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Abstract

Surrogate neural network-based models have been lately trained and used

in a variety of science and engineering applications where the number of

evaluations of a target function is limited by execution time. In cell phone

camera systems, various errors, such as interferences at the lens-barrel and

lens-lens interfaces and axial, radial, and tilt misalignments, accumulate and

alter profile of the lenses in a stochastic manner which ultimately changes

optical focusing properties. Nonlinear finite element analysis of the stochastic
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mechanical behavior of lenses due to the interference fits is used on high-

performance computing (HPC) to generate sufficient training and testing

data for subsequent deep learning. Once properly trained and validated,

the surrogate neural network model enabled accurate and almost instant

evaluations of millions of function evaluations providing the final lens profiles.

This computational model, enhanced by artificial intelligence, enabled us

to efficiently perform Monte-Carlo analysis for sensitivity and uncertainty

quantification of the final lens profile to various interferences. It can be

further coupled with an optical analysis to perform ray tracing and analyze

the focal properties of the lens module. Moreover, it can provide a valuable

tool for optimizing tolerance design and intelligent components matching for

many similar press-fit assembly processes.

Keywords: Machine Learning, Finite Element Analysis, Lens Assembly,

Sensitivity Analyses, Uncertainty Quantification, High Performance

Computing

1. Introduction

Manufacturing tolerance design and analysis which involves determining

the size and location (relative to nominal) of acceptable uncertainty zones in

the dimensions of functional features, is an essential and critical design step

in improving product quality, reducing overall costs, and retaining market

share [1]. These tolerance zones are designed to obtain an acceptable balance

between functional performance and manufacturing costs of the product. In

assembled products such as camera lens modules for smart phones, which

are produced in high volumes with sets of miniature (millimeter size) as-
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sembled components held together by interference fits, tolerance design for

mating features becomes increasingly critical. This is because (i) the process

capabilities of typical high-volume manufacturing processes result in uncer-

tainty zones that are large fractions of small nominal dimensions, and (ii)

as a result, the strain-fields generated by the dimensional mismatch of in-

terference mating features can influence the geometry of all the functional

surfaces of the components in the assembly. While process uncertainties can

be controlled with higher precision tooling and more stringent process con-

trols, this control comes at a cost that has an exponential relationship with

precision levels [2].

There have been several approaches to tolerance design, using optimiza-

tion techniques that balance manufacturing costs with product performance

measures. For example, Lewis and Parkinson [3] uses second-moment theory

to determine tolerance zones that produce the desired levels of functional re-

liability while Turner and Wozny [4, 5] uses linear programming techniques

to arrive at tolerance zones. Chase and Parkinson [1] provide a comprehen-

sive survey of the different approaches to tolerance design. The taxonomy

provided in the paper is relevant today, because much of the work that has

followed are been variations on the approaches identified.

Tolerance design remains a difficult problem, not because of a dearth of

models, but because these decisions must be made before actual production

begins or before the availability of actual production information. All the

methods cited above, and currently used, must make assumptions about costs

and performance functions, and their interaction through the uncertainties

in critical dimensions, typically using simplifying assumptions about them.
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A critical and consequential decision such as tolerance design would be bet-

ter served through a more realistic and physics-guided relationship between

tolerance zones and performance. Therefore, this paper seeks to quantify

the effects of uncertainty on mating features of components on performance

(here error in the lens profiles) through the use of machine-learning models

and physics-based computational experimentation.

Machine learning techniques have lately achieved important accomplish-

ments in wide areas of science and engineering, such as in natural language

processing, voice recognition, computer vision, medical diagnostic and au-

tonomous vehicle driving. In physics-based numerical modeling, design and

optimizations, various surrogate deep learning data-driven models have been

devised and trained to learn and quickly inference the thermal conductivity

[6], inverse design of advanced composite manufacturing [7], near optimal

topologies of meta-materials and structures [8, 9], fatigue of materials [10],

nonlinear material response such as in plasticity and viscoplasticity [11, 12],

quantum computing for mechanics [13], and many other similar computa-

tional challenging applications. Several successful studies have been also

reported in using physics informed deep learning models [14–16] to directly

solve the partial differential equations (PDEs), governing some of these the

physical laws and processes. Neural networks have also been used as sur-

rogate models coupled with computational methods for sensitivity analysis

[17], uncertainty quantification [18–22], inverse problems [23] and design op-

timization [24, 25].
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2. Process Framework

Figure 1: Schematic

Figure 1 shows the schematic of the overall process. The randomly sam-

pled interferences between lenses and the barrels are inputs to the nonlinear

high-fidelity finite element simulation, which provides the deformation and

stress in the lenses. Since sensitivity analysis and uncertainty quantification

are prohibitively expensive due to the vast number of forward-model numer-

ical evaluations needed to obtain converging statistics, we have first gener-

ated training and testing data on HPC. We have then adequately trained

and tested a neural network to estimate the deformations from the given

interferences. Finally, as a surrogate model, the trained neural network is
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able to instantly provide millions of accurate forward evaluations required

for sensitivity and uncertainty quantification analysis.

3. Surrogate Model of Lens Assembly for Sensitivity and Uncer-

tainty Analyses

3.1. Numerical Model of Lens Assembly Deformation

An optical lens module, consisting of four lenses, is assembled in a barrel

with precise axial and radial positions to function optically successfully. The

components in the lens assembly are manufactured to some specified toler-

ances that inherently possess a degree of variation and uncertainty in the

dimensions, geometry/shape, and relative position of their mating features.

A high fidelity implicit finite element model of a quarter of the assembly

with symmetry conditions is built to analyze the effect of the interference

fits between the components during the assembly. A multistep analysis in

fig. 2 is performed, displacing one lens at a time in the optical z-direction

to its appropriate place in the assembly. At the same time, the entire bar-

rel structure is kept constrained. The analysis enabled precisely capturing

progressing deformation and interferences between the components due to

evolving contact interactions during assembly.
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(a) Undeformed Assembly (b) First Lens Assembled

(c) More Lenses Assembled (d) All Lenses Assembled

Figure 2: Evolution of Deformation Results and Interferences in Multistep Analysis of
Lens Assembly

The computational model exhibits geometric nonlinearity due to load-

induced deformations as well as boundary nonlinearity due changes in contact

conditions during analysis. In the implicit finite element formulation used

in this work [26], the nonlinear equilibrium equations of a structure can be

represented in their general form, at quasi-static time t+ ∆t, as:

pt+∆t − f t+∆t = 0 (1)

where p (the vector of external loads) and f (the vector of internal forces)

must balance each other. An iterative approach is needed for the solution

7



of eq. (1), as the internal forces (created by stresses in the elements) depend

nonlinearly on the displacements. The Newton-Raphson approach is utilized

to find the equilibrium solution using an incremental-iterative procedure.

In this approach, the solution is obtained by a sequence of quasi-static time

increments (∆t), with iterations to obtain equilibrium within each increment.

The numerical algorithm can be stated as [27]:

ri = pt+∆t
i − f t+∆t

i = 0 (2)

Kt+∆t
i ∆ui+1 = ri (3)

ut+∆t
i+1 = ut+∆t

i + ∆ui+1 (4)

ut+∆t
0 = ut (5)

where, r is out-of-balance residual force vector, u is the vector of dis-

placements at element nodes, K is the tangential stiffness matrix of the

structure upon an infinitesimal increase of loading, and subscript i indicates

the iteration number.

The residual vector in eq. (2) is first calculated according to the initial

configuration. The linear system in eq. (3) can then be solved for the displace-

ment increment vector (∆u), usually by a direct sparse solver. For each time

increment, displacement increments are accumulated in eq. (4) through equi-

librium iterations until the convergence is achieved. In nonlinear problems
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the force residual will never be exactly zero, so it compared to a tolerance

value and the iteration is terminated when the Euclidean norm of the residual

vector converges to a small tolerance value. The initial conditions are based

on a converged solution at the previous time (or load) increment as given

in eq. (5). The complete quasi-static loading path is traced with suitably

chosen consecutive time increments that lead to convergence. In addition,

the contact algorithm in an outer loop determines current contact state at

each contact point at each increment, and accordingly imposes constrains

based on the Lagrange multiplier method [28], updates K, and performs an

equilibrium iteration in eqs. (2) to (4). If the assumed contact state during

the equilibrium iteration changes from open to close or vice versa, a new

outer loop, so called severe discontinuity iteration (SDI) initiates, repeating

the entire process until there is no change in contact conditions and with the

mechanical equilibrium satisfied within the convergence criteria.

Figure 3: Softened Contact with Exponential Law
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A softened contact with an exponential law is employed [26] in this work

and given in fig. 3. In this contact formulation, the surfaces begin to transfer

contact pressure once the clearance between them, measured in the con-

tact (normal) direction, decreases to c0. By randomly sampling the clear-

ance values between 2 and 5 µm in all contact definitions, many interference

conditions were created while avoiding costly perturbations in geometry or

remeshing.

Four clearances representing the interferences between the barrel and the

first three lenses and the mutual interference between the first two lenses

defined the input features for the neural network. The targets for the neural

network model are deformed coordinates of the characteristic points of lens

surfaces calculated by the finite element analysis. Surface displacement data

is used to estimate the errors in positioning components in the assembly and

perform Zernike fitting and calculate the corresponding optical performance

responses. A few thousand data samples are generated using high-throughput

computing capabilities of several nodes of a high-performance computing

(HPC) cluster. In addition, parallel computing capabilities of the FEA code

[26] helped to reduce run time on each computing node. Approximately 80%

of the generated data samples are randomly selected for training, while the

remaining 20% is set aside for testing.

3.2. Introduction to Dense Neural Networks

Deep learning is a subcategory of machine learning which is inspired by

the configuration and functionality of a brain. Deep learning models are made

of neural networks. Neural networks are composed of layers of interconnected,

individual unit cells, named neurons, joined to other neurons’ layers. Figure 4
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illustrates the feedforward dense neural network used in this work, consisting

of linked layers of neurons that calculate the vector output predictions Ŷ

based on input vector data X.

Figure 4: Feedforward Dense Neural Network

After receiving input, the layers of neurons transmit information forward

to the next layers, and this forms a network that learns with some feedback

process. The layers in between input and output layers are called hidden lay-

ers, and the number of hidden layers represents a neural network’s deepness.

Neurons of successive layers are connected through an accompanying weights

and biases, marked W and b respectively. For a layer l, the predicted output

Ô[l] is calculated as:

Z [l] = W [l]Ô[l−1] + b[l]

Ô[l] = f [l](Z [l])
(6)

where W [l](nl×nl−1) is a matrix of weights and b[l](nl−1×1) is a vector of

biases, which are updated after every training pass. The Z vector, calculated
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from weights and biases, is further transformed by an activation function f [l]

into output for every neuron in the layer l. The activation functions in neural

networks are nonlinear functions such as Hyperbolic Tangent, Sigmoid and

Rectified Linear Unit (ReLu). They allow the neural network to learn nearly

any complicated functional relation between inputs and outputs. At the end

of the each feed-forward pass, the loss function L calculates a loss value that

shows how well the network’s predictions Ŷ compare with targets Y . One

such commonly used loss function, called the mean squared error (MSE) is

given in eq. (7).

L(Y , Ŷ ) =
1

m

m∑
i=1

(yi − ŷi)2 (7)

where, m is the size of the sample set. Then, in a so-called backpropagation

procedure, the optimizer minimizes loss value iteratively with some optimiza-

tion techniques such as gradient descent in eq. (8). The learning rate γ is

an important hyper parameter which controls how much the weights and

biases of our network are adjusted with respect to the loss gradient in the

learning process. The last layer’s gradients of loss function L with respect

to the weights are calculated first, and the weights are updated for each of

its nodes. Using the chain rule of derivatives, the gradients at the previous

layer are calculated and the weights are updated, and the same procedure is

repeated backward up until all of the layers have had their weights updated

[29]. Then, a new forward propagation iteration k + 1 starts again. After a

sufficient number of feedforward and backpropagation iterations, the series

W k should converge toward a minima of loss function. The same backprop-
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agation pattern is used for updating the biases.

W k+1
ij = W k

ij − γ
∂L
∂W k

ij

bk+1
i = bki − γ

∂L
∂bki

(8)

3.3. Sensitivity and Uncertainty Analyses

Sensitivity analysis is used to assess the impact of the perturbation in an

input on an output. Let f denote the model function that maps an input

vector X = [X1, X2, . . . Xd] to a scalar output Y ; thus, Y = f(X). In

this case, for example, the deformations of each lens surface are functions of

the interference values. Partial derivative of the output Y with respect to

a particular input Xi can be used to define the sensitivity of the Y to Xi.

The partial derivative has to be evaluated at a particular value of the input:

X = X̂. This method estimates the local sensitivity at X̂. However, for

most practical problems, the relationship between the inputs and outputs

is highly nonlinear. Thus, the partial derivatives vary significantly from one

design point to another. Evaluation of the local sensitivity at multiple design

points gives massive data which makes the analysis difficult. Moreover, it

does not provide a holistic perspective of the sensitivity. Hence, we use the

global sensitivity analysis in this work.

We define the global sensitivity using a variance based analysis, also

known as the Sobol method [30]. The relation Y = f(X) is expanded as
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follows:

Y = f(X) = f0 +
d∑
i=1

fi(Xi) +
d∑
i<j

fi,j(Xi, Xj) + · · ·+ f1,2,...,d(X1, X2, . . . Xd)

(9)

where, each term of the summation is a function over a subset of inputs. For

instance, fi is a function of a single component of the input vector Xi, fi,j is a

function of two components Xi and Xj and so on. For a d dimensional input

space, there are 2d in the summation. If each of the above functions has zero

mean, this decomposition is known as ANOVA (analysis of variances):

ˆ
fi1,i2,...,is(Xi1 , Xi2 , . . . , Xis)dXk = 0 for k = i1, i2, . . . , is (10)

If the above condition is satisfied, it can be shown that the functions are

orthogonal and thus, the decomposition in eq. (9) is unique [31]. For a

square-integrable function f(X), squaring and integrating eq. (9) gives:

ˆ
Y 2dX − f 2

0 =
d∑
s=1

d∑
i1<···<is

ˆ
f 2
i1,...,is

dXi1 . . . Xis (11)

Due to the orthogonality, the cross terms such as
´
fi1fi2dXi1dXi2∀i1 6= i2

are zero. The left hand side of eq. (11) is the total variance in the output Y

and the right hand side is the summation of variances due to various subsets

of the inputs. Therefore, the variance in Y can be decomposed into variances

caused by individual inputs and their interactions:

V ar(Y ) =
d∑
i=1

Vi +
d∑
i<j

Vi,j + · · ·+ V1,2,...,d (12)
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The ratio of individual variance terms in eq. (12) to the total variance is

defined as sensitivity index. Dividing by the total variance gives:

1 =
d∑
i=1

Si +
d∑
i<j

Si,j + · · ·+ S1,2,...,d (13)

For instance, Si = Vi/V ar(Y ) and Si,j = Vi,j/V ar(Y ). Other higher order

indices are similarly defined. Thus, all these 2d− 1 indices sum to unity and

are non-negative. We define the term STi corresponding each input Xi as the

sum of all the individual 2d−1 indices with the ith term present. for instance,

for a three dimensional input space (d = 3), the total Sobol index for the

first input is given by ST1 = S1 + S1,2 + S1,3 + S1,2,3. STi signifies the total

contribution of the ith input in the variance of the output. However, the sum∑d
i=1 STi is typically greater than unity since the terms with multiple inputs

are counted more than once. In this work, we present the total Sobol indices

of each output (deformations at various locations of the lens surfaces) with

respect ot each input (interferences between the lenses). For simple functions,

we can evaluate the integrals in eq. (11) analytically. However, for practical

problems, the Monte-Carlo method is used to numerically estimate the Sobol

indices. Brute force calculation is O(N2) where, N is the number of Monte-

Carlo samples [31]. Since the convergence rate of Monte-Carlo algorithm

is O(N−1/2) [32], the sample size N can of the order of 105 ∼ 106. These

computations are fairly expensive even with the use of surrogate models such

as neural networks. Saltelli et al. [31] proposed an algorithm which requires

O(N(d+ 2)) computations.
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4. Results and Discussions

4.1. Deep Neural Network Training and Testing

Training of neural network requires multiple hyper-parameters such as

number of hidden layers and neurons, activation function, learning rate,

dropout factor etc. These hyper-parameters are fine tuned by randomly

splitting the data into two subsets: training and validation. The training set

is used for the back-propagation algorithm described in section 3.2. The loss

function is evaluated on the validation set and compared with the training

loss. A shallow network which has fewer hidden layers and neurons gives

higher error in fitting the training set. This is known as under-fitting or bias.

Depth of the network is increased by adding more hidden layers and neurons.

Such a network with higher nonlinearity improves the prediction accuracy on

the training set. Excessively deep networks can fit the training set with high

accuracy but fail to fit the unseen validation set. This phenomenon is known

as over-fitting or variance. It is important to have a network with low bias

and low variance which can fit the training data successfully as well as gener-

alize on the validation data. Such a well trained network is further tested on

an unseen test data set. Table 1 lists the values of all the hyper-parameters

used in this work.
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Hyper-Parameters Values

Size of Training Set 2500

Size of Testing Set 300

Validation Split 10%

No. of Hidden Layers 10

No. of Neurons per Hidden Layer 200

No. of Trainable Parameters 443984

Learning Rate 0.01

Dropout Factor 0.1

No. of Epochs 500

Loss Function Mean Squared Error

Hidden Layers Activation ReLU

Output Layer Activation Linear

Optimization Algorithm Adam [33]

Table 1: Hyper-Parameters of the Deep Neural Network

We have estimated the prediction accuracy of the neural network using

the coefficient of determination [34]:

Accuracy: R2 = 1−
∑m

i=1(yi − ŷi)2∑m
i=1(yi −mean(Y ))2

(14)

where, Y = [yi], 1 ≤ i ≤ m is the target data set obtained from the numerical

simulations, ŷi is the corresponding predicted set by the neural network and
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m is the sample size. Similarly, percentage errors are defined as:

Average percent error: 100× 1

m

∑m
i=1 ||yi − ŷi||

maxmi=1 ||yi||
(15)

Maximum percent error: 100× maxmi=1 ||yi − ŷi||
maxmi=1 ||yi||

(16)

Training Set Testing Set

Accuracy (R2) 0.994368 0.992977

Average Percent Error 0.948018% 1.04884%

Maximum Percent Error 41.3737% 38.7922%

Table 2: Accuracy and Error of the Deep Neural Network

The accuracies and errors for the training and testing sets are listed in

table 2. If a model is perfect and fits the data exactly, the coefficient of

determination (R2) takes a value of unity [34]. However, for practical models,

theR2 is found to be less than unity. Hence, a value close to unity is indicative

of high accuracy. In this case, we see that the accuracy for both the sets

is higher than 0.99 and the average error is around 1%. Note that accurate

networks may have a few outliers which manifest in the maximum error. Low

error and high accuracy for the training set shows that the network has less

bias. Moreover, similar errors and accuracies for both the data sets indicate

that the chosen hyper-parameters give less variance. In order to get a visual

understanding of the network’s accuracy, fig. 5 plots the estimate from the

neural network versus the ‘ground truth’ which is the numerical prediction
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in this case. Both the axes are non-dimensionalized by subtracting the mean

and dividing by the standard deviation of the numerical simulations. We

can observe that most the points follow the trend line Y = X. The outliers

mentioned above can be seen in this plot as the points away from the trend

line.

(a) Training Set (b) Testing Set

Figure 5: Comparison of Numerical Simulations and Neural Network Predictions
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4.2. Sensitivity Analysis

(a) Interference between Barrel and Lens 1 (b) Interference between Barrel and Lens 3

(c) Interference between Barrel and Lens 4 (d) Interference between Lenses 1 and 2

Figure 6: Convergence of Sobol Indices for 24 Outputs (Deformations) and 4 Inputs (In-
terferences)

As described in section 3.3, the Monte-Carlo based algorithm proposed

by Saltelli et al. [31] is used to estimate the global sensitivity indices. For

practical engineering problems, since the analytical solutions are unavailable,

the sample size is increased till the asymptotic convergence of the solution.
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Figure 6 plots the convergence of the Sobol indices separately for each input.

For 4 inputs and 26 outputs, there are a total of 4 × 24 = 96 indices. The

sample size is increased exponentially by a factor of 2 from 100 to 2E5. We

can observe that the although the initial estimates at lower sample sizes are

inaccurate (sometimes even negative), asymptotically stationary solutions

are obtained beyond the sample size of 1E4. Hence, the average of last three

estimates is documented as the final Sobol index. Note that the sample sizes

are of the order of 1E5 and thus, it is necessary to use the neural network for

function evaluations. It is computationally expensive to use the high fidelity

numerical computations.

Table 3 plots the total Sobol indices for 24 outputs and 4 inputs. The

radial deformation (∆r) at the outer end (r max) of the lens and the axial

deformation (∆z) at the center of the lens (r min) and its outer end (r

max) are important outputs which affect the optical properties of the system.

Hence, these 3 outputs are defined for both the surfaces of each of the four

lenses. These outputs are grouped according to lens surfaces. Each output

is highly sensitive to a single input out of the four interferences. Those

higher Sobol indices are emphasized in the table. For instance, all the six

deformations on lens 1 are most sensitive to the interference between the

barrel and lens 1. They are also sensitive to other deformations since the

later lenses slightly deform the barrel. Similarly, deformations on lens 2 are

most sensitive to the interference between lenses 1 and 2. In the current

setup, lens 2 does not directly come into contact with the barrel and hence,

barrel-lens 2 interference is missing. We observe similar behavior for the

third and fourth lenses.
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Lens

Number
Surface

Outputs:

Deformations

Inputs: Interferences

Barrel-Lens 1 Barrel-Lens 3 Barrel-Lens 4 Lens 1-Lens 2

Lens 1

Bottom

∆r(r max) 0.7000 0.2417 0.0099 0.0387

∆z(r min) 0.8085 0.1070 0.0000 0.0776

∆z(r max) 0.8105 0.1083 0.0000 0.0754

Top

∆r(r max) 0.7854 0.0503 0.0000 0.1428

∆z(r min) 0.8073 0.1128 0.0000 0.0730

∆z(r max) 0.8104 0.1121 0.0000 0.0718

Lens 2

Bottom

∆r(r max) 0.0968 0.0154 0.0000 0.8814

∆z(r min) 0.1092 0.0229 0.0009 0.8703

∆z(r max) 0.1200 0.0289 0.0055 0.8630

Top

∆r(r max) 0.0887 0.0153 0.0000 0.8854

∆z(r min) 0.1090 0.0227 0.0009 0.8705

∆z(r max) 0.1200 0.0287 0.0055 0.8634

Lens 3

Bottom

∆r(r max) 0.0073 0.8011 0.1437 0.0628

∆z(r min) 0.2465 0.1653 0.0221 0.5682

∆z(r max) 0.2110 0.4107 0.0042 0.3851

Top

∆r(r max) 0.0786 0.8337 0.0466 0.0554

∆z(r min) 0.2484 0.1380 0.0269 0.5886

∆z(r max) 0.2145 0.3996 0.0050 0.3940

Lens 4

Bottom

∆r(r max) 0.0091 0.0606 0.9455 0.0063

∆z(r min) 0.0067 0.0525 0.9514 0.0038

∆z(r max) 0.0008 0.0451 0.9376 0.0000

Top

∆r(r max) 0.0578 0.1975 0.6492 0.1107

∆z(r min) 0.0072 0.0539 0.9504 0.0045

∆z(r max) 0.0000 0.0355 0.9265 0.0000

Table 3: Total Sobol Indices

4.3. Uncertainty Propagation Analysis

The following four interference values are assumed to independently follow

uniform distributions:
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1. Barrel-Lens 1 ∼ U(2.77316, 4.32155) µm

2. Barrel-Lens 3 ∼ U(3.02553, 4.79024) µm

3. Barrel-Lens 4 ∼ U(2.23457, 4.70370) µm

4. Lens 1-Lens 2 ∼ U(2.82143, 4.96429) µm

In this work, we have modeled the propagation of uncertainty in the above

four input parameters on the 24 deformations described in section 4.2. Fig-

ure 7 plots the convergence of the Monte-Carlo algorithm for the prediction

of the means and standard deviations of the outputs. It can be seen that the

convergence is achieved beyond 3200 samples. We have used a sample size of

12800 for all the computations in this section. This shows the computational

benefit of using the neural network as a surrogate model instead of complete

numerical simulations.

(a) Mean (µm) (b) Standard Deviation (µm)

Figure 7: Convergence of the Monte-Carlo Algorithm for 24 Outputs
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Lens Number Surface Outputs: Deformations Mean (µm) Standard Deviation (µm)

Lens 1

Bottom

∆r(r max) -5.02 20.15

∆z(r min) 28.09 502.55

∆z(r max) -37.39 468.13

Top

∆r(r max) 89.12 64.95

∆z(r min) 32.57 486.28

∆z(r max) -35.59 443.61

Lens 2

Bottom

∆r(r max) 487.34 195.68

∆z(r min) -735.74 1180.59

∆z(r max) 1244.88 819.00

Top

∆r(r max) -451.20 129.93

∆z(r min) -767.07 1199.16

∆z(r max) 1280.49 824.38

Lens 3

Bottom

∆r(r max) 216.38 75.69

∆z(r min) -148.88 238.74

∆z(r max) 262.14 271.58

Top

∆r(r max) 188.20 87.52

∆z(r min) -163.74 228.90

∆z(r max) 298.41 244.89

Lens 4

Bottom

∆r(r max) 346.17 168.51

∆z(r min) -369.37 439.14

∆z(r max) 668.15 151.81

Top

∆r(r max) 175.65 4.29

∆z(r min) -511.03 460.12

∆z(r max) 839.51 91.18

Table 4: Uncertainty Propagation: Means and Standard Deviations

The means and standard deviations for all 24 outputs are listed in table 4.

The input parameters (interferences) are assumed to vary uniformly within

a range of a couple of microns. However, we observe that the standard devi-
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ations of most of the outputs is of the order of a few hundred microns. This

shows the utility of the uncertainty propagation analysis. Highly nonlinear

and complex models such as the ones described in this research typically

magnifies the input uncertainty. Such an information is important in prac-

tice to estimate the possible ranges of the outputs. Note that these ranges

cannot be computed using a few deterministic simulations.

(a) Lens 2 Bottom Surface (b) Lens 4 Bottom Surface

Figure 8: Histograms: ∆r(r max)

Figures 8 to 10 plot a few sample histograms of the outputs. All the

histograms are normalized such that the area under the curve is unity. The

X-axis plots the output deformations in microns and the Y-axis plots the

probability density. Vertical lines corresponding to the mean and a band

of standard deviation on both the sides of the mean are marked for refer-

ence. We observe histograms with various shapes such as bell curves (normal

distributions), rectangular blocks (uniform distributions) etc. Some of the

histograms are bimodal and some have longer tails. Histograms are practi-

cally useful to get an insight into various values an output can take and its
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probability near that value. They can also be used to perform failure analysis

identifying output values that are not acceptable and back tracking those to

corresponding input values. Then the input tolerances can be tightened to

improve the product quality.

(a) Lens 1 Bottom Surface (b) Lens 3 Top Surface

Figure 9: Histograms: ∆z(r min)

(a) Lens 2 Top Surface (b) Lens 4 Top Surface

Figure 10: Histograms: ∆z(r max)
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5. Conclusions

Using UQ for physics-based models by applying customary design of ex-

periment sampling methods such as Monte Carlo or Latin Hypercube is usu-

ally impossible due to the large number of forward model evaluations using

traditional numerical analysis to obtain converging statistics. Based on the

generated training data on HPC from a high-fidelity nonlinear finite element

model of stochastic mechanical behavior of the smart camera lenses due to

the interference, a machine learning surrogate data-driven model is devised

and trained for instant forward model evaluations for the sensitivity analysis

and uncertainty quantification.

We use the Sobol indices which quantify global sensitivity of each of the

output deformation towards each input interference value. These variance

based indices give a holistic perspective of the sensitivity by decomposing

the total variance in the output into variances caused by individual inputs

and their interactions. Systematic convergence analysis of the Monte-Carlo

method shows that asymptotically stationary solutions of the Sobol indices

are obtained beyond the sample size of 1E4. Sobol indices of 24 output defor-

mation for each of the 4 input interferences shows some interesting patterns.

Deformations at a particular lens are most sensitive towards the interference

between that lens and the barrel. Such a sensitivity analysis is practically

useful in identifying which input affects the output. This information can be

used to control the important inputs tightly and improve the product quality

with minimal cost.

We have further performed the uncertainty propagation analysis to quan-

tify the impact of uniformly varying stochasticities in each input interference
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on each output deformations. In this case, we find that the means and stan-

dard deviations of the outputs converge beyond 3200 Monte-Carlo samples.

Although the input variation is of the order of a couple of microns, we find

that the standard deviations in most of the outputs is as large as few hun-

dred microns. Hence, the input uncertainties are amplified by the complexity

and nonlinearity of the system. Such analysis is not possible by traditional

methods of deterministic simulations. Probability density functions in the

form of histograms show varying features. Some of them are bimodal and

have longer tails. Such analysis is useful to identify failure regions and back

tracking those to corresponding input values. Then the input tolerances can

be tightened to improve the product quality.

Since the deformed lens geometry is readily available from the surro-

gate data-driven model, besides sensitivity and UQ analysis, it can be used

for subsequent optical analyses with ray tracing. This can provide a more

realistic and accurate evaluation of an optical system’s spatial resolution per-

formance, such as with the Module Transfer Function (MTF). Moreover, the

computational framework devised in this work can provide important sen-

sitivity and UQ insights for optimization, controls, and tolerance design of

numerous similar press-fit assembly processes in many industrial sectors. As

the higher-end cyber-infrastructure becomes more available and the conflu-

ences of machine learning and classical computational methods are further

developing, we believe that similar data-driven models and frameworks will

pave the way for remarkably accurate and efficient design and modeling of

many engineering processes in the future.
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