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Summary 

Given a 3D heterogeneous velocity model with a few million voxels, fast generation of accurate seismic 

responses at specified receiver positions from known microseismic event locations is a well-known 

challenge in geophysics, since it typically involves numerical solution of the computationally expensive 

elastic wave equation. Thousands of such forward simulations are often a routine requirement for 

parameter estimation of microseimsic events via a suitable source inversion process. Parameter 

estimation based on forward modelling is often advantageous over a direct regression-based inversion 

approach when there are unknown number of parameters to be estimated and the seismic data has 

complicated noise characteristics which may not always allow a stable and unique solution in a direct 

inversion process. In this paper, starting from Graphics Processing Unit (GPU) based synthetic 

simulations of a few thousand forward seismic shots due to microseismic events via pseudo-spectral 

solution of elastic wave equation, we develop a step-by-step process to generate a surrogate regression 

modelling framework, using machine learning techniques that can produce accurate seismograms at 

specified receiver locations. The trained surrogate models can then be used as a high-speed meta-

model/emulator or proxy for the original full elastic wave propagator to generate seismic responses for 

other microseismic event locations also. The accuracies of the surrogate models have been evaluated 
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using two independent sets of training and testing Latin hypercube (LH) quasi-random samples, drawn 

from a heterogeneous marine velocity model. The predicted seismograms have been used thereafter to 

calculate batch likelihood functions, with specified noise characteristics. Finally, the trained models on 

23 receivers placed at the sea-bed in a marine velocity model are used to determine the maximum 

likelihood estimate (MLE) of the event locations which can in future be used in a Bayesian analysis for 

microseismic event detection. 

Keywords: Synthetic seismogram generation, time domain compression, surrogate meta-model, 

microseismic event detection, Gaussian process regression 

1. Introduction 

Microseismic event detection has emerged as a significant field of research in computational 

geosciences with an aim of studying the changing geological characteristics of a subsurface reservoir 

during and after hydrocarbon production. These microseismic events are characterized by low 

amplitude ground movements and are often indistinguishable from environmental seismic noise (Leet 

1949). A frequency band based quantification approach has been adopted in (Groos & Ritter 2009) to 

grossly classify such events as microtremor (>1 Hz), transitional (0.6-1 Hz) and microseismic (<0.6 

Hz), although different sources and background noise in a marine environment (e.g. due to water waves, 

storms, shipping and anthropogenic activities like drilling) share overlapping frequency bands, making 

such a detection task quite challenging, using the real field datasets from marine seismic surveys. In 

order to reliably detect these microseismic events, recent attempts have been made to simulate 

approximate template seismic waves with known time-frequency domain characteristics using geo-

mechanical modelling from first principles. Amongst the available approaches for the forward 

geophysical modelling given a heterogeneous velocity model, raytracing, acoustic wave and elastic 

wave propagation modelling are widely used (Chapman 2004). The elastic wave equation-based 

modelling is the most detailed and accurate geophysical approach for microseismic events in marine 

velocity models with a rock-water interface, whereas the raytracing method mostly relies on the high 

frequency wave propagation approximation using separate compressional (P) and shear (S) wave 

velocity models. In spite of the capabilities of accurate geophysical modeling, with mode conversion 
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between P-wave and S-waves in the boundaries between the rock layers, bulk scale simulation of the 

3D elastic wave equation is often not a favorable solution as it suffers from extremely high 

computational requirements to generate accurate synthetic seismograms from a given velocity model 

(including density and P/S-wave velocity) with a few million grid points for detailed description of 

subsurface heterogeneity. However, a GPU based generic elastic wave propagator like the k-Wave 

solver (Treeby et al. 2014; Treeby & Cox 2010) can reduce the computational burden of bulk simulation 

significantly and has been used in large scale geophysical wave propagation modelling before e.g. (Guo 

et al. 2016)(Das et al. 2017). But GPU based forward simulation is still not fast enough to evaluate 

thousands of batches of single shot elastic wave propagation simulations needed for fast computation 

of the likelihood values at speculative locations of microseismic events, given recorded noisy 

seismograms. 

The outputs of the governing partial differential equation (PDE) for elastic waves are more numerous 

(i.e. multi-receiver seismogram time series) than the inputs to the PDE solver (specified microseismic 

source positions as 3D co-ordinates). Therefore, such a high dimensional mapping from the 

microseismic event locations to the full set of observables, i.e. the seismic waves recorded on multiple 

receivers, make such a statistical regression modelling problem quite challenging. This becomes even 

more challenging since the resulting wave-fields in response to unit strength microseismic events at 

random locations are sparse in nature, with time localized information embedded in the time-series data 

as multiple spikes. A direct regression modelling using a few thousands of sparse seismic wave-fields 

would smear away the predicted seismograms, as the data samples can differ by a few order of 

magnitude (depending on the distance from the receivers) and most of the information lies in the form 

of localized spikes in time. A robust compression method is thus needed for predicting the simulated 

seismic waves, before applying a regression framework as a “proxy” for the elastic wave propagator. 

The compression can be applied in many different ways (time, frequency or time-frequency domains 

e.g. using Fourier or wavelet bases). The mapping in the compressed domain needs to be smooth to 

capture the short duration variable amplitude oscillations in the seismic waves. Due to the time-

frequency domain duality criteria, small errors incurred in the frequency domain may lead to wider and 

sustained spurious oscillations in time domain, which suggests the use of time domain robust 
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compression methods over other frequency domain methods (Wood 1974). This approach slightly 

sacrifices the achievable compression performance and hence the number of observables in the 

regression model and consequently the size of the trained surrogate model to predict accurate synthetic 

seismograms. 

With the aim of proxy construction, this paper first simulates synthetic elastic wave propagation using 

GPUs, from a few thousands of unit amplitude explosive microseismic events at random positions in 

the subsurface and records the resulting seismograms at specified receiver locations at the seabed. These 

synthetic data are then used to approximate, or ‘statistically learn’, the underlying physics of elastic 

wave propagation, therefore generating a reduced physics model (Wilson & Durlofsky 2013; Wilson et 

al. 2012), for any random event location within the heterogeneous velocity model. Here we also 

compare the computational time of the full-scale forward model simulation vs. the trained surrogate 

meta-models to obtain an estimate of the run-time saving. This can enable an iterative microseismic 

source inversion process within a realistic time using standard computational resources. Such a 

statistical learning or approximation of physics in the form of PDE solver’s outputs has been widely 

used in various surrogate meta-model assisted optimization methods before e.g. in (Forrester et al. 2008; 

Forrester & Keane 2009; Forrester et al. 2007). 

Surrogate meta-models or proxy methods were traditionally developed for various optimization 

problems e.g. constrained single or multi-objective optimization problems, missing data problems etc. 

(Forrester et al. 2008; Forrester & Keane 2009; Forrester et al. 2007). Similar machine learning 

approaches have been adopted to approximate complicated likelihood functions within a Bayesian 

analysis framework in the blind accelerated multimodal Bayesian inference (BAMBI) algorithm (Graff 

et al. 2013; Graff et al. 2012)(Hobson et al. 2014). Surrogate meta-models are also used to learn 

weighted multiple objective functions within single-objective (Pan & Das 2015), multi-objective (Pan 

et al. 2014b) and robust optimization frameworks (Babaei, Pan, et al. 2015)(Babaei, Alkhatib, et al. 

2015), containing expensive function calls for the forward physics simulation. The trained surrogate 

meta-models can be viewed as a ‘proxy’ for the expensive forward simulations, while it also acts as a 

smooth interpolator in the parameter space of the forward model (i.e. microseismic event locations) 

which can be verified using an independent testing dataset. Such reduced physics or approximate 
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physics based proxy or surrogate models have been widely used in various other geophysical and 

geological problems like shale gas production optimization (Wilson & Durlofsky 2013; Kalantari-

Dahaghi et al. 2015; Wilson et al. 2012), geological CO2 storage (Babaei, Pan, et al. 2015)(Pan et al. 

2014a; Pan et al. 2014b), water injection in oil reservoirs (Babaei & Pan 2016; Babaei, Alkhatib, et al. 

2015), and history matching (Goodwin 2015; Mohaghegh 2006; Rodriguez et al. 2006; Slotte & 

Smorgrav 2008; Zubarev 2009), in the context of optimization or uncertainty quantification using 

various Monte Carlo methods. To the best of our knowledge there isn’t any study on surrogate meta-

model or proxy development for microseismic response modelling via elastic wave propagation, using 

the sparse spike time series which is difficult to learn unlike in many traditional areas of computational 

geosciences, except few variable frequency decomposition methods for fixed receiver and source 

position (Modesto & de la Puente 2016) and some not well-explored concepts of seismic inversion 

(Weglein et al. 2009). 

Seismic data driven geophysical parameter estimation and inverse problems often need a few 

thousands of such likelihood or objective function calls where the forward geophysics simulation 

produces a template seismic data to match with the noisy real recordings (Aster et al. 2011)(Mosegaard 

& Tarantola 2002; Tarantola 2005; Tarantola & Valette 1982; Mosegaard & Tarantola 1995). Previous 

surrogate-based optimization and Bayesian inference methods trained a proxy for the single valued 

likelihood functions since the likelihood function is dependent on the data. In applications where the 

data change frequently, such an approach needs retraining of the surrogate meta-model using the newly 

recorded data, which may be a computationally wasteful approach. Thus, we take a different approach 

here of directly learning the raw observables obtained from the geophysical simulation model. This 

poses mainly two challenges – firstly, the observables (seismograms) recorded on multiple receivers 

will produce too many parameters for a multivariate regression and secondly, the generated seismic 

data are sparse which makes it difficult to predict via a standard regression framework. In other words, 

for elastic wave propagation modelling, the simulated datasets are sparse in nature and also, they are 

dense multivariate time series, the size of which massively increases with the number of receivers and 

the sampling frequency. Therefore, the contribution of this paper is to statistically learn the sparse 

physical response of unit size microseismic activity, as a function of input parameter-set in the PDE 
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(i.e. random event locations in this case) which is rather a harder problem than learning scalar valued 

likelihood functions within an inference problem as shown in (Graff et al. 2013; Graff et al. 2012). 

Amongst previous approaches to supervised learning of physics based models i.e. fewer model 

parameter to many observable mapping, the COSMONET algorithm (Auld et al. 2007; Auld et al. 2008) 

employing multilayer perceptron neural networks is worth mentioning. The present paper extends this 

idea for predicting sparse data using a robust compression technique. This paper also compares the 

performance of various smooth interpolation methods available from a pool of supervised learning 

techniques – starting from robust polynomial regression to kernelized shrinkage regression, support 

vector machine (SVM), decision tree and ensemble regression, feedforward and cascaded forward 

neural networks (NN) and Gaussian process (GP) regression with various kernels and basis functions. 

However the difference between the observable mapping, shown in COSMONET algorithm (Auld et 

al. 2007; Auld et al. 2008) and our approach is that we here learn each compressed domain prediction 

separately, rendering multiple partitioned regression models, without leveraging the underlying 

correlation structure amongst the observations in the compressed domain. Also, in surface seismic data 

based microseismic activity monitoring, the gross geological characteristics given by the voxelized 3D 

velocity model are not expected to change within a short span of time and can be considered constants, 

hence leading to a deterministic mapping of the microsiseismic event parameters on to the observed 

seismic profiles at various receivers. This motivates us to conceptually follow a similar route proposed 

in physical measurement domain observable learning as shown in the COSMONET algorithm (Auld et 

al. 2007; Auld et al. 2008), rather than the specific historical fixed dataset based likelihood learning as 

reported in the BAMBI algorithm (Graff et al. 2013; Graff et al. 2012). 

Therefore, the goal of this paper is to develop a robust method to act as a proxy or surrogate meta-

model or fast interpolator for mapping the input parameters in a sufficiently complex PDE model with 

material heterogeneity onto the sensor or measurement space to be used later in the likelihood calls for 

fast parameter estimation and probabilistic inference problems. In other words, the broad objective here 

is to teach the machine learning algorithms to rapidly predict the numerical solution of the elastic wave 

propagation and then use these predictions to estimate the microseismic event locations in a simple 

maximum likelihood or even more involved full posterior distribution estimation. Amongst previous 
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efforts on such characterization of microseismic source activity in the subsurface from recorded 

seismograms using spectral, spectrogram domain methods (Eaton et al. 2014) and phase space domain 

using polarization diagrams in (Levy et al. 2011) are notable. Also, (Groos & Ritter 2009) proposed a 

scheme for classifying the sources in microtremor, transitional and microseismic events from the 

observed seismograms using realistic field data. 

The paper is divided in the following objectives to achieve this broader goal and presented in the 

subsequent sections: 

i) Fast GPU based synthetic seismogram simulation for training the supervised learning methods 

ii) A robust compression of the sparse seismic signals 

iii) Learning a smooth mapping from event location on to the compressed domain seismograms 

using various machine learning techniques 

iv) Comparing accuracy, storage size, training time trade-offs for these supervised learning-based 

surrogate meta-models and 

v) Using the proxy-based fast predictions for calculating maximum likelihood estimates of 

possible event locations 

2. Synthetic Seismic Trace Generation for Training Machine Learning Algorithms 

The aim of this work is to train machine learning algorithms to rapidly generate accurate seismograms 

within each likelihood call. It needs to be trained using some example datasets to help statistically learn 

the elastic wave propagation mechanism without numerically solving the expensive governing PDEs. 

To generate the synthetic seismograms, we have used the elastic wave equation solver k-Wave, in a 

specified 3D geometry using the pseudo-spectral method (Treeby et al. 2014). The receivers and 

microseismic source positions can be modelled using the given 3D voxelised heterogeneous velocity 

model which can be run using general purpose GPUs with a single precision (32-bit) number 

representation (Treeby & Cox 2010; Treeby et al. 2012). For synthetic trace generation, the medium 

can be modelled as simple acoustic (with only P-waves), or elastic (having both P-wave and S-wave 

sound velocities) or even as viscoelastic with frequency dependent absorption, which is considered as 

zero in the present geophysical wave propagation modelling. In the simulation process, the stress/strain 
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tensors are iteratively updated using the specified 3D heterogeneous velocity model. During the 

simulation, the 3-component particle velocity and the acoustic pressure are calculated from the 

propagating waves at specified receiver locations. In most realistic 3D geophysical simulations, the 

sound velocity and density model are used for solving the forward wave propagation in acoustic mode 

(Phadke et al. 2000) or elastic mode (Igel et al. 1995) using a heterogeneous medium where the material 

properties or the velocity model with , ,p sc c  being specified as 3D matrices with specified voxel 

values. Microseismic response simulation on GPUs using the pseudo-spectral method has been explored 

previously in (Das et al. 2017). However the seismic data generation process using other numerical 

schemes of PDE discretizing methods are not the main focus here and a similar seismic wave 

propagation method involving either finite difference, finite element, spectral element or finite volume 

method can also be employed instead of the pseudo-spectral method (Igel 2016). In our simulations, in 

order to impose an absorbing boundary condition via the perfectly matched layer (PML), 10 grid points 

were reserved along each direction before and after the regular grids of the velocity model. The elastic 

wave propagation due to explosive microseismic sources were run on a 3D domain of 81×81×301 = 

1.975×106 grid points where the grid spacing in the three directions are given by 

12.5, 12.5, 10x y z      m, therefore representing a geological model of dimension 1 km×1 km×3 

km along the three directions as shown in Figure 1. The elastic wave equation is solved with a sampling 

time of 0.8 ms to guarantee numerical stability for this heterogeneous model over a total time interval 

of 2 sec and then the recorded seismograms are down-sampled to Ts = 4 ms. The strength of the sources 

are considered as 1 MPa as many recent literature suggest that the typical range for microseismic 

sources is around 1-10 MPa in sedimentary rocks and >20MPa in crystalline rocks (Rutledge et al. 

1998; Collettini & Barchi 2002) whereas for earthquakes it ranges between 5-100 MPa (Dieterich et al. 

2015).  
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Figure 1: Heterogeneous velocity model of 1 km×1 km×3 km, comprising of the density (kg/m3), compressional and shear 

velocity (m/sec) at each grid-point. Heterogeneity is higher in depth compared to the lateral directions. 

 

Figure 2: Latin hypercube samples for event locations for training and testing dataset in the supervised learning. Both training 

and testing samples are selected almost uniformly from the whole volume.   

In total 4000 random Latin Hypercube (LH) samples for speculative source positions were used here 

for the forward simulations to generate the training and testing seismic data for different machine 

learning algorithms. We have randomly split 2000 source positions for training the surrogate meta-
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models and then use the remaining 2000 sources for testing the performance of the trained meta-model. 

Both these data-sets are uniformly distributed throughout the volume of the velocity model as shown in 

Figure 2. The forward simulations were run on the Wilkes GPU cluster at the University of Cambridge, 

UK with non-interactive batch mode as separate Matlab scripts. Each batch contained 40 random event 

locations and 10 such batches (400 sources) were run simultaneously. The generated seismic waves of 

2 sec length were recorded at the surface receivers placed at the interface between the rock layers and 

the water column in the velocity model in Figure 1. The synthetic data after down-sampling to Ts = 4 

ms, becomes 182 GB for 4000 LH source locations. Previous 3D elastic wave modelling attempts on 

GPUs e.g. (Mu et al. 2013a; Mu et al. 2013b) used 0.03×106 and 0.3×106 voxels respectively, whereas 

our present model is significantly larger (65.8 times and 6.5 times respectively) than the results reported 

there. On the 1 square kilometer surface at the sea-bed the 23 receivers are placed with the arrangement 

shown in Figure 3. This paper initially develops the proxy meta-model for the central receiver (R-12) 

and then extends it to all the 23 receivers. We also show the effect of choosing different sub-sets of 

these receivers on the final maximum likelihood detection performance of the events. Amongst the 4000 

forward simulations, 10 representative cases are shown in the supplementary material in map view of 

the propagating acoustic pressure wave-field at a fixed time instant T = 1.4 s, where the respective 

microseismic source positions in the volume are mentioned in the title of the subplots. The seismic 

traces recorded at the 23 receiver locations can be seen in Figure 4 where the corresponding map views 

of the acoustic pressure wave-fields are shown in the supplementary material. On the seismogram 

wiggle plots in Figure 4, the appearance of multiple arrivals are actually an effect of strong P-wave, 

followed by weak delayed S-waves and also the receiver arrangement where source to receiver distance 

does not uniformly vary in different trace numbers, since the receivers are not placed along a line but 

distributed all over the surface.  

In the next section, we aim to learn a statistical mapping between the event locations and the resulting 

seismograms at these 23 receivers without running the expensive forward simulations, for trained or 

new test event positions. In order to achieve this goal, the recorded seismic data needs to be compressed 

first in order to reduce the number of outputs of the surrogate regression meta-model i.e. 23 receiver × 

501 time samples = 11,523 data points per microseismic event location. This 3 to 11,523 dimensional 
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mapping is inherently a difficult learning problem because the output has complex correlation structures 

and moreover are sparse in nature with time localized spikes. As discussed earlier, fewer observables 

in the non-sparse and smooth cases can be statistically learned using multiple-input multiple-output 

(MIMO) regression frameworks e.g. using various neural network architectures (Auld et al. 2007; Auld 

et al. 2008)(Pandey et al. 2016). However most generic regression model involving nonlinear kernels 

like SVMs, decision tree, polynomials and Gaussian Processes can mostly accommodate a many-to-

one mapping thus leading to a multiple input single output (MISO) regression problem. In general, 

neural networks, as universal function approximators, can accommodate both MIMO and MISO 

regression framework, e.g. a comparison has been reported in (Pandey et al. 2016), but in general NNs 

are sensitive to outliers, noise, and may not adequately learn sparse datasets, as it requires several 

heuristics for choosing the right combination of hidden nodes, number of layers, activation functions 

and optimizers. On the other hand the kernelized Gaussian process models have been widely used in 

geostatistical modelling and kriging that can naturally accommodate noisy data for regression and 

outperformed many other family of algorithms especially on regression problems as shown in (MacKay 

1997)(Sitharam et al. 2008; Samui & Sitharam 2010). In order to provide a fair comparison here we 

have tested 9 different classes of regression models which can learn several many-to-one (MISO) 

mapping under the same framework i.e. given 3 event location parameters (x, y, z) the prediction of 100 

compressed domain seismograms on the 23 receivers, instead of learning a many-to-many (MIMO) 

mapping that may capture the correlations between the data in the compressed domain components and 

also between different receivers. Learning this collection of many-to-one statistical mapping for the 

compressed seismograms gives a smooth and robust method for predicting the seismic waves due to 

microseismic sources, as explored in the next sections. 
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Figure 3: Receiver placement geometry in the sea-bed. Receivers are placed at fixed depth of z = 244 in a 2.44 km deep 

velocity model of rock layers. 

 

Figure 4: Seismograms for the 23 receivers recording of the acoustic pressure in the forward simulation with fixed velocity 

model. Sample numbers and source locations are mentioned in the subplot titles. 500 samples represent 2 sec of seismic data 

with Δt = 0.004. 

3. Time Domain Compression of Seismic Traces and Surrogate Regression Meta-Modelling 

3.1. Compressed Representation of Seismograms for Regression Meta-Modelling  

This section first describes the robust time domain compression method for the time localised seismic 

datasets shown in Figure 4. Each seismic trace at a specified receiver location (in the horizontal x, y 
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plane) has been first sorted in decreasing order of absolute amplitude and only the strongest 100 samples 

(either capturing positive or negative pressure) are retained while the rest of the entries in the 501 sample 

long time-series (equivalent to 2 sec of data) are set to zero. This helps in identifying the dominant time 

instants within the sparse array of seismic traces, due to a smoothed delta-function like microseismic 

event δ(t) at different locations (x, y, z) in the heterogeneous volume. Smoothing of the source level 

spatial delta function is required and can be implemented using Blackman window which may otherwise 

create temporal oscillations, where more details on this can be found in (Treeby et al. 2012)(Das et al. 

2017). This transforms the original long but sparse time series in two different components – dominant 

amplitude (Si) and the corresponding index terms (Idx) for these non-zero temporal instants, which are 

extracted for all the event locations. Such a simple time-domain compression technique is thus able to 

reduce the number of observables to be predicted, to a lower value (from 501 to 200 i.e. for both Si and 

Idx, only 100 values). Upon reconstruction using the signal amplitude Si and the index terms Idx, the 

2D correlation coefficient between the original and compressed images is R2D>0.99, indicating almost 

lossless compression while also maintaining a smooth mapping of the observables in the event 

parameter space. Using frequency or time-frequency domain compression techniques involving Fourier 

or Wavelet transforms can achieve a better compression ratio but often learning the Idx term for such 

representation need to be very accurate, otherwise the compressed signals upon reconstruction may get 

shifted to different locations which needs further investigation. Each time domain compressed seismic 

dataset has been sorted in ascending order of Idx, thus producing a smooth pattern in the location of the 

dominant parts of the seismic traces. The first 500 realizations of the sorted data are shown in Figure 5.  

Here the compression is done on the seismic response for a single unit amplitude microseismic event. 

For 2 sec of data with 501 time samples, retaining only the strongest 100 samples gives us 99% 

reconstructed accuracy for a single microseismic response with strong P-wave and then trailing S-

waves. It is worth noting here that the purpose of the compression here is to reduce the number of 

regression outputs for noiseless template seismic responses for unit events and not noisy seismic traces 

with multiple events. For other types of datasets like different source mechanisms or different size of 

the velocity model, the length of the template noise free seismic trace may vary and under such a 
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scenario, the compression ratio might need to be retuned, but a similar method needs to be adopted to 

reconstruct seismograms with an accuracy of R>0.99. 

 

Figure 5: Sorted Index terms (Idx) and corresponding signal amplitudes (Si) on the central receiver’s seismic data for the first 

100 dominant time instants of 500 random microseismic events.  

The time-domain robust compression method can be described using the following three steps: 

Step 1: Out of the 501 samples in each 2 sec of seismogram, sort and isolate first 100 strongest positive 

or negative (absolute) amplitudes (Si) 

Step 2: Sort the strongest signal values with increasing Idx (to get a monotonically increasing occurrence 

of these dominant time instants) 

Step 3: Sort the strongest signal values Si, according to the respective time instants of Idx 

The aim is now to map each sample of these compressed domain sorted seismic data (both Si and 

Idx) as a function of the event locations (x, y, z). Through such a regression modelling, the seismic 

traces can be accurately and smoothly interpolated within the heterogeneous medium without running 

the computationally expensive PDE solver for other event locations which have not been used while 

training the surrogate meta-model. We found that apart from the three co-ordinates of the event 

locations (x, y, z), in addition its distance from a fixed receiver location can also be an useful predictor 

for modelling seismic data recorded on that particular receiver. Here the distance (d) refers to the 
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Euclidean norm of the differential co-ordinates between the source and the receiver. In the next 

subsection, we explain with representative examples why compressing the seismic data in each receiver, 

prior to statistical learning or the regression modelling is a necessity. 

3.2. Need for Compressed Domain Representation of the Seismic Data within Regression 

The aim to predict each value in a 2D seismic snapshot at a fixed time slice is a regression problem 

on a sparse image with important information embedded as time localised spikes as shown in Figure 4. 

Therefore, a direct pixel by pixel regression approach fails to provide sufficient accuracy due to the 

presence of too many zeros in the training dataset, because the informative spiky signals get smeared 

away, under such direct regression framework. Apparently it might seem that there is a clear linear 

horizontal pattern for the seismic data amplitudes in Figure 6 as a function of  , , ,x y z dx at the four 

fixed time slices (t = 0.25, 0.5, 0.75, 1 sec), but actually the useful information lies only in the few 

outliers above and below the baseline, containing mostly low amplitude fluctuations close to zero. 

Therefore, in order to predict the amplitude and temporal location of such spiky seismic signals, a 

straight forward regression analysis cannot be applied, as any flexible machine learning algorithm will 

pick up most of the frequently occurring zeros and not the few time-localised spikes or outliers in a 

sparse seismic data. Although the maximum amplitude shows a smoother variation with respect to z 

and d (in the bottom row, last two entries of Figure 6 as function of z and d), it can occur anywhere in 

the long time trace of the seismic trace and cannot be used to recreate the full seismic wave. There is 

another disadvantage of such direct prediction of the sparse seismograms as a function of event 

parameters, apart from the computational burden of having more regression models i.e. 501 samples in 

the case of a single seismic trace at a single receiver for 2 sec of data. Our sparse prediction approach 

essentially identifies the informative region in the seismic trace and predicts only the dominant values 

at the respective temporal points (i.e. the two components – Si and Idx), while considering the rest of 

signal as sparse with zero values, whereas the voxel by voxel prediction generates small noise-like 

fluctuations even at locations where there is not actually any significant information.   
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Figure 6: Variation in raw seismic signal amplitude as a function of microseismic source locations and its distance from the 

central receiver {x, y, z, d}. The few outliers contain the most useful information of the seismograms as high/low amplitudes.  

In order to remove any bias in the regression process, which may be introduced due to the different 

ranges of input predictors or output observables ( x) in the compressed domains, all the predictor and 

compressed observables are standardized to zero mean and unit variance using (1) and the respective 

standardization constants ( , x x ) are also stored apart from the trained proxy meta-models for 

rescaling the new predictions to the actual physical scale:  

   .  standard x xx x        (1) 

Compared to the uncompressed signal representation shown in Figure 6, a smoother variation is 

observed in the compressed domain, and can be seen from the 50th dominant time instant of the sorted 

seismic data in the form of its two compressed components {Si, Idx} as a function of {x, y, z, d} in 

Figure 7. The patterns in the compressed domain are prominent and not sparse and hidden in the form 

of outliers as in the previous case, as a function of these four covariates. In addition, the difference in 

the signal amplitudes depending on the depth of the source are also an important factor as shown in 

Figure 5, since the response of the deep source may get smeared away as numerical noise under a 

standard regression without any compression and normalization at each dominant time instant. From 

Figure 7, it is apparent that the two covariates {z, d} give rise to more correlated but complicated 
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patterns with few islanded regions which might be an effect of heterogeneous nature of the velocity 

model and complex structure of the elastic waves with both P and S-waves in the two parts of 

compressed domain. 

 

Figure 7: Variation in compressed dominant amplitudes and their index terms as a function of source location and distance 

from receiver {x, y, z, d}. Depth and distance show prominent structure for predicting the two compressed components. 
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Figure 8: Schematic diagram of time domain compression, multiple regression learning in compressed domain and 

decompression for predicted seismic trace generation. The unit event seismograms are compressed and learnt with parameter 

selection of different regression models to achieve the best predictive accuracy. 

Next, we apply the same compression method on all the microseismic source locations as shown in 

the LH samples in Figure 2. Therefore, using a few thousand microseismic event locations, each 

containing 501 time-samples for a single receiver position, the time domain compression yields 100 

dominant sorted time index (Idx) and the corresponding signal amplitudes (Si), i.e. 200 data points per 

compressed seismogram. Now, we aim to learn several regression meta-models between {x, y, z, d} as 

predictors and the amplitudes of 100 Si and the corresponding sorted time-index Idx values as the 

observables, in order to statistically learn the patterns represented in Figure 7. After the compressed 

representation of the seismograms, we choose a structure from a pool of regression models and 

independently learn the compressed data at 100 dominant time-instants. The standardizing constants 

computed before the regression are stored and then used to rescale the predictions to physical units. The 

predicted Si and Idx values can be easily combined in the decompression step to generate the predicted 

seismogram, as soon as a new input location for an event comes in. Each regression model adjusts its 

parameters by minimizing a mean squared error criterion between the ground truth vs. the predictions 

in the two compressed domains in the normalized scale. Upon reconstruction and rescaling the 

predictions, the predictive accuracy of the two components along with the reconstructed signals are 

calculated between the ground truth ( ijG ) seismograms and the corresponding predicted ( ijP ) versions 

by different machine learning algorithms using the 2D Pearson correlation coefficient in (2), for 

choosing the best model parameters or suggesting a new model structure: 
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       (2) 

where, ,G P denote the 2D mean of the ground truth and predicted signals in either 

compressed/reconstructed domains. 
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Although the split regression models only see a smaller sub-problem with a goal of minimizing the 

mean squared error (MSE) between the grounds truth vs. the predictions, the combination of 200 such 

predictions generate the full seismic traces for all the event locations in the training dataset. In order to 

judge whether a structure is good enough from the pool of regression models or which parameters of 

the models should be fine-tuned, a fixed threshold on 2D correlation coefficient (2) as R2D>0.9 has been 

used for the initial screening. If the model structure is found to be less flexible to accommodate the 

patterns in the compressed domain seismic data or a wrong control parameter is selected, a different 

model and/or control parameter(s) are suggested. The proxy or surrogate meta-model training workflow 

is schematically shown in Figure 8, starting from the event locations, then finding the compressed 

domain representation of seismic signals and then learning 100 split models for the dominant time 

indices Idx and the corresponding signal Si, from the pool of regression models, along with fine tuning 

of the associated control parameters. The next section briefly introduces the model structures in the pool 

of regression models and discusses the control parameters to learn the patterns in the seismic waves in 

the two-component compressed form as shown in Figure 7. 

4. Machine Learning Techniques for Multivariate Compressed Domain Regression Meta-

Modelling 

4.1. Splitting High Dimensional MIMO Regression as Multiple MISO Regression Problems 

We here explore the predictive performance, computing requirements for training and also the 

required storage for the trained surrogate models, using the following classes of regression techniques: 

i) Robust polynomial regression 

ii) Gaussian process (GP) regression 

iii) Support vector machine (SVM) regression 

iv) Decision tree regression 

v) Ensemble regression using tree method 

vi) Kernelized shrinkage regression using 1 2  norm 

vii) Generalized linear model (GLM) regression 

viii) Kernelized shrinkage based GLM regression 
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ix) Multilayer Perceptron (MLP) Neural Network regression 

 

There are also few hyper-parameters in each of the regression models that make a particular technique 

more flexible for learning complex patterns in the data over other classes of models. A sufficiently 

accurate surrogate regression meta-model can then be used in the inference or for optimization purposes, 

hence a comparison of storage requirements for such models and the training time are also important 

factors in such proxy design. 

The regression models were trained in the Matlab programming platform on a 64 bit 12-core Linux 

CPU with 32 GB memory and Intel Xeon E5, 2.5 GHz processor, while each of the 100 regression 

problems for Idx and Si in Figure 8 were parallelized independently over 12 cores using the parallel for 

(parfor) loops in Matlab. In the simplest implementation, the 100 dominant compressed time instants 

are learned independently using a separate model without considering a correlation structure between 

them. This could have been otherwise learned as a 3 to 200 parameter regression problem but only MLP 

neural networks would be usable, with the possibility of accommodating a full MIMO regression 

instead of a combination of multiple MISO regression problems (Pandey et al. 2016). However, such 

an approach here has not yielded a good prediction accuracy due to the large number of predictors (100 

or 200) compared to the covariates (only 4) using moderate size NNs and hence we here focus only on 

splitting the MIMO regression as a collection of multiple MISO regression problems, since here the 

main purpose is to get a good predictive accuracy without solving the full computationally expensive 

elastic PDE solver when called for fast likelihood calculation. 

4.2. Predicting Compressed Domain Seismic Data at a Fixed Receiver Location as a Function of 

Event Location Parameters 

Initially we explore the performance of various machine learning (regression) algorithms for 

predicting the seismic traces, recorded at the central receiver (at Nx/2, Ny/2) for the sake of simplicity. 

Here we use all the four predictors i.e. position and distance {x, y, z, d}, as this has been found to yield 

a better fitting performance over other subsets of covariates. The regression models have been assumed 

to be different on the Si and Idx, since their patterns are found to be quite different in Figure 7. In each 
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of the predictors we fit e.g. a higher order kernel with flexibility to adjust the order of the polynomial 

using an exhaustive search that maximizes the 2D correlation coefficient between the compressed vs. 

the regression model predicted image for both Si and Idx, hereafter called as RSi and RIdx respectively. 

The regression uses the robust option to reject outliers and fit a smoother response in its predictions. 

Also, the maximum order of polynomial kernel has been kept up to 4 in each predictor {x, y, z, d}, as 

more complex models are prone to overfit inconsistent patterns, and higher order models with more 

degrees of freedom have a larger number of parameters to estimate, hence producing more uncertainty 

in the estimates and increased variance on the predictions. The highest accuracy achieved through 

simple polynomial regression was insufficient because of the complexity of the data as shown in Figure 

7, a representative case for sorted 50th time instant, which may not be fitted well with simple quadratic, 

cubic or quartic polynomial functions of the predictors. The polynomial case is used here as an example 

from the pool of 9 classes of regression models in Figure 8 and the different cases the polynomial order 

replaces the respective free hyper-parameters of the algorithm to fine tune. Also, some of the predictions 

for Idx may be negative or exceed the maximum time instant, yielding an unfeasible region (as the 

signals cannot lie in negative time) or increased time series upon reconstruction. Therefore, after the 

predictions by the regression models, the Idx<0 and Idx>501 are thresholded at the lower and upper 

bounds respectively and the corresponding signal amplitudes are set to zero. In both the predictions of 

Si, Idx and the reconstructed seismic traces, the 2D correlation coefficient is used as reported in the 

tables as {RSi, RIdx, RRecon} using (2). It is to be noted that in all the cases, the machine learning algorithms 

have been trained on the two compressed components of the signal to select the model with maximum 

{RSi, RIdx,}. The reconstructed accuracies on the seismograms are calculated outside the training process 

to calculate RRecon.  

4.3. Robust Polynomial Regression 

The robust regression method gives better estimates in the presence of outliers and noise, compared 

to the commonly used ordinary least square (OLS) method incorporating the Moore-Penrose pseudo-

inverse. Let us consider the regression problem in (3),  Ti i i i iX x y z d  is the predictors and 
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 Ti i iY Idx Si  is the observables with model weight  and the prediction error ( i ) being independent 

and identically distributed (iid) with a scale factor for the modelling error: 

 .T
i i iY X           (3) 

The estimate of the weight   can be calculated from a given estimate of scaling factor  , considering 

the data and the weighted function ( ) of error to be uncorrelated i.e. 

      
1

1 0.
N

T
i i i
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N X Y X  



         (4) 

In the robust regression, starting from an initial estimate   ,  , residuals of the estimates are calculated 

as   T
i i ir Y X    . The weights are defined as  i i iw r r and the estimates are updated with a 

least square estimate with weight iw . The iterative update continues unless the algorithm converges 

(Street et al. 1988). There can be different choice of weight functions (Holland & Welsch 1977) for 

robust regression as in (5): 
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   (5) 

Here the value of r is calculated as  1tuner res const h  , with ,r e s h being the residual from the 

previous iteration and leverage value from OLS fit respectively. The standard deviation of error is 

calculated as  0.6745MAD  , using the median absolute deviation (MAD) of the residuals, 

considering it to be normally distributed. 

In the present problem with robust polynomial regression, we first transform the input parameter 

space i.e. microseismic event locations and distance from the central receiver , , ,x y z d using a 

polynomial kernel function xnfx (Ieong 2012) with a chosen order of 2 to 4 in order to form a design 

matrix e.g. {1, x, y, z, xy, xz, yz, x2, y2, z2, …} in the case of quadratic kernel, as an example. This high 

dimensional transformed feature matrix is then used in the robust linear regression framework through 
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the weight functions in (5). The maximum order of the kernel has been chosen as 4 keeping in mind the 

lower number of predictors (also 4) and to lower the possibility of overfitting. The results of robust 

polynomial regression are reported in Table 1.  

4.4. Gaussian Process (GP) Regression  

Starting from a linear model (  2, 0,TY X        ) the GP explains the prediction using the 

latent variables   , 1, 2 , ,iF X i n   (for modelling the smoothness of the output) and the explicit basis 

H (for projecting predictors in high dimensional space). If   , dF X X   be a GP having mean  m X  

and covariance  ,i jk X X , then given n observations  1 2, , , nX X X the joint distributions of the latent 

variables       1 2, , , nF X F X F X are also Gaussian. Now let us consider the model as (6), with 

  , : d pH X H    being the basis and coefficients of the basis are 1p   : 

        , 0, ( , )T
i jY H X F X F X k X X   .       (6) 

The probabilistic predictions of GP regression is given by (7): 

        2, ,T
i i i i i iP Y f X X Y H X F X   .       (7) 

The GP regression utilizes the fact that two closely lying predictor values ,i jX X will have similar 

response     ,i jf X f X and the similarity is represented by the kernel or covariance function 

 ,i jk X X  with the hyper-parameter vector . The kernels vary mainly due to two parameters i.e. the 

signal standard deviation ( f ) and characteristic length scale ( l ) which control how fast the 

correlation between two points change. Given a set of input-output data the GP algorithm estimates the 

basis coefficients  , noise variance and the kernel hyper-parameters . We used three different basis 

functions where the model is extended by different basis matrix (H) by multiplying with the vector of 

basis coefficients (β) i.e. the extended model becomes H×β. For the constant, linear and quadratic cases, 

the basis matrix can be represented as (8) 
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Along with variation in the basis function we also explored six different kernel functions – squared 

exponential, Matern 3/2, Matern 5/2 and also their automatic relevance discovery (ARD) versions (Neal 

1996; Rasmussen & Williams 2006): 
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      (9) 

where,    T

i j i jr X X X X   is the Euclidean distance between the points ,i jX X .   

Considering separate length scale ( m ) for each of the predictors ( 1,2, ,m d  ), the covariance 

(kernel) function implementing the ARD (Neal 1996) takes the form in (10):  
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      (10) 

where,   2 2

1

d

im jm m
m

r X X 


  .  

The training of ARD kernels in (10) e.g. ARD Materns are computationally more expensive than 

their basic versions in (9) e.g. the simple Matern kernels. The ARD function automatically finds out 

moving how far along a particular predictor will make the predictions uncorrelated. The inverse of the 

length scale determines how relevant a predictor is, as also discussed in (Rasmussen & Williams 2006) 

in a detailed manner. In all the regression models, the compact representation was adopted to store the 
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models as compact Matlab objects that stores only the necessary information, instead of the full model 

with information about training data etc. for a reduced storage requirement. Also, while training the GP 

models with constant basis, sometimes the Cholesky decomposition of the covariance can be ill-

conditioned, resulting in convergence failure of the GP algorithms. In such a case, a different initial 

value of the kernel parameters, initial value and increased lower bound of the GP noise standard 

deviation may improve the solution. For all the GP kernels, the computation for the log-likelihood and 

gradient, the standard QR factorization and Quasi-Newton optimizer have been used for parameter 

estimation. Gaussian processes with certain kernels are known to have equivalent representation of 

neural networks with infinite hidden nodes and are found to outperform many benchmark supervised 

learning methods, especially complex regression problems due to its non-parametric Bayesian nature 

(MacKay 1997)(Sitharam et al. 2008; Samui & Sitharam 2010), albeit being computationally expensive 

during the training process, compared to the NN learning. The GP based predictions in the compressed 

as well as reconstructed domain signals along with the training time and storage requirements are shown 

in Table 2. Here, the accuracies of the GP regression models are worth noticing in comparison with the 

other classes of regression structures in Figure 8.  

4.5. Support Vector Machine (SVM) Regression 

In SVM regression similar to the simple linear regression problem TY X b  , the inputs (

, 1, ,iX i n  ) can be mapped to a high dimensional space using a kernel  ,i jX X . We used three 

popular kernels viz. linear, polynomial and radial basis function (RBF) kernel in (11), with p being the 

tuning parameters for the polynomial kernel (Friedman et al. 2001)(Rogers & Girolami 2015): 
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The SVM regression algorithm terminates using either of the three convergence criteria – feasibility 

gap (Δ), gradient difference ( L ), or largest Karush-Kuhn-Tucker (KKT) violation. The KKT criteria 

act as constraints to the optimization problem which can be solved using the sequential minimal 
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optimization (SMO) algorithm which is faster than the traditional quadratic programming approach 

(Huang et al. 2006). The comparative results of the SVM regression models using the above three 

kernels viz. linear, polynomial kernel of order 2-4 and the RBF have been reported in the supplementary 

material as they do not yield high enough accuracy.  

4.6. Decision Tree Regression 

In the decision tree regression, deep trees are grown first and then the optimal sequence of subtrees 

are determined by pruning. Firstly, the predictor space is divided into non-overlapping regions 

, 1,2, ,jR j J  and then for every observation falling in a particular region, the prediction becomes 

mean of the response values in jR . The regions are found out by minimizing the sum of squared error 

(SSE) in (12) between the real ( iY ) and the mean response of training samples within a particular box (


jRY ) (James et al. 2013): 

  2

1
j

j

J

Ri
j i R

SSE Y Y
 

  .       (12) 

As the controlling parameters, the effects of varying the minimum number of leaf nodes (Nleaf) and 

minimum number of parent/branch nodes (Nparent) are explored here and the accuracy vs. data storage 

size trade-offs are also shown in the supplementary material. Tree methods allow complicated nonlinear 

and partitioned boundaries as non-overlapping regions, especially naturally modelling corners in the 

input parameter space which are difficult to model with other regression models, thus often providing 

good predictive accuracy, although generalization and storage size for large trees are inherent 

challenges (James et al. 2013). Also, the surrogate split option is used which is known to improve 

predictive accuracy by randomly splitting the data at most 10 times in each leaf node. Pruning of 

decision trees is another option that has been used to produce a smaller tree with fewer splits. The results 

of the tree methods with different leaf and parent size (3 to 20) have been reported in the supplementary 

material.       

4.7. Ensemble Regression with Tree Method 
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In ensemble regression, normally two algorithms are commonly used viz. least square boosting 

(LSBoost) and bootstrap aggregation (Bag) (Barutçuouglu & Alpaydin 2003). Bagging grows multiple 

weak learner trees on many resampled (bootstrap) replicas of the dataset and the predicted response is 

the average prediction from all these trees. Minimal leaf size of bagged regression tree is kept fixed at 

5 and as the controlling parameter the number of learners (Nlearn) are varied from 100 to 1000. In 

LSBoost every step fits a new learner using the difference between the observed and the aggregated 

prediction of all the learners trained so far while minimizing the MSE. While using the bagging method, 

the size of the surrogate meta-models become huge (>1 GB) with just 100 learners and for just one 

receiver location. Therefore, bulk scale simulation using this approach is not recommended due to 

unmanageable storage size of the trained proxy meta-models. The performance results of the ensemble 

regression with several independently grown tree learners (100 to 1000) with bagging and boosting 

method have been compared in the supplementary material. 

4.8. Shrinkage Regression with Polynomial Kernel 

When dealing with redundant or few less important predictors, the Shrinkage methods give improved 

performance over traditional regression methods that gives more priority on significant predictors over 

the insignificant ones. In our four predictor , , ,x y z d based regression problem, the covariates are first 

projected on to a higher dimensional space using a polynomial kernel of order 2-4 via the kernel function 

xnfx (Ieong 2012), since in many cases the kernel order for the design matrix exceeding the dimension 

of the original inputs yield spurious results. As an example, a 3D event location , ,x y z under such a 

3rd order polynomial kernel mapping would yield series of predictors like {1, x, y, z, xy, xz, yz, x2, y2, z2, 

xyz, x3, y3, z3} etc. Amongst these combinations, the shrinkage methods are expected to pick up the most 

useful predictors from these new kernelized predictors, while pushing rest of the insignificant ones to 

zero. The three variants of shrinkage regression i.e. Least absolute shrinkage and selection operator 

(Lasso), elastic net and Ridge regression solve the following minimization problem in (13) as weighted 

sum of prediction error and penalty term on the coefficients (Zou & Hastie 2005): 
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where,     1 2
1 2P        is the penalty term of elastic net interpolating between the 

mixture of 1 2  norm of the model coefficients and N is the number of samples for training. The above 

elastic net problem approaches the Lasso at 1  , thus making Lasso penalize the 1 norm only, 

whereas the problem approaches Ridge regression when 0 thus giving full penalty on the 2 norm 

only (Zou & Hastie 2005; Friedman et al. 2001). Therefore, to implement the three Shrinkage regression 

methods  61,0.5,10  have been considered using the four kernelized predictors , , ,x y z d with an 

increasing polynomial order of 2-4. The regularization parameter (λ) in (13) controls the penalty 

between the prediction error and a chosen norm ( 1 2  ) of the model coefficients. A 10-fold cross 

validation has been adopted to automatically choose the optimum λ with minimum average error across 

the folds of the training data and hence the best model is automatically chosen with optimum λ for each 

of the 100 multiple-regression problems. Apart from the 10-fold cross-validation based optimum model 

selection or kernel hyper-parameter tuning during the training phase, the best models on the training set 

are also tested with a separate hold out dataset which is explored in the subsequent sections.  

4.9. Generalised Linear Model (GLM) Regression 

GLM is a special class of nonlinear models that still use linear methods for prediction. A linear model 

( X  ) based predictions can be interpreted as a normal distribution with mean  where coefficients

 map each input on to the predictions linearly. In GLM (14) the response can have a wide variety of 

distributions  f  , known as the link function with mean  :  

  f X   .      (14) 

For normal distribution the link function becomes the mean i.e.  f   , but for other complex 

distributions, the canonical link functions and the mean inverse functions can be chosen in different 

ways. For real valued outputs, choosing a normal distribution in GLM is recommended which suits our 
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standardized outputs, whereas for positive/strictly integer values, other distributions like gamma, 

inverse gamma, Poisson or binomial can also be used.    

4.10. Shrinkage Based GLM Regression with Polynomial Kernel 

These regression techniques have the advantages of both the Shrinkage and GLM methods, as 

described in the earlier subsections. Similar to the standard elastic net, norm based penalties are chosen 

as  61,0.5,10  to implement Lasso, elastic net and Ridge regression respectively. In addition, a 10-

fold cross validation on the training data is also implemented to automatically select the regularization 

parameter λ in each of the multiple regression sub-problems. A normal distribution on the outputs and 

an identity link function is considered in Lasso-GLM and other variants (Friedman et al. 2010). For the 

case of normal distribution as the link function, the predictions closely approach the base versions 

without the GLM, whereas GLM enhancements are more popular in classification problems over the 

regression problems. The kernelized shrinkage, GLM and kernelized shrinkage GLM based prediction 

results have been compared in the supplementary material, where none of them attain a good predictive 

accuracy. 

4.11. Multi-Layer Perceptron (MLP) Neural Network (NN) Regression 

Neural networks are widely used as universal function approximators and thus a popular choice in 

many regression problems using a multiple inputs and multiple outputs (MIMO) architecture. With an 

aim of a fair comparison with other regression methods, we here employ a collection of multiple input 

single output (MISO) implementation of MLP neural networks with moderate size hidden nodes. Often 

neural networks are prone to pick up inconsistent patterns or outliers in the data, thus we used a 

regularization constant of γ = 0.5 in the cost function (Jreg), to keep an equal balance on both the penalties 

due to the MSE and the mean squared weight (MSW) during the training process: 
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Although there have been recent developments on optimizers for fast training of large and deep 

networks in classification problems, the traditional Levenberg-Marquardt (LM) backpropagation 

algorithm has been shown to outperform on a wide variety of regression problems as it produces low 

MSE and high speed for training small to medium size networks with <1000 weights and bias terms 

(Plumb et al. 2005). As the size of the network grows, there are even efficient optimizers like scaled 

conjugate gradient (SCG) compared to traditional training algorithms like Levenberg-Marquardt. In the 

present scenario, the whole dataset here during the NN training has been randomly divided in training 

(70%), testing (15%) and validation (15%) set for each of the MISO regression problems. The 

hyperbolic tangent sigmoid (tansig) activation function in (16) is employed in the hidden layers and a 

pure linear (purelin) activation function in the output layer which is commonly used for regression 

modelling:  
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.      (16) 

We also explored two different NN architectures – feedforward and cascaded-forward networks 

with single and double layer while the number of nodes is varied from 10 to 100 in each hidden layer 

to keep the storage and training time comparable with other methods. The cascaded forward network 

has similar architecture like feedforward networks except that it has an extra connection to the input 

directly in each hidden layer, apart from the inputs from previous layer. The comparative performance 

of these two NN architectures are shown in the supplementary material.  

5. Results and Discussion 

From the velocity model in Figure 1, it is evident that along the y-direction, there is relatively small 

variation in the rock properties, compared to the variation along the x-direction. Also, the density and 

P/S-wave velocities have rapid variation along the z-direction. Therefore, the effect of the heterogeneity 

will be different on different receivers placed at the sea-bed and thus finally affecting the likelihood 

calculation in different ways. We here explore 6 different receiver arrangements for calculating the 

likelihood by taking a subset of the 23 receivers, as shown in Figure 3 (all 23, along principle diagonal, 

anti-diagonal, central one, lower and upper triangular parts). In this section, the best regression model 
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from the previous section has been selected and the parameters are fine-tuned based on the seismic 

responses recorded at the central receiver from the microseismic sources anywhere in the subsurface as 

shown in Figure 2.  

 

5.1. Prediction of a Single Seismogram at the Central Receiver 

Table 1: Accuracy, computation time and size of the robust polynomial regression learning surrogates 

Polynomial 

Order 

Robustness 

Criteria RSi RIdx RRecon 

Training 

time (s) 

Model Size for single 

Receiver (KB) 

2 

Andrews 0.7720 0.9626 0.3406 
3.70 16 

Bisquare 0.7723 0.9626 0.3402 
3.52 16 

Cauchy 0.7864 0.9661 0.3388 
3.45 16 

Fair 0.7986 0.9679 0.3291 
3.44 16 

Huber 0.7932 0.9672 0.3283 
3.43 16 

Logistic 0.7946 0.9674 0.3322 
3.85 16 

OLS 0.7913 0.9695 0.0951 
3.13 15 

Talwar 0.7720 0.9629 0.3324 
3.30 16 

Welsch 0.7756 0.9635 0.3410 
3.54 16 

3 

Andrews 0.8451 0.9665 0.7822 
4.32 21 

Bisquare 0.8453 0.9665 0.7798 
4.62 21 

Cauchy 0.8531 0.9700 0.5995 
4.00 21 

Fair 0.8616 0.9720 0.6258 
3.83 21 

Huber 0.8587 0.9713 0.6312 
3.88 21 

Logistic 0.8593 0.9715 0.6254 
4.08 21 
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OLS 0.8706 0.9736 0.3289 
3.31 21 

Talwar 0.8454 0.9667 0.7814 
3.58 21 

Welsch 0.8465 0.9671 0.6816 
4.22 21 

4 

Andrews 0.8648 0.9725 0.7119 
4.68 25 

Bisquare 0.8642 0.9725 0.7081 
4.65 25 

Cauchy 0.8743 0.9759 0.7144 
4.44 25 

Fair 0.8825 0.9776 0.7611 
4.14 25 

Huber 0.8799 0.9770 0.7374 
4.26 25 

Logistic 0.8803 0.9771 0.7414 
4.25 25 

OLS 0.8827 0.9791 0.1963 
3.54 25 

Talwar 0.8670 0.9729 0.6999 
4.06 25 

Welsch 0.8660 0.9732 0.7091 
4.54 25 

 

Table 2: Accuracy, computation time and size of the Gaussian process learning surrogates 

Basis Kernel RSi RIdx RRecon 

Time in 

hour 

Compact Model 

Size (in MB) 

Quadratic 

Squared Exponential 0.9575 0.9911 0.7851 1.96 5.017 

Matern 3/2 0.9728 0.9939 0.8729 2.53 5.024 

Matern 5/2 0.9647 0.9925 0.7136 2.42 5.023 

ARD Squared Exponential 0.9631 0.9945 0.9377 29.68 5.032 

ARD Matern 3/2 0.9707 0.9963 0.9377 9.29 5.031 

ARD Matern 5/2 0.9668 0.9956 0.9427 9.79 5.03 

Linear 

Squared Exponential 0.9522 0.9908 0.8125 2.04 5.022 

Matern 3/2 0.9535 0.9938 0.8434 3.25 5.02 

Matern 5/2 0.9624 0.9922 0.6873 3.16 5.02 
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ARD Squared Exponential 0.9625 0.9943 0.9186 4.65 5.032 

ARD Matern 3/2 0.9696 0.9962 0.9467 8.12 5.027 

ARD Matern 5/2 0.9664 0.9954 0.9431 9.64 5.027 

Constant 

Squared Exponential 0.9453 0.9902 0.8617 1.78 5.036 

Matern 3/2 0.9692 0.9916 0.8312 4.60 5.036 

Matern 5/2 0.9587 0.9919 0.6559 3.29 5.051 

ARD Squared Exponential 0.9621 0.9937 0.8812 36.19 4.995 

ARD Matern 3/2 0.9703 0.9957 0.9428 7.08 4.941 

ARD Matern 5/2 0.9409 0.9857 0.2389 1.53 4.991 

 

Here the central receiver (R-12 in Figure 3) is considered to be seated at a fixed location (Nx/2, 

Ny/2) at z = 244th grid point, whereas the sources can roam around anywhere in the rock volume 

underneath. We first aim to predict the seismic traces at the central receiver using a regression meta-

model, fitted using the 2000-unit amplitude microseismic events at different LH sample locations as 

shown in Figure 2. Under an exhaustive search for the best polynomial kernel combining the right 

polynomial order in the 4 different predictors, it is revealed from Table 1 that using the random source 

positions, a 3rd order polynomial with Andrews robustness criterion yields the best prediction accuracy 

upon reconstruction, with a 2D correlation coefficient of RSi = 0.8451, RIdx = 0.9665 and RRecon = 0.7822 

with respect to the original Nsource×Nt = 2000×501 samples of seismic dataset. The other combinations 

like 3rd and 4th order polynomials and different robustness criteria work fairly similarly, except the 

ordinary least square as this is prone to outliers and non-normal datasets. The training time and the 

storage of the robust regression coefficients are minimal amongst all the proxy meta-models, explored 

in this section. Other complex models can push the predictive accuracy to a higher value which are 

explored next although they need more computational time for training. In this section, we show 

comparison of different classes of regression models in terms of training accuracy (R2D) for the two 

compressed parts having 100 dominant time instants, accuracy of the reconstructed seismograms, 

training time and proxy storage size, utilizing the 2000 training samples, with 10-fold cross validation 

to select hyper-parameters of different family of regression models. The best classes of models found 
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with this exploration as an initial screening has been further tested with 2000 independently held out 

testing samples and reported in the following sections.    

 

Figure 9: Ground truth vs. predicted variation in Si and Idx along depth (z-direction) using Gaussian process surrogates. 

 

Figure 10: Ground truth vs. predicted variation in Si and Idx as a function of distance d using Gaussian process surrogates. 

Most variants of Gaussian Process surrogates with quadratic and linear basis are found to have a 

high predictive accuracy particularly with ARD covariance structures, although it is more 
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computationally expensive as compared in Table 2. The squared exponential kernel produces inferior 

results compared to the Matern 3/2 and Matern 5/2 versions with both ARD and the basic kernels. The 

best accuracy has been obtained using the ARD Matern 3/2 kernel using linear basis on the training 

dataset in the initial screening. Validation of the prediction performance on the 2000 testing datasets 

and moreover on a sample by sample seismogram prediction using 1D Pearson correlation coefficient, 

instead of average 2D correlation coefficient has been shown in the subsequent sections, for the final 

choice of best GP model structure. 

The SVM with polynomial and RBF kernel, GLM and/or kernelized shrinkage regressions like 

Lasso, Ridge, elastic nets and moderate size neural networks have produced a poor predictive 

performance, particularly most of them fail to partition between the positive and negative pressures in 

the scatter diagrams as a function of the predictors. The increased computation time in Lasso and elastic 

net is due to the cross-validation based automatic selection of hyper-parameter λ by finding a balance 

between penalizing prediction error and the model coefficients. 

As described before, the decision tree method can produce high accuracy particularly with lesser 

value of Nparent thus producing large size of the tree and hence larger model size. In general, within the 

ensemble methods, boosting trees produced better results than the bagging tree methods with the same 

number of weak learners. With 1000 weak tree learners, the prediction accuracy reaches around 0.6R 

with the bagging method, while the sizes of the learned models become greater than few GBs and hence 

not investigated further with higher number of ensemble learners. In each case of the tabulated results 

using various family of regression models which can be found the supplementary material, the best 

predictive accuracy and the associated tuned parameters has been highlighted as bold italics entries for 

reconstructed accuracy RRecon. 

From these exhaustive comparisons, it is found that the GP with linear basis function and ARD 

Matern 3/2 kernel outperform all the rest of the model families to predict an accurate seismogram on 

the central receiver and hence has been chosen for further analysis. However, although the accuracy of 

ARD family of kernels produce best results, they can be computationally expensive during the training 

process and also depending on the number of data-points in the training set for the covariance 

estimation. Apart from the GP models, the decision tree with lower number of parents and in the family 
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of ensemble learning methods, bagging with higher number of weak learners also perform well but 

these models have a larger storage requirement. Therefore, as a compromise between the achievable 

accuracy, training time, and storage requirement, the GP model with ARD Matern kernel is found to be 

the best choice for this regression problem in seismology. However, it is important to note that the 

regression models map each location in two compressed domains which are indeed smooth, as can be 

seen from Figure 9-Figure 10. However, using the predicted samples in the compressed domain each 

seismogram is reconstructed using the decompression steps that may not finally make the whole event 

co-ordinate to seismic trace mapping to be smooth enough. A slight decrease in the index term may not 

also yield smooth reconstructed seismograms which makes the final reconstructed correlation 

coefficient (RRecon) to have a lower value for most of the learning algorithms compared to the Gaussian 

process regression models. 

Also, from the results with increasing number of layers and number of hidden nodes in both the 

feedforward and cascaded neural networks, the compressed domain accuracies are found to be fair 

(provided in the supplementary material). However, they take more time during the training process. 

Training of very large networks (>100 nodes in 3 layers) has not been attempted since they need more 

time during the training process and since the alternative models are already giving better accuracy 

within similar training time-frame. Also, according to the “no free lunch” theorem, for different 

statistical learning scenario, there is no consensus that one single class of models whether neural 

network or Gaussian process would consistently outperform other family of learners and the best 

recommendations are to try a pool of models amongst which a class of models wins for a specific 

application. This fact is even more prominent in the context of difficult regression problems, as 

discussed in (Lattimore & Hutter 2013; Wolpert 2002; Goutte 1997; Domingos 2012), to achieve high 

enough accuracy compared to the well-researched classification problems where NNs are shown to 

outperform in contemporary research. 

Previously in Figure 7, the variation of the two compressed components of the original seismic 

signal – Si and Idx have been shown. Here, the predictions of the machine learning algorithms have also 

been shown on these two components as a function of 4 covariates {x, y, z, d} in Figure 9 and Figure 
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10 respectively showing variation with depth (z) and distance (d) and the two lateral directions in the 

supplementary material. The ground truth of compressed domain data is presented as the circles and the 

corresponding predictions are shown as square boxes. It is evident that the Gaussian process meta-

model is capable of learning the split predictions for the positive and negative pressure values and the 

corresponding complicated shape for Idx as found with respect to {z, d} in Figure 9 and Figure 10 

respectively. 

 

(a) 
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(b) 

Figure 11: (a) Original, compressed and predicted reconstructed seismograms using Gaussian process surrogates. (b) 

Zoomed seismic traces with predicted samples. The amplitude is in Pascal and 500 samples represent 2 sec of seismic data. 

It is understandable from the schematic diagram in Figure 8 that the regression models are trained 

to predict only the two components in the compressed domain and the respective accuracies have been 

reported as RSi and RIdx
 in the tables. The predictions in compressed domain are then used to decompress 

and obtain the sparse predicted seismograms as shown in Figure 11(b), corresponding to the 

reconstructed accuracies RRecon in the tables. Figure 11(a) compares the original (elastic PDE 

simulations), compressed and predicted compressed seismograms which show minimal loss of 

information with the compressed representation (R = 0.999) and predicted compressed (R = 0.947) data. 

In particular, the arrival times of the seismograms are accurately predicted which carry most of the 

useful information in a source location inversion process (Tarantola 2005), as also evident from the 10 

representative samples from the 2000 data-points along with a zoomed version of three seismograms in 

Figure 11(b). The predictions of the surrogate regression models are most commonly visualized in the 

form of cross plots as the deviation around the optimal least square line which are shown in the two 

compressed as well as the reconstructed domains in Figure 12, along with the achieved predictive 

accuracies mentioned in the titles of the subplots. 

 

Figure 12: Cross-plots between the ground truth and the best GP predictions in compressed and reconstructed domains.  
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Figure 13: 2-D visualization of ground truth and the GP predictions in compressed and reconstructed domains. 

The predictions can also be visualized in the form of a 2D image where the rows indicate different 

trace numbers, sorted against the distance from the central receiver and the columns denote the 

dominant time instant in the compressed domain and time samples in the reconstructed seismograms as 

shown in Figure 13, using the best found regression model i.e. Gaussian process with linear basis and 

ARD Matern 3/2 kernel. On the reconstructed image of the seismograms in the last column of Figure 

13, the power law behaviour in the dominant amplitude as a function of increasing distance from the 

central receiver is evident. The first column of Figure 13 clearly shows an oscillatory i.e. first increase 

in pressure, followed by a pressure drop. The corresponding dominant time instants in Figure 13 (also 

incorporating the first arrival time) has more complexity due the heterogeneity, complex ray paths and 

P/S-wave mode conversion of the seismic waves. 

5.2. Learning Curve Analysis and Computation Speed Up Using the GP Regression Models 

The best found trained model structures reported in the previous subsection are now evaluated for 

their predictive accuracy on both the 2000 training and 2000 testing LH samples shown in Figure 2 with 

a random choice of the subset of samples and multiple shuffles, commonly known as the learning curve 

analysis. The learning curve analysis shows the accuracy vs. robustness trade-off for a trained model 
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and helps in selecting the minimum number of training samples required to get a fair predictive 

accuracy. Here the number of samples are gradually increased as shown in Figure 14 while the average 

prediction accuracy of 100 Monte Carlo shuffles are carried out to select a subset of samples from each 

of the 2000 training and 2000 testing LH samples. Both the training and testing datasets seem to 

converge after 1000 samples. A smaller gap between training and testing dataset is reflected in the 2D 

correlation coefficient of the data and indicates an improved performance over the other methods. 

Figure 14 also shows that the ARD Matern 3/2 kernel produces slightly better accuracy with the linear 

basis over the quadratic basis on both training and testing dataset. However, the results seem to converge 

closely using the ARD Matern 5/2 kernel. Depending on the heterogeneity of the velocity model, the 

learning curves on the training and testing datasets may vary, in other studies. 

 

Figure 14: Learning curves of the GP models using the training and testing data using 100 Monte Carlo shuffles of the datasets.  

In Figure 15, we show the run time distributions of the 2000 synthetic seismogram simulations using 

various trained GP proxy meta-models. It is evident from Figure 15 that the time required to generate a 

single seismogram is less than a sec using the surrogate model as compared to the GPU based full elastic 

wave equation solving, as shown in earlier sections. However, there is an intermediate computationally 

expensive step to train the surrogate meta-models as shown in Table 2, which gradually increases with 
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the number of samples for Gaussian process regression and particularly with ARD family of kernels, 

although they provide more accurate results than other methods. This has been investigated in the next 

subsection.  

 

Figure 15: Histogram of a single seismogram generation time at the central receiver using the trained surrogate model and 

4000 data-points.  

5.3. Effect of Training Sample Size on the Regression Modelling 
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Figure 16: Training time requirements and predictive accuracy with increased training samples size using ARD Matern 3/2 

kernel with quadratic and linear basis function. Saving in training is clear using 12 parallel cores (over 4 and 8 parallel cores) 

and with linear basis function (over the quadratic one). Predictive accuracies are comparable between linear and quadratic 

basis with increased sample size.   

 

Here we explore the training time and predictive performances with increasing training sample size 

for the best GP models which are found to outperform the other family of regression models. The GP 

ARD Matern 3/2 model has been trained in parallel using 4, 8 and 12 core CPU via the parallel for 

(parfor) loops in Matlab on the 100 dominant time instants to learn the compressed seismograms. In 

order to show the scalability of the training process, the number of samples have been increased from 

20 to 500 in steps of 20 samples and the required training times along with the corresponding predictive 

accuracies have also been shown in Figure 16, as a function of the sample number (Nsample). It is evident 

that there is a steep increase in training time for over Nsample>300 and even more with the quadratic basis 

in the GP ARD Matern 3/2 kernel while the predictive accuracy fluctuates around 2D R2 = 0.93-0.95. 

Also the small fluctuations on the training accuracy can be observed in Figure 16, as the random samples 

come from different positions of the heterogeneous velocity model and thus introducing certain set of 

samples may slightly reduce the overall accuracy but varies within a small range and finally settles 

down. This is more evident in a finer resolution in the learning curve analysis in Figure 14 on the trained 

model using 2000 training/testing data with 100 Monte Carlo shuffles of increasing subset of samples, 

as presented in the previous subsection. 

5.4. Prediction Enhancement by Using Smoothing Filter 

Since the GP models predict the dominant 100 time-instants and the corresponding signal values 

independently, as a function of event spatial locations, without explicitly considering the temporal 

correlation of the seismogram time series, sometimes the predicted signals may not be smooth in time. 

Especially in some cases, rapid positive and negative pressure fluctuation may be encountered i.e. with 

reverse polarity with a small movement of the event locations as shown in Figure 9 and Figure 10. 

Therefore, a moving average (MA) smoothing filter is applied on the GP predicted seismic data while 

varying its span size from 1-10 in order to select the best filter settings for ensuring the smoothness of 
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the seismogram time series. Since the dominant signal values are predicted separately in the learning 

process, without considering the temporal information between two consecutive time samples, the 

predicted seismic signals may not vary smoothly in few cases. Here, the purpose of the smoothing filter 

is thus to introduce some amount of inertia against rapid fluctuation of the signals against changing 

polarity within a short span of time. It is apparent that a larger span of the smoothing filter introduces a 

delay in the seismograms and hence the performance degrades gradually, as evident from Figure 17 

showing a sweep over MA smoothing filter window size from 1-10 consecutive time samples. In the 

smoothed versions of the seismograms, both the ARD Matern 3/2 and ARD Matern 5/2 kernels with 

either linear or quadratic basis win over the other combinations, particularly on the test-set. Figure 17 

also suggests that these GP settings with a MA smoothing filter of span size of 3 samples are capable 

of producing accurate predictions both in the training and testing set with a 2D R>0.91. Representative 

examples of the predicted reconstructed and smoothed seismograms are shown in Figure 18 and Figure 

19 from the training and testing set respectively.  

 

Figure 17: Performance of smoothed seismogram predictions using GP quadratic basis and six kernels. Both ARD Matern 

3/2 and 5/2 kernels for both linear and quadratic basis give good prediction performance on both the training and testing set. 
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Figure 18: Original simulated, GP predicted and smoothed reconstructed seismograms in the training dataset. 

 

Figure 19: Original simulated, GP predicted and smoothed reconstructed seismograms in the testing dataset.  

 

It is observed from Figure 17 that the curves attain their maxima at MA filter span = 3 samples for 

all the cases and also, the ARD Matern 3/2 and ARD Matern 5/2 kernels with both linear and quadratic 

basis functions give comparable average accuracy on the training and testing dataset, in terms of 2D 

correlation coefficient. Individual accuracies of each seismogram may be different using these two 
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kernels. Hence the 1D Pearson correlation coefficient based on the individual smoothed seismograms 

have also been calculated after the initial model screening, on both the training and testing dataset using 

the ARD Matern 3/2 and 5/2 kernels with both the linear and quadratic basis functions. Although the 

overall predictive accuracy (in terms of 2D correlation) on the training and testing dataset are similar 

for the ARD Matern 3/2 and 5/2 kernels with both linear and quadratic basis, as shown in Figure 14, 

the number of relatively poor predictions or outliers present in the predictions are actually different. 

Therefore, from the first stage screening from the pool of machine learning algorithms using 2D 

correlation coefficient on all time instants and samples, following the schematic in Figure 8, we carry 

out a further second stage selection of the best algorithm that yields minimum number of outliers in its 

predictions. We define a predicted data-point as outlier if the 1D Pearson correlation coefficient between 

a particular simulated and the corresponding predicted smoothed seismogram becomes negative i.e. 

R1D<0. The goal here is to minimise such extreme predictions, although most of the predicted 

seismograms show fairly high accuracy. 

 

 

Figure 20: Histograms of 1D correlation coefficients between ground-truth vs. smoothed predicted seismograms for the 

central receiver using the training and testing dataset. The percentage outliers in different models are mentioned in the titles. 
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Figure 20 shows that in all the cases for both training and testing dataset, most of the samples give a 

good predictive accuracy, as revealed from the peaks near R ≈ 1. In all the cases there is a small decaying 

left tail, indicating a drop in the predictive accuracy. Counting these outliers as a fraction of the total 

sample size below a fixed threshold R1D<0 can identify the best surrogate meta-model structure with 

minimum number of outliers. It is apparent from Figure 20 that the ARD Matern 3/2 kernel with both 

linear and quadratic basis functions produce the same lowest number of outliers (0.7%), on the training 

dataset. The same kernel with linear basis produces 0.05% less outliers having negative correlation, 

over that with the quadratic basis and hence chosen in remainder of the paper for further analysis. The 

presence of few predicted outliers can also be viewed from the cross-plots in Figure 21, after applying 

the tuned smoothing filter on the predicted seismograms. In general the ARD Matern 3/2 kernel with 

linear basis gives a trade-off between high average predictive accuracy (as revealed from the cross-plots 

on training/testing dataset in Figure 21) and minimum number of outliers (represented by the left tail of 

the histograms in Figure 20).  

 

Figure 21: Cross-plots of the training and testing dataset with and without smoothing using the GP quadratic basis Matern 

3/2 kernel. Data is reshaped in 1D array to calculate the optimum least square line and correlation coefficient R.  

6. Prediction Performance on All the 23 receivers 

6.1. Selection of the Best Regression Model for All the 23 Receivers   
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Figure 22: Histograms of 1D correlation coefficients of each predicted seismograms for all the 23 receivers using the training 

and testing dataset. The percentage outliers in different models are mentioned in the titles of subplots. 

The exploration reported in the previous section shows fine-tuning of the proxy models on the 

central receiver when the event can roam around within the subsurface volume underneath. This 

mapping for the event location to receiver’s response is not necessarily similar for different receivers 

(in Figure 3), due to the heterogeneity of the velocity model. We now verify the performance of the 

proxy or surrogate meta-model on all 23 receivers using the best set of models that produced good 

predictive accuracy on the central receiver i.e. Gaussian process regression with linear and quadratic 

basis having ARD Matern 3/2 and ARD Matern 5/2 kernels. Amongst these four class of models, the 

smoothing filter-tuning and outlier detection has been carried out in the same way for the multiple 

receivers’ case, as shown in the earlier sections. The other choices of smoothing filter window size apart 

from 3 samples are found to be worse, as also shown before for the central receiver. Here, individual 

receiver responses are analysed separately instead of comparing aggregated predictions on the 23 

receivers. With the MA smoothing filter having a window size of 3 samples, the 1D Pearson’s 

correlation coefficient (R1D) between the predicted vs. original seismogram on training and testing data 

for all 23 receivers are shown in Figure 22, using the best four GP proxy meta-models. It is also evident 
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from Figure 22 that although the ARD Matern 3/2 kernel with quadratic basis in GP produces 0.51% 

fewer outliers with R1D<0 on the training dataset, on the testing dataset the same kernel with linear basis 

produces 0.29% fewer outliers and is hence chosen for the rest of the analysis and the likelihood 

calculation.  

 

Figure 23: Box-plots of the receiver-wise correlation coefficient between the original vs. predicted seismograms on the 

training and testing dataset using ARD Matern 3/2 kernel with linear (top panel) and quadratic basis (bottom panel). The red 

crosses indicate outliers in the prediction on individual receivers. 
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Figure 24: Predicted seismogram wiggle plots using the ARD Matern 3/2 kernel on the training dataset (top) ground truth, 

(middle) with linear basis, (bottom) with quadratic basis. Corresponding R2D on 23 receivers are reported in the subplot titles. 

Receiver-wise prediction performances are shown in Figure 23 on the 2000 training and 2000 

testing datasets using the top 2 surrogate meta-models using ARD Matern 3/2 kernel with linear and 

quadratic basis functions. It is apparent from Figure 23 that the central receiver (R-12) produces the 

best prediction accuracy amongst all the 23 receivers. Also, amongst these 23 receivers in Figure 3, R-

5, R-8, R-15, R-19 are found to have the next best responses whereas R-3, R-10, R-17, R-21 contain 

relatively more outliers. The presence of outliers in certain channels does not necessarily represent 

unusable predictions, as the 1D correlation coefficient R1D essentially compares the full morphology of 

the spiky seismograms. In most cases, the arrival times and the polarity of first arrival of the seismic 

waves are predicted accurately, containing most of the useful information (Tarantola 2005). We have 

also shown 5 representative examples of true vs. predicted seismograms on all the 23 receivers from 

both the training and testing datasets in Figure 24 and Figure 25 respectively using the ARD Matern 

3/2 kernel with linear/quadratic basis (in the two bottom rows), where the arrival times and morphology 

of the seismic response using the proxy meta-models are identified almost accurately with the original  

solutions of the expensive elastic PDE solver (represented in the top row). 

 

Figure 25: Predicted seismogram wiggle plots using the ARD Matern 3/2 kernel on the testing dataset (top) ground truth, 

(middle) with linear basis, (bottom) with quadratic basis. Corresponding R2D on 23 receivers are reported in the subplot titles. 
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6.2. Comparison of the Computation Time for Surrogate Proxy Meta-Models vs. Solving the Full 

Elastic Wave Equation 

In this subsection, we compare the run time saving due to the use of proxy or surrogate meta-models 

instead of the full elastic PDE solver for obtaining the seismic response at the 23 receivers at specified 

locations due to explosive microseismic events at random locations in the subsurface. As discussed in 

the introduction section, the purpose of surrogate meta-modelling is to reduce the computational time 

for fast generation of approximate template seismic events and hence facilitate a likelihood-based 

inversion approach where such fast noiseless template data generation is required in batches of 

thousands of speculative event locations. 

Figure 26 shows that using the GP linear basis with both ARD Matern 3/2 and 5/2 kernel, the peak 

of the run time distribution is around 2 sec and for the quadratic kernels the peak run time is around 2.8 

sec on a standard 4-core 64-bit Windows desktop PC with 16 GB memory and Intel I5, 3.3 GHz 

processor. Whereas for a single shot seismic simulation, the original elastic wave propagation on a 12-

core Linux PC with K20 GPU card with 5.5 GB memory and 1.1 GHz processor, the peak run time is 

1063 sec ≈ 17.7 min. Therefore, to simultaneously compute the seismic response at the 23 receivers, 

the surrogate regression meta-models produce a 531-fold acceleration using the linear kernel and 380-

fold acceleration using the quadratic kernel. This speed up for the forward simulation when called from 

the likelihood function comes at the cost of initial simulation for training data generation and required 

training efforts of GP regression meta-models, but this is needed only once for a fixed velocity model. 

There is also a small inaccuracy incurred due to the compressed domain regression modelling in 

comparison with the original elastic wave simulation. In many real microseismic monitoring 

applications such approximate templates are sufficient for probabilistic event parameter estimation 

problems, since the measurements are often buried under significant amounts of noise, thus making the 

effect of such small modelling uncertainties due to the proxy negligible. 
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Figure 26: Comparison of run time distributions between elastic wave propagation on K20 GPU card and surrogate proxy 

meta-model predictions on CPU for all the 23 receivers.  

7. Fast Computation of the Likelihood Function Using the Trained Surrogate Meta-Models 

7.1. Formulation of the Likelihood Function for Detecting Microseismic Events  

In this section, we use the best surrogate meta-model i.e. the GP with linear basis and ARD Matern 

3/2 kernel, followed by a MA smoothing filter with a span-size of 3 samples, for fast computation of 

template seismic response in the likelihood computation. In many geophysical inverse problems, fast 

calculation of the likelihood is necessary in order to get the maximum likelihood (ML) or maximum a-

posteriori (MAP) estimates or calculation of the evidence to enable model comparison. Representing 

the true noiseless template seismic response due to a microseismic event as Y and a measured noisy 

response as Y , the Gaussian likelihood function can be calculated as (17): 

 
 

   11 1exp
22

T

N
L Y Y C Y Y

C
      

.       (17) 

Here, C is the covariance matrix of the noise on the measured data Y, and N is the number of observed 

data points. Often the likelihood is represented in log-scale for convenience in Bayesian analysis and is 

given by (18) considering either a full or only diagonal covariance matrix: 
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.      (18) 

In the log-likelihood calculation involving the full covariance matrix, the Cholesky decomposition is 

commonly used for numerical stability and increased speed, whereas for diagonal covariance the log 

determinant of covariance (log|C|) can be easily computed using the common variance (σ2) as in (18). 

For calculating the log-likelihood in (18), given some speculative microseismic event locations {x, 

y, z} the noiseless predicted seismic data can be obtained using the trained proxy meta-model in (19) 

following the steps shown in the schematic diagram Figure 8: 

    , , ,proxy proxyY F X F x y z d  .       (19) 

The covariance matrix C required in the likelihood (17) can be calculated from the measured noisy data 

(Y) using (20), considering a diagonal covariance or uncorrelated noise for the sake of simplicity: 

      
   2

, ,

0, , .

T
C Y Y Y Y Y Y

Y Y C C I

      

  

 



       (20) 

Here, σ2 is the common variance of the data, reshaped as 1D vector Y in the multi-receiver case, with 

the assumption of no correlation amongst them and Y represent the mean of the measured data, while 

  being the mathematical expectation operator. Here in (20), the noise has been considered to have a 

Gaussian distribution with zero mean and a specified variance σ2, however any expert choice of the 

noise covariance can also be incorporated in the likelihood function (17). 

Next we calculate and visualize the likelihood as an inverse problem for the microseismic event 

locations (Tarantola 2005)(Aster et al. 2011), in different cases viz. using only the central receiver’s 

data, seismograms along the principal and anti-diagonals, in the upper/lower triangular parts or using 

all the 23 receivers. For computation of the likelihood, template seismic responses corresponding to 

single microseismic events at random positions are calculated first using the fast proxy/surrogate meta-

models and independent white Gaussian noise (wGn) of two different standard deviations σ = {100, 



Geophysical Journal International 

53 
 

250} which are added on the noiseless seismic data to generate some realistic corrupted dataset. The 

noise free data is assumed to be generated due to a microseismic event at the grid point (31, 25, 158), 

as a representative example for the log-likelihood calculation. The signal to noise ratio (SNR) has been 

calculated on the single/multiple receivers using the ratio of average energy calculated through the sum 

of squared signal amplitudes and represented in the decibel scale as in (21): 

 
2 2

10 , ,10log  dBsignal i noise i
i i

SNR A A   
 
  .       (21) 

It is understandable that in a relatively less noisy or high signal to noise ratio (SNR) case, the 

likelihood function will be manifested as a narrow delta function in the event parameter space which 

may be harder to detect. In the case of higher noise or in other words low SNR levels, the likelihood 

function gets softened which may help navigating towards the maximum likelihood regions by standard 

optimization or sampling algorithms like Markov Chain Monte Carlo (MCMC) etc. Here we focus on 

obtaining the ML estimates of the event parameters for a single microseismic source, with a specified 

noise variance by gradually increasing the number of receivers.  

The most likely event positions are visualized using the scatter diagrams for different receiver 

combinations. For this purpose, here we use the top 90 percentile of all the log-likelihood values out of 

the 4000 uniformly distributed LH samples. Out of these 4000 samples one of them is the ground truth 

voxel which is expected to have the highest likelihood value. In order to verify this, we calculate the 

maximum likelihood estimate of the microseismic event location and the norm difference of the event 

positions from the ground truth location (31, 25, 158), with two different SNR levels using various 

combinations of receiver positions which can be found in the supplementary material. In the next sub-

section, the joint distribution of the event parameters in the 2D scatter plots are shown using the top 90 

percentile of the likelihood values where the higher likelihood values are represented by bubbles with 

a darker shade. In all the cases the legends show the log-likelihood values. 
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(a)       (b) 

  

(c)       (d) 

Figure 27: Receiver subset selection for the likelihood calculation (a) principal diagonal, (b) anti-diagonal, (c) upper-

triangular region, (d) lower triangular region.  

7.2. Different Receiver Subset Selection and Its Effect on the Likelihood Function 

Here we explore 6 different cases of the receiver subset out of the 23, in order to calculate the 

likelihood using the LH samples. The positions of the central receiver (R-12) and all the 23 receivers 

have been shown in Figure 3. Out of the 23 receivers, we now select a subset of receivers along the 

principal-diagonal (total 7) and anti-diagonals (total 5) as shown in the top row of Figure 27 (a and b). 

In order to show the effect of the heterogeneity in the velocity model of Figure 1, here the 23 receivers 

are divided in the upper and lower triangular parts as shown in the bottom row of Figure 27 (c and d). 
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The corresponding noiseless and noisy seismograms in these different geometries are shown in Figure 

28. To better understand the spiky or narrow spatially localised nature of the likelihood function for 

multiple receivers, the scatter diagrams of the randomly sampled likelihoods are provided in Figure 29. 

Moreover, there are small errors incurred between the true PDE simulated vs. the proxy predicted 

seismic data in all the receivers which get combined within the likelihood calculation. The propagation 

of these small modelling uncertainties due to the use of proxies or surrogates for different receivers on 

the final parameter estimates in the inversion process may be explored more systematically in a future 

work. As per the previous reports of geophysical inversion e.g. in (Tarantola 2005), incorporating more 

receivers’ data should make the estimates more accurate and the non-vanishing high likely regions 

should ideally shrink towards a smaller region within the volume under scanning which is also observed 

here. However, addition of higher noise level decreases the SNR and consequently softens the 

likelihood in all the cases. The gross natures of the likelihood are not drastically altered for the same 

receiver subsets but different noise levels. 

 

Figure 28: Seismograms used for calculating the likelihoods and maximum likelihood estimate of event position (top) noiseless 

(middle) wGn with σ = 100, (bottom) wGn with σ = 250. 

It has been found that some of the regions have more high likelihood values where the data was 

originally generated from whereas in certain cases some other regions have more non-vanishing 
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samples with high likelihood values. This is essentially a problem of resolution vs. smoothness trade-

off of the likelihood, whereas an accurate detection should locate towards the highest likelihood voxel 

and its neighbouring regions. This may be an effect of the heterogeneity of the velocity model that 

neighbouring samples not always yield a smooth variation of the likelihood values. Alternatively, the 

likelihood values could have been calculated using some derived features of the seismic traces like the 

arrival times as shown in (Tarantola 2005) or some other feature like the polarity of first arrival etc. 

which may be pursued in a future research. The choice of the feature in such cases is crucial to yield a 

smooth variation of the likelihood values in the neighbouring voxels whereas here we focus on the raw 

seismic data based likelihood calculation only. 

The non-vanishing most likely regions can also be summarized in terms of maximum likelihood 

point estimates, by bulk likelihood calculation using the LH samples. A systematic exploration would 

need a Bayesian sampling of the posterior distribution using a chosen likelihood function involving the 

raw seismic data itself or using some derived features (like arrival time or polarity) where the samples 

will gather more towards the mode of the posterior probability distribution which may be pursued in a 

future study. Here we explore the maximum likelihood values for convenience, corresponding to the 

bulk likelihood calculation at random locations. The detection error norm ( e ) for the event positions 

has been calculated as the Euclidean distance between the ground truth ( , ,o o ox y z ) and estimated (

  , ,o o ox y z ) locations via maximum likelihood using (22):  

     2 2 2

o o o o o oe x x y y z z      .        (22) 

The noise levels, the corresponding maximum likelihood estimate based detected voxels and 

detection error norm are reported in the supplementary material. It is evident that all the different cases 

can essentially capable of identifying the ground truth voxel with highest likelihood value. Depending 

on the noise level and receiver arrangements, some other voxels may also spuriously show high 

likelihood values which is explored next. 
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      (a) 

 

          (b) 

Figure 29: Scatter-diagram of top 10 percentile of likelihood values for two different noise levels and receiver combinations 

(a) central, (b) all 23 receivers. Similar plots with other receiver combinations are shown in the supplementary material.  

As discussed before, the top 90 percentile of the likelihood values can also be visualised as scatter 

diagrams between the event location parameters as shown in Figure 29 for two different receiver 
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combinations. It is evident that using just the central receiver (Figure 29a), although the ground truth 

voxel is revealed in darker shade, there are other spurious voxels producing similar but slightly less 

likelihood values. The number of these spurious voxels reduces in the case of 5 and 7 receivers along 

the diagonals as shown in the supplementary material. The ground truth voxel becomes more prominent 

when more receivers – 15 (upper or lower triangular as in the supplementary material) or 23 (all of them 

in Figure 29b) are used in the inversion. Use of more receivers shows the presence of many lower 

likelihood values at a different depth instead of the ground truth which is expected to shrink with a 

higher threshold on the likelihood values. In all the scatter diagrams in Figure 29, the colour/shade of 

the data points are proportional to its log-likelihood values shown in the legend.  

The ML estimates of the event location parameters have been reported in the supplementary 

material, using voxel by voxel batch likelihood evaluation with all the 4000 LH samples. Here, the 

estimated location parameters (   , ,o o ox y z ) are obtained as the voxel returning the maximum log-

likelihood value is found to be accurate in all the receiver combinations. A more systematic way could 

be to maximize the likelihood function using an optimizer or using Bayesian sampling methods with 

accelerated likelihood calculation using the trained surrogate or proxy meta-model. The purpose of the 

present work is to make the likelihood calculation faster and independent of the data under 

consideration, as here the proxy directly predicts the raw observables i.e. template seismic patterns and 

is different from the likelihood training approach in the BAMBI algorithm in (Graff et al. 2013; Graff 

et al. 2012), that needs retraining the surrogate meta-model when the dataset and consequently the 

nature of the likelihood changes. 

A closer look at the scatter plots of the 2D joint distributions reveal that the high likelihood values 

change rapidly with small variation in the event location, particularly with less number of receivers e.g. 

only 1 receiver (Figure 29a). Incorporating more receivers reduces such variations as shown in the 

supplementary material using 15 for the upper and lower triangular parts to all 23 receivers (Figure 

29b). Even though in a binned histogram, it may show more number of non-vanishing higher likelihood 

areas, the peak of the likelihood may lie in a different location i.e. the ground truth voxel for generating 

the data. 



Geophysical Journal International 

59 
 

It is also important to note that in all of the above likelihood scatter diagrams, many islanded regions 

can be identified rendering such an event detection essentially a multi-modal inference problem. The 

adopted LH samples drawn throughout the 3D volume of the velocity model smoothly interpolates the 

true noiseless seismic responses in the forward problem but may be insufficient to accurately localise 

the events using bulk-scale likelihood calculation at these prospective locations while using the noisy 

seismic data in the likelihood calculation. Hence the Bayesian analysis techniques via MCMC or nested 

sampling family of algorithms may be useful here with a suitable choice of likelihood function by 

utilising the proposed method for fast data independent proxy meta-model to predict the observables, 

in order to get the localised event posterior distributions along with calculation of the marginal 

likelihood or evidence for comparing different models or carrying out hypothesis testing. 

7.3. Maximum Likelihood Estimate Using Various Receiver Geometries in the Event Detection 

In the previous sub-section, the top 90 percentile likelihood values have been shown in the scatter 

diagrams where some lower likelihood samples are gathered at a different depth compared to the ground 

truth. Now in this subsection, we show the maximum likelihood based most likely event location 

estimation, using a much higher threshold of top 99 percentile of all the likelihood values amongst the 

4000 LH samples. This helps in graphically understanding the accurate localisation of the microseismic 

source using increasing number of receivers and different SNR levels, corresponding to the location 

estimates for the various receiver geometries. This also allows traditional ‘dots in the box’ type 

visualization of the most-likely microseismic event locations (Kendall et al. 2011; Eisner et al. 2010), 

using the 6 different receiver sub-sets as explored in the earlier subsection.   

Here, Figure 30 shows the event locations using the top 99 percentile of highest log-likelihood 

values using a noise standard deviation of σ = 250, whereas the less noisy case with σ = 100 is shown 

in the supplementary material. Both Figure 30 and its less noisy version in the supplementary material 

(σ = 100) compares the top 99 percentile of likelihood values between the true likelihood (from the 

elastic wave propagator) vs. the GP regression surrogate meta-model or proxy generated likelihoods. A 

closer look at these figures will reveal that the introduction of the external noise manifests many 

possible event locations with high likelihood values, particularly when the inversion is attempted using 
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just the central receiver or multiple receivers across the principal diagonal (7 receivers) and anti-

diagonals (5 receivers). With increasing number of receivers, the variation in the likelihood values for 

other possible locations gradually decreases and the true event location becomes quite prominent, as 

manifested in the form of a larger and darker bubble in the last 3 columns of Figure 30, using 15 and 

23 receivers respectively. It is also evident that with more number of receivers, the true vs. proxy 

generated likelihood peaks are located at the same position, compared to that using less number of 

receivers. This shows employing 15 or 23 receivers, the maximum likelihood detection is invariant 

between the choice of expensive true likelihood vs. the cheap GP proxy-based likelihood. 

During the proxy training it might seem that the near surface shallow sources introduce a bias due 

to their higher amplitude compared to the deep sources. In order to show that the proxy-based 

likelihoods are indeed unbiased, we have compared the true likelihood values vs. the proxy-based 

likelihood values and their difference in Figure 31. In the joint plane of depth vs. distance, the likelihood 

differences are found to be low compared to the original likelihood values and are almost uniform with 

variation in depth or distance from the central receiver. This indicates the efficacy of the proxy in 

generating fast likelihood values close to the original ones. Also, the likelihood surface is not smooth 

owing to the fact that the medium is heterogeneous, and the seismograms containing complex structures 

of both the P-wave and S-waves. The likelihood values from the full-physics simulation at the sampled 

4000 locations vs. the likelihood obtained from the surrogate meta-model are compared in Figure 31, 

along with their differences. Our simulations show that there is very small difference between these two 

cases, due to the fact that the surrogate meta-model has learnt the data generation mechanism by the 

elastic wave propagator rather than the likelihood surface itself. Also, introduction of the surrogate does 

not increase the complexity of the likelihood structure and indeed retains its shape intact. 
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(a) 

 

(b) 

Figure 30: Most likely event locations using various receiver arrangement with added noise std σ = 250. Log-likelihood values 

are shown in the color-bars and the size of the data-points are proportional to the likelihood values: (a) True likelihood, (b) 

Proxy-based likelihood. 
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Figure 31: Comparison of the true likelihood vs. the proxy-based likelihood and their difference for noise std σ = 250. The 

legends represent the likelihood values or the difference.   

8. Discussions 

It is important to note here that the likelihood calculation has become relatively cheaper using the 

trained proxy meta-model, compared to the full elastic wave propagation solution, and therefore bulk 

calculation of voxel by voxel likelihood or a subset of LH or uniformly sampled voxel values may also 

help identifying the high likelihood regions for possible microseismic events. On larger velocity models 

or in higher dimensions, this approach of bulk likelihood calculation may be wasteful. Because using a 

suitable sampler may easily identify the highly likely event locations within fewer likelihood calls. 

Using the raw seismic data makes a relatively wilder variation of the likelihood values between 

neighbouring voxels for the microseismic source. Several derived features like arrival times, polarity of 

first arrival etc. can be used to calculate the likelihood instead as shown in (Tarantola 2005), which may 

produce a smoother likelihood function in the form of almost concentric circles (in 2D) or spheres (in 

3D), for a single event. The trained proxy model can easily be used to derive any complex features out 

of the raw predicted signals and use them in the likelihood function which may be explored in a future 

research. 
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Moreover, in our likelihood formulation the ground truth signal (Y) has been generated from the 

elastic wave equation solver and then corrupted with specified noise level (σ) whereas the template 

seismic data ( Y ) has been generated from the surrogate or proxy meta-model. Therefore, the likelihood 

contains the misfit due to both the measurement noise on the receivers as well as the inaccuracy due to 

the approximate seismic wave modelling with the proxy. We have shown through the above simulation 

results that even with both these two components of possible inaccuracy, a single microseismic event 

with known ground truth position can be reliably identified as the maximum likelihood point amongst 

4000 randomly drawn source positions where the bulk likelihood calculation at possible source 

locations can be made extremely fast compared to the full elastic wave solution. It is rational that the 

variance of this likelihood analysis may be increased with the use of the surrogate/proxy model for fast 

template data generation apart from the specified measurement noise that goes in to the likelihood 

function. But the mode or the maximum likelihood point is unaffected by such an approximation due 

to the accurate surrogate model which is shown by the zero detection-error for the test cases using all 

the receiver combinations. A more elegant and accurate but massively computationally expensive 

solution is to calculate both the ground truth data (Y) and template data ( Y ) in each likelihood 

evaluation by directly using the elastic PDE solution which is explored here in brief and as a proof of 

concept, on the sampled 4000 prospective locations which were used for training/testing of the surrogate 

meta-model.  

In previous literature on microseismic monitoring, there are abundant use of physically simplified 

models instead of full-physics simulation with velocity model heterogeneity and elastic wave 

propagation. This is one of the viable solutions to reduce the computational cost compared to the proxy 

or surrogate meta-model based approach for fast likelihood calculation. However, for microseismic 

simulation, the mode conversion between P-wave and S-wave are predominant at the layer edges, even 

for explosive sources as described in this paper. Therefore, approximate methods like ray-tracing etc. 

that depends on separately calculating the P-wave and S-wave responses and then superimposing them 

may miss these aspects of the geophysical modelling. Rather we here took an alternative approach using 

the full elastic solution of the wave equation and then using the surrogate regression meta-models. Here, 



Geophysical Journal International 

64 
 

the proxy meta-models are trained to produce close approximations of the full elastic solution which is 

preferable than solving a reduced physics models for fast likelihood calculation.  

This paper develops a methodology for learning wave propagation through heterogeneous medium. 

Given sufficient samples in the training process and from the convergence characteristics of the learning 

curve in Figure 14, it is apparent that the surrogate meta-model captures a close enough approximation 

of the true seismic wave, obtained through the numerical solution of elastic wave propagation. The 

velocity model we consider here is heterogenous compared to the layered ones and represented by 

voxelized grids with different values of density and P/S-wave velocity in each voxel. However, the 

vertical variations of the rock properties are larger than that in the lateral direction in our model. The 

heterogeneity along different directions of similar models can be seen in (Das et al. 2017). It is also 

worth noting that the surrogate meta-model is trained on a fixed velocity model. For other complex 

models, the same machine learning framework can be applied in principle but needs retraining using 

thousands of independently simulated seismograms which are dependent on the structure of the velocity 

model. In a more heterogenous case, the training process is likely to take more samples for the 

convergence of the learning curve, as shown in Figure 14. However, this paper aims at first developing 

the generic methodology and testing on different velocity models may be addressed in a future research.  

 

9. Conclusion 

Starting from a heterogeneous velocity model, we propose a technique to teach machine learning 

based surrogate regression meta-models to approximate elastic wave propagation solutions due to 

microseismic events which is computationally expensive even using state of the art GPU computing 

facilities. This allows calculation of thousands of batch evaluations of proxy-generated approximate 

template seismic responses with reduced physics modelling for rapid calculation of likelihood 

functions, for comparing with noisy dataset in a microseismic source inversion algorithm. The paper 

first develops a robust time domain compression method to reduce the number of observables in a sparse 

pressure wave-field generated by unit amplitude seismic events using a fixed heterogeneous velocity 

model. Then it compares 9 different families of surrogate regression models along with the details of 
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their parameter tuning to obtain sufficient predictive accuracy on the learned seismogram patterns on 

multiple receivers. The machine learning algorithms essentially learn the mapping between the 

compressed domain sparse and spiky time series of the seismic waves as a function of event location 

parameters which can be decompressed next to get the full seismic waves with great saving of the 

computational cost compared to solving the full elastic PDEs with new event locations.  

This paper also determines the achievable accuracy vs. the training time and storage requirement 

trade-offs using different flexible regression structures for synthetic template seismogram generation. 

The best results are achieved using the Gaussian process regression by fine tuning of the kernels and 

basis-functions, as it naturally incorporates a Bayesian regression framework instead of yielding only 

point estimates and hence provide superior performance as a smooth interpolator. Seismic data 

generation on 23 receivers using this proxy meta-model are found to be ⁓530 times faster than the GPU 

simulations for full elastic wave equation, at the cost of negligible reduction in quality of the signals, 

as revealed by the correlation analysis of the ground truth vs. predicted seismograms. However, the GP 

proxy meta-models in spite of its high predictive accuracy on smooth regression problems need more 

computational effort with growing sample size and number of receivers during the training period. For 

fast likelihood calculation, it is not intended to online train the proxy models but to train it only once as 

an offline process on a multi-core CPU, assuming the fact that in the real-fields the velocity model do 

not change over shorter span of time. However, with uncertain velocity model the seismic patterns, 

especially the arrival times, may be different, thus leading to inaccurate likelihood values which needs 

further investigation in future. A combined approach of incorporating seismic measurement noise and 

velocity model uncertainty together in the proxy models and hence in the likelihood function may also 

be investigated in future. 

As discussed before, a similar proxy based fast multi-modal Bayesian inference technique has been 

previously proposed in the BAMBI algorithm (Graff et al. 2013; Graff et al. 2012) by directly learning 

complex likelihood functions which changes and need retraining for inference on different datasets. 

However, the present paper extends this concept by learning the raw observables instead i.e. the multi-

receiver seismograms which does not need to be retrained if the data and consequently the likelihood 



Geophysical Journal International 

66 
 

values had changed. In addition, mapping of the useful information in sparse observables buried under 

few millions of data-points in the output i.e. the multi-receiver spiky time-series needed a robust 

compression method which this paper develops first, to frame it as a non-sparse regression problem. 

Here we also show the predictive accuracy vs. training time and storage requirements using 9 different 

family of regression models out of which Gaussian process families with ARD kernels outperform the 

rest. Future works may include extending the methodology for unknown number of microseismic events 

in the presence of background noise of different spatio-temporal characteristics and comparing different 

models using a Bayesian analysis with evidence calculation for hypothesis testing. It may also be worth 

exploring other compression methods e.g. wavelet compression, instead of the adopted time domain 

method, considering the full seismic wavefield rather than individual seismograms and test for the best 

regression model for this application. Also, modelling stress tensor components along with the event 

locations for non-explosive microseismic source mechanism is a challenging research topic and even 

more in geological models with higher complexity and uncertainty. Research in these directions are in 

progress and will be reported in our future works. 
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Appendix 

Additional analysis and high-resolution images for the simulation results are provided in the 

supplementary material. 
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