372. At that local minimum only the second constraint is active. Contours

of the objective and lines showing the constraints are shown in Figure 5-1.

94

x
1

x
2

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Figure 5-1: Objective function contours and constraints of the Barnes problem. Local
and global optima are indicated with an ‘x’.

x̃1

x̃
2

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Figure 5-2: Objective function contours and constraints of the low–fidelity approx-
imation to the Barnes problem. Optima of the high–fidelity problem are indicated
with an ‘x’.

95

5.2 Low–fidelity Model

The chosen low–fidelity objective function is a third–order Taylor series expansion of

the high–fidelity function about the point x = (30, 40)

f̂ = −2.744 + 0.01214(x̂1 − 30) + 0.009957(x̂1 − 30)2 − 5.557 × 10−4(x̂1 − 30)3

+
(

1.1508 + 0.009473(x̂1 − 30) + 2.9948 × 10−5(x̂1 − 30)2
)

(x̂2 − 40) (5.7)

+
(

−0.02997 − 1.676 × 104(x̂1 − 30)
)

(x̂2 − 40)2 − 0.001322(x̂2 − 40)3.

The low–fidelity constraints are linear functions chosen to be in approximately the

same location as the quadratic curves of the exact constraints over the global space.

The equations for these low–fidelity constraints are

ĉ1 = (−x̂1 − x̂2 + 50)/10 ≤ 0, (5.8)

ĉ2 = (0.64x̂1 − x̂2)/6 ≤ 0, (5.9)

ĉ3 =

0.006x̂1 − 0.0134x̂2 + 0.34 ≤ 0 if x̂2 > 50,

0.006x̂1 + 0.0134x̂2 − 1 ≤ 0 if x̂2 ≤ 50.

(5.10)

The objective function contours and constraints used for the low-fidelity model are

shown in Figure 5-2.

5.3 Constraint–management Methods

The Barnes problem was run with each of the constraint–management methods de-

scribed in Section 2.2 combined with each of corrected space mapping and POD

mapping.

Three starting points were used. The point x0 = (30, 40) is a feasible starting

point, while x0 = (65, 5) and x0 = (10, 20) are infeasible starting points. At x0 =

(10, 20), the directions towards feasibility and optimality are near–orthogonal.

Table 5.3 shows the number of high–fidelity function evaluations taken for each of

the methods to converge to a point at which the objective function is within 10−2 of the

96

minimum and the constraints are satisfied to within 10−2. As a benchmark, a single–

fidelity SQP method was run on the same problem. The reduction in computational

complexity of the multifidelity methods was measured as a ratio of the number of

high–fidelity function calls taken by the multifidelity method to the number taken by

the benchmark SQP method for each starting point. For each method, the average

ratio from all three starting points is also shown in the table.

The table shows that the augmented Lagrangian methods and MAESTRO take,

on average, more high–fidelity function evaluations than the benchmark single–fidelity

SQP. Two methods resulted in computational savings on average: direct surrogate

optimization and the SQP–like method. According to these measures, direct surrogate

optimization is the most efficient method. It performs slightly better when combined

with corrected space mapping than with POD mapping.

Constraint Mapping From (30,40) From (10,20) From(65,5) Average

Management Method Calls Ratio Calls Ratio Calls Ratio Ratio

SQP in high–fidelity space N/A 10 1.00 12 1.00 8 1.00 1.000

Approx. whole Lagrangian POD 16 1.60 35 2.92 34 4.25 2.922

Approx. whole Lagrangian SM 49 4.90 38 3.17 33 4.12 4.064

Lagrangian w/ sep. approx. POD 30 3.00 35 2.92 11 1.38 2.431

Lagrangian w/ sep. approx. SM 21 2.10 39 3.25 29 3.62 2.992

Direct surrogate approx. POD 10 1.00 4 0.33 8 1.00 0.778

Direct surrogate approx. SM 7 0.70 4 0.33 10 1.25 0.761

SQP–like POD 7 0.70 11 0.92 10 1.25 0.956

SQP–like SM 8 0.80 11 0.92 7 0.88 0.864

MAESTRO POD 20 2.00 40 3.33 15∗ 1.88∗ 2.403

MAESTRO SM 27 2.70 43 3.58 14 1.75 2.678

Table 5.1: Convergence of various optimization methods, with both POD mapping
and corrected space mapping, from three starting points. ∗Converged to the global
optimum rather than the local optimum.

It can be concluded from these trials that the most promising methods are the

SQP–like method and direct surrogate optimization. MAESTRO should be reserved

for the applications for which it was designed: multidisciplinary problems solved

over a distributed system. The augmented Lagrangian methods have no significant

advantages over the SQP–like method or direct surrogate optimization, and should

be rejected in favor of one of the latter.

97

5.4 Variation of Parameters

Sensitivity studies were performed varying many of the parameters of the algorithms

in order to determine the optimal parameters and the effect of the parameters on

the convergence. The variation was performed for three combinations of methods:

direct surrogate optimization with POD mapping; the augmented Lagrangian method

with separate corrections to the objective and each constraint with POD mapping;

and direct surrogate optimization with space mapping. This allows the variation of

parameters that are only relevant in some subset of the methods. For example, the

number of POD basis functions is only relevant in POD mapping and the number of

space mapping sample points is only relevant in space mapping.

Figures are only shown in the case where the parameter in question has an effect

on the convergence of the method. When a parameter has similar effects on all three

methods, only one set of figures is shown.

5.4.1 Low–fidelity objective function

The low–fidelity objective function was varied in order to determine whether a more

accurate low–fidelity function provided improved convergence.

Figures 5-3 and 5-4 show the variation of parameters on the direct surrogate

optimization method using POD mapping. They show that, even using a simple

quadratic as a low–fidelity objective function, the multi–fidelity method converges

more quickly than the benchmark single–fidelity method. Using a second–order Tay-

lor series (expanded around the point (30,40)) of the high–fidelity function provides

improved convergence. However, using a third–order Taylor series expansion of the

objective function did not provide additional computational savings over the second–

order Taylor series. While the former reduced the objective slightly more quickly, the

latter reduced the constraint violation more quickly, resulting in them both finding

the optimum after the same number of high–fidelity function calls.

This would seem to indicate that the Taylor series are more useful than the simple

quadratic, since they are more similar to the high–fidelity model. It was expected that

98

the third–order Taylor series would prove more useful than the second–order Taylor

series; however, this was not shown to be the case on this problem. It is possible

that this problem is too simple to show a clear difference. These methods, which

use additive corrections, are expected to converge most quickly when the difference

between the high–fidelity model and low–fidelity model is smooth and can be well

approximated by a quasi–second–order correction function. Knowledge of the rela-

tionship between the high–fidelity and low–fidelity models may aid the designer in

choosing between additive, multiplicative, and combination correction functions. The

lack of significant dependence on the quality of the low–fidelity model may be due to

the quasi–second–order additive corrections, which provide excellent surrogates even

when the underlying low–fidelity model is poor. Stronger dependence on the low–

fidelity model are expected with less accurate corrections, such as those that enforce

only first–order consistency.

5.4.2 Low–fidelity constraints

Similarly, the accuracy of the low–fidelity constraints was varied. As Figures 5-

5 and 5-6 show, the choice between linear constraints and the exact high–fidelity

constraints had little effect on the path and none on the convergence rate of direct

surrogate optimization. This was true both for POD mapping, shown in the figures,

and corrected space mapping.

However, for the augmented Lagrangian multifidelity method, the choice of low–

fidelity constraints changed the solution. Figures 5-7 and 5-8 show that the method

using the exact constraints converged to a local minimum, while the problem with

the linear low–fidelity constraints converged to the global minimum. This shows that

small changes in the low–fidelity model can produce small changes in the early steps,

resulting in different paths and possibly different solutions.

The constraints on the Barnes problem are quadratic, and the corrections are

quasi–second order. Therefore, on each trust–region iteration, the corrected surro-

gate constraints are nearly exact, independent of the choice of the underlying low–

fidelity constraint functions. Therefore, the early steps taken will vary only slightly

99

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity

Simple quadratic

2
nd

−order Taylor series

3
rd

−order Taylor series

Figure 5-3: Optimization paths, in the high–fidelity space, of direct surrogate opti-
mization, using POD mapping, varying the low–fidelity objective function.

0 2 4 6 8 10 12 14
−40

−30

−20

−10

F
u

n
c
ti
o

n
 V

a
lu

e

Single fidelity

Simple quadratic

2
nd

−order Taylor series

3
rd

−order Taylor series

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

High fidelity function evaluationsM
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

Figure 5-4: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the low–fidelity objective function.

100

depending on the accuracy of the low–fidelity constraints. However, as the augmented

Lagrangian shows, even these slight variations can accumulate to different results.

It is expected that on realistic design problems, with non–quadratic constraints

— and therefore less accurate surrogate constraints — the path may depend even

more strongly on the accuracy of the low–fidelity constraint functions.

Earlier results showed that direct surrogate optimization, on average, converges

more quickly than the benchmark SQP method on this problem. They also showed

that the augmented Lagrangian multifidelity method converges less quickly on av-

erage. The results in this section show that this ordering, with direct surrogate

optimization faster than the benchmark method, which is in turn faster than the

augmented Lagrangian method, does not change with the accuracy of the low–fidelity

constraints. Therefore, even if the low–fidelity constraints are relatively inaccurate,

direct surrogate optimization is expected to achieve convergence to a local minimum

with computational savings.

Figure 5-9 shows how the surrogate to the constraints improve over the course

of optimization. In the first iteration, labeled k = 0, little information is known

about the surrogates, and they are inaccurate. As the algorithm progresses, the

surrogates are increasingly corrected to become more accurate. The boundaries of

the two active and near–active constraints become accurate more quickly than those of

the inactive constraint. After only three iterations, the two most relevant constraints

are very accurate in the region surrounding the optimum. The local accuracy of

the constraints improves with successive iterations. The boundaries of the inactive

constraint are inaccurate; however, this does not affect the convergence of the method.

5.4.3 Trust–region algorithm parameters

Next, the trust–region algorithm parameters were varied. First, the parameter c1 was

varied. This parameter is the factor by which the trust–region radius is decreased

when the improvement attained at a trial step is negative or small. The method is

provably convergent as long as 0 < c1 < 1. The value of this parameter has very

little effect on the convergence of the methods on this problem, and figures are not

101

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity

Exact constraints

Linear constraints

Figure 5-5: Optimization paths, in the high–fidelity space, of direct surrogate opti-
mization, using POD mapping, varying the low–fidelity constraints.

0 2 4 6 8 10 12 14
−40

−30

−20

−10

F
u

n
c
ti
o

n
 V

a
lu

e

Single fidelity

Exact constraints

Linear constraints

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

High fidelity function evaluationsM
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

Figure 5-6: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the low–fidelity constraints.

102

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity

Exact constraints

Linear constraints

Figure 5-7: Optimization paths, in the high–fidelity space, of the augmented La-
grangian multifidelity method, using separate corrections to the objective and the
constraints and POD mapping, varying the low–fidelity constraints.

0 20 40 60 80 100
−150

−100

−50

0

F
u

n
c
ti
o

n
 V

a
lu

e

Single fidelity

Exact constraints

Linear constraints

0 20 40 60 80 100
0

0.5

1

1.5

High fidelity function evaluationsM
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

Figure 5-8: Objective function and maximum constraint violation of the augmented
Lagrangian multifidelity method, using separate corrections to the objective and the
constraints and POD mapping, varying the low–fidelity constraints.

103

0 20 40 60 80
0

20

40

60

80

x
1

x
2

k=0

0 20 40 60 80
0

20

40

60

80

x
1

x
2

k=1

0 20 40 60 80
0

20

40

60

80

x
1

x
2

k=2

0 20 40 60 80
0

20

40

60

80

x
1

x
2

k=3

Approximate constraints

Exact constraints

x
k

x
k

*

Figure 5-9: Corrected surrogates to constraints for the first four trust–region iterations
of direct surrogate optimization, using POD mapping.

shown. Therefore, using the advice in the book by Conn, Gould, and Toint, [22], the

standard value of c1 in the remaining problems was set at c1 = 0.25.

The next parameter varied was c2, the factor by which the trust–region radius is

increased when the improvement at a trial step is large. The path taken changed as

this parameter varied; however, the convergence rate remained constant for any value

of c2 greater than 2. When c2 is less than 2, the convergence rate suffers. Figures 5-10

and 5-11 show the results using direct surrogate optimization with POD mapping;

the results followed the same trend for the other two methods. This confirms that c2

should always be at least 2 so as to allow for the method to take appropriately large

trial steps in the case of an accurate surrogate model. The results on this problem

do not show an upper limit on c2. Conn, Gould, and Toint, however, performed a

similar analysis on 26 Constrained and Unconstrained Testing Environment (CUTE)

test problems[17], and found that on average the best value for c2 was approximately

2.5.

Next, r1 was varied; the trust–region ratio below which the trust–region radius is

104

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity
c

2
=1.50

c
2
=2.00

c
2
=2.50

c
2
=5.00

Figure 5-10: Optimization paths, in the high–fidelity space, of direct surrogate op-
timization, using POD mapping, varying the trust–region algorithm parameter c2.

0 10 20 30 40 50
−40

−30

−20

−10

F
u
n
c
ti
o
n
 V

a
lu

e

Single fidelity
c

2
=1.50

c
2
=2.00

c
2
=2.50

c
2
=5.00

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

High fidelity function evaluationsM
a
x
im

u
m

 C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Figure 5-11: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the trust–region algorithm parameter c2.

105

decreased. The performance of direct surrogate optimization on this problem does

not depend on r1. Figures 5-12 and 5-13 show that the path taken by the augmented

Lagrangian multifidelity method, and even the final point to which it converges, can

depend on this parameter, but in a non–monotonic way. That is, using the two

smallest and one largest value of the parameter, the augmented Lagrangian method

converged to the global optimum, but using the two values in between, it converged

to the local optimum. Conn, Gould, and Toint showed that the method convergence

was also relatively insensitive to this parameter on their CUTE test problems, and

they suggest r1 = 0.05.

The convergence depends slightly more on r2, the trust–region ratio above which

the trust–region radius is increased. Figures 5-14 and 5-15 show that at values of r2

from 0.2 to 0.8 have slower convergence than values of 0.9 and 0.95. The implication

is that the trust–region size should only be increased if the surrogate is predicting the

descent with very good accuracy. While figures are only shown for direct surrogate

optimization with POD mapping, the same trends were observed in direct surrogate

optimization with space mapping and in the augmented Lagrangian method with

POD mapping. Conn, Gould, and Toint suggest a value of 0.9, which is used in the

remainder of this work.

In sum, these trials showed that variable–parameterization problems are not no-

tably different from existing variable–fidelity problems in their dependence on the

algorithm parameters, and that recommendations by previous researchers in variable–

fidelity methods are applicable.

5.4.4 Initial algorithm parameters

Some initial algorithm parameters were also varied. The convergence of none of the

three methods depended on the initial penalty parameter µ0 or the initial convergence

tolerances η0, and ω0.

The initial trust–region radius ∆0, however, had an effect. Figures 5-16 and 5-17

show that for ∆0 = 1, direct surrogate optimization converged to the global minimum,

while for other values it converged to the local minimum. In general, larger values

106

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity
r
1
=0.01

r
1
=0.05

r
1
=0.10

r
1
=0.20

r
1
=0.50

Figure 5-12: Optimization paths, in the high–fidelity space, of the augmented La-
grangian multifidelity method, using separate corrections to the objective and each
constraint and POD mapping, varying the trust–region algorithm parameter r1.

0 20 40 60 80 100
−150

−100

−50

0

F
u
n
c
ti
o
n
 V

a
lu

e

Single fidelity
r
1
=0.01

r
1
=0.05

r
1
=0.10

r
1
=0.20

r
1
=0.50

0 20 40 60 80 100
0

0.5

1

1.5

High fidelity function evaluationsM
a
x
im

u
m

 C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Figure 5-13: Objective function and maximum constraint violation of the augmented
Lagrangian multifidelity method, using separate corrections to the objective and each
constraint and POD mapping, varying the trust–region algorithm parameter r1.

107

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity
r
2
=0.20

r
2
=0.50

r
2
=0.80

r
2
=0.90

r
2
=0.95

Figure 5-14: Optimization paths, in the high–fidelity space, of direct surrogate op-
timization, using POD mapping, varying the trust–region algorithm parameter r2.

0 5 10 15 20
−40

−30

−20

−10

F
u
n
c
ti
o
n
 V

a
lu

e

Single fidelity
r
2
=0.20

r
2
=0.50

r
2
=0.80

r
2
=0.90

r
2
=0.95

0 5 10 15 20
0

0.2

0.4

0.6

0.8

High fidelity function evaluationsM
a
x
im

u
m

 C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Figure 5-15: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the trust–region algorithm parameter r2.

108

of ∆0 converged more quickly than smaller values. This is because the method can

take larger steps early in the optimization, rather than a number of small steps each

requiring high–fidelity function calls. The results show similar trends for the other

two methods.

Setting ∆0 may require expertise on the part of the designer, using a subjective

estimate of the size of a region near the initial point for which the low–fidelity and

high–fidelity models will have similar trends.

5.4.5 POD mapping parameters

The number of POD basis vectors, d, was varied for the two relevant methods — direct

surrogate optimization with POD mapping and augmented Lagrangian with POD

mapping. Figures 5-18 and 5-19 show that with only one basis vector, direct surrogate

optimization converged to the global optimum, rather than the local optimum to

which most of the variations of the method converged. With three basis vectors, one

of the basis vectors was spurious, and generated noise, causing the methods to fail to

make progress from the initial point. Similar results were found for the augmented

Lagrangian method with POD mapping. These results underscore the importance

of using no more basis vectors than the rank of the snapshot matrix. This study is

limited by its use in a two–dimensional problem. Higher–dimensional problems will

need more basis vectors, and the relationship between the number of basis vectors

used and the rate of convergence of the optimization algorithm may be more complex.

5.5 Chapter summary

This chapter has shown that all multifidelity methods discussed so far converge

to a local minimum of the Barnes problem. However, only two of the constraint–

management methods, the SQP–like multifidelity method and direct surrogate opti-

mization, achieve computational savings on average for this problem. POD mapping

and corrected space mapping appeared to provide approximately equal computational

savings.

109

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity

∆0
=1.00

∆0
=5.00

∆0
=10.00

∆0
=20.00

Figure 5-16: Optimization paths, in the high–fidelity space, of direct surrogate opti-
mization, using POD mapping, varying the initial trust–region radius ∆0.

0 10 20 30 40 50
−150

−100

−50

0

F
u

n
c
ti
o

n
 V

a
lu

e

Single fidelity

∆0
=1.00

∆0
=5.00

∆0
=10.00

∆0
=20.00

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

High fidelity function evaluationsM
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

Figure 5-17: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the initial trust–region radius ∆0.

110

0 20 40 60 80
0

10

20

30

40

50

60

70

80

x
1

x
2

Single fidelity

d=1

d=2

d=3

Figure 5-18: Optimization paths, in the high–fidelity space, of direct surrogate opti-
mization, using POD mapping, varying the number of POD basis vectors d.

0 5 10 15 20 25
−150

−100

−50

0

F
u

n
c
ti
o

n
 V

a
lu

e

Single fidelity

d=1

d=2

d=3

0 5 10 15 20 25
0

0.5

1

High fidelity function evaluationsM
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

Figure 5-19: Objective function and maximum constraint violation of direct surrogate
optimization, using POD mapping, varying the number of POD basis vectors d.

111

The accuracy of the low–fidelity model was varied. On this problem, more ac-

curate low–fidelity models, analyzed separately as objective and constraint accuracy,

showed only marginal computational advantages. However, it is expected that in

more complex real–world design problems, the accuracy of the algorithm will have a

more significant effect.

A systematic variation in algorithm parameters was then performed, in order to

provide guidance for future users of these methods in the choice of values or methods

for determining these values. The values of the algorithm parameters µ0, η0, ω0, and

r1 had little to no effect on the performance of the methods. In addition, for the

example using corrected space mapping, the number of space mapping sample points

had no effect. The trust–region parameters r1, r2 and c1, however, showed an effect on

the convergence, and specific constant values were suggested. The initial trust–region

size ∆0 impacted the convergence of the method; however, no specific guidelines can

be given on its size. The designer must rely on experience and judgement to choose

∆0.

112

Chapter 6

Constrained Design Problems

Chapter 4 showed results of the multifidelity methods with design parameterization

mapping both on unconstrained analytic problems and on an unconstrained engi-

neering design problem. Chapter 5 then presented results of the various constrained

optimization methods on a constrained analytic problem. This chapter concludes the

testing of the methods with two constrained engineering design problems. The first

is a design of a conventional aircraft wing and the second is the design of the flapping

motion of a bat wing.

6.1 Wing Design Problem

The first constrained design problem is planform design of a wing. The wingspan is

constant at 10 metres and the angle of attack is set to a constant value of 0.5 degrees.

The quarter chord is unswept. The objective function is the coefficient of induced

drag, and the lift of the wing is constrained from below. This problem, therefore, is

linked to a more complex aircraft design problem in which the lift must be equal to

the weight while the drag of the aircraft is minimized. The design variables specify

the chord at each of 10 evenly–distributed points along the wing. The optimization

113

problem is given by

min
x

f(x) = CDi(x)

subject to c(x) = (0.2 − A(x) ∗ CL(x)) ≤ 0 (6.1)

0.01 ≤ xj ≤ 10, j = 1 . . . 10,

where CDi is the coefficient of induced drag, CL is the coefficient of lift, A(x) is the

wing area, x is a vector containing the chord design variables, and xj is the chord at

the jth spanwise station.

The high–fidelity code uses a vortex–lattice method, using a zero–thickness, constant–

collocation, doublet–lattice model [46]. By imposing Neumann boundary conditions

and a zero–spanwise–vorticity trailing–edge Kutta condition, the wing and wake sur-

face doublet strengths can be uniquely determined. The discretization is performed

using quadrilateral panels with uniform chordwise spacing and cosine spanwise re-

finement. A standard Trefftz–Plane analysis [46] is used to compute both the lift

and induced drag. A single analysis of the high–fidelity code takes approximately 90

seconds on a 2.4 GHz Intel Pentium 4 desktop workstation.

The low–fidelity code uses lifting–line theory. A standard lifting–line method

following Ashley and Landahl [9] has been implemented to compute both the lift

and the induced drag. Because it assumes that the wing–bound vorticity can be

approximated by a single spanwise line vortex, the lifting–line method is less accurate

than the high–fidelity vortex–lattice method. The low–fidelity design variables are

also chords, but in this case at only three points, again equally spaced from the root

to the tip. This problem is therefore an example of variable parameterization: the

low–fidelity design space is of lower dimension than the high–fidelity design space. A

single analysis of the low–fidelity code takes approximately 30 milliseconds on a 2.4

GHz desktop workstation.

For both the high–fidelity and low–fidelity models, gradients were calculated using

centered finite differences. The evaluations required for these finite differences are

included in the count of the number of function calls. The benchmark method is

114

−2 0 2 4
−6

−4

−2

0

2

4

6
Initial Design

−2 0 2 4
−6

−4

−2

0

2

4

6
Final Design

Figure 6-1: Initial and final wing planforms

SQP. The multifidelity method is the SQP–like trust–region method in conjunction

with corrected space mapping. The eight previous iterates were used as the control

points. The linear space mapping of equation (3.2) was used. The initial design was

a rectangular wing and was feasible, with the lift constraint inactive.

Given infinite degrees of freedom, the planform that yields minimum induced drag

is elliptic. The optimization problem is expected to find a distribution which most

closely approximates an elliptical planform. Figure 6-1 shows the initial and final

planforms. Figure 6-2 shows the objective function value and constraint violation of

each method versus the number of high–fidelity function calls. Both the benchmark

method and the multifidelity method converged to the same near–elliptic design.

The high–fidelity SQP method took 1344 high–fidelity function calls to achieve the

115

0 200 400 600 800 1000 1200 1400
0.012

0.014

0.016

0.018

0.02
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

0 200 400 600 800 1000 1200 1400
0

0.003

0.006

High−Fidelity Function Evaluations

C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Single fidelity

Multifidelity

Figure 6-2: Objective function value and constraint violation of each of a single–
fidelity SQP method and an SQP–like multifidelity method using corrected space
mapping.

optimum design, with an objective within 10−5 of the best design found, with a

constraint violation less than 10−6. The multifidelity method found the optimum,

using the same criteria, in 319 high–fidelity function calls. This is a savings of 76%.

The computational time was reduced from approximately 34 hours to approximately

8 hours.

6.2 Flapping–flight problem

The final constrained design problem aims to explore biologically–inspired flapping

flight. Heaving wings and airfoils are commonly used in nature as a form of force

production and have gained the attention of many researchers, both to further un-

116

Figure 6-3: Marker locations on a Cynopterus brachyotis, or short–nosed fruit bat,
outfitted for testing in the Harvard Concord Field Station Wind Tunnel. Figure
courtesy of Kenneth Breuer and Sharon Swartz, Brown University.

derstand biological flight and to develop bioinspired aircraft [69, 53, 71, 41].

6.2.1 Problem Description

Researchers at Brown University study bats in a wind tunnel in order to understand

the mechanics of bat flight. Figure 6-3 shows a bat outfitted with markers to track

bat motion in flight in a wind tunnel. Researchers postulate that bats’ physiological

structure and flight motion are optimized for minimum power input at a specified

forward velocity. In order to test that hypothesis, a model problem was formulated to

investigate the minimization of power in order to generate thrust, using leading edge

compliance. The goal of this problem is to examine passive strategies for minimizing

the heaving motion power input for a given thrust output. It models bat flight using

a heaving airfoil with a passive load–alleviation leading–edge torsional spring. While

birds and bats in nature use more complex forms of both active and passive control,

this optimization problem is a first step in the determination of the optimal passive

strategy. A very similar problem, minimizing the power requirements for a swimming

robot using passive springs, has been investigated using analytic approaches [42].

The design problem has eight design parameters. The first is a spring constant.

This represents the structural compliance of the bat wing, modeled as a single leading–

edge torsional spring providing passive load alleviation. The second design parameter

is the flapping frequency. The next three are amplitudes and lags of each of three

117

harmonics of flapping motion. Table 6.1 shows the eight design variables, their units,

their lower and upper bounds, their start values, and their final values in each of the

single–fidelity and multifidelity runs. The optimization problem is

min
x

f(x) = Pin(x)

subject to c(x) = (0.2 − CT (x)) ≤ 0 (6.2)

LB ≤ xj ≤ UB, j = 1 . . . 8,

where the input power Pin, the thrust coefficient CT , and the elements of the design

parameter vector x = (K, ω, A0, A1, A2, φ0, φ1, φ2)
T are as described in Table 6.1. The

design variables were scaled to improve the numerical conditioning of the problem.

Name Unit LB UB Initial SF MF

Design Variables

K Spring Constant N·m
rad .0001 .25 .005 .0136 .00949

ω Flapping frequency rad
s 10 120 20 11.4643 13.41

A0 Amplitude of harmonic 0 m 0 .3 .2 .3 .3
A1 Amplitude of harmonic 1 m 0 .15 0 7.93 × 10−5 2.20 × 10−3

A2 Amplitude of harmonic 2 m 0 .15 0 4.82 × 10−3 .0145
φ0 Lag of harmonic 0 rad −π π 0 -3.058 -2.148
φ1 Lag of harmonic 1 rad −π π 0 0 -.208
φ2 Lag of harmonic 2 rad −π π 0 -1.943 .0626

Constraint

CT Coefficient of thrust — .2 .1076 .2 .2

Objective Function

Pin Power input W .5461 .8966 .9049

Table 6.1: Design variables and results for flapping–wing problem. The columns are:
The symbol for the variable, the name of the variable, its unit, the lower bound on the
variable, the upper bound, the initial value, the final value found by the single–fidelity
method, and the final value found by the multifidelity method.

6.2.2 High–fidelity analysis

The high–fidelity solver is a two–dimensional, unsteady, linear strength, source–

doublet formulation [46, 52]. An advantage of using panel method approximations

in an unsteady setting is that it requires neither remeshing nor moving body for-

mulations (such as arbitrary Lagrange–Eulerian formulations of the Navier–Stokes

118

equations). The unsteady forces and moments were computed by integrating the

airfoil surface pressure, computed using the unsteady form of the Bernoulli equation

[46]. In order to correct the results for viscous effects, a simple quasi–steady, drag–

polar approximation was used. Additionally, a simple stall penalty scheme consisting

of a quartic drag penalty on airfoil incidences over a specified value was also incor-

porated in order to ensure that the angle of incidence of the airfoil remained in the

non–separated regime. Although the viscous model is not as rigorous as one which

depends on the unsteady motion of the geometry (as would be the case for an Integral

Boundary Layer method [25, 24, 29]), the incorporation of a simple viscous correction

yields more realistic computations than an inviscid formulation. The passive struc-

tural load alleviation and airfoil rotation were accomplished by modeling the airfoil as

a mass and a leading edge torsional spring. The following moment balance equation

was enforced strongly for each timestep at the leading edge of the airfoil:

Iθ̈ + Kθ + mxcgḧ − Maero = 0, (6.3)

where I is the moment of inertia about the leading edge of the airfoil, θ is the angle

of the wing, K is the spring constant of the torsional spring at the leading edge, m

is the mass of the wing, xcg is the x position of the center of gravity of the wing in

the wake direction, h is the vertical position of the wing (and thus ḧ is its vertical

acceleration), and Maero is the moment due to aerodynamic forces.

A low–Reynolds–number HT–13 airfoil was used as the input geometry. The

vertical heaving motion was described by a 3rd order series of harmonic functions as

follows:

Z(t) =

2
∑

m=o

Am cos(2π(m + 1)ωt + φm), (6.4)

where Z(t) is the z–position, defined along a vertical axis, of the airfoil in time, t is

time, Ai and φi, i = 0 . . . 2, and ω are as defined in Table 6.1. The horizontal velocity

is constant at

U(t) = U∞ = 5m/s. (6.5)

119

Figure 6-4: Results of the high–fidelity analysis of a flapping wing, showing the airfoil
position, the trailing vortex, and the forces in the x and y directions.

The high–fidelity code requires approximately 30 seconds on a 2.4 GHz desktop work-

station for a single evaluation.

6.2.3 Low–fidelity analysis

The low–fidelity analysis uses a simplified representation of the wing as a point airfoil.

The calculations are quasi–steady. That is, the airfoil changes in position and angle

of attack over time, but the aerodynamic equations are steady. The airfoil is assumed

massless. The moment balance around the leading edge is therefore

Kθ + Mc/4(α) −
c

4
Laero(α) = 0, (6.6)

120

where Mc/4 is the aerodynamic moment about the quarter–chord, c is the chord, and

Laero is the aerodynamic lift. Using a thin airfoil theory approximation, the lift is

Laero = 2πα, (6.7)

and the moment of the symmetric airfoil about the quarter–chord is

Mc/4(α) = 0. (6.8)

The angle of attack, α, can be approximated as the difference between the relative

airflow direction (which can be determined from the forward and heaving velocities)

and the angular deflection, θ of the airfoil. As a result, the spring deflection in

equation 6.6 is the only remaining unknown, and is easily determined if the terms

in the equation are approximated using harmonic representations. Once the spring

deformations are known, the time–varying lift and thrust forces are computed using

the magnitude of the force prediction and the angle of attack of the airfoil. In addition

to the ideal aerodynamic forces, a simple quasi–steady drag polar viscous correction

was implemented post solution. This was added to the model in order to ensure

that adversely high angles of attack or velocities did not provide unrealistically high

thrust values. The low–fidelity code takes three design variables: a spring constant, a

flapping frequency, and a flapping amplitude. Only one flapping harmonic is included.

Figure 6-5 shows the flapping motion of the wing and the resultant forces. The

low–fidelity code requires approximately 20ms on a 2.4 GHz desktop workstation to

evaluate a single design.

6.2.4 Results

Two methods were run: a single–fidelity SQP method as a benchmark, and the

SQP–like multifidelity method with corrected space mapping. As in the previous

problem, the gradients of the objectives and of the constraints were computed using

centered finite differences. The function evaluations required for these finite–difference

121

0 1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x−Position [m]

y
−

P
o

s
it
io

n
 [

m
]

h(t)
F

y
(t)

F
x
(t)

α(t)

Figure 6-5: Results of the low–fidelity analysis of a flapping wing, showing the airfoil
position, angle of attack, and resultant forces in the x and y directions.

122

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

High−fidelity Function Evaluations

C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Single Fidelity

Multifidelity

Figure 6-6: Objective function value and constraint violation for the flapping–wing
problem, for the single–fidelity method and SQP–like multifidelity method with cor-
rected space mapping.

123

calculations are included in the total function count. The methods converged to two

different local minima. The Karush–Kuhn–Tucker condition was satisfied at both

minima. This result highlights the point that the multifidelity method is guaranteed

to converge to an optimum of the high–fidelity problem, but not necessarily the

global optimum nor the same — possibly local — optimum found by the single–

fidelity method. For both methods, the amplitude of the first harmonic (that is, the

flapping motion at the base frequency) was set to its upper bound. No other design

parameters were set to their bounds.

The flapping frequencies were similar: 11.46 rad/s for the single–fidelity method

and 13.41 rad/s for the multifidelity method. These correspond to Strouhal numbers

of 0.218 and 0.256 respectively. These are both within the 0.2 to 0.4 range found in

birds, bats, and fish in nature [69, 68]. The multifidelity method found a design with

an input power coefficient of 0.9049 while the single–fidelity method found a design

with an input power coefficient of 0.8966. The difference between the two values is

very small and below the predicted accuracy of the high–fidelity analysis.

The objective function and constraint violations are shown in Figure 6-6, with

the number of high–fidelity function calls on the x–axis. Using the criterion that

the constraint violation is less than 10−6 and the objective function is within 10−6

of its ultimate converged value, the single fidelity method required 3125 high–fidelity

function calls and the multifidelity method required 1617. Since they did not converge

to the same minimum, it is difficult to make a direct comparison between the numbers.

The multifidelity method found a solution with a slightly higher objective function

value with 48.2% less high–fidelity function evaluations. The multifidelity method

required 77 hours to run while the single–fidelity method required 140 hours. This is

a savings of approximately 45% in time. The difference in ratios between the function

evaluation metric and the time metric are explained by the low–fidelity function calls

used by the multifidelity method and the additional multifidelity algorithm overhead.

124

Chapter 7

Conclusion

7.1 Thesis Summary

This thesis developed and demonstrated new methods of reducing the computational

cost of numerical optimization of a high–fidelity computational model when a less

costly model exists and uses a different set of design variables. To that purpose, it

extended multifidelity optimization methods to become capable of solving variable–

parameterization — and specifically variable–dimensional — problems.

Chapter 2 presented existing TRMM methods for optimization, and expanded

their applicability to variable–parameterization problems. It also presented a new

TRMM method for optimization — including proof of convergence — that solves

the trust–region subproblem in the low–fidelity space. Chapter 3 detailed the four

methods used to perform mapping between variable–parameterization spaces: space

mapping, corrected space mapping, POD mapping, and a hybrid space mapping/POD

method. Chapter 4 contained the results of these new methods applied to two un-

constrained problems — the Rosenbrock problem and an airfoil design problem —

and compared the results to existing methods applied to the same problems. Chapter

5 presented detailed results of these new methods applied to the Barnes problem,

including a comparison against existing methods. It also presented the results of

varying the constraint–management method and a number of algorithm parameters.

Chapter 6 showed the results of these new methods applied to two constrained de-

125

sign problems — the planform design of a wing and a flapping flight problem — and

compares the results to existing methods applied to the same problems.

7.2 Conclusions

The new mapping methods shown in this thesis and the new variable–parameterization

TRMM framework have accomplished their goal: computational savings for variable–

parameterization problems. The TRMM framework has similar computational sav-

ings using either corrected space mapping or POD mapping. Corrected space mapping

is more straightforward to implement, since it does not require the generation of train-

ing pairs required by POD mapping. Conversely, POD mapping has lower algorithm

overhead. Therefore, if training pairs are available or trivial to generate, POD map-

ping is preferred. Otherwise, corrected space mapping is more appropriate. In very

large–scale problems, with large numbers of design variables, either POD mapping or

the hybrid POD/space mapping method should be used, since the algorithm overhead

required by corrected space mapping may negate the computational savings due to

fewer high–fidelity function evaluations.

With regard to limitations, a high–fidelity function evaluation is required at each

trust–region iteration, providing a lower bound on computational costs. Designers

can improve the performance of the method by using experience and judgment to

choose an appropriate initial trust–region radius. This work found that variable–

parameterization problems depend on the TRMM parameters in a similar manner to

other variable–fidelity problems, and that therefore the recommendations of Conn et

al. [22] are appropriate. Further, the methods discussed in this work are gradient–

based methods. The computation of gradients may be impossible or expensive in some

problems. Alternatives are gradient–free methods such as pattern–search methods.

A number of large, significant variable–parameterization problems exist. One ex-

ample is that considered in the introduction to this thesis: the supersonic business jet

studied by Choi et al. [21]. In this example, there exists a significantly less expensive

low–fidelity model using a different set of design variables from those used by the

126

high–fidelity model. In addition, adjoint–based gradient calculations have been im-

plemented on the problem, making high–fidelity gradients available at approximately

the cost of a high–fidelity function evaluation. On this and similar problems, the

methods presented in this work should yield significant computational savings.

Moreover, the mapping methods developed herein have broader uses in design,

outside of formal optimization methods. Working with various analysis models and

parameterizations is an integral part of the design process, and this mapping method-

ology provides a systematic way to achieve links between the models computationally.

7.3 Contributions

This thesis contains the following contributions:

1. Developed new techniques for mapping between analysis models with different

design parameterizations.

2. Presented a new, provably–convergent optimization framework for multifidelity

models with variable parameterizations for both unconstrained and constrained

optimization problems.

3. Compared these new mapping methods and optimization techniques with one

another and existing techniques.

4. Demonstrated these new mapping methods and optimization techniques on en-

gineering design problems within the context of aerospace engineering.

For unconstrained problems, the new mapping methods combined with TRMM

achieved consistent computational savings, as measured by high–fidelity function

calls. On an airfoil design problem, TRMM with POD mapping achieved 40% savings

while TRMM with corrected space mapping achieved 12% savings. On the Barnes

problem, a two–dimensional analytic constrained problem, the SQP–like and direct

surrogate optimization methods achieved consistent computational savings, while the

127

augmented Lagrangian methods and MAESTRO did not. On a constrained wing de-

sign problem, TRMM with corrected space mapping achieved 76% savings. Finally,

on a bat flight design problem, it achieved approximately 45% time savings, although

it converged to a different local minimum than the benchmark did.

7.4 Future Work

One avenue of interest is using more than two models, each of different fidelity, within

this framework. While much of the literature outlines that the trust–region method is

infinitely nestable and applicable to any number of models [6], there is little published

work with more than two models. A first step would be to extend this work to a

three–model hierarchy.

A related concept is that of adaptive–fidelity methods. In this method, instead of

— or in addition to — changing the size of the trust region as in TRMM, the fidelity

of the model could be changed depending on the model’s predictive performance.

The use of variable–parameterization models, in which the number of design variables

change as needed, is one way to nearly infinitely vary the fidelity of an existing model.

For instance, the design variables for a wing design could be the positions of points on

the surface of the wing. When needed, the number of points, and therefore the number

of design variables, would be increased. The mapping methods demonstrated in this

thesis would then be used to link the resulting variable–parameterization models.

This would borrow some ideas from the multigrid method of computational fluid

mechanics.

A further area of interest is the exploitation of the structure of multidisciplinary

problems. In some cases, there exist separate low–fidelity models of the same system

in two disciplines and one high–fidelity model that couples the disciplines. For exam-

ple, there may be a high–fidelity model that calculates coupled aerodynamic forces

and structural displacements and two low–fidelity models that apply each discipline

independently. Variable–fidelity models could be developed to exploit the structure

of these problems in order to accelerate optimization of the coupled problem. One

128

proposal is to use separate trust–regions for the low–fidelity models of each of the

disciplines, based on the performance of that model.

The POD method described in this thesis has one significant limitation: it re-

quires the manual generation of training pairs by the designer. It would be preferable

if the training pairs could be automatically generated. One method for achieving au-

tomatic training–pair generation is the application of space–mapping–like parameter

extraction to the models. This requires the solution of an optimization problem for

the generation of each training pair.

The POD method is currently static. That is, it uses one mapping — based

on one set of training pairs — throughout the optimization process. However, it is

possible that the original mapping becomes less useful as the optimization progresses.

If the automatic generation of training pairs described above is achieved, the TRMM

algorithm could be modified to recognize when the mapping is becoming poor, and

generate a new mapping. It would then use new training pairs within the local region

of the current iterate, making the mapping locally accurate. The trust–region size

is a potential indicator of the need to create a new mapping, and thus a new set of

training pairs.

129

130

Bibliography

[1] AIAA MDO Technical Committee. AIAA White Paper, 1991.

[2] N. Alexandrov, J.E. Dennis, R.M. Lewis, and V. Torzon. A trust region frame-

work for managing the use of approximation models in optimization. NASA

CR–201735, 1997.

[3] N. M. Alexandrov. Multilevel methods for MDO. In N. M. Alexandrov and M. Y.

Hussaini, editors, Multidisciplinary Design Optimization: State of the Art, pages

79–89. Society for Industrial and Applied Mathematics, Philadelphia, 1997.

[4] N. M. Alexandrov. On managing the use of surrogates in general nonlinear

optimization, September 1998. AIAA Paper 98–4798.

[5] N. M. Alexandrov, E.J. Nielsen, R.M. Lewis, and W.K. Anderson. First–order

model management with variable–fidelity physics applied to multi–element airfoil

optimization. In Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization, Long Beach, CA, September

2000. AIAA Paper 2000–4886.

[6] N.M. Alexandrov, J.E. Dennis, R.M. Lewis, and V. Torczon. A trust–region

framework for managing the use of approximation models in optimization. Struc-

tural and Multidisciplinary Optimization, 15(1):16–23, February 1998.

[7] N.M. Alexandrov, R.M. Lewis, C.R. Gumbert, L.L. Green, and P.A. Newman.

Optimization with variable–fidelity models applied to wing design. In Proceedings

131

of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2000.

AIAA 2000–0841.

[8] J.D. Anderson. Fundamentals of Aerodynamics, 2nd ed. McGraw–Hill, 1991.

[9] H. Ashley and M. Landahl. Aerodynamics of Wings and Bodies. Dover Publica-

tions, New York, 1985.

[10] C. Audet and J.E. Dennis. A pattern search filter method for nonlinear pro-

gramming without derivatives. SIAM Journal of Optimization, 14(4):980–1010,

2004.

[11] C. Audet, J.E. Dennis, D. W. Moore, A. Booker, and P. D. Frank. A

surrogate–model–based method for constrained optimization. In Proceedings of

the 8th AIAA/USAF/NASA/ASSMO Symposium on Multidisciplinary Analysis

and Optimization, Long Beach, CA, Sept. 6–8 2000. AIAA Paper 2000–4891.

[12] M. H. Bakr, J. W. Bandler, N. Georgieva, and K. Madsen. A hybrid aggressive

space mapping algorithm for EM optimization. IEEE MTT–S International

Microwave Symposium Digest, 1:265–268, 1999.

[13] J.W. Bandler, R.M. Biernacki, and S.H. Chen. Fully automated space mapping

optimization of 3D structures. In Proceedings of the IEEE MTT–S International

Microwave Symposium, pages 753–756, San Francisco, CA, June 1996.

[14] J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers.

Space mapping technique for electromagnetic optimization. IEEE Transactions

on Microwave Theory and Techniques, 42:2536–2544, 1994.

[15] J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen. Elec-

tromagnetic optimization exploiting aggressive space mapping. IEEE Transac-

tions on Microwave Theory and Techniques, 43:2874–2882, 1995.

[16] G.K. Barnes. Master’s thesis, The University of Texas, Austin, Texas, 1967.

132

[17] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint. CUTE: Constrained

and Unconstrained Testing Environment. ACM Transactions on Mathematical

Software, 21(1):123–160, 1995.

[18] A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Tros-

set. A rigorous framework for optimization of expensive functions by surrogates.

Structural Optimization, 17:1–13, 1999.

[19] C.G. Broyden. A class of methods for solving nonlinear simultaneous equations.

Mathematical Computation, 19:577–593, 1965.

[20] T. Bui-Thanh, M. Damodaran, and K. Willcox. Aerodynamic data reconstruc-

tion and inverse design using proper orthogonal decomposition. AIAA Journal,

42(8):1505–1516, August 2004.

[21] S. Choi, J. Alonso, S. Kim, and I. Kroo. Two–level multi–fidelity design opti-

mization studies for supersonic jets. In 43rd AIAA Aerospace Sciences Meeting

and Exhibit, Reno, NV, January 2005. AIAA Paper 2005–531.

[22] A. R. Conn, N. I.M. Gould, and P. L. Toint. Trust–Region Methods. MPS/SIAM

Series on Optimization. Society for Interactive and Applied Mathematics,

Philadelphia, 2000.

[23] J. E. Dennis. A brief introduction to quasi–Newton methods. In Numerical

Analysis, Proceedings of Symposia in Applied Mathematics 22, Providence, RI,

USA, 1978. American Mathematical Society.

[24] M. Drela. XFOIL: An analysis and design system for low Reynolds number

airfoils. In T.J. Mueller, editor, Low Reynolds number aerodynamics : proceedings

of the conference, Notre Dame, Indiana. Springer–Verlag, June 1989.

[25] M. Drela and M.B. Giles. Viscous–inviscid analysis of transonic and low Reynolds

number airfoils. AIAA Journal, 25(10):1347–1355, October 1987.

133

[26] M. El-Alem. A global convergence theory for Dennis, El–Alem, and Maciel’s

class of trust–region algorithms for constrained optimization without assuming

regularity. Siam Journal on Optimization, 9(4):965–990, 1999.

[27] M. Eldred, S. Giunta, and S. Collis. Second–order corrections for surrogate–based

optimization with model hierarchies. In Proceedings of the 10th AIAA/ISSMO

Multidisciplinary analysis and optimization conference, Albany, New York, Aug

30. – Sept. 1 2004. AIAA.

[28] M. S. Eldred and D. M. Dunlavy. Formulations for surrogate–based optimiza-

tion with data fit, multifidelity, and reduced–order models. In Proceedings of

the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,

Portsmouth, VA, September 2006. AIAA paper 2006–7000.

[29] R. Eppler and D.M. Somers. Low speed airfoil design and analysis, advanced

technology airfoil research – volume I. NASA CP 2045, 1979.

[30] R. Everson and L. Sirovich. The Karhunen–Loève Procedure for Gappy Data.

Journal of the Optical Society of America, 12(8):1657–1664, 1995.

[31] R. Fletcher, S. Leyffer, and P. L. Toint. On the global convergence of a filter–SQP

algorithm. SIAM Journal of Optimization, 13(1):44–50, 2002.

[32] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of an SLP–

filter algorithm. Technical Report 98/13, 1998.

[33] A. I.J. Forrester, N. W. Bressloff, and A. J. Keane. Optimization using surro-

gate models and partially converged computational fluid dynamics simulations.

Proceedings of the Royal Society A, 462:2177–2204, March 2000.

[34] J. Giesing and J. Barthelemy. A summary of industry MDO applications and

needs. AIAA White Paper, 1998.

[35] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison–Wesley, Reading, Massachusetts, 1989.

134

[36] D. Goldfarb. A family of variable metric methods derived by variational means.

Mathematics of Computation, 24:23–26, 1970.

[37] S. Gratton, A. Sartnaer, and Ph. L. Toint. Recursive trust–region methods for

multiscale nonlinear optimization (part1): Global convergence and complexity.

Technical report, FUNDP, Namur (B), 2004.

[38] B. Grossman, R.T. Haftka, P.-J. Hao, D. Polen, M. Rais-Rohani, and

J. Sobieszczanski-Sobieski. Integrated aerodynamic and structural design of a

transport wing. Journal of Aircraft, 27:1050–1056, 1990.

[39] A. Grothey and K. McKinnon. A superlinearly convergent trust region bundle

method. Technical report, Department of Mathematics and Statistics, University

of Edinburgh, December 1998.

[40] R.T. Haftka, B. Grossman, W.M. Eppard, P.J. Kao, and D. Polen. Efficient

optimization of integrated aerodynamic–structural design. International Journal

of Numerical Methods in Engineering, 28:593–607, 1989.

[41] K.C. Hall, S.A. Pigott, and S.R. Hall. Power requirements for large–amplitude

flapping flight. Journal of Aircraft, 35(3):352–361, 1998.

[42] K.A. Harper, M.D. Berkemeier, and S.M. Grace. Decreasing the energy costs of

swimming robots through passive elastic elements. In Proceedings of the 1997

IEEE International Conference on Robotics and Automation, 1997.

[43] R.M. Hicks and P.A. Henne. Wing design by numerical optimization. Journal

of Aircraft, 15(7):407–412, July 1978.

[44] D.M Himmelblau. Applied Nonlinear Programming. McGraw Hill, 1972.

[45] P. J. Holmes, J. L. Lumley, G. Berkooz, J. C. Mattingly, and R. W. Wittenberg.

Low–dimensional models of coherent structures in turbulence. Physics Reports,

287(4):337–384, 1997.

135

[46] J. Katz and A. Plotkin. Low–Speed Aerodynamics. Cambridge University Press,

Cambridge, second edition, 2001.

[47] S.A. Kazarlis, S.E. Papadakis, and J.B. Theocharis. Microgenetic algorithms as

generalized hill–climbing operators for GA optimization. IEEE Transactions on

Evolutionary Computation, 5(3):204–217, 2001.

[48] I. Kroo, S. Altus, R. Braun, P. Gage, and J. Sobieszczanski-Sobieski. Multidis-

ciplinary optimization methods for aircraft preliminary design. In Proceedings

of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analy-

sis and Optimization, volume 1, pages 697–707, Panama City Beach, FL, 1994.

AIAA Paper 94–4325.

[49] C.L. Lawson and R.J. Hanson. Solving Least–Squares Problems, page 161.

Prentice–Hall, 1974.

[50] R. M. Lewis. A trust region framework for managing approximation mod-

els in engineering optimization. AIAA paper 96–4101, presented at the Sixth

AIAA/NASA/ISSMO Symposium on Multidisplinary Analysis and Design,

Bellevue, Washington, 1996.

[51] K. Madsen and J. Søndergaard. Convergence of hybrid space mapping algo-

rithms. Optimization and Engineering, 5:145–156, 2004.

[52] L. Morino and C.C. Kuo. Subsonic potential aerodynamics for complex config-

urations: A general theory. AIAA Journal, 12(2):191–197, 1974.

[53] T.J. Mueller, editor. Fixed and Flapping Wing Aerodynamics for Micro Air

Vehicles. AIAA Progress in Aeronautics and Astronautics, Reston, VA, 2001.

[54] V. Perez, M. Eldred, and J. Renaud. Solving the infeasible trust–region problem

using approximations. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, Albany, New York, August 2004. AIAA

Paper 2004–4312.

136

[55] V.M. Perez, J. E. Renaud, and L. T. Watson. Adaptive experimental design

for construction of response surface approximations. In Proceedings of the 42nd

AIAA/ASME/ASCE/AHS/ASC Structures, Sttructural Dynamics, and Materi-

als Conference and Exhibit, Seattle, WA, April 16–19 2001. AIAA=2001–1622.

[56] V.M. Perez, J.E. Renaud, and L.T. Watson. Homotopy curve tracking

in approximate interior point optimization. In Proceedings of the 44th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-

als Conference, Norfolk, VA, April 2003. AIAA–2003–1670.

[57] M. J. D. Powell. A new algorithm for unconstrained optimization. pages 31–65.

[58] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K.

Tucker. Surrogate–based analysis and optimization. Progress in Aerospace Sci-

ences, 41(1):1–28, January 2005.

[59] J.F. Rodriguez, J.E. Renaud, and L.T. Watson. Convergence of trust region aug-

mented Lagrangian methods using variable fidelity approximation data. Struc-

tural Optimization, 15:121–156, 1998.

[60] J.F. Rodriguez, J.E. Renaud, and L.T. Watson. Trust region augmented La-

grangian methods for sequential response surface approximation and optimiza-

tion. Journal of Mechanical Design, 120(1):58–66, March 1998.

[61] H.H. Rosenbrock. An automatic method for finding the greatest or least value if

a function. Computer Journal, 3:175–184, 1960.

[62] S. J. Sadjadi and K. Ponnambalam. Advances in trust region algorithms for

constrained optimization. Applied Numerical Mathematics, 29(3):423–443, 1999.

[63] Y.-W. Shang and Y.-H. Qiu. A note on the extended Rosenbrock function.

Evolutionary Computation, 14(1):119–126, 2006.

[64] D.F. Shanno. Conditioning of quasi–Newton methods for function minimization.

Mathematics of Computation, 24:647–656, 1970.

137

[65] L. Sirovich. Turbulence and the Dynamics of Coherent Structures. Part 1 :

Coherent Structures. Quarterly of Applied Mathematics, 45(3):561–571, October

1987.

[66] J. Sobieszczanski-Sobieski and I. Kroo. Aircraft design using collaborative opti-

mization. AIAA Paper 96–0715, 1996.

[67] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting

in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[68] G.K. Taylor, R.L. Nudda, and A.L.R. Thomas. Flying and swimming animals

cruise at a Strouhal number tuned for high power efficiency. Nature, pages 707–

711, October 2003.

[69] M.S. Triantafyllou, G.S. Triantafyllou, and R. Gopalkrishnan. Wake mechanics

for thrust generation in oscillating foils. Physics of Fluids A, 3(12):2835–2837,

1991.

[70] G. Venter, R.T. Haftka, and Jr. J.H. Starnes. Construction of response sur-

face approximations for design optimization. AIAA Journal, 36(12):2242–2249,

December 1998.

[71] Z.J. Wang. Vortex shedding and optimal flapping flight. Journal of Fluid Me-

chanics, 410(323), 2000.

[72] X. Yao and Y. Liu. Evolutionary programming made faster. IEEE Transactions

on Evolutionary Computation, 3(2):82–102, 1999.

[73] Y. Yuan. A review of trust region algorithms for optimization. Technical Report

ICM-99-038, 1999.

138

