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ABSTRACT Machine learning and artificial neural networks have shown to be applicable in modeling

and simulation of complex physical phenomena as well as creating surrogate models trained with physics-

based simulation data for numerous applications that require good computational performance. In this

article, we review widely the surrogate modeling concept and its applications in the electrical machine

context. We present comprehensively a workflow for developing data-driven surrogate models including

data generation with physics-based simulation and design of experiments, preprocessing of training data,

and training and testing of the surrogates. We compare neural networks and gradient boosting decision

trees in modeling and simulation of torque behavior of a permanent magnet synchronous machine together

with selected design of experiments approaches with respect to surrogate accuracy and computational

efficiency. In addition, an approach to utilizing domain knowledge to create a hybrid surrogate model in

order to improve the surrogate accuracy is shown. The accuracy of the selected hybrid neural network was

better than with the gradient boosting approach and was close to the finite element simulation, whereas

its run-time efficiency was significantly better compared to the finite element simulation with a speed-up

factor of over 2,000. In addition, combining the sampling methods provided better results than the selected

methods alone.

INDEX TERMS Artificial neural networks, design of experiments, electromagnetic modeling, machine

learning, numerical simulation, permanent magnet machine, surrogate model

I. INTRODUCTION

E
LECTRICAL machines (EMs) are an essential part of

our everyday life with their applications ranging from

small domestic appliances to industrial power plants. Each

application requires a particular electrical machine with

specific characteristics, and the process of designing such

a machine can be performed with the help of mathematical

modeling. In addition to design, these mathematical models

can be used in condition monitoring, fault diagnosis, system

control, and performance evaluation. The ongoing devel-

opment of the digital twin concept and its enabling tech-

nologies, such as data analysis and the Internet of Things

(IoT), are also emphasizing the application of computational

models.

The physics-based mathematical methods used for low-

frequency electromagnetic modeling can be classified into

two groups, analytical methods (e.g., electrical equivalent

circuit model and magnetic equivalent circuit analysis,

MEC) and numerical methods (e.g., finite element (FE)

method, FEM). However, each modeling method has its

drawbacks. Typically, all methods make a compromise be-

tween the computational efficiency and accuracy; a method

can be fast but inaccurate, as in the case of various analytical

methods, or accurate but computationally expensive, such

as FEM. Thus, there is a great need for approaches that are

both accurate and computationally inexpensive.

Of various numerical methods, FEM is perceived to be

the most workable in the field of electromagnetic analysis of

EMs, and has achieved dominance. The FE-based approach

for simulating the operation of an EM has the advantage
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of being able to accurately predict the characteristics and

performance of the machine, even without requiring mea-

surements for defining the model parameters. Due to this,

it is highly suitable for research, development, and design

purposes. Nevertheless, the approach requires data about the

geometry and material properties of the machine and its

components. In the FE-based approach, the computational

domain (i.e., the volume of the main components of the

machine) is subdivided into smaller domains called finite

elements. In the case of dynamic simulation, the simulated

time is also discretized into time steps based on the time

scale of the phenomena involved. The variation of the elec-

tromagnetic field in an EM is a very fast phenomenon, thus

small time steps are required to obtain accurate solutions

for field equations. Solving a problem with a large number

of time steps and at a high level of accuracy is usually

demanding in terms of computational time, making the use

of FEM challenging in EM design optimization and system

level simulation, where an EM is included as a component.

Furthermore, it makes employing FEM directly in digital

twins, as well as the control and condition monitoring

of machines rather impractical if real-time performance is

required.

One solution for the balance between computational accu-

racy and efficiency are approximative models based on the

data from high-fidelity physics-based models. These approx-

imative models are often called surrogate, response surface,

emulator, or meta-models [1]. Surrogate models can be

classified into three main categories: data-driven, projection-

based and hierarchical models [2]–[5]. Hierarchical models

are still physics-based models, but with lower fidelity and

reduced computational cost compared to an original high-

fidelity physical model. In the EM case, data-driven and

projection-based surrogates can be constructed based on

pre-computed FE simulation results. FEM behaves as a

black-box producing data for data-driven models, whereas

projection-based models require the extraction of the FEM

matrices.

Data-driven regression methods include artificial and deep

neural networks (ANNs and DNNs), support vector regres-

sion, radial basis functions, kriging, linear and polynomial

regression [1], and gradient boosting decision trees (GBDT)

[6]. Despite the method, the core of data-driven modeling is

to identify relationships between input and output variables

from data without knowledge of the system in question.

We demonstrate how a reasonably accurate but still com-

putationally lightweight data-driven surrogate model can be

generated using machine learning (ML) with FE simulated

data.

ML and ANN are an interesting set of technologies

widely used for modeling the function and behavior of a

system. For example, they provide a unified approach to

creating fast computing surrogate models of data that repre-

sents the behavior of a system. The approach involves defin-

ing model inputs and outputs, finding optimal architecture

and learning parameters for the ANN via hyperparameter

optimization, and testing the found model with testing data.

When combined with simulation, i.e., producing the data

for ANN development with computer simulation, the overall

process can be mainly automated. One of the drawbacks of

the approach is that it usually requires large amounts of data,

which means computing numerous simulation cases with a

high-fidelity model. In cases when the computing time and

the effort needed for generating the data are not an issue,

the approach can enable significant run-time performance

improvements compared to physics-based simulations.

From the ML perspective, EM modeling can be consid-

ered within the scope of two tasks: classification (condition

monitoring and fault diagnosis), which requires classifi-

cation of the current state of the machine into healthy

and faulty, and regression (performance evaluation), which

tackles the problem of predicting certain characteristics of

the machine, such as torque and flux linkages for given

initial parameters. In our case, we model a permanent

magnet synchronous machine (PMSM) and consider static

regression models for the surrogate modeling of PMSM

torque behavior. As projection-based surrogates typically

model the torque indirectly through a magnetic flux solution

and they would need FEM matrices, we concentrate on data-

driven options in the experimental part of this study.

The novelty of the work is in providing extensive re-

view on surrogate modeling and its applications in the

EM domain, and in demonstrating in detail how machine

learning can be employed in surrogate modeling. The main

contributions of this article are:

1) To extensively review surrogate modeling and its

existing applications in the context of EMs.

2) To thoroughly describe the surrogate modeling work-

flow from FEM-based data generation to surrogate

model training and testing.

3) To compare ANN and GBDT surrogate model accu-

racy and run-time performance.

4) To compare selected data sampling approaches and

their effect on the accuracy of the ANN surrogate

models.

5) To evaluate a hybrid model that employs both the

physics-based and the ANN approach, and to compare

this with a non-hybrid ANN model.

6) To evaluate surrogate model development time and

computational run-time efficiency.

The article is organized as follows. In Section II, we

present a literature review as background, including FE

modeling of EMs, different FE-based surrogate modeling

methods with the focus on projection-based, and data-driven

methods. In addition, ANNs are introduced and applications

of surrogates for electrical machines are reviewed. Section

III focuses on our models for the selected application,

PMSMs, mainly including FE and ML models and data

sampling to generate an ML surrogate. The data preparation

and surrogate model development workflows are presented

also in Section III. Section IV presents our numerical
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results, focusing on comparing ANN and GBDT surrogate

model types and comparing different data sampling methods

in terms of accuracy and computational efficiency of the

surrogate models. Finally, Section V discusses the findings

and the conclusions of the study.

II. BACKGROUND OF FE-BASED SURROGATE MODELS
Here, we concentrate on different versions of surrogate mod-

els of electrical machines, namely the above-mentioned hi-

erarchical, projection-based, and data-driven methods. Since

in EM applications these models require FE models or FE

simulation data at some level, we begin with multi-fidelity

FE models. However, the main focus is on projection-

based and data-driven models, and their background and

applications concerning EMs.

A. FINITE ELEMENT MODELS AND HIERARCHICAL

SURROGATES OF ELECTRICAL MACHINES

Finite element models can be divided into many subcate-

gories based on the model complexity. There are multiple

major design choices where one can utilize models with

different levels of accuracy, making FEM in its own right

a multi-fidelity model [7]. Probably the most influencing

design choice is the model dimension, which in the EM

case is the decision between a two-dimensional (2D) and

three-dimensional (3D) model. The 3D model often requires

more than 10-fold higher computational effort, making 2D

still the de-facto standard in EM electromagnetic simulations

[8], [9]. The second, highly fidelity-influential design choice

is the temporal model: static, harmonic, or time-dependent.

The rotation and intrinsic nonlinearity of materials often

necessitates time-dependent simulation, in which the elec-

tromagnetic problem is solved in discrete time occasions

called time steps. Its solution produces the most accurate

results, but their computational burden is high, due to the

large number of time steps often needed. A similar design

choice is also to decide whether or not to model eddy

currents in massive parts and thin conductors.

A hierarchical (or multi-fidelity) surrogate model is cre-

ated by simplifying the representation of the physics-based

model, i.e., by ignoring certain model aspects or reducing

the numerical resolution [5]. In EM modeling, this means

that a low-fidelity and computationally less expensive FE

model itself is a hierarchical surrogate model to replace

the high-fidelity model. The fidelity is reduced, e.g. by the

above-mentioned accuracy-related FEM design choices (i.e.,

by neglecting some physical phenomena), by coarsening the

FE mesh or time step density, or by raising the solution

residual convergence tolerance. Producing a hierarchical EM

surrogate model is fast but as it is still an FE model, and

it faces challenges to be fast and accurate at the same

time. Intrinsically, the accuracy of a hierarchical surrogate

is worse the faster the model is to run. As we emphasize

the run-time performance and accuracy, we look for better

alternatives.

B. PROJECTION-BASED METHODS

Projection-based methods reduce the complexity of solving

the system of equations in numerical simulations by reduc-

ing the order of equations. These methods were initially

originated in the field of computational fluid mechanics

[10] in 1967. Gradually, projection-based models found

applications in a wide range of scientific fields from elec-

tronics and structural mechanics to biological systems [11]–

[13]. In projection-based methods, instead of solving the

high-order mathematical equation in the original space, the

equation is projected onto a lower dimensional subspace,

which is obtained from the span of a set of orthonormal

reduced bases, and the problem is then solved in this

low-dimensional subspace. In practice, this method reduces

the computational complexity by lowering the number of

unknown variables. Examples of projection-based methods

include the Arnoldi-Lanczos method [14], the reduced basis

method [15], the proper orthogonal decomposition (POD)

method [16], the proper generalized decomposition method

[17], and the a-priori hyper-reduction method [18]. Recently,

the application of projection-based surrogate methods in

electromagnetic devices has been of interest to a large

number of researchers in the field. For example, POD and

Arnoldi-based Krylov methods have been used to efficiently

reduce the order of linear electromagnetic problems [19]–

[21].
Building a projection-based surrogate for nonlinear prob-

lems is more complicated than for linear problems. In

nonlinear cases, the nonlinear system equations should be

solved using iterative methods, which cause extra modeling

effort [22]. Various methods have been suggested to reduce

the complexity by reducing the order of nonlinear elec-

tromagnetic problems, such as subdomain reduction [23],

or combining a linear projection-based approach with a

trajectory piecewise linear method [24], or with a (discrete)

empirical interpolation method [25]. These methods reduce

the order of nonlinear problems successfully, but the need

for using iterative methods still exists. Although the required

number of iterations for solving a nonlinear projection-

based model is significantly lower than for solving the

full order model, applying an iterative method in real-time

applications, e.g. real-time control of an EM, can be still

challenging due to very limited computational time. An

orthogonal interpolation method to tackle the problem for

real-time application has been proposed [26].
The projection-based models mimic the solution process

of FEM and are intrusive from the FEM perspective as they

are built on the manipulation of the FEM matrices. Hence,

they are best in estimating the machine’s vector potential

and magnetic flux, whereas the torque, for example, is a

secondary output solved from the air gap magnetic flux. In

a data-driven surrogate model, the torque can be the main

output and it is not necessary to estimate the flux. If the main

interest lies in global variables such as torque, loss or energy,

a data-driven surrogate model can have more freedom as

no intermediate results or FEM intrusion are needed. As
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our aim is to have a surrogate model for PMSM torque

modeling, a data-driven surrogate model appears to be a

highly interesting and feasible option for us.

C. DATA-DRIVEN SURROGATE MODELS

In data-driven modeling methods, a system is considered as

a black-box and a mathematical model is estimated from the

relation between the input xi and yi output of the system.

Therefore, access to the coefficients of the system equations

and the internal specifications of the model are not required.

A data-driven surrogate model is a simple and computation-

ally inexpensive approximation of a complex model which

is created using data produced with the original model.

The process of building a surrogate model consists of the

following steps: generation of data which include samples

for variables xi and yi, utilizing data-driven methods to

build the model, and verification of the acquired model’s

accuracy.

The data generation for surrogate modeling can be made

with non-adaptive or adaptive Design of Experiments (DoE)

techniques. In the field of machine learning, the adaptive

methods are better known as active learning methods [27].

In the non-adaptive methods, the whole dataset, i.e., the

input and output data, is generated in one go. In adaptive

data generation, first a smaller amount of data is generated,

and according to the evaluation of the surrogate trained

on that data, more data is generated in areas where the

accuracy of the surrogate is low [1]. Thus, the total number

of simulations to produce data with a computationally heavy

model is potentially lower than with non-adaptive sampling.

Traditional and widely used non-adaptive DoEs include

factorial designs such as full factorial and fractional factorial

design, and response surface designs such as Box-Behnken

and central composite designs [28]. Space-filling DoEs are

another class of techniques that include Latin hypercube

sampling (LHS) and Sobol sequences, for example, which

aim to cover the input parameter space uniformly [28]. The

space-filling characteristic of DoEs are different and may

affect the accuracy of the surrogate model. Fig. 1 presents

examples of LHS, random uniform, and grid sampling with

histograms; showing how the samples cover the parameter

space. These examples show that the samples in the LHS

method cover the input parameter space more equally than

the samples obtained with random uniform sampling. If the

system would be highly nonlinear, e.g., within a current

amplitude range of 6 to 8 A, the grid sampling method

might not capture the dynamics within that range correctly.

There are plenty of models that can be used to build a

surrogate, such as polynomial functions, kriging models,

radial basis functions, and ANNs [1]. Among all these

methods, ANN has become increasingly popular due to

its ability to model any complex function given enough

training data. In addition to that, having a deep network

structure (i.e., many hidden layers) does not necessarily

require any laborious feature selection and can work with

raw data [29]. FE-based ANN models have been utilized for

predicting stress distribution in a 3D printing process [30],

bend angles in laser-guided bending [31], and performance

of a thermoelectric generator [32], for example.

A gradient boosting decision tree (GBDT) is another

widely-used ML model type that is based on combining

multiple decision trees, so called base-learners, which are

created in series and connected sequentially [33]. Decision

trees learn to predict the output values by forming simple if-

then decision rules from data. The tree structure includes a

root (i.e., input) node, internal decision nodes, and terminal

(i.e., leave) nodes that define the possible output values [6].

Other models than decision trees can be employed as the

base-learners in the gradient boosting model, such as linear

regression and radial basis function models [6].

Depending on the problem under study, the data-driven

methods can be categorized into different subcategories such

as parametric and non-parametric methods [34], or global

and local methods [35]. Global data-driven modeling of a

highly complex system can be challenging, for which a

network of local models might offer a solution [36]. Global

surrogates aim to capture the behavior of a system in the

whole input domain, whereas a local model is built to cover

smaller parts of it [36]. In addition, a local model network

(LMN) approach can be employed. In the LMN approach,

multiple local models form a network in which each model

is constructed to approximate a specific area in the input

parameter domain. The validity of each local model in the

LMN within the input space can be defined by a membership

function (also referred to as weighting or validity function).

This way the transitions from the input space of one local

model to another are smooth [36].

Knowledge of the physics behind the system behavior can

be employed by creating a hybrid model. The combination

of physics-based and data-driven models can be seen as a

hybrid model [37]. A simple way to build one is to utilize

a simplified analytical physics-based model to approximate

the outputs as functions of the inputs, and train the ML-

based data-driven surrogate model with the difference be-

tween the predictions of the simple model with the real

outputs. The predicted output signal values can be then

converted back to originals as a post-processing step.

D. ARTIFICIAL NEURAL NETWORKS

Even though numerous model types for data-driven mod-

eling exist, the focus in this study is on ANNs which

mimic the human brain’s way of processing information.

In the experimental part, we also compare the ANN and

GBDT performance of the models. The most basic ANN

architecture is a multilayer perceptron (MLP) as shown

in Fig. 2. MLP is a feedforward network as there are no

recurrent connections, neither from the output nor from

hidden layers to previous layers. The first layer of the

network is the input layer, which distributes the input values

to each neuron in the first hidden layer. A hidden neuron

can be thought of as a simple processing unit, as shown in

Fig. 2. The input values coming from the neurons of the
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(a) Latin hypercube sampling.
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(b) Random uniform sampling.
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(c) Grid sampling.

FIGURE 1. (a) LHS, (b) random uniform, and (c) grid sampling methods with two factors and 196 samples. The histograms shown that the
samples generated with LHS cover the input space more equally than samples drawn randomly from a uniform distribution, whereas both
randomized sampling methods cover the input space better than grid sampling.

previous layer has its own weights, and each hidden neuron

has its own bias parameter. The weighted inputs and the bias

are added up and the sum is fed for the input to activation

function, which can be linear or nonlinear. The output of

the activation function is then distributed to the next layers,

or if the neuron is in the output layer, it is the model output.

Supervised learning is a class of ML, in which the

expected output values are known and the model is updated

during the learning process to minimize selected error metric

between the predicted output and the ground truth output

values. ANN training in a supervised manner means that

the weights and biases are adjusted so that the model fits
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FIGURE 2. Structures of an MLP network and artificial neurons.
Adapted from [38].

the training data. The generalization ability of an ANN

is highly important. If the ANN weights are fitted too

well on the training data, the model is overfitted and the

accuracy is worse with slightly different data. ANN training

usually involves hyperparameter optimization (HPO), which

is done, for example, to find a structure for the network

and adjust other hyperparameters such as the learning rate

or the weight initialization method, which have an effect

on the learning. There are different HPO methods, such as

grid search and random search, in which the hyperparameter

sets are independent [39]. HPO methods such as genetic

algorithms, particle swarm optimization and Bayesian op-

timization make use of previous training results as the

optimization progresses [40].

Various methods can be used to evaluate the gener-

alization ability of the ANNs. Available data is usually

divided into three parts – training, validation, and testing

data. Validation data is used to evaluate the generalization

ability of models trained with different hyperparameters.

Supervised learning processes, including ANN training, can

be monitored by comparing the training and validation error

as the training progresses. If the validation error starts to

increase at some point of the training, while the training

error is decreasing, it implicates overfitting. A method called

early stopping can be used to prevent overfitting. Early stop-

ping can be applied to stop the training when the validation

loss starts to increase or when it has not decreased during

N previous training iterations [41]. The best model from

the hyperparameter optimization is selected by comparing

the validation errors. Finally, the selected model accuracy is

tested on an independent test dataset that has not been used

in training or validation. This is called the holdout method,

which is the simplest type of cross-validation technique

[38]. The test dataset is required because estimation of the

model generalization with the validation dataset becomes

unreliable when it is used in hyperparameter optimization
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to select the optimal set of hyperparameters. Multifold

(i.e., k-fold) cross-validation is another well-known method,

in which the training data is divided into k subsets and

the same model is trained k times so that each of the

subsets has been used in validation, whereas other subsets

form the training data [38]. Development of a data-driven

model may also utilize feature engineering, including feature

extraction and selection. Examples of feature extraction are

variable transformations and the generation of polynomial

features from the original features, i.e. variables. Input

feature selection techniques include wrapper, embedded and

filter methods [42].

E. APPLICATIONS OF SURROGATES IN ELECTRICAL

MACHINES

The application of surrogate techniques in electromagnetic

devices has been of interest to a large number of researchers

in the field recently. The applications include design opti-

mization, fault diagnosis and condition monitoring, and con-

trol of such devices. In addition, projection-based surrogates

have been utilized for uncertainty quantification [20].

1) Design optimization

Surrogate model-based optimization (SMBO) methods have

been widely used in design optimization. The methods can

employ a global or a local surrogate, or both [43], [44]. A

global surrogate model is built to cover the entire design

domain, whereas a local one approximates a smaller area of

the domain. Due to this, a local approach can utilize less

complex models and require less data than a global one [43].

Alternatively, these two approaches can be combined. In that

case, a global surrogate can be utilized first to explore the

entire design space and find the most promising areas where

local models are then built to search for a local optimum

[45].

SMBO has been applied with FEM to accelerate op-

timization tasks, e.g., in [46], where the authors present

a method for optimizing a doubly-fed induction generator

winding design to maximize the power yield. Design of

an interior PMSM was optimized with a surrogate-assisted

multi-objective optimization algorithm in [47]. Giurgea et

al. [48] applied surrogate modeling in design optimization

for a PMSM. The authors in [49] compared the accuracy

of surrogate models that were created using FE simulation

data produced with different design of experiment strategies.

Surrogates and genetic algorithms have been combined to

find an EM design that produce optimum constant power

speed range [50], [51], for example, and to optimize the

weight of an EM [52]. Different design of experiment

strategies were employed in data FE generation in [53] to

optimize brushless direct current motor design. Further, the

torque performance of such motor was optimized in [54].

2) Fault diagnosis and condition monitoring

ML has been employed for anomaly detection and machine

condition monitoring. Anomaly detection is easier to carry

out as only data from normal operational conditions is

needed. However, data from faulty operational conditions is

required to classify the faults or machine condition. Janssens

et al. [55] have developed a convolutional neural network

(CNN) -based method to automatically learn features from

vibration data, which characterize bearing faults. Multiple

ML methods in electrical motor fault diagnosis are presented

and compared in [56]. Wen et al. [57] propose a CNN-

based approach to convert time-domain measurement signals

into two-dimensional images, from which relevant features

are then extracted. Senanayaka et al. [58] present a CNN-

based online fault diagnosis system. The classification is

based on statistical features extracted from handled signals,

and principal component analysis is utilized to reduce the

number of features to reduce the model complexity and

enhance model generalization. Quiroz et al. in [59] utilize

a method based on random forests to diagnose broken rotor

bar failure in a line start-permanent magnet synchronous

motor. In [60], the authors propose a CNN-based method,

called dislocated time series CNN (DTS-CNN), to classify

faults from raw signals. Jia et al. [61] present a DNN for

fault classification, an approach which removes the need for

manual feature extraction and variable selection.

3) Control of electrical machines

In the control of EMs, a model of the machine is used to

represent the machine. This model is normally analytical,

or it is based on one or a few lookup tables [62]. Due to

the potential of surrogate models in estimating the machine

behavior accurately, the application of surrogate models

in control of electrical machines has recently attracted

increasing attention. For example, numerous publications

have presented the efficiency of model predictive control

(MPC) in real-time control of PMSMs [63]–[65]. However,

only a few published articles are available that suggest the

utilization of an FE-based surrogate model in these applica-

tions, even though there are articles presenting the utilization

of non-FE-based ANNs for PMSM control [66]–[68]. The

main challenge in this utilization is the computational time

constraints of the real-time applications. This means that

the surrogate should not only present the original model

precisely, but also should have the capacity to compute the

solution quickly enough.

Pinto et al. [69] have developed a dq0 flux-linkage-based

model for a PMSM, using FE calculations for various dq0

currents at different rotor positions. The torque and qd0

currents resulting from the proposed model are similar to

the ones obtained with FEM, while the simulation time

of the proposed model is significantly reduced. Thus, the

authors have proposed this model for controller design and

hardware-in-the-loop (HIL) simulation. Drobnič et al. [70]

propose a fast flux-linkage model (FLM) of a nonlinear

interior permanent magnet synchronous machine (IPMSM),

which is parameterized with a set of data calculated by

FEM. The proposed FLM is compared with a current model

(CM), driven also from the FEM. Since the proposed FLM
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is 20% faster than the CM, the authors suggest the FLM

for computationally intensive application with an excessive

real-time time span. Farzam Far et al. [26] have developed

a projection-based model of an IPMSM that has the stator

currents in the rotor frame of a reference as inputs and the

nodal values of the magnetic vector potential, and thereafter

the flux linkages, as outputs. This model is implemented in

an embedded processor of a corresponding drive to control

the machine prototype in real time.

III. DATA-DRIVEN SURROGATE MODELING OF
PERMANENT MAGNET SYNCHRONOUS MACHINES
The section discusses the selected application, namely

PMSM modeling. Popular physics-based models used with

PMSMs are first discussed as a background to show which

kinds of models the surrogates could replace. However, the

main usage of FE models here is for producing data for

creating surrogate models of PMSMs. Thus, we focus on

the workflow of the data generation and data preparation

processes. Finally, we present the surrogate model develop-

ment including hyperparameter optimization.

A. PHYSICS-BASED MODELS OF PERMANENT

MAGNET SYNCHRONOUS MACHINES

The development of rare-earth magnetic materials has re-

sulted in the advancement of PMSMs. Rahman [71] sum-

marizes the history of this development. A PMSM is a

synchronous machine that consists of three (or more) phase

windings in a stator and permanent magnets (PMs) in a rotor

for the field excitation. Fig. 3 represent the main elements

of a typical PMSM (the geometry represents the test case

examined in Section IV).

FIGURE 3. A cross-section of an IPMSM, showing only 1/6 of the
geometry by symmetry. The main elements of the machine are shown
where A−, B+ and C− are the coil sides of the three phases of the
stator windings.

Due to the presence of PMs, PMSMs can produce

torque at zero speed and have higher efficiency and torque

per unit volume compared to induction machines. There-

fore, PMSMs are suitable for applications in which high-

performance and high-efficiency machine drives are re-

quired, such as in wind power generation, electrical vehi-

cles, and robotics. Depending on the mounting locations

of the PMs, on the surface or inside the rotor, PMSMs

are categorized as surface PMSMs (SPMSMs) or interior

PMSMs (IPMSMs, see Fig. 3), respectively. Compared to

IPMSMs, SPMSMs produces a higher air gap flux density,

but the mechanical robustness and the ratio between the

quadrature and direct-axes inductances are lower. Thus,

unlike IPMSMs, SPMSMs are mainly used in low speed

applications.

PMSMs can be modeled at different levels of computa-

tional accuracy and efficiency. One typical analytical model

of EMs is based on electrical equivalent circuit equations

and describing the phase quantities in a d-q rotor reference

frame. The voltage equations defining the electrical dynam-

ics of the PMSM in d-q frame can be presented as

Vd = Rsid +
dλd

dt
− ωeλq, (1)

Vq = Rsiq +
dλq

dt
+ ωeλd, (2)

λq = Lqiq, (3)

λd = Ldid + λm, (4)

where (Vd, Vq), (id, iq), (λd, λq), and (Ld, Lq) are the d-

and q-axes voltages, currents, flux linkages, and inductances,

respectively. Rs is the stator resistance, ωe is the electrical

angular speed of the rotor and λm is the PMs flux linkage.

The inductances, resistance and flux components can be

identified by analytical equations or alternatively from FE

results. The electromagnetic torque can also be defined by

d-q parameters as

Te =
3p

2
[λmiq + (Ld − Lq)idiq] , (5)

where p is the number of pole pairs in the machine.

The aforementioned electrical equivalent circuit equations

are the most simplified mathematical model that is used to

present a PMSM. The most significant disadvantage of this

model is that all parameters need to vary sinusoidally in

the coordinates. Hence, this limits the accuracy to simulate

the behavior of an actual machine that consists of nonlinear

materials (even if saturable models exists, e.g. [72]). One

more advanced and accurate model class are the MEC mod-

els, which are based on reluctance networks [73], [74]. An

MEC models the machine’s cross-section with geometry-

dependent reluctances. The reluctances can be in parallel

or in series, producing a magnetic circuit that models the

EM behavior. Additionally, material nonlinearities can be

included in the model. MEC is a multi-fidelity model, and

its accuracy depends on features taken into account in the

magnetic circuits. In its simplest form, it is an analytical

model, but by adding more circuit parameters, it can be

interpreted as a numerical method, and its accuracy draws

close to that of FE analysis. However, it is computationally

faster than FEM. One disadvantage of MEC is that you
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need a preconceived idea of the flux paths, making it in

some cases difficult to automate the reluctance network

generation compared to model generation and meshing with

FEM. Further, the eddy currents cannot be easily included in

MEC without significantly increasing the model complexity.

For generating data for an FE-based surrogate, an accurate

model of the EM with nonlinear material is required, and

even more significantly a method for which model genera-

tion is easy to automate. As mentioned previously, FEM is

an efficient tool for such a purpose.

Let us consider a current-fed PMSM with a 2D time-

dependent solution with FEM. In this case, the solution to

the field can be expressed by a magnetic vector potential

A (with only a z-component, i.e. A = Azez , where Az is

the z-component and ez is the z-directional unit vector) and

this vector potential is used to compute all the quantities

of the machine such as the distribution of the flux density,

field strength, voltages, currents, torque, and flux linkages.

The vector potential A and magnetic flux density B can be

solved from

−div

(

1

µ
grad Az

)

+ σ
∂Az

∂t
= Js + curl M, (6)

B = curl A, (7)

where µ is the magnetic permeability, σ is the electrical

conductivity, Js is the source current density, and M mag-

netization of the permanent magnets. Discretizing the weak

format of the field equation and using FEM, we can present

the problem with an algebraic system of equations as

K a+M ȧ = f , (8)

where K and M are known as the stiffness and mass

matrices, respectively. a consists of the nodal values of the

magnetic vector potentials and ȧ is the time derivative of a.

f is the source vector resulting from the input current and

the curl of the magnetization produced by the PM. (8) can

be solved by various methods, such as the Euler method,

the Runge-Kutta method, or the Gear method. We choose

to use a backward Euler approach, where after discretizing

the problem in time, the nodal values at time step tk can be

solved from:

(

K +
1

∆t
M

)

ak =
1

∆t
M ak−1 + fk. (9)

In nonlinear problems, since the stiffness matrix K depends

on the magnetic nodal values, an iterative method is required

to solve (9).

As mentioned previously, knowing the nodal values of

the potential, one can compute the magnetic flux density B

by (7), and the torque T acting on the rotor of the machine

with Maxwell stress tensor as

T =
1

µ0 (rs − rr)

∫

Sag

r Br Bφ dS, (10)

where rs and rr are the outer and inner radii of the air gap1,

respectively. Sag is the cross sectional area of the air gap.

Br and Bφ are the radial and tangential components of the

flux density [75].

The order of the finite elements and the mesh size

determine the accuracy of the machine quantities and higher-

order finite elements or a finer mesh are required to im-

prove the accuracy. This typically leads to a large set of

equations, which in return increases the computational cost

significantly. In this paper, we propose a surrogate model to

reduce this computational cost.

In Section I, we mentioned control and system level

models as possible applications of surrogates. At present,

the most popular models in those applications are d-q

equivalent circuit equations (described above) and lookup

tables (LUTs) [62], [76]–[78]. In this usage, LUT typically

means a multi-dimensional table of FE pre-computed values

with selected sets of input parameters and means to linearly

interpolate the output for a new input value. LUT values can

be losses, torques, inductances, flux linkages, as a function

of d- and q-axis current and rotor angle. Roughly, LUT

models are typically faster than FEM or even MEC models,

and their accuracy is innately lower compared to FEM,

but in the vicinity of MECs. However, LUT requires a

considerable amount FEM pre-computation, like the data-

driven surrogates. We propose a surrogate to keep the run-

time computational efficiency close to LUTs, but with better

accuracy.

B. DATA GENERATION WITH PHYSICS-BASED FE

MODEL

A simulation model of the IPMSM in Fig. 3 was used

to produce training data for ML. The IPMSM was mod-

eled with an open-source FEM software, Elmer [79], by

ignoring the losses and eddy currents in the machine and

using current-fed 2D time-dependent solution. The Elmer

software numerical solution process is described in [80].

In the model, the core material of the electrical machine

was modeled with a nonlinear single-valued B-H curve as

described in [81]. The parameters of the IPMSM are given

in Table 1.

The FE mesh (Fig. 4) for Elmer was produced with

FreeCAD [82] and GMSH [83], using the FreeCAD Python

interface. The mesh has in total 2,268 nodes and 4,177

triangular elements. Since first order elements are used, the

mesh in the air gap needs to be very dense to produce

1In case on nonuniform air gap like in Fig. 3, inner radii used in the
equation (10) is the maximum value of the geometrical inner radii.

TABLE 1. Parameters of the IPMSM.

Parameter Value Parameter Value

Power 2.2 kW Airgap length 1 mm
Rated current (rms) 4.3 A # of stator slots 36
Rated frequency 75 Hz Stator outer diameter 165 mm
Rated speed 1,500 rpm Stator inner diameter 104 mm
# of pole pairs 3 Effective axial length 115 mm
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FIGURE 4. Simulation FE mesh of the case, with a zoomed region in
the air gap.

FIGURE 5. Simulation result with flux lines and the magnetic flux
density distribution.

reasonably accurate torque results for ML. In a time-

dependent simulation, 400 time steps were simulated and

the time step length was adjusted to have 200 time steps in

an electrical period. Fig. 5 shows the magnetic flux density

result of the model just after one mechanical period, with

the rated current magnitude and frequency.

Two datasets were produced for data-driven modeling by

performing parameter sweeps with the Elmer FE simulation

model of the IPMSM using a desktop computer with an

Intel Xeon E5-2640 v3 processor. The model was fed

with a sinusoidal input current, characterized by a current

frequency and amplitude that were varied to produce rich

datasets. Other machine parameters were constant, e.g. the

rotor initial position and the number of time steps were kept

same in all parameter sweeps. The actual logged inputs in

the datasets are time series of current values in three phases.

The logged output is an air gap torque time series computed

from Maxwell stress tensor using (10). The first dataset was

generated using grid sampling and the second using the

Latin hypercube sampling (LHS) method. In this context,

choosing the cases is referred to as sampling. As the FE

simulation is deterministic, no replications are included in

the DoEs.

C. DATA SAMPLING APPROACHES

The grid and LHS datasets consist of in total 196 and 1,000

cases, respectively. Cases in the grid dataset are in a grid

form as Fig. 1 (c) shows. To produce a rich set of data, the

maximum current magnitude was selected to ensure highly

saturated results in the data. The current amplitude values

ranges from 0.5 to 10 A and the current frequency values

ranges from 10 to 200 Hz, both with 14 different values in

the grid. The same ranges were used to generate the LHS

dataset. The first 400 time steps of input current (phase A)

signals and corresponding output torque responses for six

cases from the LHS dataset are shown in Fig. 6.
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FIGURE 6. An example of FE simulation results, showing one of
the three phase current signals (left) and corresponding torque re-
sponses (right) of six cases.

The dynamics of the modeled system contain nonlinear-

ities, and the torque behavior of the machine is different

at low current amplitudes compared to high ones. In the

initial study of hyperparameter space limits, the model error

on both the training and validation datasets was higher

in cases with a low current amplitude than in those with

higher current amplitudes. The physical reason for this is

that different terms of torque dominate in different current

values. With zero current, all torque is cogging torque (i.e.

the torque produced by PMs reacting to the stator teeth)

and the average torque is zero. Cogging torque produces

torque ripple, a variation of the torque around its average.

At low currents, the cogging torque still dominate. At a high

current, there is a high average torque due to interaction

between the PMs and stator coils. Further, the magnetic core

of the machine is so saturated that other torque ripple terms

(e.g. due to nonsinusoidal airgap field) dominate the cogging

torque. Hence, the torque timeseries waveform changes

gradually from 0 A to 10 A, when the saturation-related

term starts to dominate the cogging torque.

To ensure unbiased model validation and testing, the input

space was divided into five sets by the current amplitude

values as shown in Table 2. Cases for validation and
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 e 

Equal number of cases in
each current amplitude
range. Cases from the
LHS dataset.

 w 

More cases in the low
current amplitude ranges.
Cases from the LHS
dataset.

 g Grid sampling

g196+e100_H&OF

2nd dataset
combined with
the original

If H (hybrid model), then output
torque values are divided by the
current amplitudes

If OF (original features),
then original input features
are used in the model input
(i.e. three-phase currents)*

Number of cases

*If not OF, then the following features extracted
from the three-phase currents are used:
- Absolute values of the three-phase currents
- Maximum value of these three absolute values
- 1st discrete difference of the three-phase currents

FIGURE 7. Notation used with the training datasets. Green and blue
parts are optional.

testing datasets were selected from the LHS dataset pseudo-

randomly so that the same number of cases were drawn from

each of the five current amplitude sets. The validation and

testing cases were excluded from the LHS dataset before

selecting cases for different training datasets. The model

validation and testing datasets included 150 and 190 cases,

respectively.

The naming of the datasets is shown in Fig. 7. The grid

dataset, referred to as g196, was used in the training as it

is. Cases for other training datasets were drawn from the

remaining set of cases in the LHS dataset to study how

much the number of cases affects the model error. Four

training datasets (e50, e100, e200 and e300) were created

from the LHS dataset similarly to how the validation and

testing datasets were formed, i.e. by drawing cases pseudo-

randomly from the LHS dataset. Four more datasets (w50,

w100, w200 and w300) were created with more cases in

the low input current amplitude ranges and less in the

high amplitude ranges. This was done in order to study

if having more cases in the low current amplitude area

of the input space improve the model accuracy. Finally, a

dataset consisting of 296 cases (g196+e100) was created by

combining the samples of datasets g196 and e100, in order

to compare it to the e300, w300 and g196 training datasets.

The difference between the g196+e100, e300 and w300

datasets is that in the first one, the grid sampling ensured

that there were cases in the outer edges of the input space

and additional cases were located in between the grid points

in a randomized manner. A comparison between the g196

and g196+e100 datasets was made to see if the randomized

points could improve the model accuracy compared to pure

grid sampling. The case distributions of the training datasets

g196, e200 and w200, and validation and testing datasets

across the input space are shown in Fig. 8.

D. TRAINING DATA PREPARATION

Individual cases in the grid and LHS datasets had different

sampling frequencies, i.e. different time step lengths. In

Elmer, the sampling frequency was selected on the grounds

of the input signal frequency. In the low input current

frequency cases the sampling frequency was lower than

in higher input current frequencies. The number of FE

samples2 in each case was 200. In order to unify the

sampling frequency, i.e. to make the time step length equal,

cases sampled with lower than the highest frequency were

upsampled to match the highest sampling frequency. New

samples were generated with linear interpolation. After the

upsampling, the lowest frequency (10 Hz) cases included

4,000 samples since the time step length in those cases

was 20 times longer than in the highest frequency (200 Hz)

cases.

Using merely the input current signal values in the model

input did not result in good model accuracy at low current

amplitudes. Therefore, seven features were computed from

the three input current signals – the absolute values of each

signal, the maximum value of these three absolute valued

signals, and the first discrete difference of the three input

current signals. The actual values of the three input current

signals were excluded from the model input, which resulted

in a total of seven input variables. The model output was

the torque of the PMSM. The input and output signals were

scaled to range from −1 to 1, by scaling with the minimum

and maximum values of each signal in the training dataset.

However, even after generating the additional input features,

the low current amplitude accuracy of the surrogates was not

sufficient.

Since the output torque depends approximately linearly

on the input current amplitude (see equation (5)), versions

of the training datasets e100, g196 and g196+e100 were

created, in which the torque values were normalized (di-

vided) by the input current amplitude. These are denoted by

2Originally there were 400 samples in each case as the sinusoidal input
in the FEM simulation included two full cycles. Since the input and output
data of the cycles were copies of each other, the second cycle was removed.

TABLE 2. Number of cases in different input current amplitude ranges
in the training, validation, and testing datasets.

Dataset Current amplitude range [A]

Abbr. 0.5–2 2–4 4–6 6–8 8–10

e50 10 10 10 10 10
e100* 20 20 20 20 20
e200 40 40 40 40 40
e300 60 60 60 60 60

w50 15 12 10 8 5
w100 30 25 20 15 10
w200 60 50 40 30 20
w300 90 75 60 45 30

g196* 42 56 56 14 28
g196+e100* 62 76 76 34 48

Validation 30 30 30 30 30

Testing 38 38 38 38 38

* Three types surrogate models were trained with the e100, g196 and
g196+e100. More details in Fig. 7 and III-D.
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FIGURE 8. Samples in the training datasets g196, e200 and w200
(a), and the validation and testing datasets (b). The subfigure (a)
shows the difference between e and w datasets. In the latter there
are more samples in the low current amplitudes.

H (hybrid) and H&OF (hybrid and original input features).

The difference between the two was that in the H versions,

the seven extracted features were used in the model input,

whereas in H&OF, the original features were used. With

the H and H&OF setup, the models learns to predict the

normalized values, and these values are converted back to

the original scale in post-processing. The assumption was

that training a neural network model would be easier when

the range of output values was narrow. This kind of model

could be seen as a simple hybrid model in which domain

knowledge of the physical relationships between input and

output variables is utilized. This linear dependence of torque

on current is really an approximation and, hence, the ML

part of the hybrid model takes care of the more complicated

torque terms depending nonlinearly on currents. In these

cases, the predicted output values were converted back to

the original scale as a post-processing step by multiplying

them with the input current amplitude.

E. SURROGATE MODEL DEVELOPMENT

The ANN and GBDT models were trained on a computer

with an Intel Xeon E5-2690 v4 processor. The Keras API of

Tensorflow version 2.1 [84] was used in the experiments to

develop the ANN models. A regression type of GBDT mod-

els were developed with the Python API of the LightGBM

gradient boosting framework [33]. The ANN and GBDT

models built in this study were feedforward models, i.e.

there are no recurrent connections. The model input consist

of the input feature values in the current time step.

For the ANN, the hyperparameter optimization included

training eight models with one or two hidden layers and

128, 256, 512 or 1024 hidden neurons. The networks had

Rectified Linear Unit (ReLU) activation functions. The

output of a ReLU [29] function is given as

f(x) = max(0, x). (11)

Neural network weights were initialized using a Glorot

uniform initialization [85]. A first-order gradient-based al-

gorithm called the Adaptive moment algorithm (Adam) [86]

was used in the neural network weight optimization with a

learning rate of 0.0002. After each training iteration, the

batch size was set to increase from the initial value of 32

by
Nmax −Nini

Ne

=
12800− 32

3200
≈ 4.257, (12)

where Nmax was the maximum batch size, Nini was the

initial batch size and Ne was the number of epochs. The

resulting batch size value was rounded to the nearest integer.

Using an adaptive batch size in the ANN training is dis-

cussed in [87], [88]. For example, when the batch size is 32

and the number of samples is 3,200, samples of the training

dataset are divided into 100 batches. This means that during

one epoch of neural network training, the weights of the

network are updated 100 times. The number of epochs

defines how many times this process is repeated during

the training. The error metric that the model parameter

optimization algorithm minimizes was mean squared error

(MSE) for both ANN and GBDT models.

The maximum number of training epochs was set to

3,000 but the model training was conducted one epoch

at a time and the validation error (MSE) was computed

after each one. The model was saved when the validation

error was lower than the lowest so far achieved validation

error. Early stopping was used as a regularization method

to avoid overfitting and the tolerance was set to 30 epochs,

meaning that if the validation error did not decrease during

the number of epochs counted from the currently lowest

achieved validation error, the training was stopped. After

that, the model with the weights which resulted in the lowest

validation error was saved.

The GBDT hyperparameter optimization included 500

combinations of pseudo-randomly chosen hyperparameters

chosen within the search space shown in Table 3. Other

hyperparameters were left as default values.
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TABLE 3. Hyperparameter search space for GBDT.

Hyperparameter Options

Number of trees 2,000–10,000
Maximum tree depth −1 (unlimited), 5, 10, 20 or 40

Learning rate 1e−2–1
L1 and L2 lambda 0, 0.15, 0.3

The torque values in different cases are different magni-

tudes in other than the H and H&OF training datasets. As

an example, with a current amplitude of 0.5 A, the torque

value ranges in the output time series change between 3.7

to 3.8 Nm, whereas with current amplitude of 10.0 A, the

values are between 77.5 to 83.4 Nm. This means that an

error of 1 Nm in the torque estimation, for example, in the

low amplitude case would be relatively high compared to

a 1 Nm error in the latter case. Therefore, instead of using

MSE as the metric to select the best model from the hy-

perparameter optimization, a normalized root mean square

error (NRMSE) was used. The NRMSE was computed for

each case separately, and the average NRMSE of all case

NRMSEs was used to choose the best model. From the

electrical machine torque modeling perspective, mainly for

the above-mentioned relative error reasons, the maximum

value of the NRMSE over dataset is a good measure of the

accuracy and usability of the model. In addition, the average

NRMSE is a good measure of the average relative model

error.

IV. RESULTS OF DATA-DRIVEN SURROGATES
The computational accuracy and efficiency of the ANN

and GBDT model types are first compared in this section

and further experiments are made with ANN with different

sampling approaches to compare grid and multiple random-

ized strategies. Employing domain knowledge in the model

structure to create a hybrid ANN model is presented. Finally,

the computational efficiency of ANN surrogates is evalu-

ated and the surrogate model development time including

data generation with FEM and training the surrogates is

discussed.

A. COMPARISON OF ANN AND GBDT MODELS

ANN and GBDT regression models were trained on the

g196+e100_H dataset. The hyperparameter optimization for

both was explained in III-E. The ANN hyperparameter

optimization was repeated ten times and in each repetition, a

different seed value for random number generator was used

to start the training from different initial network weights.

The final ANN model (2 layers, 512 neurons in both layers)

was selected by the lowest average NRMSE of these models.

The best GBDT model included about 7,500 trees, each with

46 leaves and a maximum depth of 40. The GBDT model

was trained with a learning rate of approximately 5.32−2,

and both regularization parameters L1 and L2 lambda were

0.3.

The hyperparameter optimization for GBDT took

123.3 min (wall time), i.e. 14.8 s per trained model on
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FIGURE 9. Torque estimations of the GBDT and ANN models com-
pared to FE simulation results. The upper plot shows a test case in
which the GBDT accuracy is the worst with an NRMSE of 13.1%,
whereas for the ANN it is 3.5%. The bottom plot shows the worst test
case for ANN with NRMSE of 5.2%, whereas for the GBDT is is 4.8%.

average. The corresponding time for ANN was 342.6 min

(wall time) for hyperparameter optimization which is 257 s

per model on average (80 models were trained). Even though

the hyperparameter optimization for GBDT took less time

than for ANN, there was quite a gap in the actual model

run-time efficiency. The simulation time of the best GBDT

model was 146.8 s for the 190 test cases, resulting in

an average of 0.77 s per case. For the ANN model, the

simulation time was 12.9 s, i.e. 67.8 ms per case, which

makes the ANN model about 11 times faster than the GBDT

model.

The ANN model was not only faster in this comparison,

but also more accurate. In this comparison, we felt the

computational accuracy and efficiency of the model to be

more important than the time used to develop the model

through hyperparameter optimization. Fig. 9 shows the test

cases in which the NRMSE of the GBDT and ANN models

trained with g196+e100_H datasets were the worst. The

average, minimum, and maximum test NRMSE values of

the GBDT model were 2.17%, 0.60% and 13.11%, whereas

the corresponding error values for the ANN model were

1.14%, 0.43% and 5.23%. In addition to better accuracy, the

ANN model output changes smoothly, whereas the GBDT

output is step-wise, which is typical for the model type,

and is caused by the model structure. Step-wise signals in

EM model applications produce high-frequency errors. That

is, a fundamental frequency solution could be usable, but

harmonics solutions will probably be distorted. Based on

this comparison, we chose to continue with the ANN models

in the next experiments.

B. INFLUENCE OF DATA SAMPLING ON ANN

SURROGATE PERFORMANCE

Data sampling affects the accuracy of data-driven models.

Experiments were made to study influence of the selected

data sampling approaches and the number of training sam-

ples on the ANN surrogate model accuracy. The effect

of employing a domain knowledge-based hybrid model is
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examined with the datasets e100, g196 and g196+e100. In

this context, the need for generating additional input features

from the original ones is discussed.

1) Artificial neural network structure

The selection of the best ANN model size for each training

dataset (see Table 2) was carried out utilizing hyperparam-

eter optimization as described in III-E. Again, the hyper-

parameter optimization procedure was repeated ten times

for each training dataset. These results are presented and

compared first.

The validation results are shown in Fig. 10. With the

networks of one hidden layer, the average NRMSE de-

creases as the number of hidden neurons increases. Having

two hidden layers instead of one but keeping the same

number of hidden neurons reduces the average NRMSE as

well. The best average accuracy with datasets e50, w50,

e100, w100 and w200 was achieved with a network size of

2×1024. For datasets e200, e300 and g196+e100, a network

size of 2 × 512 resulted in the best average NRMSE. The

corresponding best sizes with datasets g196 and w300 were

1× 512 and 2× 256.

The best average NRMSE values with the normalized

output training datasets e100_H, g196_H and g196+e100_H

were obtained with neural network sizes of 2×256, 2×512
and 2× 1024, respectively. The average validation NRMSE

values with the hybrid models were worse compared to

their non-hybrid counterparts when the network had only

one hidden layer, as shown in Fig. 10. However, when a

second hidden layer was added, the corresponding NRMSE

values, the hybrid versions perform averagely better than the

non-hybrid ones. This suggests that normalizing the torque

values with the input current amplitudes enables better

learning when the network is big enough. The lowest aver-

age validation error with the training datasets e100_H&OF,

g196_H&OF and g196+e100_H&OF was obtained with

network sizes of 2×1024, 2×1024 and 2×512, respectively.

Fig. 10 show that the average validation errors of the H&OF

models, too, were reduced by increasing the network size,

but in general the errors were worse than those of the ST

models even with large networks.

2) Test results of non-hybrid ANNs

The best models selected in the previous section were

tested with the testing dataset. NRMSE and RMSE values

were computed for each test case, and their average and

maximum values are shown in Table 4 together with the

simulation times and speed-up compared to FE simulation.

First considering only the non-hybrid models, the training

datasets e50 and w50, which have the smallest number of

samples, showed similar average (≈ 3.8%) and maximum

(≈ 30.9%) NRMSE values. Doubling the number of samples

to a hundred made the corresponding average errors to halve

to approximately 2%, but the maximum errors only dropped

by one third. With the 200 case training datasets, the average

NRMSEs improved slightly from the previous, but the

maximum increased. The g196 training dataset had about

the same number of cases as the e200 and the w200, but its

average NRMSE (3.13%) was even worse than that of the

hundred case datasets. When the number of training cases

was further increased to 300, the corresponding average

error decreased to 1.45% and 1.28%, respectively for the

e300 and w300, with the latter being the lowest of the

non-hybrid models. However, the maximum NRMSEs were

high, respectively being 22.15% and 13.89%. The lowest

maximum NRMSE value, 10.65%, was obtained with the

g196+e100 model that also had the second best average

NRMSE of 1.38% of the non-hybrid models.

The average (unnormalized) RMSEs of the validation

cases shown in Table 4 are low in general, ranging between

0.009−0.061 Nm. This was expected because the high errors

are located in the operation area where the output torque

magnitude is low. The relatively high maximum RMSE of

the g196 model is due to the high errors also in the high

torque magnitudes as Fig. 11 shows.

Comparing the model accuracies trained with an equal

and non-equal number of samples in the different input

amplitude ranges, the average and maximum NRMSEs of

the w100. . . 300 datasets were lower than the corresponding

errors for the e datasets. This suggests that the model

accuracy can be improved by placing more samples in the

areas that seems to be harder model, without increasing the

total number of samples. From this result, we can estimate

that adaptive sampling could help.

3) Test results of hybrid ANNs

The inputs of the models presented in Section IV-B2 in-

cluded seven features extracted from the original three-phase

input current signals as described in Section III-D and Fig.

7. Due to the large errors in the low current region, the H and

H&OF versions of the e100, g196 and g196+e100 datasets

were created. The models trained with these datasets are the

previously described hybrid models with domain knowledge

of torque behavior, with more details in Section III-D.

Results of the comparison between these three versions

are shown in Table 4 and Fig. 11. Fig. 11 shows the

test case NRMSEs case-by-case for the e100, g196 and

g196 and their H and H&OF versions, plotted against the

case input current amplitudes. The average and maximum

NRMSE of the smallest dataset e100 were slightly improved

with the H version as shown in Table 4. The improvement

was even greater for the g196 dataset, as the average

NRMSE more than halved to 1.39% and the maximum

NRMSE decreased to one third, i.e. to 4.82%. The output

normalization enhanced the g196+e100 results as well. Even

though the average NRMSE of g196+e100_H decreased

only slightly, the maximum NRMSE approximately halved

from 10.65% to 5.23%. The results of H&OF show a worse

average NRMSE than the hybrid and non-hybrid results for

each of the three datasets. However, the maximum NRMSE

of the g196+e100_H&OF model was lower than that of the

H version (4.28% vs. 5.23%).
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FIGURE 10. Average validation NRMSE of models with different sizes and trained on datasets constructed with different methods and number
of samples.

TABLE 4. The average and maximum NRMSE and RMSE values and the simulation performance of the models trained on different datasets. The
results were computed on the testing dataset. The reference FE simulation time was 146.5 s/case. The ANN computing times were measured
as CPU time.

Dataset NRMSE NRMSE RMSE RMSE ANN computing Times faster

avg [%] max [%] avg [Nm] max [Nm] time avg [ms/case] than FEM

e50 3.79 30.87 0.031 0.156 67.6 2,166
w50 3.81 30.87 0.045 0.322 68.0 2,154
e100 2.11 21.13 0.016 0.065 67.2 2,181
e100_Ha 1.80 15.82 0.024 0.111 50.3 2,911

e100_H&OFb 4.74 27.12 0.045 0.157 66.8 2,194
w100 1.96 18.01 0.015 0.047 67.8 2,162
e200 1.92 26.78 0.012 0.036 56.9 2,574
w200 1.66 18.66 0.010 0.030 66.5 2,202
e300 1.45 22.15 0.009 0.030 55.7 2,631
w300 1.28 13.89 0.010 0.023 50.4 2,905
g196 3.13 13.76 0.061 0.258 50.5 2,901
g196_Ha 1.39 4.82 0.030 0.112 56.9 2,575

g196_H&OFb 2.35 15.41 0.037 0.088 66.9 2,189
g196+e100 1.38 10.65 0.010 0.025 57.1 2,266
g196+e100_Ha 1.14 5.23 0.017 0.050 67.8 2,161

g196+e100_H&OFb 1.76 4.28 0.030 0.071 56.1 2,613
a Hybrid model.
b Hybrid model using only the 3-phase current values in the input.
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FIGURE 11. Test case NRMSEs of models trained on e100, g196 and g196+e100 datasets and their H and H&OF versions.

The case NRMSE values are generally worse with the low input current amplitudes compared to the high ones3,

3Using the mean squared logarithmic error (MSLE) loss function instead
of MSE did not improve the results even though it accounts for the
relative difference of the true and predicted values rather than the absolute
difference.
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as shown in Fig. 11. The case NRMSEs of e100, g196

and g196+e100 models started to increase rapidly when

the current amplitude was lower than 2.5 A. In addition,

the g196 model accuracy decreased in between current

amplitudes 6, 8 and 10 A, showing the weakness of grid

sampling. In between those points, there are no samples

in the g196 dataset. This could be avoided by increasing

the grid density but it would quickly result in a much

higher number of samples, especially if there were more

input dimensions. The g196_H and g196+e100_H models’

NRMSEs increased less at the low current amplitudes. Fig.

11 shows that the original input features (g196+e100_H&OF

vs. g196+e100_H) are enough to achieve almost as good

results on average as with the generated input features, but

only with the hybrid model configuration4. Furthermore, ex-

ecuting more extensive hyperparameter optimization could

enhance the accuracy. These results hint that in the attempt

to increase the model prediction accuracy, not only should

input feature generation be considered, but also, if appli-

cable, the utilization of a simple hybrid model structure to

manipulate the output variables.

Fig. 12 shows torque estimations of three ANN models

trained with e100_H, g196_H and g196+e100_H, respec-

tively. The upper plot shows one higher amplitude case in

which each model performs well. The bottom plot, on the

other hand, shows the weakness of randomized sampling

on the outer edges of the input space, as the e100_H

model has significantly worse accuracy than the other two

models which were built using a dataset that contained

samples on the outer edges. This can be also seen in Fig.

11, as the case NRMSEs of the three models are lower

than 2.5% for current amplitudes higher than 2 A, but for

lower amplitudes, the accuracy of e100_H begins to increase

much more compared to the other two. The worst case

NRMSE of g196_H and g196+e100_H are 4.82 and 5.23%,

respectively. This together with the low average NRMSEs

of these models (see Table 4) suggest that the accuracy is

rather close to the FEM.

4) Torque ripple factor comparison

In addition to the evaluation of the ANN model accuracies,

their torque ripple estimation accuracies were compared.

The numerical value of the torque ripple, the torque ripple

factor [%], is defined as

tr =
Tmax − Tmin

Tavg

× 100, (13)

where Tmax, Tmin, and Tavg are the maximum, minimum,

and average values of the air gap torque time series, re-

spectively. Torque ripple factor values were computed from

4The time step lengths of the cases in the datasets were unified in this
study as described in III-D. However, when using only the current values
from the present time step in the model input, i.e. with the H&OF datasets,
it is not necessary to perform the upsampling since no time-dependent input
is considered. Leaving the upsampling step out from the workflow would
reduce the number of samples and result in faster development of the ANN
surrogate models.

(13) for each case in the test dataset from the predicted

torque time series. The reference torque ripple factor curve

was computed from the FE results. Due to the definition

(13), the torque ripple factor has an high peak at I = 0 A,

and rises rapidly from 1 A to 0.5 A. Above 1 A the ripple

factor rises slowly due to other torque ripple terms. The

ripple factor values of the ANN models are compared to the

FE reference in Fig. 13. The torque ripple factors with the

e100 model differ from the reference the most at the lowest

input current amplitudes, where the computed values are

too small, and the difference grow rapidly when moving

towards 0.5 A. In fact, the g196 and g196+e100 models

show similar behavior, however, the low amplitude offset is

not as large. The accuracies of the hybrid models were better

than the non-hybrid models which also shows in the torque

ripple factor values as they are in general better. The torque

ripple factor values are globally the closest to the reference

with the g196_H and g196+e100_H models, which are also

accurate in the lowest current amplitudes. The latter model

of these two outperforms the former. The g196_H torque

ripple factor modeling accuracy is poor between current

amplitudes 6 to 8 and 8 to 10. For the same reason, the

actual predictions are slightly worse – in that area, there

are training cases only with current amplitudes of 6, 8 and

10 A, whereas in the g196+e100_H dataset there are a total

of 40 cases.

C. SURROGATE DEVELOPMENT TIME AND

COMPUTATIONAL EFFICIENCY

Improving the simulation efficiency compared to the FE

model by utilizing surrogate models was the main moti-

vation for this work. Thus, the simulation times of the FE

model and the ANN models were compared. The reference

simulation time of the FE model was 146.5 s/case, which is

the average of the simulation time of 196 cases. The comput-

ing time of the ANN surrogate models varied between 50.3

to 68 ms/case, which makes the surrogates 2,911 to 2,154

times faster than the FE reference simulation, respectively
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FIGURE 12. Torque estimations of ANN models trained with different
datasets compared to the FE simulation results. The upper plot shows
one example of a higher input current amplitude case. The bottom plot
shows one of the lowest current amplitude cases.
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(Table 4). The reported simulation times are measured in

CPU time. The FE and ANN simulations were performed

with different processors (Intel Xeon E5-2640 v3 and E5-

2690 v4, respectively), with one processor generation differ-

ence but the same processor base frequency, while the FE

simulations were done using the slower processor. However,

the computational efficiency comparison is quite fair, as the

real processor performance difference is small.

Table 5 shows the overall times to develop a surrogate

model with the training datasets e100_H, g196_H and

g196+e100_H. The FE simulation times for the training

datasets were 4.1 h, 8 h and 12.1 h, respectively. The

corresponding simulation time of the validation and testing

datasets were 6.1 h and 7.7 h, respectively. The data genera-

tion times and the surrogate model development times vary

between the datasets, as the number of cases are different.

It should be noticed that the computational times were

calculated by assuming a sequential execution without any

parallelization applied. As the simulation of different cases

in FEM are independent of each other, and as long as a

random or a grid search is used in the ANN hyperparameter

optimization, it is technically possible to use a hundred

similar computational units, for example, in both steps

and speed up the surrogate model development process by

almost a 100-fold.

The hyperparameter optimization with the e100_H,

g196_H and g196+e100_H datasets took 2.2 h, 5.5 h and

5.7 h, respectively. These times correspond to an additional

53, 135, or 140 case simulations in FEM. It should be noted

that PMSM design optimization could require many more

FE simulations to explore the design space than were done

in this case study to the develop the surrogates. Hence, after

developing the surrogate, the simulation evaluations would

be significantly cheaper computationally.

Even more important than the above-described model

development times are the model run-time computation

times. Let’s compare the two most accurate models based

TABLE 5. Total times to develop a surrogate model including data
generation with FE simulation and training the ANN models. The FE
simulation times include simulations of training, validation, and testing
datasets.

Dataset FE simulation ANN training Total

[h] [h] [h]

e100_H 17.9 2.2 20.1
g196_H 21.8 5.5 27.3
g196+e100_H 25.9 5.7 31.6

on comparisons of the different datasets in section IV-B2,

namely the g196+e100_H and g196+e100_H&OF models.

The g196+e100_H computation time was 67.8 ms/case

whereas g196+e100_H&OF took 56.1 ms/case, meaning

a 20% faster simulation performance for the latter. The

increased performance of the H&OF version is due to the

lower number of parameters in the ANN structure compared

to the H version. Altogether, even though the average

NRMSE of the g196+e100_H&OF model is slightly worse

than that of the H version, the lower maximum NRMSE and

higher simulation performance favors g196+e100_H&OF

for selection as the best ANN surrogate model developed

here.

V. DISCUSSION AND CONCLUSIONS
In this article, we have reviewed the surrogate modeling

concept and its existing applications in the EM domain,

and demonstrated how to utilize machine learning in sur-

rogate modeling. We have presented a workflow to create

a surrogate model of a physics-based simulation model of

an electrical machine, compared two selected ML-based

models, namely ANN and GBDT, compared different data

sampling approaches for producing the data needed in

the creation of the surrogate models, and compared the

performance of the surrogate models with the physics-based

FE simulation of an EM. The EM type selected for this

study was an IPMSM. The physics-based simulations were

done with a 2D FE model of the EM, varying the machine

input current frequency and amplitude as the simulation

parameters. The output of the simulations was the air gap

torque of the EM. The motivation for the work was to

study whether the surrogate models could be used to replace

the physics-based simulation models in certain applications,

to determine their performance and the effort needed to

generate the surrogates.

The comparison between the GBDT and ANN models

showed that even though developing a GBDT surrogate was

faster than an ANN surrogate, its inference performance

and accuracy were not as good as the ANN approach. In

addition, the smooth output behavior of ANN favored it

over GBDT in EM applications. Due to this, we continued

to the data sampling experiments with the ANN models.

These experiments showed that both grid and randomized

sampling methods can provide good results when modeling

the torque behavior of a PMSM, especially when a simple

hybrid model structure is utilized. The best accuracy and

torque ripple factor estimation on the test dataset were

16 VOLUME 0, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3042834, IEEE Access

Tahkola et al.: Surrogate Modeling of Electrical Machine Torque Using Artificial Neural Networks

obtained by training the ANN model with a training dataset

which combined grid and randomized sampling. The aver-

age NRMSE of the best hybrid model was 1.8% in the test

cases. Compared to the torque estimation of a projection-

based surrogate for an identical electrical machine design

in [22] as used here, the ANN surrogate seems to have

smoother torque curves, and more accurate estimations, at

least for higher currents. The combined training dataset most

likely provided better results due to having samples at the

outer edges of the input space, including low currents5.

The randomized sampling led to better model accuracy

with fewer samples than grid sampling, apart from the

low currents. Using a denser grid is not reasonable, as the

number of samples rises quickly. A non-adaptive design of

experiments was sufficient to develop an accurate surrogate

model in this study, but in cases with more input dimensions,

using an adaptive sampling method could potentially be a

better choice.

In Section I, the nature of computational methods was

discussed. It was pointed out that different methods tend to

be either fast but inaccurate or accurate but computationally

expensive. The introduced method of using ANNs seems to

tackle both the accuracy and efficiency. The drawback of the

method is in the ANN development, as the computational

cost occurs in the data production and the training phases.

On the other hand, the surrogate model can be trained

offline and the key benefit of developing one is that a

fast and sufficiently accurate surrogate potentially enables

new applications for the simulation model, for which the

FE simulation would be too slow. Such applications could

be include machine control, condition monitoring and fault

diagnosis, for example. Nevertheless, the ANN surrogates

show potential in accelerating simulation. The performance

of the ANN surrogate models trained with different datasets

were 2,154 to 2,911 times faster than the physics-based

FE PMSM simulation, the computing times of the ANN

surrogates being in the scale of tens of milliseconds for a

case compared to about 150 seconds for the FE simulation.

The drawback of the time needed for surrogate development

becomes smaller when the approach is applied, for example,

in industrial series production of machines, as the fast

surrogate can be used in numerous produced machine units

by employing transfer learning. The introduced application

of an EM is a good example of a general approach to using

simulated data in machine learning of surrogate models,

since the computational performance of a physics-based

FE simulation is far from real-time, even when efficient

computers are used. It should be noticed that the model used

for the FE simulation was relatively coarse, being reduced

to 2D, with a modest number of nodes and elements, and

no eddy current or losses.

The proposed ANN surrogate model is well-suited for

5The need for many samples in the input space borders may be due to
the unfortunately selected low range of current, namely 0.5 A. The choice
limits the number of samples in the low current region where cogging
torque dominates.

a system-level model or digital twin applications, as it

represents the system with a good accuracy. LUTs are

one alternative for ANN surrogates, but the accuracy and

computational costs of LUTs become the main constraints

when the number of input parameters increases, whereas

the ANN surrogate performance does not deteriorate as

much. Regarding the computational time, one evaluation

for optimal g196+e100_H&OF sampling was about 42 µs

with Python, which is fast enough for a controller with a

20 kHz switching frequency. Therefore, the proposed model

can be used in real-time EM control, for example as a

torque observer based on the measured currents. Similar

ANN surrogate can be used as a flux observer by modifying

the model to have the flux linkages components as outputs.

In addition, the proposed ANN surrogate can be used in

electrical machine design, as an alternative to circuit-based

analytical models to estimate the initial designs and then

use the FE analysis only for the final fine-tuning of the

design. The ANN surrogate model type developed here is

suitable for use as a global or local surrogate in the surrogate

model-based optimization of EM design. Potentially, further

improvements to the ANN accuracy could be obtained by

performing more extensive hyperparameter optimizations or

by increasing the number of FE simulation data points

generated for training.

One advantage, especially from the industrial applications

point of view, of using ANNs and machine learning for

creating surrogate models is the ability to generalize the

approach and semi-automate their creation process. Even

though domain knowledge is needed to specify the input

variable domain, i.e. the value ranges that the input variables

can have, running the FE simulations can be parameterized

and the simulations parallelized. The produced data can be

directly used in ANN training and the accuracy requirement

of the surrogate can be set parametrically. Thus, the develop-

ment of a surrogate model that fulfills the requirements can

be mainly automated. The generality of ML as a method,

and the flexibility of ANNs when it comes to the number of

inputs and outputs, the nature of the ANN response, and the

accuracy make it an interesting tool for surrogate modeling.

On the other hand, the black-box nature of ANNs hinders

the explainability of the predictions. Nevertheless, the clear

benefits of the approach together with the fast progress in

enabling technologies speak for investing more in research

and development.
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