{: SCISPACE

formerly Typeset

@ Open access - Journal Article = DOI:10.2514/1.J056405
Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions
Using Machine Learning — Source link [

Romain Dupuis, Jean-Christophe Jouhaud, Pierre Sagaut

Published on: 31 Jul 2018 - AIAA Journal (American Institute of Aeronautics and Astronautics)

Topics: Surrogate model, Cluster analysis, Computer simulation, Expectation propagation and Airfoil

Related papers:

« Evaluation of Aerodynamic Loads via Reduced-Order Methodology

» Non-intrusive reduced order modeling of nonlinear problems using neural networks
« Reduced order modeling of steady flows subject to aerodynamic constraints

» Low-Dimensional Proper Orthogonal Decomposition Modeling as a Fast Approach of Aerodynamic Data
Estimation

« New method for dynamic mode decomposition of flows over moving structures based on machine learning (hybrid
dynamic mode decomposition)

Share this paper: @ ¥ M &

View more about this paper here: https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-
1nns8a4igu


https://typeset.io/
https://www.doi.org/10.2514/1.J056405
https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu
https://typeset.io/authors/romain-dupuis-5c73q2juku
https://typeset.io/authors/jean-christophe-jouhaud-4gxiyjaw7f
https://typeset.io/authors/pierre-sagaut-3vq5boqsxo
https://typeset.io/journals/aiaa-journal-2ww79cfc
https://typeset.io/topics/surrogate-model-v4ff5jn7
https://typeset.io/topics/cluster-analysis-1t4lvljf
https://typeset.io/topics/computer-simulation-2lu0g9b2
https://typeset.io/topics/expectation-propagation-3v2gg3du
https://typeset.io/topics/airfoil-y1dg723x
https://typeset.io/papers/evaluation-of-aerodynamic-loads-via-reduced-order-3h6g5p7umt
https://typeset.io/papers/non-intrusive-reduced-order-modeling-of-nonlinear-problems-3uy0l9sqo2
https://typeset.io/papers/reduced-order-modeling-of-steady-flows-subject-to-2g4js4qzsa
https://typeset.io/papers/low-dimensional-proper-orthogonal-decomposition-modeling-as-22ftjzr65h
https://typeset.io/papers/new-method-for-dynamic-mode-decomposition-of-flows-over-cjs6kzf28n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu
https://twitter.com/intent/tweet?text=Surrogate%20Modeling%20of%20Aerodynamic%20Simulations%20for%20Multiple%20Operating%20Conditions%20Using%20Machine%20Learning&url=https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu
https://typeset.io/papers/surrogate-modeling-of-aerodynamic-simulations-for-multiple-1nns8a41gu

\
\

HAL

open science

Surrogate Modeling of Aerodynamic Simulations for
Multiple Operating Conditions Using Machine Learning

Romain Dupuis, Jean-Christophe Jouhaud, Pierre Sagaut

» To cite this version:

Romain Dupuis, Jean-Christophe Jouhaud, Pierre Sagaut. Surrogate Modeling of Aerodynamic Simu-
lations for Multiple Operating Conditions Using Machine Learning. ATAA Journal, American Institute
of Aeronautics and Astronautics, 2018, 56 (9), pp.3622-3635. 10.2514/1.J056405 . hal-02113987

HAL Id: hal-02113987
https://hal-amu.archives-ouvertes.fr /hal-02113987
Submitted on 29 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-amu.archives-ouvertes.fr/hal-02113987
https://hal.archives-ouvertes.fr

Surrogate Modeling of Aerodynamic Simulations for

Multiple Operating Conditions Using Machine Learning

Romain Dupuis*
IRT Saint Exupéry, 31 405 Toulouse, France
Jean-Christophe Jouhaud?
CERFACS, 31 057 Toulouse, France
and
Pierre Sagauté
Aix Marseille Univ, CNRS, 13451 Marseille Cedex, France

DOI: 10.2514/1.J056405

This paper describes a methodology, called local decomposition method, which aims at building a surrogate model
based on steady turbulent aerodynamic fields at multiple operating conditions. The various shapes taken by the
aerodynamic fields due to the multiple operation conditions pose real challenges as well as the computational cost of
the high-fidelity simulations. The developed strategy mitigates these issues by combining traditional surrogate models
and machine learning. The central idea is to separate the solutions with a subsonic behavior from the transonic and
high-gradient solutions. First, a shock sensor extracts a feature corresponding to the presence of discontinuities,
easing the clustering of the simulations by an unsupervised learning algorithm. Second, a supervised learning
algorithm divides the parameter space into subdomains, associated to different flow regimes. Local reduced-order
models are built on each subdomain using proper orthogonal decomposition coupled with a multivariate interpolation
tool. Finally, an improved resampling technique taking advantage of the subdomain decomposition minimizes the
redundancy of sampling. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822
transonic airfoil. It exhibits a significant improvement in terms of prediction accuracy for the developed strategy
compared with the classical method of surrogate modeling.

Nomenclature

A = matrix of the reduced coordinates

kth reduced coordinate

matrix of the reduced coordinates of the sensor
kth reduced coordinate of the sensor

chord length

kth cluster

friction coefficient

pressure coefficient

dimension of the quantity of interest

averaged normalized error

high-fidelity model

acceleration due to the gravity or normal distribution
global entropy

altitude

temperature lapse rate

latent function matrix

latent function

Mach number

number of predictions

Gaussian probability distribution

number of training samples

dimension of an input parameter or static pressure
predictivity coefficient

number of clusters

= specific gas constant or correlation function
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= matrix of the snapshots

quantity of interest at node i
temperature

velocity

weight of the Gaussian mixture model
horizontal coordinate along the chord
vertical coordinate

target value

angle of attack

expectation of posterior probability
spatial domain

Kronecker symbol

energy ratio

hyperparameters

eigenvalues matrix

eigenvalues

mean of the Gaussian process

density

covariance matrix

prior covariance

sigmoid function

wall shear stress

mixture coefficient

proper orthogonal decomposition matrix
input parameter

hard splitting function
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Subscripts

prediction
training
sea level
= freestream
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Superscripts

(09)
/

kth component or element
fluctuating part
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Operators

surrogate model

B mean

absolute value
Euclidian norm
canonical inner product
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I. Introduction

VERALL aircraft design and optimization rely increasingly on

numerical simulations for structural, aerodynamics, or even
noise analysis. Particularly, the computational fluid dynamics (CFD)
plays a significant role in solving Navier—Stokes equations, in order
to predict vector-valued functions of specific quantities of interest,
such as wall pressure field. The equations are discretized into
algebraic systems that lead to prohibitive computational cost for
simulations with a high number of degrees of freedom. Moreover, the
inflow conditions may vary and form a multidimensional parameter
space. Its full exploration requires the computation of a very large
number of expensive simulations and becomes intractable. One of the
main solutions to overcome this problem is the substitution of the
high-fidelity simulations by a mathematical approximation much
faster to be run, referred to as a surrogate model. It represents an
interesting trade-off between precision and computation time.
Furthermore, reducing the computational time of the exploration for
high-fidelity CFD can open the way to multiphysics simulations
using surrogate models for the fluid parts.

The surrogate modeling of high-dimensional vector-valued
functions is mainly performed with a reduced-order approach, called
reduced-order modeling (ROM). Originally developed for the study
of coherent structures in the turbulent boundary layer [1], ROM
methods have shown various applications, such as aeroelasticity [2],
optimal flow control [3], turbulent flows [4,5], or geophysics [6].
Most ROM methods are applied to CFD problems by approximating
the high-fidelity model as a linear combination of low-dimensional
basis vectors, weighted by purposely tuned parameters. The basis
vectors characterize the main features of the system behavior. Proper
orthogonal decomposition (POD) is a particular and very popular
method of dimension reduction used very frequently for CFD
problems. It computes the basis vectors and the corresponding modal
coefficients with an optimal least-square approach from a given number
of high-fidelity computations, also called snapshots, at different state
parameters. The ROM coefficients are calculated only for a finite and
discrete number of input parameters, whereas the surrogate model is
evaluated on a new parameter set. Thus a continuous representation of
the coefficients over the whole state-parameter space has to be provided
in order to build the final model, leading to two different approaches:

1) The intrusive ROM resolves the governing equations by
projecting them into a set of basis function of smaller dimension,
leading to a system of ordinary differential equations for the
coefficients. The projection-based methods have the advantage to
retain some of the physics from the governing equations and to give
rigorous error bounds and error estimation [7]. However, both
stability and accuracy issues can occur [8]. By their intrusive nature,
these methods modify also the source code of the high-fidelity
model, leading to substantial modifications, if not impossible, when
commercial software packages are used. Moreover, the reduced
equations are solved on the whole domain and for all the
conservatives variables even if the quantities of interest are evaluated
on a subdomain and for a small number of variables. The high-
Reynolds-number turbulent flows [9,10] give an example of
challenging and active field of research for projection-based ROM.
More information on intrusive ROM can be found in Ref. [11].

2) The second method, the nonintrusive data fitting ROM, does not
need any knowledge about the high-fidelity model, considered as a
black box, allowing to deal with very complex physics. Instead of
manipulating the governing equations, the value of the coefficients
are predicted by methods of multidimensional data fitting such as
polynomial regression, radial basis function, or Gaussian process
regression [12]. Nonintrusive ROM has been successfully applied

in CFD, for instance, in aero-icing problems [13], uncertainties
quantification for urban flow [14], or steady aerodynamics [15-17].
One can note that hybrid methods mixing projection-based and
nonintrusive approaches have been developed by solving an inverse
problem, where the coefficients of the reduced-order governing
equations are inferred using the output of the simulations [18].

Here, only nonintrusive data fitting are considered and the high-
fidelity model is treated as a black box.

Despite the usefulness of the energy-ranked POD and its extensive
use, some limitations have been observed [19]. Indeed, low-energy
perturbations can be masked although they could be representative
of a part of the system behavior. Problems with bifurcations can
have typical characteristics, such as aerodynamic flows with varying
inflow conditions leading to either subsonic or transonic regime. In
these cases, the classical method computing the dominant modes in a
single POD basis fails to produce accurate responses for predictions
in highly nonlinear region and not directly in the neighborhood of the
snapshots [20,21]. The mix of the different physical regimes in the
POD basis vectors can explain this problem. Indeed, small errors in
the multivariate interpolation step can amplify POD modes associated
with a physical regime that does not exist for the considered prediction.
For this reason, approaches based on local reduced-order models have
emerged in the literature by considering only restrictions to the total
amount of snapshots [22—28]. This paper describes an original active
local method, called “local decomposition method” (LDM), extending
the classical reduced-order modeling method using POD and data fit
method to particular steady problems with different physical regimes.

The method proposed here computes local subspaces of the state-
parameter space by combining a physical-based sensor with machine
learning tools. The physical-based sensor is a central element of
the method to achieve proper separations of the physical regimes.
Indeed, the conversion of the vector-valued output into a vector of
physical-based features gives the possibility to cluster the snapshots
into subsets with the same physical behavior. Thus the POD basis
vectors are more representative of the physics. A shock sensor is used
for the particular problems mixing subsonic and transonic conditions.
It measures the nonlinearities and sharp gradients of the flow field. As
the different phenomena are no more mixed in the POD basis, building a
local reduced-order model on each of these subsets achieves a better
consideration of the physical regimes. The clustering of the snapshots
provides also a greater flexibility to the data fit model that can behave
independently on each subgroup. As regard the prediction of untried
sets of parameters, a supervised learning algorithm associates each
region of the parameter space with a local reduced-order model and its
respective subspace, allowing to map the input parameter space to the
right physical regime. This last step is called input space decomposition.

Replacing the global POD basis with several local POD bases is a
relatively recent development for parametric reduced-order modeling
[23,24,27,28] and may seem counterintuitive. Indeed, the compressive
capability of the POD may be weakened by increasing the number of
bases, and the robustness of each data fit method can decrease with the
reduction of training samples due to the repartition of these latter on
the different models. On the contrary, the local models enable a
clear separation of the phenomena improving the prediction of the
surrogate model. Moreover, as underlined in [29], the POD shows
elliptic properties while aerodynamics is characterized by hyperbolic
equations. Therefore, a local approach can demonstrate similarities with
discontinuous Galerkin method to tackle hyperbolic problems. In this
work, only Gaussian process regression (GPR) is investigated as a
method of data fitting. Thus the terms “POD/data fitting” and “POD/
GPR” are used indifferently to refer to the classical nonintrusive ROM.

This paper aims to present a local reduced-order model built with
machine learning tools and using a physical-based approach in order
to address parameter-dependent problems with either subsonic or
transonic regime. It is organized as follows: Sec. II gives an overview
of the classical nonintrusive POD/data fitting approach. Then, Sec. I1I
introduces the LDM with its underlying principles based on machine
learning. Then, results from a one-dimensional analytical case and two-
dimensional transonic airfoil are presented in Sec. IV, demonstrating the
capability of the LDM to deal with different physical regimes, including
shock waves. Finally, Sec. V provides a summary and the conclusions.



II. Nonintrusive POD/Data Fitting Reduced Order
Modeling

First, some notations are introduced. One considers a real vector-
valued function f representing the high-fidelity model defined from
R? to RY, where p is the number of parameters and d the dimension
of the vector-valued quantity of interest. For example, a CFD code
predicting the wall pressure field of an airfoil for different values of
Mach number and angle of attack defines an input domain with p
equal to 2 and d corresponding to the number of nodes representing
the wall. Similarly, f represents the vector-valued surrogate model
with the same domain of definition from R?” to R¢. The matrix of the
training input parameters is noted y, = [¥/, X, T € R™P,
where 7 is the number of training samples, and x,, is the ith vector of
the parameter set, which can be written with its components as
2, =[x" ... xP] In the same way, the matrix of the test
samples, also referred to as untried input parameters or merely the
predictions, is noted: x, =[x, Xp, 1T € R™P, with m the
number of predictions. S; designates the vector of the ith snapshot such
that S; = f(x,) €R? and S, defines the matrix of the training
snapshots S, =[S, S, " € R™4 The terms S, and f are
used interchangeably to refer to the mean snapshot S = f =
(1/n) Y_4_, Si € RY. The fluctuating part S, of the training snapshots
is defined by the snapshots matrix where the mean snapshot has been
removed such that S/ = [§; — S S, — S ]7. The first mode of
data with nonvanishing mean is very close to the mean value of the
snapshots for reasonable variations in the data. For this reason, the POD
is performed on the fluctuating quantity S;.

The nonintrusive POD/data-fit reduced order modeling is made of
three steps: the generation of the initial training samples, the POD
dimension reduction, and the interpolation of the POD coefficients.
All of them are described in the following parts. The whole process of
the method is depicted in Fig. 1. One can note that the POD/GPR
method is the common basis of the further developments presented in
this paper and serves as a reference for the method assessment
performed in Sec. IV.

A. Sampling Plans

The purpose of the surrogate model is to simulate the input/output
behavior over the domain of variation of the parameters based on a
limited number of high-fidelity evaluations. Correct predictions are
required not only for the design points but also at all off-design
conditions. For this reason, the limited number of snapshots should
be optimally placed in order to build a model capturing the maximum
amount of information about the physics over the parameter space.

Design of Experiment
X: = [x:l Zt,,]

High fidelity computation
S = V(Zn) f(xt,,)]

f Proper Orthogonal Decomposition

M
F@e) = F+ Y, a(%;)94 i € [1,n]
k=1

Gaussian Process
(al, -,aM)

Final Model

_ oM
Prediction , —» f(x,,j) =f+ Z@(ij)%-, j€l,m]
=1

Fig.1 Flowchart of the POD/GPR method.

An inappropriate repartition of the input parameters could lead to a
surrogate model with large discrepancies. To the extent possible, the
number of snapshots will be limited to the rule of thumb 10p studied
by Loeppky et al. [30], where p is the number of parameters.

Contrary to the projection-based method, the nonintrusive POD/
GPR approach does not have access to prior information on the
system given by the coefficients of the governing equations [31]. The
critical issue of the choice of the a priori training snapshots is called
design of experiment (DOE). As explained previously, the main goal
of the DOE is to generate well-distributed samples in the parameter
space to give sufficient information to the learning process. DOE
methods have been widely studied in the literature providing
many techniques for experimental parametric studies and computer
experiments. One can cite for example random and orthogonal array
methods with Monte Carlo and Latin Hypercube Sampling [32],
geometrical approaches such as centroidal Voronoi tessellations [33],
or low-discrepancy sampling techniques such as Halton, Sobol, or
Faure sequences [34]. In the present work, low-discrepancy sequences
have been adopted due to their iterative design. Indeed, the number of
samples can be extended on purpose, and high-density regions can
be easily defined while keeping the space-filling properties. Both
properties are very interesting features for active learning. The other
deterministic methods require a preset number of samples and cannot
be extended without losing a part of their space-filling property.

B. Proper Orthogonal Decomposition

The POD is an efficient technique of dimension reduction based
on spectral decomposition for high-dimensional, multivariate, and
nonlinear data set. A wide range of applications can be found in the
literature, such as human face characterization [35], data compression
[36], and optimal control [37]. The POD term was first introduced in
1967 [38] to study dominant turbulent eddies, also called coherent
structures. POD is also known as Karhunen-Lo¢ve decomposition,
Hotelling analysis, or principal component analysis, in other fields of
application. Among all the possible linear decompositions of the
high-fidelity function, the POD method minimizes in a least square
sense the residual of the projection of the high-fidelity model, yielding
an optimal basis in terms of the representativeness of the data [39]. The
least square problem is equivalent to a maximization problem [4,39].
Introducing the canonical inner product (-, -) on R4, the POD basis is
the solution of the following formulation:

n n

Jmax D> I(S1é)P

""" (e
subjectto(¢h;,¢p;) = 5, ; O

where ¢; € R? is the ith vector basis, S/ the fluctuating part of the ith
snapshot, and §; ; the Kronecker symbol satisfying 6; ; = 1 fori = j
and §; ; = 0 otherwise. The matrix of the vector basis ¢ € R js
introduced such that¢p = [¢p; ... ¢,] .

The method of snapshots proposed by Sirovich [40] is employed to
solve the maximization problem in Eq. (1) and leads to an eigenvalues

problem:
1 1 Q/T T
a S/S;" =i 2

where A € R is the diagonal matrix of the eigenvalues associated
to the matrix of the eigenvectors ¢. The eigenvalues problem can be
solved either by an eigen decomposition or a singular values
decomposition (SVD). The latter gives a better precision for the
smaller eigenvalues and provides an iterative approach well-fitted for
resampling. One can note that the self-adjoint operator property of
S/S,T ensures that the computed POD modes form a complete
orthonormal set built as {¢, ...,¢,}, on which the high-fidelity
model is decomposed:

fle) =7+ Zak(xz,.)tﬁk, Viel[l,n] (3)
k=1



where a;(x,,) € R is the reduced coordinate associated with the kth
POD mode ¢ « € R?. All the reduced coordinates are computed using
the orthonormality property of the POD basis and are expressed as:

ak(xt,) = (Si,*¢k

The POD is optimal in terms of energy and provides an energy-
ranked basis. Usually, the dimensional space of the snapshots is
sparse in an L, sense. Therefore, only a small number of the most
energetic POD modes can be retained in order to reduce the
dimension of the system. The smallest eigenvalues are neglected,
leading to a truncation of the basis. This heuristic criterion can be
written more formally as a minimum ratio of the captured energy,
which means finding the number M of kept basis vectors such that for
a given amount of energy ratio e:

2 A

n
j=1 4

) “

> € 5)

A classic ratio of energy present in the literature is 0.99 [3,40].
Once M has been set, the truncated linear combination of the
eigenfunctions gives the approximation of the high-fidelity model:

Vie[ln (6)

M
f()(z,) = f + Zak(x:,)(bk
k=1

C. Interpolation with Gaussian Process Regression

The interpolation is the next step of the POD/GPR surrogate
model. The reduced coordinates a; have been computed at a small
number of training parameters, whereas the analysis of the high-
fidelity model for various inflow conditions requires a continuous
evaluation over the input parameter space. Thus, the values of the
reduced coordinates at untried parameter combinations are estimated
with a data-fit method. The most popular methods in the surrogate
modeling literature are formed of polynomial regression, radial basis
function, or Gaussian process regression (GPR) [12]. A particular
emphasis is given to this latter method. It has been employed in this
paper due to its capability to deal with nonlinear problems, its high
flexibility, and the provided error estimation of the predictor. GPR is
also called “kriging” and has been first applied in geostatistics [41].
The short overview of the GPR in this paper is introduced following the
formalism of Rasmussen [42] and is directly applied to the continuous
representation of the reduced coordinates. They are assumed to follow
a Gaussian process, which is outlined by a collection of random
variables having a joint Gaussian distribution of mean g and covariance
matrix X. If the reduced coordinate a; follows a Gaussian process,
it reads:

AP ~ N (u, Z0) )

with Agk) =[a(xs,) ay(x,,)]" defining the matrix of the
kth reduced coordinate at training parameters, and A
[acCep,) ar(xp )]T the predictions at the unknown
combinations of parameters. In the interests of simplifying notation
and analysis, the index & is removed and becomes implicit. The joint
distribution of the reduced coordinates at training and unknown
parameters is given by:

B R A R
p Hp pt “pp

with X, the covariance matrix between y, and x,. The central issue
of the GPR remains to be addressed, namely, how to determine the
means and the covariance between the inputs. A classical stationarity
assumption is that the correlation depends only on the magnitude of the
Euclidean distance between the two input parameters but not on the

values themselves, such that the i, jth element of the covariance matrix
is given by:

=), = adr(loe, =2 I,) Vi€ lalxilm] O

with 63 the prior covariance corresponding to the level of uncertainty
for predictions far from the training data and r the correlation function.
The latter is usually monotonically decreasing with r(0) = 1. A wide
range of functions have been proposed to model the relation between
the covariance and the input distance, such as radial basis function,
Mattern, or periodic regression function [42]. The anisotropic radial
basis function, chosen for our problem, is one the most classical model of
the regression functions due to its smoothness, infinite differentiability,
and analytical derivability. Its expression introduces the hyperparameter
0, € R and is given by:

(k) _ (k)
r(llx:,—xpjllz) ]_[e (M) Vi, jell,n]x[l,m]
(10)

The hyperparameter @, defines the way the data are explained by
the component k of the input parameters. Small values mean that the
correlation is high between the inputs and the model is very sensitive to
the dimension k. On the other hand, large values of 6, illustrate a model
slowly varying with the data.

The final form of the predictor is derived using the conditional
distribution of A, given A, also called a posteriori distribution that
is still Gaussian and written as:

p(Ap|Ar) NN(ﬂp + Eptzt_rl (Ar _ﬂt)7 pr - Z1)1‘2;12tp) (11)

The mean of the distribution gives the final value of the predictions
at the untried set of parameters. Regarding the variance, it provides an
estimate of the possible range taken by the prediction, which can also
be seen as the mean-square error. The latter has the interesting feature
not to be dependent on the value of the output but only to the input
parameters. Both §, and 63 remain to be determined in order to obtain
the final prediction. They are computed during the training phase of
the GPR, most of the time by a maximum likelihood estimation (MLE)
approach or a leave-one-out method [42]. Martin and Simpson [43]
have shown that the MLE works better than leave-one-out in general.
For this reason, MLE is applied in the GPR/POD method, solving
numerically the nonlinear maximization problem of the log-likelihood:

1 1 n
log(p(A,|0)) = —5A,T2;'A, —5log|Z,| - Slog(2x)  (12)

where | - | denotes the determinant operator. The partial derivatives of
the marginal likelihood with regard to the hyperparameters can be
analytically derived. Thus, it is possible to use a gradient-based
optimization algorithm in order to numerically find a local solution to
the MLE problem. The Limited-memory Broyden-Fletcher-Goldfarb-
Shanno Bounded (L-BFGS-B) algorithm [44] is employed in this
paper to determine the hyperparameters. This popular quasi-Newton
method handles simple bound constraints and is coupled with random
restarts to avoid local maximum of bad quality.

By assuming that the POD basis vectors are invariant with respect
to the input parameters, the final surrogate model predicts the
quantity of interest at the jth untried input parameter y, such that:

_ M
fo,) =F+> a, b,  Viellm (13
k=1

with @ (r,,) = [,,p> + 3 b- l( AG _

tion of the weighting coefficient a; over the parameter space. The a

(k))]v the approxima-
j

priori mean ﬂ;k) is usually considered equal to zero as the training data
have been standardized with zero mean. One can note that different
versions of GPR or kriging can be used, such as Bayesian kriging
[45]. Here, the Python library scikit-learn [46] is employed to
generate the GPR models.



III. Local Decomposition Method

As explained in Sec. I, the LDM proposed in this
paper extends the classical POD/GPR reduced-order modeling by
employing a local approach, inspired by the mixture of experts [27]
and dynamic local reduced-order modeling [23]. Instead of a unique
global POD basis, several local bases are computed using machine
learning tools yielding to more flexible behaviors bringing out a
precise delimitation of the physical regimes. First, a shock sensor
computes specific features for all the snapshots. Then, the latter are
clustered into different subsets thanks to the shock features. Finally,
the parameter space is divided into several domains according the
clustering of the snapshots. The Fig. 2 sketches the process. One can
note that a comparable approach has been used for aero-icing
certification [28]. The specificity of the presented method includes,
besides the introduction of a feature extraction with a shock sensor, a
novel resampling strategy and the application to an aerodynamics case.
The active resampling is carried out by identifying the subspaces with
the highest entropy. Extra snapshots are added in these specific
subspaces with the objective to minimize the redundancy of the
sampling, thus increasing the accuracy of the surrogate model. The
Fig. 3 illustrates the whole method.

A. Coupling Machine Learning Tools with a Physical Sensor

Let us introduce basic machine learning vocabulary. Learning
problems can be divided into two distinctive categories: supervised
and unsupervised. Here, the machine learning library scikit-learn
[46] is employed in the in-house JPOD code to perform both
supervised and unsupervised learning. In the context of supervised
learning, some input variables have an influence on one or more
outputs. This set of inputs and outputs forms a learning base, and the
supervised learning simulates the input/output behavior using the
learning base. The final goal is to predict the values of the outputs for
untried inputs. The nature of the output subdivides the supervised
learning into two subcategories: the classification, dealing with
categorical input variables, and the regression, which is applied on
real and continuous input variables. The GPR is an example of
regression. As regard the unsupervised learning, the training set
consists only of the input vectors without any corresponding outputs.
Thus the purpose of the unsupervised learning is to identify
underlying structures hidden in the parameter space but the accuracy
of the algorithm cannot be defined by any objective function.

1. Physical-Based Shock Sensor to Detect Flow Regimes

The choice of the quantity characterizing the physical regimes, on
which the clustering is performed, is a question of central importance
impacting the quality of the classification. Usually, the unsupervised
learning clusters directly the quantity of interest into groups with
patterns of small differences [23,24,28]. However, the aim of the
clustering in this paper is the physical regime separation, and the
previous approach can lead to classification error. Indeed, two fields
of the quantity of interest can have large differences even though they
belong to the same physical regime. A classical method fails to
separate them accurately. For this reason, this section proposes
another method to perform the clustering. Based on a physical
approach, a mathematical transformation converts the quantity of
interest into a sensor of the physical regime. The main goal is to
sharply quantify the physical regime to ease the clustering of the
snapshots.

The application of this paper involves external aerodynamics with
subsonic and transonic regimes, characterized by shock waves.
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A straightforward idea is to consider a shock sensor that is able to
detect large changes in the variation of the quantity of interest, such as
Jameson’s shock sensor [47]. The latter has been developed as a
heuristic method for nonoscillatory shock capturing numerical
schemes. It is related to the second-order derivative of the pressure.
However, the quantity of interest is not limited to pressure signals and
a more general expression is introduced as:

U= [sicy = 25; + ;4]
"oeo F Isici ]+ 28] 4 Isigal

vieRd-1 (14

where v; is the generalized sensor, € is a constant avoiding division by
0,and s;_;, s;,and s;, | are the quantity of interest at, respectively, node
i—1,i,and i + 1. The dimension of the generalized sensor can be
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reduced by POD, such as the kth POD basis vector is associated to
the reduced coordinates b,. The latter can be interpreted as the
representative quantity of the physical regime for a given snapshot.
They are grouped in the vector B; defining the matrix B =
(B, ... B,I"

2. Clustering of the Shock Sensors by Gaussian Mixture Model

The problem of identifying the inherent groupings in the input
data refers to unsupervised classification, specifically clustering.
K-means and Gaussian mixture model (GMM) are two well-known
examples of algorithms classically employed to achieve clustering.
This section puts a particular emphasis on GMM algorithm [48],
where the main features are described.

Let us assume that the set {B, ..., B,}, characterizing the
physical regimes, comes from g clusters C, ..., C,. Each cluster Cy,
follows a probability distribution of parameter 6, and proportion wy,
regrouped for all the «clusters in a mixture parameter
o=[w;, ... w, 6 ... 6,]. The GMM  algorithm
consists in modeling B with a mixture distribution of multivariate
normal distributions g. Each one is associated with the cluster C;
such that the probability density function of B; is given by:

q
p(B;|®) =) wig(Bil6y),  Vie[ln] (15)
k=1

, where the mixture weights w; represent the probability that the
observation comes from the kth Gaussian distribution and 6, gives
the mean and the covariance of the multivariate normal distribution g.

These mixture parameters regrouped in ® are estimated iteratively
using an Expectation Maximization algorithm (EM algorithm) [49].
The expectation of the posterior probability y, of belonging to the
cluster k can be expressed with Bayes’ theorem (E-step):

B) = B) — p(B;|C)p(Cy) _ wig(B;0;) ’
yk( l) p(Ckl 1) P(Bl) 2?21 wzg(B,|91)
Ykell,q Vie|l,n] (16)

Then, the mixture parameters can be re-estimated (M-step):

>N yk(By) - B,

=&t T Vikell, 17
Hk SV (B [1.4] 17

Zf‘vﬂ Ye(B;) - (B; — py) - (B; —Mk)T
X = , Vkell, 18

1 N
we=—> r(B). Vke[l.q (19)
i=1

These two steps are iterated until convergence of the log
likelihood. The cluster of each quantity B; can be determined using
the previous probability expression. The training set is built by
applying a hard splitting such that:

(Gt 90,01 with s, ={ Col s p(€i1B | Vil
0)

with y, the target variable of the cluster. This training set is used to
train a supervised learning algorithm, described in the following
section, in order to link the input parameter of each quantity B; with a
class of physical regime.

3. Input Space Decomposition Using Gaussian Process Classification
The decomposition of the input space into subspaces where a

single physical regime drives the flow can be interpreted as a

supervised classification problem. Indeed, the training set is provided

by the clustering phase and trains an algorithm assigning the kth
untried input parameters Xp, U E [1, m]) to the categorical variable
Vp,» which can take the different values of the ¢ classes Cy, ..., C, -
The Gaussian process classification (GPC) is a classical method to
deal with classification. The principal steps of the method for
two-class problem are outlined in this section. The interested readers
can refer to Rasmussen and Williams [42] and Bishop [50] for the
straightforward generalization to K classes.

As the nature of the classification outputs is discrete, it clearly
differs from the regression problems outlined previously with GPR.
The main idea is to transform the output of a Gaussian process
defined on the real axis into a probability lying in the interval [0, 1]
using a nonlinear activation function. A latent function / defined on
the input parameter is introduced and we denote the latent vector by /
such that:

1= [ltl, ..,l,n] with [, =1(x,) and [, =1(x,),
Vi,je[l,n]x[l,m] (21)
This function aims to provide a more convenient and tractable

formulation of the model [42] and will be removed by integration. A

Gaussian process prior with a zero mean and a covariance matrix X, is
placed on the joint distribution of the latent function /:

[ ll ] ~N(0.%) 22)
Pj

As regard the two-class problem with Cy and Cy, the probabilistic
prediction is directly computed by p(y,, = Colx, y:.X,,) because

p(vp, = Ciltiyinxp,) is given by 1= p(y, = Col,. y:.%,,). The
conditioning on the input variables is intentionally let implicit. The
probabilistic prediction is given by:

p(y,,, = Colyt) = /p(y,,] = Coll,,,)p(l,,,lyt) a, (23

where p(y, = C0|l],/) = a(l,,/), with o the nonlinear activation
function defined by the sigmoid function:

1
14 e~

ox) = 24)

The integral expressed in Eq. (23) is analytically intractable due
to the non-Gaussian likelihood of p(lpj |yt) [42]. The expansion of
the latter with the sum rule, product rule, and Baye’s theorem
gives:

Pl 1) = [ ps)p(ly 1) a 25)

where p(lpj |l) is Gaussian. The non-Gaussian probability p(I|y,)
requires specific approximations, such as variational inference,
expectation propagation, or Laplace approximation [50]. Finally,
the hyperparameters of the covariance matrix X; need to be
determined, for example, with the maximization of the log-likelihood,
which also required to use the Laplace approximation due to non-
Gaussian terms.

B. An Entropy-Based Active Resampling

Several methods have been coupled with surrogate models to
generate an active reduced-order model: local methods and subspace
methods form the two main different approaches. Local methods look
for particular points that could improve the accuracy of the model.
One can cite, for example, leave-one-out cross-validation [45] testing
the sensibility of the surrogate model to each training sample. The
more critical sample for the surrogate defines a neighborhood in
which an extra snapshot is added. Another example of a local method,
the maximum mean-squared error, uses the posterior estimation of
variance from the GPR and adds the sample with the maximum value
to the training set. Multifidelity can also be used to perform active



infill sampling [51]. Another type of method based on a subspace
approach identifies particular low-dimensional structures in the
input parameters where the quantity of interest shows a significant
variability. One can cite, for example, active subspaces [52] or
sensibility analysis [53].

The original strategy proposed in this paper is based on a subspace
approach and aims at taking advantage of the input space separation
into several subsets. Indeed, the input space decomposition has
provided subgroups of smaller dimensions among which some
subspaces of interest can be selected to perform the resampling. One
proposes to use a criterion based on the compressibility of the
information, coming from an analysis of the POD eigenvalues, in
order to identify these relevant structures. As explained in the last
section, the POD eigenvalue represents the relative information
contained by the modes. The global entropy H measures the
redundancy of this information and is introduced as [39]:

1 < . Ak
H=-— E pilog(py) with pp = —— (26)
IOg(n) k=1 K OBLPK : Zi:l /1i

If the entropy goes to zero, there is only one nonzero singular value.
The data are compressed into a unique mode. On the other hand, the
entropy is equal to one if all the information is distributed among the
modes, meaning that no compression is possible. Between these two
extreme values, the entropy increases with the number of fundamental
modes. The active resampling of the LDM assumes that the entropy
and the structures of the system with discontinuities or high gradients
are directly correlated. Thus, the probability to find new modes with a
nonnegligible amount of energy is expected to be greater for the
cluster with the highest value of entropy than for any other cluster.

C. Recombination in a Global Model by Hard-Splitting

The final recombination step consists of assembling the local
reduced-order models in a single composite global model. Starting
from the ¢ clusters, a simple weighted sum is calculated using a
“hard” split:

~ q ~
Fo) =D et fik,).  Viellm] @7
i=1
where

1 if j =argmaxP(y € C,)
1, 00) = il 8)
0 else

and f; refers to the classical POD/GPR model built on the ith cluster.
This sum provides a continuous but not differentiable prediction of
all the input space, leading to a global model. The differentiable
predictions require to use differentiable weighting functions, which is
not the case for 1. One can cite, for example, soft clustering [54],
substituting 1 (x) directly by P(y € C;). However, it mixes several
physical regimes, leading potentially to unphysical predictions, and
can amplify the extrapolation of the reduced coordinates near the
boundary decision. For these reasons, a hard-split approach has been
selected.

The decision boundary in the input space parameters poses another
problem. The classification is very prone to errors in this region.
Indeed, the localization of the decision boundaries is subject to local
variations, such as the choice of the supervised learning method
(model-based, local methods, etc.) or the location of the training
samples. Moreover, the reduced coordinates can be in extrapolation
in this region. To overcome these problems, the classical model is
employed for the predicted points near the interface.

IV. Numerical Results
A. Error Measurements

The classical method and the proposed LDM are assessed in this
part with the RAE2822 airfoil [21,51]. It may be noted that an

additional study has been performed on the Burgers’ problem. The
results are shown in the Supplemental Material burgers_am.pdf. The
flow around the two-dimensional transonic airfoil is computed with
a Navier-Stokes solver, involving a turbulence model. It is a
challenging application in terms of surrogate modeling with high
discontinuities due to the appearance of shocks. A three-dimensional
input space is considered.

Particular attention is paid to the process of the input space
decomposition and to the comparison of both classical approach and
LDM in terms of accuracy. Several quantities are introduced to measure
the accuracy. The so-called predictivity coefficient Q5 gives the ratio of
the output variance, which is explained by the metamodel. It can be
interpreted as the classical coefficient of determination of the linear
regression applied to a test sample [55]. The more the valueis closeto 1,
the higher variance is explained by the model. It is expressed as:

w06 = 7)) |
S [7 - 796 |

(29)

G
21) =1-

The root mean square error (RMSE) and the normalized root mean
square error (NRMSE) are also introduced:

m

mezggwmmﬁmﬁ (30)

j=

_ RMSE®
NRMSE®) = —— @31

max f min

where f.« and f, refer, respectively, to the scalar maximum and
minimum values taken by the function to predict f for all the snapshots
and over the mesh:

fmax = max(”f(xp])”oov o
.fmin = min(”f(){pl)”w’ e

G )
SfC,) ) (32

One can note that the QY and NRMSE® are computed at a given
index i of the spatial domain I". The global measures are provided by
averaging the quantities over this domain. The global quantities are
referred to as (Q,)r and (NRMSE), with (-)r the spatial average
operator. However, in order to provide also a statistical error analysis,
the averaged normalized error E; is introduced. It corresponds to the
absolute error between the exact value and the prediction, normalized
by the range of variation, at snapshot level j:

(£ Gn) = FOp) D
Ej - fmax - fmin ’

The statistical distribution of E; is presented with a box plot
formalism. A box plot groups the data through different quantiles: the
bottom and the top of the box represent, respectively, the value of
the first and third quartiles, whereas the horizontal line inside the box is
the median (second quartile) and the diamond the mean. The vertical
lines indicate the data between the Sth percentile and the 1st quartile
and between the 3rd quartiles and the 95th percentile. Finally the
outliers are plotted as dots.

Besides the direct assessment of the surrogate model using a wide
validation test, an estimation of the error can be provided only with
the training set. Cross-validation strategies, such as the leave-one-out
error, or the variance given by the Gaussian processes can estimate the
apriori quality of each prediction. An example of application of these
methods can be found in [56].

v jell,m (33)

B. Two-Dimensional RAE2822 Transonic Airfoil

The viscous and turbulent flow around an RAE2822 airfoil
has been widely studied in the literature both numerically and
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experimentally [57,58]. The feature of prime interest of this test case
is that the inflow conditions govern the flow regime, leading to the
appearance of shock waves on the suction side. The detection and
the clear separation of these regimes represent the main challenge for
the model, demonstrating the capability of the LDM to deal with real
and complex physics compared with the classical method.

1. Computational Configuration

The high-fidelity computations are carried out using the cell-
centered finite-volume solver e/lsA—-ONERA [59]. It has been
developed at ONERA and solves the compressible Reynolds-
averaged Navier—Stokes (RANS) equations on structured grids.
From the numerical point of view, the classical second-order central
scheme of Jameson et al. [47] is used for the space discretization. The
time integration is performed with the backward Euler implicit
scheme: the algebraic system is linearized with the LU-SSOR
implicit method [60]. The turbulence modeling is ensured by the
model of Spalart and Allmaras. A 2D mesh containing 23,010 points
is used, as illustrated in the Fig. 4a. This test case has been
successfully validated on a well-known regime flow [57] (Fig. 4b).
The chord of the airfoil is written C, X refers to the horizontal
coordinate, and Y refers to the vertical coordinate.

2. Input Parameter Space, Quantities of Interest, and Settings of the
Surrogate Model

Three freestream parameters are considered as varying for this
application: the flight speed, the angle of attack a, and the altitude .
Their variations are resumed in Table 1. These dimensional
parameters are nondimensionalized and are expressed, respectively,
as the Mach number M, angle of attack a (no change), and Reynolds
number. One can note that the latter is impacted by the altitude
variations but ensured to be maintained in a given interval in order to
have a sufficiently resolved boundary layer. The atmosphere is
modeled by the International Standard Atmosphere of the International
Civil Aviation Organization [61]. It assumes that the air is a perfect gas
and that the atmosphere can be divided into layers with a linear
distribution of temperature against the altitude. The temperature 7 and
the density p can be directly expressed in function of the altitude:

T =T,—Lh (34)

_ po(1 = (Lh/Ty))%/"*
- r(Ty — Lh)

(35)

with po and T the pressure and temperature at sea level, L the
temperature lapse rate, r the specific gas constant of air, and g the
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Table 1 Freestream conditions

Freestream variable Amplitude of variation

Flight speed, m/s 88.5-269
Angle of attack, deg 0.5-3.0
Altitude, m 1000-11,000

acceleration due to the gravity. The quantities of interest of the
simulation are the pressure coefficient C,, and the friction coefficient
C on the suction side defined by

p

P~ P

= /20 (0
TU}
= W2t e

where p is the static pressure; 7,, is the wall shear stress; and p,, P>
and U, are, respectively, the static pressure, the density, and the
velocity in the freestream.

As regard the DOE, 30 samples of an Halton sequence form the
training set, following the rule of thumb 104 [30]. The sampling of
the LDM is divided into two parts. An initial DOE mixing subsonic
and transonic snapshots explores uniformly the parameter space with
an Halton sequence of 15 samples. The last 15 samples follow the
resampling process described in the previous section. The flow is
assumed to be driven by two different flow regimes. Therefore, the
number of clusters is set to two for the clustering step. A test set has
been built from 300 snapshots of a Sobol sequence in order to assess
the LDM.

3. Analysis of the Surrogate Model Building Process

The two training sets exhibit interesting differences. The Halton
approach explores uniformly the full input space, whereas the
resampling process focuses on a low-dimensional high Mach number
region, as depicted in Fig. 5 for the C,,. Indeed, the clustering phase
automatically identifies the subsonic and the transonic snapshots
thanks to the shock sensor. The supervised algorithm decomposes
the input space parameter, allowing to determine the separation of the
two physical regimes in the input parameter space, as illustrated in the
Fig. 6 with both the training and testing sets. These two clusters can
be interpreted as the subsonic and the transonic regions. It can be
observed that the boundary is mainly influenced by the Mach number
but also slightly by the angle of attack. Thus, the resampling process
has increased the density of samples in the transonic regime,
improving the accuracy of the model where the predictions are more

Y/C

0 0.5 1 1.5
X/C

b) Mach number contours (M=0.734 and a=2.79)
Fig. 4 Flow around the RAE2822 airfoil.
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Fig. 6 Input space decomposition. Each color corresponds to a cluster: the blue one is the subsonic regime and the red one is the transonic regime.

challenging. One can note that the boundary region is well defined by
a thin region of probability between 40 and 60%.

The model can also be analyzed from a dimension reduction point
of view with Table 2. For a given POD energy ratio of 0.99%, the
classical method reduces the dimension of the 30 snapshots with 10
modes and an entropy of 0.37, whereas the LDM identifies clearly a
POD basis with a low entropy and a POD basis with a large one. The
highest nonlinear cluster shows an entropy value of 0.63, 70% bigger
than the linear cluster and the classical method. It means that the data
of the subsonic POD basis and of the classical method can be highly
compressed. Conversely, the transonic POD basis requires 9 modes for
13 snapshots. Thus, the active resampling provides extra nonredundant
information to the LDM compared with the classical method.

The shape of the modes can also help to understand the behavior of
the different models. As regard the classical method, only discontinuous
features emerge clearly from the global POD as illustrated in Fig. 7a,
where POD modes shown only dominant discontinuities and no-
moving shocks. Therefore all the reduced coordinates associated with
subsonic snapshots must exactly cancel out the discontinuities of the
modes. For this reason, the prediction of the reduced coordinates for
snapshots in the subsonic region can be sensitive to interpolation
errors leading to the appearance of “residual” shocks. Thus, the clear
separation of the regimes in the POD domain represents a major asset
inherent in the LDM. Figure 7b shows the first three modes of the two
POD bases. High nonlinearities arises for the transonic regime, whereas
the subsonic region highlights similarities with the modes of the
classical method. The only difference is that the subsonic modes are
smoother.

Table 2 Required modes of the different methods for the RAE2822

Number of Number of
Method snapshots modes Entropy
Classical 30 7 0.37
LDM (transonic regime) 13 9 0.63
LDM (subsonic regime) 17 6 0.36

These statements are confirmed by looking at C), profiles, comparing
classical and LDM methods. Eight predictions have been computed
for an illustrative purpose and are grouped by physical regime (S for
subsonic and T for transonic). Their coordinates in the parameter space
are summarized in the Table 3 and their repartition is illustrated in Fig. 5.
One can observe that for the subsonic regime in Fig. 8, the classical
method induces residual shocks, certainly due to errors of prediction on
the reduced coordinates coupled with sharp POD modes not adapted to
subsonic flows. On the contrary, the residual shocks are filtered by the
LDM as lower discontinuities are present in the training snapshots
building the POD basis. It leads to final predictions less sensitive to
errors on the reduced coordinates. As regard C), profiles shown in the
transonic regimes in Fig. 9, the LDM shows improved accuracy. In
particular, the modeling of the shock waves gives an insight into the
behavior of the two models. Significant discrepancies in terms of shock
displacement and shock amplitude occur for the classical POD/GPR
method. Indeed, the combination of angle of attack and Mach number
influences directly the localization of the steady shock wave and its
amplitude. However, this behavior can be accurately caught only if the
training set contains a sufficient amount of snapshots with shocks,
which is not the case for the classical POD/GPR methods. The same
trend is observed for the C; profiles in Figs. 10 and 11.

4. Accuracy of the Model

In this section, a more detailed look is given to the analysis of the
model accuracy. Figure 12 displays the comparison of the normalized
error in terms of C), and C for both methods between the predictions
and the test set. The results are presented with a box plot formalism
and three different phases have been considered:

1) The full domain contains all the samples of the testing set.

2) The subsonic regime is only composed of the testing samples
identified as subsonic, in blue dots in Fig. 6b.

3) The transonic regime encompasses the other snapshots, shown
as red dots in Fig. 6b.

A significant improvement in the accuracy is induced by the LDM
for the C,,. As regard the full domain, the normalized error decreases
dramatically for all the statistical characteristics of the box plot.



0'3YIYI

0.2

0.1

*.“.,‘.,txixwa;III

0.0

-0.1 < -
H ]

~0.2f- -
b 4

—0.3—.7.POD mode #1 ]
[ --- POD mode #2 i
o POD mode #3 N

_04 | - ‘ L1 1| ‘ L1 1| ‘ I - ‘ I

0.0 0.2 0.4 0.6 0.8 1.0
X/C

a) POD modes for the classical method

03 T T TT T T 11T T 1T T 1T
0.2
0.1k ]
00 = '-: '_' ~'~_~~ ~‘4'
5] AR <3
g - a
g ¥ '.: ) / 9
e ' B R -
O —oafly o
0.2k ]
a .
- -
-0.3 | ——.POD.-mode. #1 i
--- POD mode #2 ]
----- POD mode #3 B
_04 - I - L1l I | | -
0.0 0.2 0.4 0.6 0.8
X/C

1.0

0'3TTTTTTTTTTTTTTTT

‘lll

]

ks, -
s} D
g S
S} -
\ ]
-0.3|——— POD.mode #1....3, . i
[ --- POD mode #2 ]
[ POD mode #3 7

_04 | - I | | - L1 11 L1l

0.0 0.2 0.4 0.6 0.8 1.0
Xx/C

b) POD modes of the G, for the LDM, subsonic (left) and transonic (right)
Fig. 7 POD modes of the RAE2822 simulations.

Table3 Coordinates in the parameter space of the eight
illustrative predictions

Predictions Mach number Angle of attack, deg  Altitude, m
S1 0.675 1.125 8500
S2 0.519 1.906 1625

S3 0.722 1.047 1937
S4 0.312 1.496 5453
Tl 0.796 2.980 6391
T2 0.743 2.267 10,102
T3 0.772 1.589 3168
T4 0.794 2.170 3617

In particular, the extreme value of the LDM reaches the same level as
the 95% error of the classical method, illustrating a large reduction of
the model variability. The box plots for subsonic and transonic
regimes provide a closer look at the repartition of the error. It clearly
appears that the LDM improves the predictions at transonic regime,
explained by the increase of the sample density. On the other hand,
the subsonic regime is very slightly impacted compared with the
classical method, although samples have been removed.

Table 4 provides a more global view of the error with the spatial
average of the O, and NRMSE. Whatever the quantity measuring the
error, the same trend is observed for the two quantities of interest:
the LDM significantly improves the accuracy of the predictions
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compared with the classical method. There are, however, legitimate
doubts as to the value of the {Q,)r- for the C, which is below zero for
the transonic regime. Several explications can be given. First of all,
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the (Q,)r is spatially averaged and the value of C can be very close
to zero after the shock. Thus, some values of Q, fall far below zero in
this region, impacting directly the average of the predictivity
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coefficient. Then, the skin friction coefficient is also more challenging
to predict due to its higher dependency on the altitude and higher
nonlinearity.

Finally, the evolution of the NRMSE with the number of training
samples is shown in Fig. 13 for both the pressure and skin friction
coefficients. One may note that the classical method with 50 training
samples has broadly the same error than the LDM strategy with 30
samples. In the end, this observation could be seen as a saving of the
computational budget of more than 60%. Moreover, the error of the
model seems to continuously decrease when the number of training
samples increases.

V. Conclusions

The aim of this paper was to build a nonintrusive reduced order
model capable of coping with aerodynamics problems at multiple
operating conditions. These latter involve hyperbolic equations and
different physical regimes leading to discontinuous features of solutions.
The original local decomposition method (LDM) strategy alleviates the
issues encountered by the classical method using global proper
orthogonal decomposition (POD) and multiparameter interpolation in
order to solve the regression problem. The LDM consists of building a
local reduced order model for each physical regime. This approach has
been developed to be more suited to hyperbolic properties than the
global POD expansion. The decomposition of the problem into several
local reduced order models is achieved using machine learning methods.
Two major steps are associated with the LDM strategy: the use of a
Jameson’s shock sensor enhancing the physical regime recognition in
order to ease the clustering of the problem and an active sampling adding
automatically extra information to the subspaces with the highest
discontinuous structures. The LDM has been assessed on an analytical
moving shock problem and the simulation of a turbulent flow around the
transonic RAE2822 airfoil. The results reveal a significant improvement
of the model accuracy, especially in the regions of high gradients and
discontinuities.

Further work is needed to increase the efficiency of the strategy. First,
the resampling technique has to be improved. The snapshots added to a
specific subspace come from the continuation of a low-discrepancy
sequence. For example, a method minimizing the variance of the
Gaussian process regression could be considered. Moreover, the new
snapshots are computed sequentially as the probability of belonging to
each subsetis updated at each iteration. A new process of parallelization
should be devised to take advantage of high-performance computing
during the iterative sampling step by combining multiple simultaneous
jobs into large ensembles. Second, the extrapolation at the interface of
the input space parameter remains an open issue. Further applications
of the LDM strategy are expected on three-dimensional flows for
industrial aerodynamic applications. Especially, it is planned to
evaluate this method in a mission analysis context, taking advantage of
the results obtained for the transonic regions.
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