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Numerical simulation models to support decision-making and policy-making processes are often complex,

involving many disciplines, many inputs, and long computation times. Inputs to such models are inherently

uncertain, leading to uncertainty in model outputs. Characterizing, propagating, and analyzing this uncertainty is

critical both to model development and to the effective application of model results in a decision-making setting;

however, the many thousands of model evaluations required to sample the uncertainty space (e.g., via Monte Carlo

sampling) present an intractable computational burden. This paper presents a novel surrogate modeling

methodology designed specifically for propagating uncertainty from model inputs to model outputs and for

performing a global sensitivity analysis, which characterizes the contributions of uncertainties in model inputs to

output variance, while maintaining the quantitative rigor of the analysis by providing confidence intervals on

surrogate predictions. The approach is developed for a general class of models and is demonstrated on an aircraft

emissions prediction model that is being developed and applied to support aviation environmental policy-making.

The results demonstrate how the confidence intervals on surrogate predictions can be used to balance the tradeoff

between computation time and uncertainty in the estimation of the statistical outputs of interest.

Nomenclature

B = Borel � field
D = output variance
Di = single-factor partial variance for factor i
E�yk� = expected value of NOx emissions from operation

k, g
f = any Borel-measurable function
G = group of inputs of interest
g = emissions index of NOx, g NOx=kg fuel
N = number of model evaluations in a Monte Carlo

simulation
N ��; �� = normal distribution with mean, �, and variance �
No = total number of aircraft emissions module

operations
Ns = number of flight segments in an operation
n = dimension of the input space
no = number of operations in the aircraft emissions

module surrogate model
O = subset of no operations in surrogate model
P = probability measure
Q = subset of Nq random variables in generic

surrogate model
q = fuel-burn input, kg
REINOx = reference emissions index of oxides of nitrogen,

gNOx=kg fuel
r = temperature input, K
Si = main-effect sensitivity index for factor i
s = pressure input, N=m2

t = relative humidity input

u = fuel flow input, kg=s
v = REINOx input, gNOx=kg fuel
x = generic vector of random variables
xi = random variable that defines input factor i
xmi = mth sample from the random variable xi
yk = NOx emissions produced by operation k, g
ykl = NOx emissions produced by flight segment l of

operation k, g
Y = generic output of interest
ytot = total NOx emissions, g
zk = generic kth constituent part of a model
�E = expected value of the distribution of operation-level

NOx emissions expected values, g
�E�zk � = expected value of the distribution of expected

values of the zk
�var�zk� = expected value of the distribution of variances of

the zk
��2 = expected value of the distribution of operation-level

NOx emissions variances, gm2

�2E = variance of the distribution of operation-level NOx

emissions expected values, gm2

�2E�zk � = variance of the distribution of expected values of zk
�2var�zk� = variance of the distribution of variances of the zk
�2yk = variance of NOx emissions from operation k, gm2

�2
�2

= variance of the distribution of operation-level NOx

emissions variances, gm4

�i = total-effect sensitivity index for factor i

I. Introduction

N UMERICAL simulation models to support decision-making
and policy-making processes, while becoming increasingly

widespread, typically have uncertainty associated with their inputs,
leading to uncertainty in model outputs. Effective application of
model results to decision-making and in support of model develop-
ment require proper characterization, propagation, and analysis of
that uncertainty. The process of propagating the uncertainty from
inputs to outputs, for example via Monte Carlo simulation, could
require many thousands of model evaluations, thus presenting an
intractable computational burden. Here, we present a novel surrogate
modeling methodology based on invoking the central limit theorem,
which is designed specifically for propagating uncertainty from
model inputs tomodel outputs and for performing a global sensitivity
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analysis, which characterizes the contributions of uncertainties in
model inputs to output variance, while maintaining the quantitative
rigor of the analysis by providing confidence intervals on surrogate
predictions.

Our approach is developed for a general class of models where the
application of uncertainty propagation and global sensitivity analysis
on a full model is computationally impractical, and demonstrated on
the specific case of the aircraft emissions model (AEM) of the
Aviation Environmental Design Tool (AEDT). The computational
models of AEDT are being developed and applied to support avia-
tion environmental policy-making by providing the capability to
characterize and quantify interdependencies among aviation-related
noise and emissions, impacts on health andwelfare, and industry and
consumer costs, under different policy, technology, operational, and
market scenarios. A key priority is to inform the analyses conducted
by these tools with associated uncertainty from the inputs and
assumptions used in the analysis process. The scale and complexity
of these analyses are immense; for example, a single simulation of a
one-year analysis involves over 30million flight operations with 350
aircraft types and thousands of inputs, analyzed with computation-
ally intensive models spanning airline economics, environmental
economics, aircraft operations, aircraft performance and emissions,
noise, local air quality, and global climate. Thus, the propagation and
analysis of uncertainty in such models with a method such as
Monte Carlo simulation, which in some cases can take several
thousand model evaluations, is computationally impractical.

Surrogatemodels that provide substantial computational speedups
are therefore crucial to the process of uncertainty analysis in tools
such asAEDT.However, quantifying the impacts on the analyses due
to exercising a surrogate in place of the full model is essential to
producing defensible claims in the context of decision-making.
While surrogate modeling methodologies have been successfully
applied in many settings, a key challenge here is the derivation of
surrogate models, and the associated confidence in uncertainty
and sensitivity analyses conducted with the surrogate models, for
large-scale complex system models with high-dimensional input
spaces.

This paper proposes a systematic method to reduce the complexity
and computational cost of a general class of large-scale models in
such a way that input uncertainty may still be quantified and
analyzed. The method is applied to the AEM, which is designed to
estimate global emissions from aviation. Section II presents
background on the uncertainty analysis methods employed, and
describes the structure of the general class of problems considered.
The methodology, described in Sec. III, focuses on the creation of a
hierarchical surrogatemodel for the generalmodel class, by selecting
a small subset of inputs to represent the large-scale complex system.
These representative inputs form a surrogate model with which an
inexpensive computation can be performed in place of the originally
expensive computation. In Sec. IV the method is applied to create
surrogates for theAEM.Wedemonstrate how these surrogates can be
used for both uncertainty and sensitivity analysis with rigorous
confidence intervals on surrogate predictions. Limitations and
additional sources of error are discussed in Sec. V, and conclusions
are drawn in Sec. VI.

II. Background

In the context of numerical simulation tools, uncertainty analysis
encompasses the process of characterizing and analyzing the effects
of uncertainty in model inputs, with a focus on quantitative as-
sessment of the effects on model outputs and thus on the conclusions
drawn from simulation results. Sensitivity analysis studies how
variability in model outputs can be apportioned to sources of
uncertainty in model factors [1]. To carry out uncertainty and
sensitivity analyses for large-scale numerical models requires first an
understanding of the purpose of the analyses and the way in which
quantitative results will be employed for decision-making. Second,
knowledge of the character/structure of the underlying model is
important to determine appropriate analysis methods and for an
appreciation of the associated computational complexity, whichmay

mandate the use of surrogate models. Background on each of these
areas is given in the following subsections.

A. Uncertainty Analysis and Sensitivity Analysis

A detailed overview of both deterministic and statistical methods
for uncertainty and sensitivity analysis of large-scale systems is
presented in [1]. Here, we consider two general applications of
uncertainty and sensitivity analysis. The first is to support decision-
making, for which uncertainty analysis should provide the ability to
compare various scenarios (e.g., different policies, different input
assumptions, etc.) in terms of output means, output variances and
other distributional information that may be used to help make a
decision. The second application is to help further model devel-
opment. In this second case, the primary goal is a sensitivity analysis
that apportions model output variability to model factors [2–4]
to help determine where future research and development efforts
should focus.

The computation of model output means, output variances and
other distributional information in support of uncertainty analysis for
decision-making can be carried out withMonte Carlo simulation.We
consider a general model f�x�, where x� �x1; x2; . . . ; xn�T is the
vector of n inputs to the model. If the model inputs are viewed as
random variables with some associated probability distribution, then
the mean value of the model output can be computed from a
Monte Carlo simulation as

1

N

XN
m�1

f�xm� ! E�f�x�� as N !1 (1)

where N is the number of model evaluations in the Monte Carlo
simulation and xm � �xm1 ; xm2 ; . . . ; xmn �T denotes the mth sample
realization of the random vector x. Convergence of the sample mean
in Eq. (1) to the expected value of f�x� is guaranteed by the law of

large numbers and the convergence rate is 1=
����
N
p

, as given by the
central limit theorem [5]. Output variances and other distributional
quantities can similarly be computed using Monte Carlo simulation
results. The process of computing such quantities requires a large
number of model evaluations, which for computationally intensive
models is in many cases impractical; hence the need for developing
surrogate models for this type of uncertainty analysis.

For model development purposes, global sensitivity analysis is a
rigorous method for quantitatively apportioning output variance [2].
The goal of a global sensitivity analysis is shown notionally in Fig. 1,
where the pie represents the variance in amodel output, which is then
broken out according to factor contributions. The results of a global
sensitivity analysis permit a ranking ofmodel factors that can be used
in different development settings such as factor prioritization for
future research, where the goal is to determine which factors, once
fixedwill cause the largest reduction invariance, and factor fixing, for
which the goal is to identify noninfluential factors that may be fixed
without substantially affecting model outputs [4].

The process of apportioning output variance across model factors
in a global sensitivity analysis can be carried out rigorously by both a
Fourier amplitude sensitivity test (FAST) method, and the Sobol’
method [2,3,6,7]. The FAST method is based on Fourier transforms,
while the Sobol’method uses Monte Carlo simulation. Owing to its
ease of implementation, the Sobol’method is employed in this work.
It should be noted here that other techniques, such as the method of
elementary effects due to Morris [8], can approximate the results of
the FASTand Sobol’methods, and in the case of the Morris method,

Fig. 1 Apportioning output variance.
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provide a good proxy to the total sensitivity index discussed below
[4]. However, in this work we have focused on using rigorous
statistical methods on surrogate models rather than on using
approximate statistical methods on surrogate models or full models.

The Sobol’method for computing global sensitivity indices iswell
developed and in wide use in the sensitivity analysis field,
particularly by the Joint Research Centre of the European Com-
mission [2,4,9]. The method is discussed here in detail because the
surrogate modeling methods developed in Sec. III will make use of
the formulation. The derivation follows the work of Homma and
Saltelli [3].

The Sobol’ method is based on the ANOVA high-dimensional
model representation (ANOVA-HDMR). A high-dimensionalmodel
representation of a function, f�x�, can be written as

f�x� � f0 �
X
i

fi�xi� �
X
i<j

fij�xi; xj� � � � �

� f12;...;n�x1; x2; . . . ; xn� (2)

where f0 is a constant, fi�xi� is a function of only xi, fij�xi; xj� is a
function of only xi and xj, etc. Without any constraints, the
representation of f�x� given by Eq. (2) is not unique; however, it can
be made unique by enforcing the constraintsZ

1

0

fi1 ;...;is�xi1 ; . . . ; xis � dx! � 0; for !� i1; . . . ; is

s� 1; . . . ; n (3)

where the function f�x�, and hence all its components, has been
assumed to be integrable. For simplicity of presentation, the inputs to
the function in Eq. (3) have been defined on the interval [0,1], but this
assumption is not essential to the method. For each s, the indices
i1; . . . ; is in Eq. (3) are all sets of s integers such that
1 � i1 < � � �< is � n. Thus, for s� 1, the constraint (3) applies to
all terms fi in Eq. (2), while for s� 2, the constraint (3) applies to all
terms fij with i < j as in Eq. (2), etc. The application of the
constraint (3) makes the HDMR a unique representation of the
function f�x�, referred to as an ANOVA-HDMR. Integration of f�x�
over all inputs results in

R
f�x� dx� f0, which assuming each input

xi is a uniform random variable on [0,1], is the mean value of the
function f�x�.

The constraint given by Eq. (3) also forces the different
components of f�x� within the ANOVA-HDMR to be orthogonal.
That is, if �i1; . . . ; is� ≠ �j1; . . . ; jl�, thenZ

fi1;...;is �xi1 ; . . . ; xis� 	 fj1;...;jl�xj1 ; . . . ; xjl� dx� 0 (4)

since at least one index is not repeated.
Assuming now that f�x� is square integrable, and therefore all

components within the ANOVA-HDMR are as well, the variance of
f�x� is written as

D�
Z
f�x�2 dx 
 f20 (5)

and partial variances are defined as

Di1 ;...;is
�
Z
fi1 ;...;is�xi1 ; . . . ; xis�2 dxi1 ; . . . ; dxis (6)

Given the ANOVA-HDMR for some f�x�, we square and then
integrate both sides of Eq. (2) and employ the orthogonality
constraint to arrive atZ

f�x�2 dx� f20 �
X
i

Di �
X
i<j

Dij � � � � �D12;...;n (7)

which implies

D�
X
i

Di �
X
i<j

Dij � � � � �D12;...;n (8)

This is precisely the notion shown in Fig. 1.

Global sensitivity indices are defined as

Si1;...;is �
Di1;...;is

D
; s� 1; . . . ; n (9)

The sum of all global sensitivities of this form for a given function is
unity. Global sensitivity indices with only one subscript (e.g., Si), are
called main-effect sensitivities, and those with multiple subscripts
(e.g., Si;j, Si;j;k, etc.), are called interaction-effect sensitivities. The
sum of a factor’s main-effect global sensitivity and all interaction-
effect sensitivities that involve that factor gives the total-effect
sensitivity index, �, which is defined for input factor i as

�i � Si � Si;ic (10)

where Si is the main-effect sensitivity to factor i, and Si;ic is the sum
of the sensitivity indices of all interaction effects that include factor i.
Since the sum of all unique sensitivity indices is unity, we have that

�i � Si � Si;ic � 1 
 Sic (11)

where Sic is the sum of the sensitivity indices for all main effects and
interactions effects that do not involve factor i. Since interaction
effects will be counted for each factor involved in them, �i�i � 1.

The total-effect sensitivity indices in Eq. (11) can be computed via
Monte Carlo simulation as follows [3], where hat quantities denote
estimates of the corresponding true quantities. Here, it should be
noted that the computation of the partial variances with Monte Carlo
simulation proceeds directly with the function f�x� and does not
require explicit knowledge of the functions on the right-hand side of
Eq. (2). The estimate of the mean f0 is computed as

f̂ 0 �
1

N

XN
m�1

f�xm� (12)

while the estimate of the variance D is

D̂� 1

N

XN
m�1

f�xm�2 
 f̂20 (13)

The single-factor partial variance is then computed for factor i by
resampling all factors except factor i:

D̂i �
1

N

XN
m�1

f��xm1 ; . . . ; xmi ; . . . ; xmn �T�f�� ~xm1 ; . . . ; xmi ; . . . ; ~xmn �T�


 f̂20; i� 1; . . . ; n (14)

where ~xmj denotes a different sample of factor xj. The estimate of the

variance due to all factors except factor i (which includes the sum of
all single-factor and interaction-effect partial variances that do not

include factor i) is denoted as D̂ic and is computed by

D̂ic �
1

N

XN
m�1

f��xm1 ; . . . ; xmi ; . . . ; xmn �T�f��xm1 ; . . . ; ~xmi ; . . . ; xmn �T�


 f̂20 (15)

where now just factor i is resampled. Finally, computing Ŝic �
D̂ic=D̂ and applying Eq. (11), we obtain the desired total-effect
sensitivity index.

The main-effect sensitivity indices Si may be used for factor
prioritization by ranking inputs according to their main-effect
indices,whichgive thepercentageof howmuchoutput variability can
be expected to be eliminated by fixing a particular input somewhere
on its domain. The total-effect sensitivity indices �i may be used for
factor fixing, since a low total-effect index reveals a given input has a
smallmain effect andalsodoesnot takepart in substantial interactions
amongother inputs. Forn inputs, the calculation of sensitivity indices
requires �2n� 1� Monte Carlo simulations (each with N model
evaluations) if both the main-effect and total-effect indices are
desired. Thus, like uncertainty analysis for decision-making,
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sensitivity analysis of large-scale models for development purposes
will in most situations require surrogate models.

B. Surrogate Modeling

Surrogate models can be categorized into three different classes:
data-fit models, reduced-order models, and hierarchical models [10].
Data-fit models are generated using interpolation or regression of
simulation data from the input/output relationships in the high-
fidelity model [10,11]. The primary challenge in adopting this
surrogate modeling strategy for large-scale complex system models
is the “curse of dimensionality”when the number of inputs to amodel
is large and design of experiment techniques must be applied with
care in order to balance the computational cost of the required
simulations with coverage of the input space. Reduced-order models
are typically constructed for systems described by partial differential
equations or large sets of ordinary differential equations [12].
Derivation of reduced-order models relies on the knowledge of the
governing equations and are thus not suitable to systems for which
the governing equations are unknown or empirically based.
Hierarchical surrogate models, also known as variable-fidelity
models, employ simplified mathematical models such as coarser
grids in finite element models [13] and models with simplified
physics [14–16].

The application of a particular surrogate modeling strategy
depends both on what computational tasks are to be performed, and
on the underlying structure of the model. In some cases, nothing will
be known about a given model, and strategies that perform better in
black-box situations, such as data-fit methods should be used. In
other cases, everything will be known about the governing equations
of a given model, and reduced-order models can be derived using
projection-based approaches. In this paper, we consider models of a
general form where the outputs of interest are computed as a sum of
many constituent parts. As described in the next subsection, this class
of models has applications in engineering and logistics systems. For
such models, existing surrogate modeling methods cannot be
applied.While the structure of the model is known, the input space is
too large to use a projection-based model reduction approach or a
data-fit method.

C. Generalized Model Form

Consider a probability triple (R, B, P), where R is the sample
space, here the set of real numbers, B is the � field (here, the Borel
� field), and P is a probability measure. Also, consider a class of
B-measurable functions, f. The class of models we consider in this
work are of the form

Y �
XN
k�1

zk �
XN
k�1

fk�x� (16)

where Y is an output of interest computed via a sum over N
constituent parts, which are represented by the zk that may
themselves be functions of random inputs, zk � fk�x�, where
x� �x1; x2; . . . ; xn�T is a vector of n independent random inputs,
and fk 2 f. Because the fk are all B-measurable, the zk and Y are
random variables.

Though the form of Eq. (16) is simple, it is relevant to a broad
range of applications. For example, outputs of the form of Eq. (16)
are common in systems whose performance is computed over many
parts, e.g., emissions or fuel burn summed overmission segments for
a transportation system, system failure time estimated as a sum
of individual component lifetimes, many aspects of wireless
communication, including current fluctuations in tunnel junctions,
diversity schemes, and cochannel interference, profit summed over
products or store locations, or votes summed over polling locations.
In these examples, and in general, it is important to note that the
assumption of independence is an aspect of the modeling. Our
purpose here is to create surrogates for models of the form given by
Eq. (16) so that we may carry out both uncertainty and sensitivity
analyses in a reasonable amount of time while maintaining
quantitative rigor. If independence is assumed when the full model is

exercised, it should be assumed when the surrogate model is used in
place of the full model, since the surrogate is attempting to produce
estimates of results that would be obtained with the full model. The
same sentiment holds when considering the assumption of
randomness.

Simpson et al. [17] present a survey of surrogate modeling
techniques, along with recommendations for selecting a modeling
approach. Theyfind that response surfacemodeling is appropriate for
applications with less than ten input factors, while interpolation-
based methods such as kriging may be suitable for up to 50 input
factors. For our problems of interest, the number of inputs is typically
in the thousands or even millions. Of existing surrogate modeling
methods, only neural networks are even remotely possible for such a
large number of inputs. However, as discussed in [17], neural
networks are computationally expensive to create and are best suited
for deterministic problems. More recent advances in surrogate
modeling methods, such as the pseudo response surface method-
ology [18], address some of the computational challenges associated
with high-dimensional input spaces by requiring the surrogate to be
accurate only in some regions of the design space (e.g., near the
Pareto front). However, even with these advances, surrogate
modeling for systems with thousands or millions of inputs remains
out of reach. In the next section we present a hierarchical surrogate
modeling approach that addresses this challenge for models of the
form given by Eq. (16).

III. Surrogate Modeling Methodology with
Quantified Confidence Intervals

Here, we propose a hierarchical surrogate modeling approach
targeted at uncertainty analysis and sensitivity analysis applications
for the class of models described in the previous section. However, if
the uncertainty associated with the use of a surrogate model in place
of a fullmodel is not properly quantified, the usefulness of thevarious
uncertainty analyses will be limited. Thus, one of the key objectives
of this work is to quantify the effects of using a surrogate model to
perform uncertainty and sensitivity analyses. The methods used to
achieve this goal for the general class of models given by Eq. (16) are
discussed in the following subsections.

A. Hierarchical Surrogate Modeling Approach

For the class of models given by Eq. (16), a natural representative
for building a hierarchical surrogate is a single random variable, zk.
Our surrogate modeling approach is thus to approximate the output
of interest, Y, using a subset of the zk. For the case of a general model
of the form of Eq. (16), if the zk are such that

max
c�N

var�zc�
�N
k�1var�zk�

! 0 as N !1 (17)

where c 2 f1; 2; . . . ; Ng, and N is the number of constituent parts
used in the summation given in Eq. (16), then according to the central
limit theorem,

Y!d N
�XN
k�1

E�zk�;
XN
k�1

var�zk�
�

as N !1 (18)

where the convergence is in distribution, N ��; �� is a normal
distribution with mean � and variance �, and the constraint given by
Eq. (17) is referred to as the Lyapunov condition [19]. Though
Eq. (18) states that the convergence to a normal distribution occurs as
N !1, it is common in statistical practice to assume Y may be
appropriatelymodeledwith a normal distributionwhenN � 30 [20].
The constraint given by Eq. (17) can be met, for example, by any set
of zk such that var�zk�<1 for k� 1; 2; . . . ; N and �N

k�1var�zk� is
unbounded as N !1. Although independence was used here to
invoke the central limit theorem, there are othermethods for invoking
the central limit theorem, such asm dependence [21], for situations in
which the independence condition is not met. The application of the
central limit theorem to the general model given in Eq. (16) for both
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uncertainty and sensitivity analyses is discussed in the following
section.

B. Surrogate Modeling for Decision-Making Uncertainty Analysis

As given by Eq. (18), the output of interest, Y, is normally
distributed. To estimate the distribution of Y with a surrogate model,
only estimates of �N

k�1E�zk� and �N
k�1var�zk� are required. We may

estimate these quantities by noting that if we were to compute E�zk�
for every constituent part zk, we could view the resulting set of
expected values as representing a set ofN samples drawn from some
distribution. Thus, the expected value of some zk can be considered
as a sample from a random variable, and can be estimated using a
subset of random variables chosen from the full set. We denote byQ
the subset ofNq random variables chosen randomly from the full set
of N random variables. Then using the law of large numbers,
�N
k�1E�zk� is estimated as N�1=Nq��k2QE�zk�, since

N
1

Nq

X
k2Q

E�zk� ! NE�E�zk�� � N
1

N

XN
k�1

E�zk�

�
XN
k�1

E�zk� as Nq ! N (19)

For the sum of the variances of the zk in Eq. (18), a similar method
is followed to derive an analogous expression for the variance
estimate of Y. Thus, the surrogate model estimate of the output
distribution using the subset Q of Nq random variables to represent
the full N random variables is given by

Ŷ �N
�
N

Nq

X
k2Q

E�zk�;
N

Nq

X
k2Q

var�zk�
�

(20)

where Ŷ is a random variable that is an estimate of the random
variable Y.

In (20), the terms �1=Nq��k2QE�zk� and �1=Nq��k2Qvar�zk�, are
sample means of the distributions of expected values of the zk and of
the variances of the zk, respectively. According to the central limit
theorem, these sample means have the following normal
distributions:

1

Nq

X
k2Q

E�zk� �N
�
�E�zk �;

N 
 Nq
N 
 1

�2E�zk �=Nq

�

1

Nq

X
k2Q

var�zk� �N
�
�var�zk�;

N 
 Nq
N 
 1

�2var�zk�=Nq

�
(21)

where �E�zk � is the expected value of the distribution of expected
values of the zk, �

2
E�zk � is the variance of the distribution of expected

values of zk, �var�zk� is the expected value of the distribution of
variances of the zk, and �

2
var�zk� is the variance of the distribution of

variances of the zk. The �N 
 Nq�=�N 
 1� terms are finite
population correction factors that must be applied since N is finite
and the sampling of Nq random variables from N total random
variables is done without replacement [22].

As noted in Sec. II, a key outcome of an uncertainty analysis
intended to support decision-making is the ability to compare such
quantities as output means and variances. These quantities cannot be
computed exactly using a surrogate model; however, confidence
intervals for these quantities can be rigorously computed since, as
shown in the analysis above, the parameters are normally distributed.
The confidence intervals for the mean and variance of the output Y
can be constructed from

N

Nq

X
k2Q

E�zk� 
 Z�=2

���������������������������������
N 
 Nq
N 
 1

N2

Nq
�2E�zk �

s
< E�Y�< N

Nq

X
k2Q

E�zk�

� Z�=2

���������������������������������
N 
 Nq
N 
 1

N2

Nq
�2E�zk �

s
(22)

and

N

Nq

X
k2Q

var�zk� 
 Z�=2

������������������������������������
N 
 Nq
N 
 1

N2

Nq
�2var�zk�

s
< var�Y�

<
N

Nq

X
k2Q

var�zk� � Z�=2

������������������������������������
N 
 Nq
N 
 1

N2

Nq
�2var�zk�

s
(23)

where Z�=2 is the value of the inverse cumulative distribution
function of a standard normal random variable evaluated at
�1 
 �=2�, where � sets the level of confidence [23]. A typical value
of Z�=2 is 1.96, which corresponds to a 95% confidence interval. In
practice, constructing these confidence intervals requires estimating
the variance of the distribution of the expected values of the zk, �

2
E�zk �,

and the variance of the distribution of the variances of the zk, �
2
var�zk�.

We estimate these parameters using the sample variance for each,
which are calculated from

�̂ 2
E�zk � �

1

Nq 
 1

XNq
k�1
�E�zk� 
 E�zk��2 (24)

�̂ 2
var�zk� �

1

Nq 
 1

XNq
k�1
�var�zk� 
 var�zk��2 (25)

where �̂2E�zk � and �̂
2
var�zk� are the sample variances of �2E�zk � and �

2
var�zk�,

respectively, and E�zk� and var�zk� are the sample means of the
distributions of the expected values and the variances of the zk,
respectively. The estimates, �̂2E�zk � and �̂

2
var�zk�, are then used in

Eqs. (22) and (23). These intervals also require the estimation of
expected values of the random variables zk, E�zk�, and variances,
var�zk�. These parameters, as will be discussed in Sec. IV, are
estimated from a Monte Carlo simulation with a large number of
model evaluations, and thus uncertainty associated with these
estimates is neglected.

As can be seen from Eq. (22), asNq approachesN, the confidence
interval around E�Y� narrows, eventually becoming a single point
when Nq � N. Thus, there is a tradeoff between how many random
variables are considered in the surrogate model and the tightness of
the confidence intervals for the mean and variance of the output Y.

C. Surrogate Modeling for Model Development Sensitivity Analysis

TheANOVA-HDMR for a random variable zk given by f
k�x�may

be written as

zk � fk0 �
X
i

fki �xi� �
X
i<j

fkij�xi; xj� � � � �

� fk12;...;n�x1; x2; . . . ; xn� (26)

which can be squared and integrated, as was done to arrive at Eq. (7),
giving

var �zk� :�
X
i

Dk
i �

X
i<j

Dk
ij � � � � �Dk

12;...;n (27)

whereDk
i is the partial variance of zk due to input xi and the rest of the

terms represent partial variances of zk due to various levels of
interactions between the components of x. Summing over all the zk
gives

Y �
XN
k�1

fk0 �
XN
k�1

X
i

fki �xi� �
XN
k�1

X
i<j

fkij�xi; xj� � � � �

�
XN
k�1

fk12;...;n�x1; x2; . . . ; xn� (28)

At this pointwemayproceed aswedid in Sec. II.A and estimate total-
and main-effect sensitivity indices for each xi. However, the models
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of the form given by Eq. (16) may contain millions of inputs,
rendering computation of sensitivity indices for each input
impractical and of limited use. For suchmodels, it is typical that these
inputs comprise just a few distinct physical quantities. For example,
for the emissions model analyzed in the next section, the inputs
consist of six physical quantities (fuel burn, temperature, pressure,
relative humidity, fuel flow, and reference emission index) which are
defined for each flight segment of each operation in a set of aircraft
flights. A sensitivity analysis could consider the sensitivities of each
of these independently sampled inputs individually, resulting in
millions of sensitivity indices. From a practical standpoint, we are
more interested in determining the sensitivity of model outputs to
groups of inputs. For example, for the nitrous oxide (NOx) emissions
for an aircraft operation, we might wish to compute the contribution
to variance of all fuel-burn inputs for that operation, where each input
is sampled independently across flight segments in the operation.
Alternatively, for the total NOx emissions summed over a set of
operations, wemight wish to compute the contribution to variance of
all fuel-burn inputs for those operations, where again each input is
sampled independently across all flight segments. In this section, we
present the extension of the global sensitivity analysis methodology
to handle such cases for the class of generalmodels given byEq. (16).
Further, application of the central limit theorem,which is permissible
given the additive nature of themodels andANOVA-HDMR, enables
the calculation of confidence intervals around sensitivity indices
computed using the surrogate models in place of the full models.

Consider a case in which we have two physical quantities (type 1
and type 2, e.g., pressure and temperature) within x that we wish to
group. We define the set of physical quantities of type 1 as

G 1 � fxijxi are of type 1g

and the set of physical quantities of type 2 as

G 2 � fxijxi are of type 2g

An ANOVA-HDMR can then be written for Y in terms of the groups
G1 and G2 and their interaction rather than the individual components
of x. The variance of Y can then be written as

var �Y� :� D�DG1
�DG2

�DG1G2
(29)

where DG1
is the variance of Y due to the elements of G1 and their

interactions, DG2
is the variance of Y due to the elements of G2 and

their interactions, and DG1G2
is the variance of Y due to the

interactions involving elements from both G1 and G2. A global
sensitivity analysis may then be carried out to compute total-effect
and main-effect sensitivity indices for the groups. For G1, the total-
effect sensitivity index can be computed as

�G1
� 1 


DGc
1

D
(30)

where DGc
1
is the sum of the variances due to all main-effect terms

that do not involve elements of G1, which here is justDG2
. The main-

effect sensitivity index can be computed as

SG1
�
DG1

D
(31)

Similar expressions may be written for G2.
For the class of models with which we are concerned, which

consist of a summation of N constituent parts as in Eq. (16), it is
typical that particular physical inputs be defined on each part. Thus,
the groups in this casewill each haveN elements. Aswill be shown in
Sec. IV, computation of the sensitivity indices given by Eqs. (30) and
(31) can proceed by performing global sensitivity analyses on the
constituent parts of the model. This enables the creation of
hierarchical surrogate models for global sensitivity analysis in the
form of subsets of constituent parts much like the surrogate models
constructed in Sec. III.B. Confidence intervalsmay be derived for the
sensitivity indices computed using these surrogates, the formulation
of which is given in the following section.

IV. AEM Application and Results

In this section, our approach is applied to the example of
estimating emissions of aircraft flights. We first describe the model
and then present surrogate models for decision-making uncertainty
analysis and model development sensitivity analysis. This is
followed by results from using the surrogate models in place of the
full model for a typical emissions analysis.

A. Aircraft Emissions Model

The AEM is used to calculate emissions inventories of such
pollutants as CO2, CO,NOx, SOx, and many others. The calculation
is done on an operation-by-operation basis, and the emissions
computed for each operation in a given scenario are then aggregated
to produce an emissions inventory. An operation is in turn simulated
on a flight segment-by-segment basis as shown in Fig. 2, where
emissions are calculated for each segment of the operation and then
aggregated to produce the total emissions of the operation.

The AEM inputs considered in our analyses are shown in Table 1,
where each input is defined for each segment of each operation. We
consider the emissions resulting from a total of No operations, each
consisting of Ns flight segments. Thus, the total number of inputs is
given by n� 6NoNs. Table 1 also shows the probability density
functions that are defined for each input on a segment-by-segment
basis. These density functions were arrived at through previous
studies and expert opinions of the Partnership for Air Transportation
Noise andEmissions Reduction (PARTNER).‡The samples from the
density functions are applied as multipliers to default values of the

Fig. 2 AEM segmentation of an aircraft operation; adapted from [25].

‡Data available online at http://web.mit.edu/aeroastro/partner/index.html
[retrieved January 2009].
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various inputs that are specific to aircraft type, engine type, and
geographic location. For triangular distributions, the defining values
are the minimum, mode, and maximum values. For uniform
distributions, the defining values are the minimum and the
maximum.

The outputs of the AEM (global emissions ofNOx, CO,CO2, etc.)
are all computed in a similar manner, and thus the modeling
methodology is developed here only for the NOx output. Other
outputs are treated in an analogous way. The NOx produced for
operation k, yk, is calculated as

yk �
XNs
l�1

qklgkl�rkl; skl; tkl; ukl; vkl� (32)

where qkl is the fuel burn on segment l of operation k, and
gkl�rkl; skl; tkl; ukl; vkl� is the emissions index of NOx (EINOx) on
segment l of operation k, which is calculated using Boeing method 2
[24], with the inputs defined in Table 1, specifically the temperature,
pressure, relative humidity, fuel flow, and reference emissions index
ofNOx (REINOx) for the given segment. The BoeingMethod 2 is an
empirical method for correcting reference emission indices for flight
conditions using fuel flow and atmospheric conditions. The total
NOx output for a set of No operations is then calculated as

ytot �
XNo
k�1

yk �
XNo
k�1

XNs
l�1

qklgkl�rkl; skl; tkl; ukl; vkl� (33)

Since the functions within the AEM are all continuous, and each
input of the AEM is a random variable, each output of the AEM is
also a random variable. Thus, the total NOx output, ytot, can be
thought of as a random sample from the random variable Ytot, for
which confidence intervals and sensitivity indices are desired.

Equation (33) reveals the structure of the AEM once it has been
decomposed by operations. Given that computations are performed
separately on each operation within the AEM, it has the general form
of Eq. (16), where the zk 
 yk,

fk 

XNs
l�1

qklgkl�rkl; skl; tkl; ukl; vkl�

and x 
 �qkl; rkl; skl; tkl; ukl; vkl�. Our surrogate modeling approach
thus amounts to approximating the output of interest, total NOx

emissions, using a subset of flight operations. This is illustrated in
Fig. 3, where it can been seen that the surrogatemodeling approach is
based on reducing the dimension of the input space.

Since the functions within the AEM are all continuous, and each
input of the AEM is a random variable, each single operation output
of the AEM is also a random variable. These random variables are
independent and satisfy the Lyapunov condition [19]; therefore, the
AEM is a member of the general class of models described in
Sec. II.C and the results presented in Sec. III are applicable. Here, it is
noted that, owing to such circumstances as aircraft operating on
similar routes, certain operations in the real-world would encounter
similar environmental factors, such as temperature, pressure, and
humidity, thus causing some dependence in how those factors enter
into emissions estimates, which would lead to some dependence in
the outputs of these operations. However, the AEM does not
currently include these factor dependencies, which implies that the
operation-level outputs of the AEM are completely independent of
each other. Thus, the central limit theorem may be invoked.

B. AEM Surrogate for Decision-Making Uncertainty Analysis

According to the central limit theorem, the output distribution of
total NOx emissions, ytot, is normally distributed since

ytot �
XNo
k�1

yk!
d
N
�XNo
k�1

E�yk�;
XNo
k�1

�2yk

�
as No !1 (34)

where the convergence is in distribution, and N ��; �� is a normal
distribution with mean � and variance �. Typical analyses involving
the AEM calculate emissions inventories for representative days of
operations, forwhichNo � 70; 000, and 1 yr of operations, forwhich
No � 30; 000; 000. As noted in Sec. II.C, to assume normality, No
should be greater than about 30, and thus the number of samples is
much greater than required.

To estimate the distribution of ytot with a surrogate model, only

estimates of �
No
k�1E�yk� and �

No
k�1�

2
yk

are required. As shown in
Sec. III, we may generate a surrogate model estimate of the the total
NOx output distribution using a subset O of no operations to
represent the full No operations as

ŷ tot �N
�
No
no

X
k2O

E�yk�;
No
no

X
k2O
�2yk

�
(35)

In Eq. (35), the terms �1=no��k2OE�yk� and �1=no��k2O�
2
yk
, are

sample means of the distributions of expected values of yk and of the
variances of the yk, respectively. These sample means then have the
following normal distributions:

1

no

X
k2O

E�yk� �N
�
�E;

No 
 no
No 
 1

�2E=no

�

1

no

X
k2O
�2yk �N

�
��2 ;

No 
 no
No 
 1

�2
�2
=no

�
(36)

where�E is the expected value of the distribution of expected values
of the yk, �

2
E is the variance of the distribution of expected values of

yk,��2 is the expected value of the distribution of variances of the yk,
and �2

�2
is the variance of the distribution of variances of the yk.

As given in Sec. III, confidence intervals for themean and variance
of total NOx emissions can be constructed from

No
no

X
k2O

E�yk� 
 Z�=2

������������������������������
No 
 no
No 
 1

N2
o

no
�2E

s
< E�ytot�<

No
no

X
k2O

E�yk�

� Z�=2

������������������������������
No 
 no
No 
 1

N2
o

no
�2E

s
(37)

and

Table 1 AEM inputs and their probability density functions (all

inputs are applied as multipliers to nominal input values)

Input variable Input quantity Distribution type Defining values

x1 :� q Fuel burn Uniform [0.95, 1.05]
x2 :� r Temperature Triangular [0.89, 1.00, 1.11]
x3 :� s Pressure Triangular [0.97, 1.00, 1.03]
x4 :� t Relative humidity Triangular [0.82, 1.00, 1.17]
x5 :� u Fuel flow Uniform [0.95, 1.05]
x6 :� v REINOx Triangular [0.76, 1.00, 1.24]

Fig. 3 The hierarchical surrogate modeling approach achieves a

reduction in computational complexity through a reduction of the input
space. For the AEM, this amounts to selecting a subset of r operations,

denoted by the subscripts, i1; . . . ; ir, over which to estimate the total

emissions.
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No
no

X
k2O
�2yk 
 Z�=2

�������������������������������
No 
 no
No 
 1

N2
o

no
�2
�2

s
< var�ytot�<

No
no

X
k2O
�2yk

� Z�=2

�������������������������������
No 
 no
No 
 1

N2
o

no
�2
�2

s
(38)

As noted in Sec. III, construction of these confidence intervals
requires estimating the variance of the distribution of the expected
values of the yk, �

2
E, and the variance of the distribution of the

variances of the yk, �
2
�2
. We estimate these parameters using the

sample variance for each, which are calculated from

�̂ 2
E �

1

no 
 1

Xno
k�1
�E�yk� 
 E�yk��2 (39)

�̂ 2
�2
� 1

no 
 1

Xno
k�1
��2yk 
 ��2yk �2 (40)

where �̂2E and �̂2
�2

are the sample variances of �2E and �2
�2
,

respectively, and E�yk� and ��2yk are the sample means of the
distributions of the expected values and the variances of the yk,
respectively. The estimates, �̂2E and �̂

2
�2
, are then used in Eqs. (37) and

(38). As will be shown in Sec. IV.D, no is sufficiently large to neglect
the uncertainty associated with these estimates. These intervals also
require the estimation of operation-level expected values E�yk� and
variances �2yk of NOx emissions. These parameters, as will be
discussed in Sec. IV.D, are estimated from aMonte Carlo simulation
with a large number of model evaluations, and thus uncertainty
associated with these estimates is also neglected.

As can be seen from Eq. (37), as no approachesNo, the confidence
interval around E�ytot� narrows, eventually becoming a single point
when no � No. Thus, as mentioned in Sec. III, there is a tradeoff
between how many operations are analyzed in the surrogate model,
and the tightness of the confidence intervals for the mean and
variance of the total NOx. This tradeoff is discussed further in
Secs. IV.D and VI. Results from applying this method to construct
confidence intervals for the mean and variance of the AEM NOx

output are presented in Sec. IV.D.

C. AEM Surrogate for Model Development Sensitivity Analysis

Consider the ANOVA-HDMR for the calculation of the NOx

emissions from a single operation, l:

yk �f0;k �
PNs

l�1 fqkl�qkl� �
PNs

l�1 frkl�rkl� �
PNs

l�1 fskl�skl�

�
XNs
l�1

ftkl�tkl� �
XNs
l�1

fukl�ukl� �
XNs
l�1

fvkl�vkl�

� interaction terms (41)

wherewe use the input variable notation defined in Table 1. The term

�
Ns
l�1fqkl�qkl� is the sumof all the single-factor functions of factorqkl;

that is, the functions that depend only on the segment fuel-burn
inputs. The second summation is over those functions that depend
only on the segment temperatures rkl, and so on for the other
summations. Here, as in Eq. (32), Ns segments have been assumed
for operation k.

Since the goal is to compute sensitivities for inputs grouped across

flight segments, we define qk � fqklgNsl�1 to be the set of fuel-burn
segment inputs for operation k. Define rk, sk, tk, uk, and vk similarly
for the other input quantities. Each summation in Eq. (41) can then be
written as

fqk �
XNs
l�1

fqkl�qkl� (42)

with analogous expressions defining frk , etc. Then Eq. (41) is written
as

yk � f0;k � fqk � frk � fsk � ftk � fuk � fvk � interaction terms

(43)

Squaring and integrating Eq. (43), as was done to arrive at Eq. (7),
gives

var �yk� :� Dyk
�Dqk

�Drk
�Dsk

�Dtk
�Duk

�Dvk

� interaction partial variances (44)

whereDqk is the partial variance due to all fuel-burn inputs, and so on
for the other inputs.

Similarly, the AEM output ytot (which, as noted in Sec. II, is
computed by aggregating the operational level outputs) is written in
ANOVA-HDMR form by summing over the operations in Eq. (41),
which yields

ytot �
XNo
k�1

f0;k �
XNo
k�1

XNs
l�1

fqkl�qkl� �
XNo
k�1

XNs
l�1

frkl�rkl�

�
XNo
k�1

XNs
l�1

fskl�skl� �
XNo
k�1

XNs
l�1

ftkl�tkl� �
XNo
k�1

XNs
l�1

fukl�ukl�

�
XNo
k�1

XNs
l�1

fvkl�vkl� � interaction terms (45)

Now let q� fqkgNok�1 denote the set of fuel-burn inputs across all
operations, and let

fq �
XNo
k�1

XNs
l�1

fqkl�qkl�

be the sum of all the single-factor functions of all segment fuel-burn
inputs, then Eq. (45) is written as

ytot� f0� fq� fr� fs� ft� fu� fv� interaction terms (46)

where f0 ��
No
k�1f0;k is the expected value of ytot, and the functions

fr, fs, ft, fu, and fv are defined analogously to fq. Squaring and
integrating Eq. (46) gives

var �ytot� :� D�Dq �Dr �Ds �Dt �Du �Dv

� interaction partial variances (47)

which may also be written as

D�
XNo
k�1

Dqk
�
XNo
k�1

Drk
�
XNo
k�1

Dsk
�
XNo
k�1

Dtk
�
XNo
k�1

Duk
�
XNo
k�1

Dvk

� interaction partial variances (48)

The total-effect sensitivity index for q, denoted �q, represents the
relative contribution to the varianceD of all fuel-burn inputs over all
operations and segments. As in Eq. (30), we write

�q � 1 

Dqc

D
(49)

whereDqc is the sum of the variances due to all main-effect terms and
interaction-effect terms that do not involve fuel burn. By breaking
this expression into a sum over operations and using the fact that

D��
No
k�1Dyk , the expression (49) can be written as

�q � 1 

PNo

k�1�1 
 �qk �DykPNo
k�1Dyk

(50)

where �qk is the total-effect sensitivity index for qk, the fuel-burn
inputs over operation k. A similar derivation for main-effect
sensitivity indices leads to
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Sq �
PNo

k�1 SqkDykPNo
k�1Dyk

(51)

As was the case for the expected values of NOx emissions on the
operational level in Sec. III.A, the terms in Eqs. (50) and (51) can be
considered as samples from distributions. Therefore, to estimate the
sensitivity indices given by Eqs. (50) and (51), we apply the same
process used to arrive at Eq. (20) from Eq. (18). In Eq. (51), for

example, the distribution of the numerator, �
No
l�1SqlDyl

, is equal to
NoE�SqlDyl�, which may be estimated from �No=no��l2O�SqlDyl�.
Just as in Eq. (36), this estimate is normally distributed and converges
to a single value when no � No. To estimate confidence intervals for
�q and Sq, we sample from distributions of the numerators and
denominators to estimate the intervals empirically. It should be noted
here that the confidence intervals computed for �q and Sq will be
conservative due to the fact that the numerator and denominator
terms in both Eqs. (50) and (51) are positively correlated. By not
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Fig. 4 Estimates of �E, �
2
E, ��2 , and �

2
�2

as the number of operations in the surrogate model, no, increases from 2500 to 9914.
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Fig. 5 95% confidence intervals of the mean and variance of total NOx emissions computed with surrogate models of 2500, 5000, 7500, and 9914

operations.

ALLAIRE ANDWILLCOX 1799



including the correlation in the estimation of the confidence intervals,
the estimate of the lower endpoint will be less than the true lower
endpoint and the estimate of the upper endpoint will be greater than
the true upper endpoint. This is due to the fact that the numerator in
each equation must be less than or equal to the denominator in each
equation, which leads to conservative intervals when the positive
correlation term is not included.Results from applying thismethod to
the AEM sensitivity indices for the total emissions of NOx are
presented in the following subsection.

D. Results

A typical analysis run of the AEM consists of all operations
conducted on a particular day that is considered a reasonable
representative of all operations from a particular year. These days are
referred to as representative days. The full AEM run for the
representative day for the year 2005, which is the AEM model we
consider here, hasNo � 68; 343 operations. Each of these operations
requires a Monte Carlo simulation to calculate operation-level
emissions outputs that are then aggregated, as shown in Eq. (33) to
produce the overall AEM output, ytot. For the computational

resources available for this study, a single model evaluation for one
operation takes approximately 2:31 	 10
4 s. To perform both
uncertainty and sensitivity analysis for a single operation requires 13
separate Monte Carlo simulations (2n� 1 simulations, where n,
which is the dimension of the input space, is 6 for the AEM), each of
which consisted of 10,000 model evaluations in this study. Thus,
running each operation of the AEM representative day for 2005 to
perform uncertainty and sensitivity analysis on ytot, would take
approximately 570 h,which is computationally expensive, especially
if many different policy scenarios are to be considered. As will be
shown in the following subsections, themethods presented in Sec. III
can be used to perform both uncertainty and sensitivity analyses on
the AEM representative day with a surrogate model consisting of a
randomly chosen subset of operations, while maintaining
quantitative rigor in the analyses in a manner that is computationally
efficient.

1. AEM Surrogate Results for Decision-Making Uncertainty Analysis

To estimate the confidence intervals for the mean and variance of
the totalNOx emissions from the representative day, 9914 operations
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Fig. 6 95%confidence interval widths, in terms of percentage� of the estimated value, for themean and variance of totalNOx emissions for a full run of

the representative day as no increases from 2500 to 9914.
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were chosen randomly, without replacement, from the full set of
operations. As noted previously, a 10,000-iteration Monte Carlo
simulation was run for each of the sampled operations, the results of
which were used to compute operation-levelNOx means and sample
variances. Thesevalueswere then used to estimate the expectedvalue
of the distribution of operation-level expected values of NOx

emissions, �E; the variance of the expected value of the distribution
of operation-level expected values of NOx emissions, �2E; the
expected value of the distribution of operation-level variances of
NOx emissions,��2 ; and the variance of the distribution of operation-
level variances ofNOx emissions, �2

�2
. As was noted in Sec. III, these

estimates are necessary for constructing the confidence intervals for
the expected value and variance of the totalNOx emissions of the full
AEM and uncertainty in these estimates has been neglected. Figure 4
shows the behavior of these estimates as the number of operations in
the subset, no, is increased from 2500 to 9914 operations.

The confidence intervals (95%) for the mean and variance of the
total NOx emissions computed at values of no of 2500, 5000, 7500,
and 9914, are presented in Fig. 5. Figure 6 presents the dependence of
the confidence interval widths, in terms of percentage � of the
surrogate model estimated values, for the mean and variance of total
NOx emissions for a full run of the representative day as no increases
from 2500 to 9914. These results show that by applying the surrogate
modeling methodology described in Sec. III for uncertainty analysis
in support of decision-making, confidence intervals for themean and
variance of total NOx emissions for the representative day can be
constructed. These confidence intervals are quantitatively rigorous

and display predictable convergence behavior that can be used to
determine optimum tradeoffs between tighter intervals and longer
run times.

2. AEM Surrogate Results for Model Development Sensitivity Analysis

The total- andmain-effect sensitivity indiceswere computed using
the Sobol’method described in Sec. II, applied to a surrogate model
of no � 5000 operations sampled from the representative day. The
resulting total- and main-effect sensitivity indices are shown in
Fig. 7. These results reveal that factors such as pressure and relative
humidity can potentially be fixed for certain analyses since their
total-effect sensitivity indices are low, and that factors such as the
reference emissions index of NOx and temperature should be the
focus of any future research aimed at trimming the variability in total
NOx emissions estimates from the AEM, since their main-effect
sensitivity indices are highest.

These sensitivity results give valuable insight to guide model
development; however, the question arises whether different
conclusionsmight be drawn if the fullmodelwere used in place of the
surrogate. In this situation, it is computationally impractical to use
the full No � 68; 343 operations; however, the sensitivity results
computed with the surrogate of no � 5000 operations can be
rigorously boundedwith confidence intervals using themethodology
of Sec. III.B. These confidence intervals were constructed by using a
10,000-iterationMonte Carlo simulation to compute each operation-
level global sensitivity index required in Eqs. (50) and (51). The
intervals are shown for each sensitivity index in Fig. 7.

Figure 8 shows the convergence behavior of the total-effect
sensitivity index of the temperature input. The convergence behavior
of the other sensitivity indices is similar. Table 2 gives confidence
intervals (95%) for the total- and main-effect sensitivity indices for
each input of the AEM for a full run of the representative day
computed with a surrogate model of 9914 operations.

These results show that by applying the surrogate modeling
methodology described in Sec. III for model development sensitivity
analysis, confidence intervals for the global sensitivity indices of
totalNOx emissions for the full representative day can be constructed
from a subset of operations. Just as for the confidence intervals
constructed to support decision-making uncertainty analysis, these
confidence intervals are quantitatively rigorous and display
convergence behavior that can be used to determine optimum
tradeoffs between tighter intervals and longer run times.
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Fig. 8 95% confidence interval width, in terms of percentage� of the surrogate model sensitivity index estimate, for the total-effect sensitivity index of
the temperature input as no increases from 2500 to 9914.

Table 2 95% confidence intervals of the total- and main-effect

sensitivity indices for each input of the AEM for a full run of the
representative day computed with a surrogate model of 9914 operations

Total-effect sensitivity
index

Main-effect sensitivity
index

Input Lower Upper Lower Upper

REINOx 0.935 0.950 0.935 0.940
Temperature 0.050 0.053 0.008 0.060
Fuel burn 0.006 0.007 0.003 0.010
Fuel flow 0.005 0.006 0.001 0.010
Pressure 0.000 0.001 0.000 0.005
Relative humidity 0.000 0.000 0.000 0.000
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V. Limitations and Additional Sources of Error

The surrogate modeling methodology developed here for the
general class of models given by Eq. (16) and demonstrated on the
AEM is applicable only if several aforementioned assumptions are
met. Those assumptions were independence of model inputs,
randomness of model inputs, a large number of random quantities
being summed, and satisfaction of the Lyapunov condition by those
random quantities. As mentioned in Sec. II.C, the assumptions of
independence and randomness in the methods developed here are
assumed to be features of the full model, and thus are not restrictions
imposed by the surrogate model formulation. If they are not features
of the full model, the approach taken here may not be applicable, and
analysts maywish to consider them-dependent central limit theorem
[21], which for certain situations permits relaxing the independence
assumption. For models that fit the form given by Eq. (16) but do
not involve summing more than about 30 independent random
quantities, wemust recognize that the assumption of normality in the
resulting sum may not be a good one, and confidence intervals
should be estimated with recourse to the Student’s t-distribution or
bootstrapping techniques. The constraint imposed by the Lyapunov
condition is easily met in most situations since many examples
governed by themodel class given by Eq. (16), such as those given in
Sec. II.C, consist of random quantities with finite variances whose
sum grows without bound as more quantities are added.

Though the surrogate model estimates and their associated
confidence intervals presented in Sec. IV.D are considered rigorous,
they are only rigorous in the sense of how they approximate the
results that would be obtained using the full model. Additional
sources of error that exist and would be quantifiable if comparison to
reality were possible, include the error associated with number of
Monte Carlo model evaluations used to compute quantities such as
the expected value of operation-level NOx emissions, and the fact
that the number of random quantities being summed, though large, is
not infinite, and thus there is an approximation associated with
assuming normality. Since these errors occur for both the surrogate
and full models, the errors are not quantified in the surrogate
estimates, since the goal of the surrogate modelingmethodologywas
to estimate the outputs of the full model.

VI. Conclusions

We have presented a novel surrogate modeling methodology
designed specifically for supporting decision-making uncertainty
analysis and sensitivity analysis for model development for a large-
scale aviation environmental policy-making model. The surrogate
modeling methods developed here allowed for construction of
rigorous confidence intervals for metrics that are useful for
supporting decision-making (e.g., output means and variances), and
for global sensitivity indices, which are useful for informing future
research efforts aimed at furthering the development of amodel, for a
situation where running the analyses on a full model was impractical.
Furthermore, the methodology provides predictable convergence
behavior of confidence interval widths from the surrogate model
estimates, which allows for informed tradeoffs between computation
time and uncertainty in the estimation of the various metrics. Here,
model structure was exploited to invoke the central limit theorem to
derive the confidence intervals; however, the method is more
generally applicable using bootstrapping techniques.
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