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ABSTRACT

A growing number of mobile computing applications are cen-
tered around the user’s location. The notion of location is
broad, ranging from physical coordinates (latitude/longitude)
to logical labels (like Starbucks, McDonalds). While extensive
research has been performed in physical localization, there
have been few attempts in recognizing logical locations. This
paper argues that the increasing number of sensors on mo-
bile phones presents new opportunities for logical localiza-
tion. We postulate that ambient sound, light, and color in a
place convey a photo-acoustic signature that can be sensed by
the phone’s camera and microphone. In-built accelerometers
in some phones may also be useful in inferring broad classes
of user-motion, often dictated by the nature of the place. By
combining these optical, acoustic, and motion attributes, it
may be feasible to construct an identifiable fingerprint for
logical localization. Hence, users in adjacent stores can be
separated logically, even when their physical positions are ex-
tremely close. We propose SurroundSense, a mobile phone
based system that explores logical localization via ambience
fingerprinting. Evaluation results from 51 different stores
show that SurroundSense can achieve an average accuracy
of 87% when all sensing modalities are employed. We be-
lieve this is an encouraging result, opening new possibilities
in indoor localization.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and
Software; C.2.4 [Computer-Comunication Networks]: Dis-
tributed Systems; H.5.5 [Information Interfaces and Pre-
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1. INTRODUCTION
Mobile phones are becoming a powerful platform for people-

centric computing. A variety of applications are on the rise,
many of which utilize the location of the phone [11, 16, 18].
For instance, GeoLife [27] is a service that plans to display
shopping lists on a mobile phone when the phone is detected
near a Wal-Mart. Micro-Blog plans to query users that are
presently located, say, in an art gallery. Location-based ad-
vertising is on the horizon – a person entering Starbucks may
receive an electronic coupon for purchasing coffee. Interest-
ingly, all these applications operate on a logical notion of loca-
tion, such as “Wal-Mart”, “art gallery”, and “Starbucks”. In the
absence of well-established logical localization schemes, ap-
plication developers are assuming that physical coordinates
(like GPS) can be reverse geo-coded to logical locations. We
argue that conversion from physical to logical location is er-
ror prone. We present our arguments next, and motivate the
need for independent research in logical localization.

Consider GPS, the most popular physical localization method
on mobile devices. While GPS can achieve up to 10m accuracy
in outdoor environments, they do not work indoors. A vari-
ety of WiFi and GSM based alternates have been proposed for
indoor operation (RADAR, Place Lab, SkyHook, etc. [2–4]),
each associated with distinct tradeoffs between accuracy and
scalability. For argument’s sake, let us imagine that future lo-
calization techniques will attain the best of both worlds. That
is, a phone can be easily and ubiquitously localized to the ac-
curacy of 5m in any indoor environment. We argue that even
such an idealized scheme may not be adequate to accurately
identify logical locations. This is because two logical loca-
tions may be separated by a dividing wall, and an error mar-
gin of 5m may place the phone on the incorrect side of this
wall. As a result, a phone located near the wall of Starbucks
may be erroneously placed in an adjacent RadioShack (Figure
1). Services that rely on logical locations can be affected. A
coffee drinker at Starbucks may resent receiving video-game
coupons intended for RadioShack customers next-door.

To discriminate between adjacent locations/contexts, some
approaches have installed special transmitters in each con-
text/room. The Cricket system achieved cm scale localization
through a combination of RF and ultrasound beaconing sys-
tems installed in the surroundings [22]. Nokia deployed blue-
tooth based beacon-transmitters in different rooms of their
lab. Unlike WiFi, bluetooth beacons can be more easily con-
fined to a single room, and hence, are useful for localization.
Installing special hardware in every room, while arguable for



Figure 1: Slight errors in physical coordinates can place a
phone on the wrong side of a wall.

specific needs, may not scale to an entire city. Solutions are
necessary that obviate the need for pre-installed infrastruc-
ture. In fact, even WiFi may not be available ubiquitously in
developing regions. Mobile phones, however, are a rapidly grow-
ing platform in these regions, and localizing them even without
WiFi can be enabling.

To summarize, installing localization equipment in every
logical place is unscalable, while relying solely on external in-
frastructure (such as GPS/GSM/WiFi) lacks the accuracy to
discriminate adjacent contexts. Ideally, local attributes of a
logical location need to be identified passively and exploited
for accurate localization. We argue that numerous local at-
tributes already exist in the location’s ambience; sensing them
through mobile phones and using them in conjunction with
GSM/WiFi can be an effective solution. The central idea is
presented next.

Our hypothesis is that the combined effect of ambient sound,
light, and color – i.e., the overall ambience of a place – can be
unique enough for localization. For example, ambient sound
in Starbucks may include specific noise signatures from cof-
fee machines and microwaves, that are different from sounds
of forks and spoons clinking in restaurants. Shops may have
thematic colors in their decor, such as red at Target and yel-
low at Panera Breads. Floors may be covered with carpets,
ceramic tiles, or wooden strips, all of which are discriminat-
ing attributes of the ambience. Even lighting styles may be
different in order to match with the type of service a place
may provide – bars with dim yellow lights versus BlockBuster
with bright white light. In addition, the movement of a per-
son in a given place may also be a function of the layout of
that place, and its type of service. Human movement in Wal-
Mart (walking up and down aisles) may be different from that
in Barnes and Noble (relaxed stroll with long pauses), which
may in turn be different from restaurants (short queuing fol-
lowed by a long duration of sitting). Even though places may
not be unique based on any one attribute, the combination
of all the attributes is likely to exhibit diversity. We intend to
sense these attributes through the mobile phone’s camera, mi-
crophone, and accelerometer, and show that their combined
diversity can be exploited for localization.

A natural question is: should ambiences of all places be unique
for reliable localization? We do not believe this is necessary.
Existing indoor localization schemes, based on GSM or WiFi,
effectively place a phone in a macro-location (such as a strip
mall). All logical places within such a macro-location can
be shortlisted. As long as the ambiences of these shortlisted

Figure 2: Nearby stores at our university campus exhibit
diversity in wall/floor color and ambient lighting. The
bookstore (left) is lit with bright white light, the boutique
(middle) with dim white light, while the pub (right) is
significantly darker.

places are different, SurroundSense should be able to discrim-
inate between them correctly.

In certain cases, such as in strip malls, there is an interest-
ing economic reason that may add to the ambience diversity.
Essentially, spatially nearby businesses may have an incentive
to be mutually unique. For example, multiple Chinese restau-
rants may not prosper if they are all located in the same strip
mall, and present the same music, decor, lighting, and lay-
out. Mutual distinctiveness reduces competition, benefiting
each of the businesses financially and socially. The outcome
of such economic behavior facilitates SurroundSense. Since
fingerprints of spatially collocated places may be diverse by
design, SurroundSense can exploit this diversity for reliable
logical localization. Figure 2 presents pictures from a few
adjacent stores near our university campus – the diversity in
lighting and color is evident.

Translating this broad idea into a practical localization sys-
tem entails a range of challenges. Recognizing fingerprints
from raw ambience data is non-trivial; the ambience of a
place may vary over time; a person’s movement on a certain
day may be atypical. Nonetheless, the availability of multiple
modes of sensing may be able to cope with such variations.
SurroundSense is among the early attempts to make use of
these multi-modal sensing capabilities for localization. Our
approaches are simple and the results look promising. Our
main contributions are as follows.

(1) Identifying the possibility of fingerprinting a logical
location based on ambient sound, light, color, and human
movement. Cameras, microphones, and accelerometers on
WiFi-enabled Nokia N95 phones were used to sense such in-
formation.

(2) An experimental framework that creates a finger-
print database and performs fingerprint matching for test
samples. We performed simple feature extraction from the
collected data, and combined them into a per-location finger-
print. Support vector machines (SVMs), color clustering, and
other simple methods were used for location classification.

(3) Evaluation of the scheme in business locations in
our university town. We covered 51 distinct stores, each
store fingerprinted at various times of the day. Different stu-
dents then visited each of these stores and their sensed data
were used to deduce their locations. We achieved an average



Figure 3: SurroundSense architecture: The ambience fingerprint is generated by the fingerprinting factory. This test
fingerprint and candidate fingerprint (from the phone’s macro-location) are matched in the fingerprint matching module.

localization accuracy of over 85% when all sensors were em-
ployed for localization.

The rest of this paper expands on each of these contribu-
tions. We discuss limitations and future work in Section 6.
We present related work in Section 7 and conclude the paper
in Section 8.

2. SURROUNDSENSE ARCHITECTURE
Figure 3 presents the overall architecture of SurroundSense.

This is one possible architecture in the broad design space, not
necessarily the optimal one. We describe the high level flow of
information through this architecture, and present the inter-
nal details later. We begin with a mobile phone user visiting
an unknown store. The phone senses the ambience automat-
ically. The sensed values are recorded, pre-processed, and
transmitted to a remote SurroundSense server. The goal of
pre-processing is to reduce the data volume that needs to be
transmitted. Once the sensor values arrive at the server, they
are forwarded to the fingerprinting factory. The fingerprinting
factory segregates the type of sensor data (sound, color, light,
WiFi, accelerometer) and distributes them to respective fin-
gerprinting modules. These modules perform a set of appro-
priate operations, including color clustering, light extraction
and feature selection. The individual fingerprints from each
module are logically inserted into a common data structure,
called the ambience fingerprint, F . Put differently, F consists
of five sub-fingerprints < fs, fl, fc, fw, fa > corresponding to
sound, light, color, WiFi, and accelerometer. Since the phone’s
location is not known at this time, we call this the “test fin-
gerprint”. The test fingerprint is forwarded to the fingerprint
matching module for localization.

The transmitted data from the phone also includes the phone’s
(GSM-based) physical coordinate, LGSM (we assume WiFi
may not be available at all locations). The LGSM is a <latitude,

longitude> tuple accurate to around 150m. A candidate se-
lection module consults a geographical database (such as geon-
ames.org) to shortlist all stores within 150m of LGSM . Finger-
prints for each of the shortlisted stores are fetched from an ex-
isting database of fingerprints (we discuss database-creation
later). We call these shortlisted fingerprints “candidate finger-
prints”. Like the test fingerprint, each candidate fingerprint
also consists of five sub-fingerprints (i.e., Fi = < f i

s, f
i
l , f

i
c , f

i
w,

f i
a >). The candidate fingerprints are also forwarded to the

matching module.

The matching/filtering module is expected to select one
candidate fingerprint that best matches the test fingerprint.
For this, it computes the pair-wise “similarity” between the
test and candidate sub-fingerprints. The similarity values are
used either for filtering, or for matching. Filtering means elim-
inating some candidate fingerprints that are not likely to be
from the same location as the test fingerprint. A filter accepts
the test and the candidate fingerprints, and returns a subset
of the candidate set. Matching means ordering the candidate
set according to the pair-wise similarity values. From the list
of decreasing similarity, the top ranked candidate is declared
to be from the same location as the test case. We use the WiFi,
accelerometer, and sound sensors as filters; color and light are
combined into a single matching operation. We describe the
details next.

3. SYSTEM DESIGN
In this section we present the two main components of Sur-

roundSense: Fingerprint Generation, and Matching.

3.1 Fingerprint Generation
The raw sensor values from phones contain a lot of infor-

mation about the phone’s surroundings. The important task is
to extract features from them that are effective in discriminat-
ing its ambience [17]. While sophisticated data mining is one



approach, we intend to develop lightweight techniques that
will eventually be executable on the phone’s processor. We
show that such lightweight techniques are feasible, particu-
larly because the availability of multi-dimensional signatures
obviates the need to make any single signature perfect. Of
course, perfecting each of the signatures (through sophisti-
cated machine learning techniques) is likely to offer greater
benefits.

Fingerprinting Sound

The ambient sound in a place can be suggestive of the type
of place. Some places play loud music in the background ver-
sus others that are quieter. Some may have a strong pres-
ence of metallic noise or A/C machine drones versus others
in which there are frequent beeps at check out counters. We
recorded the ambient sound of a store for one minute using
the phone microphone. Our first attempt was to convert the
signal to the frequency domain (through an FFT), and iden-
tify signatures of specific devices in the ambience. However,
we observed that while some sound signatures were visible,
in many cases it was difficult to separate them from other
frequency components. Hence, we reverted back to the time
domain, and used a simple fingerprinting scheme based on
signal amplitude. Specifically, we divided amplitude in 100
equal intervals (50 on the positive amplitude axis, and 50 on
the negative). The audio sample rate is 8 kHz (8000 sam-
ples/s). We normalized the number of samples per-interval
by the total number of samples in the recording. The 100
normalized values were considered to be features of the am-
bient sound, together called the acoustic fingerprint. Figure 4
shows the fingerprints for 3 different stores.

Because sound from the same place can vary over time, it
is unreliable to use sound as a matching scheme. Therefore,
we use sound only as a filter. We compute the pair-wise dis-
tance between the test fingerprint and all candidate finger-
prints. The pair-wise distance is based on an euclidean metric
in the 100 dimensional space. If the distance between a can-
didate fingerprint and test fingerprint is greater than a filter
threshold, τ , we discard that candidate fingerprint. Other fin-
gerprints remain in the candidate set and are forwarded to
successive filtering/matching modules. Of course, the ques-
tion is how do we choose τ . For this, we collected acoustic
fingerprints from each location at different times, and com-
puted the pair-wise distances. Plots of these distances re-
flected the distribution of self-similarities. Smaller the dis-
tance, more self-similar they were. To eliminate outliers, for
each store i, we chose a threshold distance, δi, that was at the
95th percentile. We chose the maximum δi across all shops,
and assigned it to τ . In other words, τ is a measure of the
maximum dissimilarity that was observed among two acous-
tic fingerprints from the same store. We conservatively chose
the maximum to adopt a wider filter. Hence, more candidate
fingerprints were allowed through the filter (more false pos-
itives). However, those eliminated, were done with greater
confidence (fewer false negatives). The output of the sound-
based filtering module is fed to the accelerometer filter.

Fingerprinting Motion using Accelerometers

The nature of service in a place partly influences the type of
human movements in that place [21, 23]. A simple example
is that people are stationary for long durations in restaurants,
while grocery store customers are significantly more mobile.

Figure 4: Sound fingerprints from 3 adjacent stores.

Capturing broad user movements within a store can be a use-
ful fingerprint of that store. The fingerprint can be used to
zero in on the test fingerprint’s actual location.

We use the 3-axes accelerometer in Nokia N95 mobile phones
to characterize user movements. The accelerometer is sam-
pled 4 times per second. Each sample records the instan-
taneous acceleration of the phone. Unfortunately, the ac-
celerometer has a large noise floor which makes accurate mea-
surements difficult. To circumvent these issues, we computed
a moving average over a window of 10 recent samples. The
time averaging smoothened the sequence of samples, at the
expense of suppressing some minor movements. We also com-
puted the moving variance using the window of last 10 sam-
ples. The two sequence of samples were processed as follows.

We decided to identify two simple states from the accelerom-
eter readings, namely, stationary and motion. To classify these
states, we decided to use support vector machines (SVM), a
popular data classification tool [7]. We first trained the SVM
using readings from a statically held phone, as well as from
readings in which a user walked with the phone. We used
mean and variance as the features during the training phase.
Once the training was accomplished, accelerometer samples
from real user movements in different stores were fed to the
SVM. The SVM classified each of these samples to be either in
stationary (-1) or moving (+1) state. The sequence of these
states can be viewed as an abstraction of the user’s movement
pattern.

User movement is prone to fluctuation. Some users may
browse for a long time in a clothing store, while others may
purchase clothes in haste. Therefore, like sound, we use ac-
celerometers as a filtering mechanism too. Since filters are
not required to provide a strict ordering, they are less prone
to error. Nevertheless, it is necessary to capture a feature in
user movement that is dictated more by the store, and less
by the user’s whim. One possibility is to first differentiate be-
tween sitting and moving places (e.g., restaurants, haircutter-
ies, cafes, versus grocery, music stores, bookstores). In the
moving category, we can further divide into slow-browsing
and speed-walking. To verify this intuition, we gathered a



Figure 5: Sample accelerometer traces from each bucket. SVM class (-1) is static, (+1) is motion. (a) Bucket 1 stores
expect users to sit for long durations (Starbucks, restaurants). (b) Bucket 2 shops carry browsing products (book stores,
clothing, wine) (c) Bucket 3 stores are mostly for fast shopping (Wal-Mart, Krogers)

large number of accelerometer traces, and computed a ratio

R =
tmoving

tstatic
. The value of R is a fingerprint, where tmoving

and tstatic are total durations during which the SVM classified
the user as moving or static. Plotting values of R on a real
line revealed 3 clusters (with some outliers). We thresholded
these clusters, extracting 3 buckets of accelerometer finger-
prints:

• Bucket 1: 0.0 ≤ R ≤ 0.2 Sitting (cafe)

• Bucket 2: 0.2 < R ≤ 2.0 Browsing (clothing)

• Bucket 3: 2.0 < R < ∞ Walking (grocery)

Figure 5 depicts a sample accelerometer trace from each
of the buckets. The difference is visually evident. However,
some stores exhibited a higher spread in the R values (we
noticed that Target customers could vary between long DVD
browsers to quick grocery shoppers). To cope with such multi-
commodity shops, we assigned them to both buckets. Upon
receiving a test fingerprint from a phone, its bucket, Btest, is
first identified. Candidate fingerprints that belong to the same
bucket, Btest, are retained, while the others are filtered out.
The retained candidates are then forwarded for color/light
based fingerprint matching.

Fingerprinting Color/Light using Cameras

Empirical observations convinced us that a large number of
stores have a thematic color and lighting as part of their decor.
The wall and floor colors contribute significantly to this theme.
Based on this, we hypothesized that automatic pictures taken
from different spots in a store are likely to reflect this theme.
If these colors and light intensities can be extracted from the
pictures, they could form a fingerprint for localization. For
now we assume that the phone is outside the user’s pocket;
we will visit this practical concern in the next section. The
challenge, then, is to extract the appropriate features of the
ambience from automatically-taken phone pictures. Of course,
random pictures of the surrounding are likely to capture a va-
riety of store items, spread over a wide range of colors [13].
This can make the pictures noisy, i.e., the dominant colors ex-
tracted from these pictures may not match the thematic colors
of the ambience. To circumvent this, we focus on pictures of
the floor alone. We detect that a picture is of the floor based
on the orientation of the phone-camera when the picture was

taken1. Only floor-facing pictures are enlisted for color/light
extraction, while others are discarded.

Focusing only on floor pictures, i.e., those taken with the
camera facing downward, offers a number of benefits. (1)
Privacy concerns may prevent a user’s phone from randomly
clicking pictures of the surrounding. However, if pictures are
taken only when the phone camera is pointing towards the
floor, the concerns are partly alleviated. (2) Pictures of the
floor are likely to be less punctuated with other objects. Dom-
inant colors extracted from these pictures are expected to be
less noisy. (3) There is rich diversity in the colors of carpets,
tiles, marble, and wooden floors. This diversity is beneficial to
localization. (4) Users may often point their cameras down-
ward while using their phone (checking emails, typing SMS).
Floor pictures may not be uncommon.

Our goal is to extract dominant colors and light intensity
from pictures of floors. For this, we first analyzed the color
of each pixel on a red-green-blue (RGB) space. The results
were poor because the extracted colors were heavily biased
by shadows of objects and people, and by reflections of light.
The light intensities were also unreliable (we omit the details
of several failed approaches). We circumvented this problem
by translating the pixels to the hue-saturation-lightness (HSL)
space. Briefly, hue (H) represents the naturally perceived base
colors, saturation (S) reflects the dominance of that hue, and
lightness (L) reflects the light intensity. As a result of this
translation, the actual floor colors could be decoupled from
the ambient light intensity. Shadows and reflections mattered
less, and most importantly, the light intensity was separately
available on the L axis.

We re-plotted the HSL pixels from all pictures of the same
place. On this scatterplot, we ran the K-means clustering al-
gorithm [14] for increasing values of K. The K-means algo-
rithm divides the pixels into K clusters, such that the sum of
distances from all pixels to their (own cluster’s) centroid, is
minimized. Let us call this sum, Sk. Starting from K = 2,
we continue to compute Sk until Sk − Sk−1 ≤ δ, where δ is a
convergence threshold set reasonably small. At this point, we
obtained the stable clusters of colors, along with the sizes of
each cluster. The large clusters consisted of colors and light

1Six camera orientations can be obtained from the phone,
namely left, right, front, back, top, bottom.



intensities that respectively reflected the thematic colors of
floors and the brightness in the ambience. In certain cases,
floors had multiple colors, producing multiple large clusters.
Other colors from the pictures were also reflected (e.g., colors
of shoes, lower end of trousers and shelves, etc.) but in pro-
portionally small clusters. The number of clusters typically
varied between 3 to 7. Figure 6 shows an example from Bean
Traders Coffee shop. The centroids of these clusters, as well
as the cluster sizes, were each a feature of the ambience, to-
gether forming the color-light fingerprint of that place.

We considered several fingerprint matching schemes and
finalized on a simpler one (in view of our eventual goal to
execute SurroundSense on the phones). The idea is to com-
pute the similarity between fingerprints F1 and F2 based on
the euclidean distance between their cluster centroids, and
the sizes of the clusters. Large clusters that are close to each
other indicate that both F1 and F2 have a good match in their
dominant colors. When the cluster size decreases, or the dis-
tance increases, the similarity is proportionally lower. For-
mally, denote C1 = {C11, C12, ...C1n} as the set of clusters
for fingerprint F1. Similarly, C2 = {C21, C22, ...C2m} for F2.
Let SizeOf(Cij) denote the number of pixels in cluster Cij .
Let T1 and T2 be the total number of pixels in C1 and C2

respectively. Also, let function δ(i, j) represent the centroid-
distance between the ith cluster of F1 and the jth cluster of
F2. We model the similarity S12 between fingerprints F1 and
F2 as:

S12 =
X

i,j

1

δ(i, j)

SizeOf(C1i)

T1

SizeOf(C2j)

T2

(1)

In other words, every cluster pair contributes to the overall
similarity of the two fingerprints. This contribution is pro-
portional to the product of the two cluster sizes, and the eu-
clidean distance between the centroids of the two clusters.
The similarity between the fingerprints is a sum of all pair-
wise similarities. Given a set of candidate fingerprints and a
test fingerprint, the similarities between the test and all can-
didates are computed. The candidate fingerprint with maxi-
mum similarity is declared to be the matching fingerprint. The
unknown location of the phone is classified to be that of the
matching fingerprint.

Fingerprinting Wi-Fi

While creative WiFi fingerprinting techniques exist [3,4], they
do not apply directly to recognizing logical places. We adapt
existing WiFi based fingerprinting to suit logical localization,
and include it as the fifth sensor in SurroundSense. The intu-
ition behind WiFi fingerprinting is simple. The MAC addresses
of visible APs are some indication of the phone’s location. The
phone records MAC addresses from received beacons every 5
seconds. From this raw data, a fingerprint is acquired by com-
puting the fraction of times each unique MAC address was
seen over all recordings. A tuple of fractions (each tuple el-
ement corresponding to a distinct MAC address) forms the
WiFi fingerprint of that place.

Fingerprint matching is performed by computing a metric
of similarity between a test fingerprint and all candidate fin-
gerprints. The comparison between two fingerprints, f1 and
f2, is performed as follows. Denote M as the union of MAC
addresses in f1 and f2. For a MAC address m ∈ M , let f1(m)
and f2(m) be the fractions computed as above. Then the sim-

Figure 6: Color/light fingerprint in the HSL format from
the Bean Trader’s coffee shop. Each cluster represented
by a different symbol.

ilarity S of f1 and f2 is computed as:

S =
X

m∈M

(f1(m) + f2(m))
min(f1(m), f2(m))

max(f1(m), f2(m))
(2)

The intuition behind this metric is to add a large value to
S when a MAC address occurs frequently in both f1 and f2.
The purpose of the fraction is to prevent adding a large value
if a MAC address occurs frequently in one fingerprint, but not
in the other. Locations that achieve a low similarity have a
higher chance of discrimination, and the vice versa.

We use WiFi as a filter in SurroundSense to avoid frequent
misclassifications (false negatives). However, in the absence
of light/color, we use it as a matching module to obtain a
precise rank of the location in question.

3.2 Fingerprint Matching
SurroundSense combines the 4 filtering/matching opera-

tions into an enveloping module that outputs the test phone’s
logical location. The (WiFi, sound, and accelerometer) filters
are first applied to the candidate set, such that some of the
members can be safely eliminated. The pruned candidate set
is then fed to the color/light-based matching scheme, which
outputs an ordered list of the candidates. The order of apply-
ing WiFi, sound, and accelerometer does not matter, since it
is analogous to a “set intersection” operation. However, it is
important to use the color/light based matching scheme last.
This is because color/light performs a strict ordering, and a
smaller candidate set reduces the likelihood of mistakes. The
final output is an ordered list of candidates – the top ranked
candidate is declared to be the location of the phone.

Feedback from the end user, if feasible, can be beneficial.
Assume that SurroundSense outputs the ordered set of loca-
tions, {A, B, C}. The user can be asked to verify her location
from the set. If the user responds that her actual location is
B, then SurroundSense can potentially learn and train itself
accordingly. Experiments in this paper, however, do not take
advantage of such human feedback.



As a final note, observe that the parameters for filtering and
matching can be tuned on a per-cluster basis. If certain clus-
ters exhibit atypical behavior, SurroundSense could poten-
tially train on that cluster and re-adjust filtering/matching
parameters. The matching operation may also be jointly per-
formed across all sensors (as opposed to our simple serial ap-
proach). However, joint approaches are complicated in view
of orthogonal sensing modalities, and their unequal impor-
tance in overall localization. In that sense, the simplicity
of our algorithms makes SurroundSense executable on the
phone’s processor.

Coping with Time-varying Ambience

Fingerprints from a particular shop may vary over time. A
sound fingerprint from a busy hour may not match well if
the training fingerprints were derived from low-activity peri-
ods. Colors in a picture may be different depending on day-
light or electric light. We propose to divide a day into 2-hour
time-windows, and index fingerprints based on the time they
were created. When a time-stamped test fingerprint is sent for
matching, candidate fingerprints from the appropriate time-
window are selected for comparison. The time-windows may
be refined, or made adaptive, as more fingerprints become
available to the fingerprint database.

4. PROTOTYPE IMPLEMENTATION
SurroundSense was implemented on Nokia N95 phones us-

ing Python as the programming platform. The server consists
of MATLAB and Python code, and some data mining tools for
the fingerprint matching algorithms. We present relevant de-
tails next.

4.1 Client and Server
The ambience sensing script is designed such that each sen-

sor runs on a different thread. The threads execute API calls,
and are then put to sleep for a desired time duration. The
time duration is chosen based on necessity. The accelerome-
ter samples are collected at the rate of 4 readings per second.
The audio sampling rate is 8 kHz. Pictures are taken every 5
seconds, and the camera was configured to the “sport” mode
(to allow for better pictures while moving). A meta file is cre-
ated for each fingerprint, storing information about the date,
time, GSM coordinates, camera mode, etc. Figure 7 shows a
few screenshots.

The server is composed of several modules. A Data Man-
ager assimilates the raw data from different phones and for-
mats it appropriately. The formatted data is forwarded to the
Fingerprinting Factory, that employs libSVM for classifying
accelerometer data, MATLAB toolkits for K-means clustering
and audio processing. The < LogicalLocation, F ingerprint >

tuple is then inserted into the fingerprint database. A MAT-
LAB/Python based Filtering/Matching Module accepts a test
fingerprint and computes the top-ranked match.

4.2 Populating the Fingerprint Database
A natural question is how do we build a fingerprint database?

A variety of options may be feasible, depending on the extent
of coverage desired. In our case, we have performed labor-
intensive war-sensing at 46 business locations in the university
town, and at 5 locations in India. The notion of war-sensing
is analogous to the notion of war-driving for WiFi and GSM
based localization [3,4]. Groups of students visited 51 stores

Figure 7: Nokia N95 phone running SurroundSense
scripts and fingerprinting.

and collected fingerprints from each of them. The stores were
visited multiple times later to collect test fingerprints and
evaluate the accuracy of SurroundSense. A few details about
the process are important in interpreting the performance of
SurroundSense, and hence, discussed in the evaluation sec-
tion later.

Of course, war-sensing is labor-intensive and may not scale
to commercial-scale deployments. One possibility is to design
location labeling games, like image labeling games in the In-
ternet [28]. The structure of the game could be to have com-
peting users record an ambience fingerprint that best matches
a publicly announced fingerprint. For example, a Wal-Mart
fingerprint from New York could be posted in San Diego, and
people could try to match it by taking pictures and sensing
sounds. The person with a best match may win a prize. More
interesting variants of such a game may be possible. If large
number of people play such games, the fingerprint database
can be generated in a reasonable timeframe.

5. EVALUATION
We present the evaluation of SurroundSense in two parts:

(1) Partially Controlled Experimentation, and (2) Performance
Results.

5.1 Partially Controlled Experimentation
Our field experiments were not performed with a real user-

base (difficult with limited mobile phones). We also made
a few assumptions during experimentation. We report them
here so that the results can be interpreted with these factors
in mind.

Cameras Out of Pocket
Over the entire course of our experiments, we held the mo-
bile phones in our hand (and not in our pockets). We used
a normal grip and periodically made phones calls, browsed
the Internet, and typed in SMSs. This allowed the phones
to take pictures for color and light fingerprinting. In un-
controlled environments, phones may be mostly inside the
pocket, preventing camera-based sensing. However, a host of
wearable mobile phones have already entered the commer-
cial market [19]. These phones are worn as wrist watches
and necklaces, enabling a range of sensing/pervasive applica-
tions [10,26]. Advances in nano-technology are further driv-
ing this trend by introducing flexible material (e.g., the Nokia



Morph [1]). We believe that wearable phones will become
popular in the near future, making SurroundSense a viable
application.

Mimicking Customer Behavior
While fingerprinting locations, we selected store clusters (within
GSM macro locations) and visited each of them in groups of
2 people (4 people in total). Upon arriving at a cluster, in-
dividuals went to different stores so that fingerprints were
time-separated. Each student fingerprinted every store in that
cluster. While in a store, we tried to behave like normal cus-
tomers. Of course, without any purchasing intentions, it was
difficult to spend a natural amount of time in a store. Because
of this, our initial data showed artificial behavior – we were
moving too fast and not sitting/browsing enough as a nor-
mal customer would. We were also avoiding check-out coun-
ters and often missed signature sounds like bar-code scanning
beeps. To circumvent this, we decided to purchase coffee and
food in sit-down places. For other kinds of stores, we decided
to mimic the movement of another customer also present in
that store. We arbitrarily picked a person and moved syn-
chronously with him or her. While he/she browsed an item
on the shelf, we imitated from a distance; while he/she moved
to a different shelf, or waited in a check-out queue, we tried
to do the same. We believe that our fingerprints reflect the
typical customer. However, they do not capture atypical be-
havior, such as a person picking up pre-ordered food from a
restaurant, or a clothing store customer picking a dress very
quickly. In that sense, one may interpret our results to be
partly optimistic.

5.2 Performance
We begin by qualitatively showing that GSM based loca-

tions are macro in nature, hence, insufficient to identify the
phone’s logical location. Figure 8(a) shows one example. An
iPhone localized itself on the parking lot of a strip mall even
though the user entered the shop marked with a cross. Given
that there are several shops around the parking lot (marked
with circles), the phone’s logical location was ambiguous. We
observed similar behavior in all ten clusters we experimented
with. Nonetheless, GSM was valuable because it was omni-
present and effectively identified the macro-location of the
phone. SurroundSense was then applied to discriminate logi-
cal locations within this macro-location.

Per-Cluster Accuracy

To evaluate SurroundSense, we war-sensed 51 shops orga-
nized in 10 clusters. Table 1 shows the number of shops in
each cluster. The first nine clusters are in a university town,
and were fingerprinted by 4 different students (in groups of
2). Each group visited the clusters at very different times;
while at a cluster, each student visited the shops individually
with time differences of at least 10 minutes. The tenth cluster
is located in India, and was visited by only two people. We
evaluate SurroundSense by cross-validating the fingerprints.
Specifically, for every cluster, we use person X’s fingerprints as
the database, and compute the other users’ accuracy against
it. We repeat this for all the 4 identities of X. This gives us 12
localization results per logical location. We present the results
next.

Figure 9(a) illustrates the average accuracy percentages per-
cluster across different localization modes (each mode com-

Figure 8: (Left) iPhone’s GSM localization places the wine
shop on the parking lot. The cross shows the wine shop,
while circles show other stores within the same macro-
location. (Right) Rich diversity in floor colors from a sin-
gle macro-location.

prising of a different combination of sensors). We evaluate 4
modes offering the user with multiple options to choose from.
We define the modes as follows:

1. WiFi-only (WiFi) is an adaptation of existing WiFi-based
fingerprinting to suit logical localization.

2. Sound, Accelerometer, Light and Color (Snd-Acc-Lt-
Clr) is the best option for places where WiFi is unavail-
able.

3. Sound, Accelerometer and WiFi (Snd-Acc-WiFi) is use-
ful when the phone’s camera is not exposed.

4. SurroundSense (SS) is the combined scheme with all
modes of ambience fingerprinting.

The average accuracy across clusters 1 to 9 is presented
in Table 2. SurroundSense achieves an average accuracy of
87%, an appreciable improvement over WiFi which achieved
70%. In the cluster in India (cluster 10), WiFi was unavail-
able. Nonetheless, SurroundSense achieved 100% accuracy
owing to a rich diversity in the non-RF ambience. We zoom
into the results from each cluster and examine the behav-
ior/performance of each localization mode. We consistently
observe that even though the locations were similar on one
or more sensing dimensions, across all the dimensions their
ambiences were diverse and identifiable.

The efficacy of SurroundSense is best represented in clus-
ters 1 and 2. All the sensors (WiFi, sound, accelerometer,
and color) contribute towards improving the localization ac-
curacy to 90%. Cluster 3 reflects our hypothesis that collo-
cated businesses may have incentives to exhibit unique ambi-
ences. Specifically, all stores in this cluster were dining places,
but the diversity in light intensities and colors was sufficient
to distinguish them logically.

Cluster 4 achieves the lowest SS accuracy of around 72%.
This is a strip mall in which multiple shops happened to have
light brown hardwood floors. This uniformity makes the color



Figure 9: (a) Average accuracy per-cluster. (b) CDF of per-shop accuracy.

Cluster 1 2 3 4 5 6 7 8 9 10

No. of Shops 4 7 3 7 4 5 5 6 5 5

Table 1: Number of shops per cluster.

Mode WiFi Snd-Acc-WiFi Snd-Acc-Lt-Clr SS

Accuracy 70% 74% 76% 87%

Table 2: Average accuracy across clusters 1-9.

fingerprints less effective (we observed an average accuracy
of 50% for color alone). In addition the nature of the service
offered (mainly product-browsing) prevents the accelerome-
ter from filtering out candidate shops. Sound offers a small
improvement because these locations are generally crowded,
and thus, exhibits similar background noise. While WiFi is
available at each location, the small sizes of these shops ex-
posed them to the dividing wall problem. However even in
face of such unfavorable conditions, SS achieved a reasonable
accuracy of 72%. A similar situation was sensed in cluster 5,
but the combination of all the sensors again raised the accu-
racy to 80%.

An interesting situation occurred in cluster 7. We recorded
the same audible access points in 4 of the shops. As expected,
WiFi localization achieved very low accuracy (less then 40%).
However Snd-Acc-Lt-Clr extracted enough diversity from the
non-RF ambience to raise the localization accuracy to over
90%.

The Snd-Acc-WiFi mode achieves moderate improvement
over WiFi alone. In some cases (clusters 5 and 9), sound
and accelerometer filters incur false negatives causing Snd-
Acc-WiFi to be less accurate than WiFi alone. Nevertheless,
they adequately compensate in clusters 2 and 8, raising the
accuracy by factors of 15 to 20%. Cluster 8 includes a mix-
ture of restaurants, a loud music shop, a quiet antique book
store and an art gallery. Combined with WiFi support all these
shops can be accurately localized even without light and color.

Lastly, even if WiFi is unavailable (as in cluster 10 in India)
SurroundSense may still be able to achieve a high accuracy by

fingerprinting the non-RF ambience. This can be valuable in
enabling location-based services in parts of the world where
mobile phones are popular, while WiFi is not.

Per-Shop Accuracy

To understand the localization accuracy on a per-shop basis,
we plot the cumulative distribution function (CDF) in Figure
9(b). Evident from the graph, 47% of the shops can be local-
ized perfectly using SurroundSense. In contrast, RF and non-
RF fingerprinting achieve perfect match for around 30% of
the stores. Interestingly, Snd-Acc-WiFi displays a larger vari-
ance – it outperforms WiFi and Snd-Acc-Clr-Lt in the regime
of high accuracy, but is relatively worse for low-accuracy regimes.
This is because WiFi displays some type of a bimodal behav-
ior – it either achieves a high accuracy, or suffers seriously
for specific locations. The median accuracy with SS, Snd-Acc-
WiFi, Snd-Acc-Lt-Clr, and WiFi are 92%, 92%, 75%, and 75%
respectively. Clearly, the combination of multi-modal finger-
printing offers gain in logical localization.

Per-User Accuracy

To understand the user experience with SurroundSense, we
simulated virtual users and observed the localization accu-
racy each may observe. Each simulated user was assigned to
a random set of stores (between 4 to 8), selected randomly
from the 46 stores in cluster 1 to 9. We simulated 100 such
users, and report the average accuracy that each user may ex-
perience. Figure 10 presents the CDF of the average accuracy
per-simulated-user. From the figure, 2% of SurroundSense
users achieve between 73% and 75% accuracy. The accuracy
grows to an average of 83% or more for 80% of the users. The
median accuracy is around 88%, while 10% users experience
96% accuracy or more. Snd-Acc-WiFi and Snd-Acc-Lt-Clr are
comparable, achieving a median of around 76%. However,
they consistently outperform WiFi which achieves a median
of around 68%.

Per-Sensor Accuracy

Table 3 zooms into the performance of individual and groups
of sensors in SurroundSense. In the interest of space, we
hand-picked 6 examples that exhibit some of the merits and
demerits of each sensor. When using the filters (left part of
the table), we show the average number of shops left to con-



Filters Filters + Matching

C# Acc Snd WiFi Snd-Acc-WF WF Snd-Acc-WF C/L Snd-C/L Acc-C/L Snd-Acc-C/L SS

C7 5.00 4.83 2.25 2.08 0% 16% 100% 100% 100% 100% 100%

C2 1.00 6.25 2.33 1.00 83% 100% 75% 75% 100% 100% 100%

C3 3.00 2.50 1.92 1.58 91% 91% 75% 91% 75% 91% 100%

C8 4.00 5.58 1.33 1.00 83% 100% 100% 100% 100% 100% 100%

C6 1.25 3.33 2.00 1.00 75% 100% 33% 100% 100% 100% 100%

C3 3.00 2.25 2.33 1.67 41% 33% 91% 66% 91% 66% 66%

Table 3: Examples of average performance per sensor at different business locations. The first column shows the cluster
number to which that particular business location belongs.

Figure 10: Random person accuracy CDF

sider after applying the respective filter. In the right side of
the table, we show the percentage of tests for each location
where the phone was localized correctly using only the speci-
fied sensors. For example, in row 2, the accelerometer always
filters out all but one location from the cluster. As the sec-
ond part of the table shows, whenever the accelerometer is
used, SurroundSense’s localization accuracy is always 100%.
Row 4 shows a similar result for the color/light sensor. Using
only the camera, SurroundSense is able to achieve 100% ac-
curacy in this location. Finally, the last row gives an example
of the high cost of false negatives in a filter. We see that us-
ing only color gives average accuracy of 91%. When sound
is added, the average is reduced to 66%. Thus, sound filters
out the fingerprint from the correct location in some cases.
Once the correct location is filtered out, the final match will
inevitably be incorrect, regardless of the color/light sensor’s
performance. In order to minimize the number of such cases,
we were conservative when designing the filters in Surround-
Sense.

6. LIMITATIONS AND FUTURE WORK
We discuss some limitations with the current version of Sur-

roundSense, along with our ongoing/future work.

Energy Considerations

This paper does not consider the energy tradeoffs with Sur-
roundSense. Independent research is in progress on energy-
efficient localization and sensing [6,15,29] – we believe Sur-

roundSense will benefit from these works. In addition, we
are developing simple sensing mechanisms to detect when a
phone goes outdoors. One idea is to attempt GPS localiza-
tion – if a GPS lock is obtained, the phone can be assumed
outdoors. Variation in GSM signal strengths and temperature
sensing are also promising methods. Once the phone is de-
tected outdoors, SurroundSense can be turned off.

Non-business Locations

Our evaluation spanned business locations. Offices, libraries,
airports, and other facilities may also require localization, and
may lack the ambience-diversity inherent in businesses. How-
ever, these places may be considered as a broad logical loca-
tion, and the dividing wall problem may not be as critical from
the application’s perspectives.

Localizing in Real Time

An accelerometer trace requires some time to converge (e.g.,
a person in a restaurant may need to wait in a queue before
sitting). We plan to investigate faster methods of localiza-
tion without compromising accuracy. Compasses and nearby
Bluetooth devices can be promising.

Compass and Peer Devices

Electronic compasses already on Nokia 5140 phones can pro-
vide geographic orientation (e.g., 36.5◦ East). The geographic
orientation may be correlated to the layout of furniture and
shopping aisles in stores. For instance, users may be forced
to sit on chairs or face grocery shelves while shopping. Since
layouts are likely to vary between nearby stores, and because
layouts are stationary over time, they may be a reliable indi-
cator of the user’s location. Of course, a user’s rotation may
add noise to the estimation, but the noise can be filtered out
without difficulty. Discovering other phones in the neighbor-
hood can also be suggestive of location. Classrooms may be
places in which nearby phones are typically from friend lists,
while traveling on a public bus may result in a high density of
“unknown” phones in the surroundings. We plan to explore
neighbor discovery for the purpose of localization.

Hierarchical Localization

It may be useful if logical locations can be grouped into a
broader category. For example, Starbucks, Seattle’s Best, Bean
Traders, etc. could all be categorized as coffee shops. Simi-
lar categories could be chinese restaurants, women’s clothing,
grocery, toys. Certain applications may benefit from such hi-
erarchy – imagine a coffee company advertising its brand to
all coffee-shop visitors. Hierarchical categorization of logical
places requires deeper insights into both the diversity and the
homogeneity of fingerprints. Ambience attributes that are ho-



mogeneous across coffee shops, but diverse from other stores,
need to be carefully sifted out. We leave this for future work.

7. RELATED WORK
Indoor localization and context awareness are well known

problems in wireless/mobile computing. Several creative ap-
proaches have been proposed, broadly classified as active and
passive, and sub-classified into RF and sensing techniques.
We describe the key ideas here.

Active RF techniques refer to installing special hardwares
and softwares in the environment to achieve high precision
indoor localization. This category includes the Cricket [22]
and Nokia systems (discussed in the introduction), as well
as LEASE, PAL, PINPOINT (see [31] and references therein).
Research on link signatures showed location distinction [32]
using interesting techniques. Device movement can be de-
tected based on variation in link qualities from the device to
multiple listeners in the surrounding. As argued earlier, active
techniques are certainly effective in high-budget applications,
but are unlikely to scale over city-wide areas. Passive localiza-
tion schemes bypass the need for pre-installed infrastructure.

Passive RF localization schemes sense RF signals from ex-
isting devices in the surrounding [2,4,20]. Place Lab [4] is a
successful project where signals from different WiFi and GSM
base stations are utilized for localization. A wireless map is
created by war-driving a region; the mobile device localizes it-
self by comparing overheard APs/cell towers against the wire-
less map. UCSD’s Active Campus project [12] adopts similar
techniques of localization, but assumes that the location of
the WiFi access points are known a priori. RADAR [2] also op-
erates on WiFi fingerprinting, and is capable of achieving up
to 5m accuracy in indoor settings. As a tradeoff to accuracy,
RADAR needs to carefully calibrate WiFi signal strengths at
many physical locations in the building. High resolution cal-
ibration is time-consuming and may not scale over wide areas.

Active/Passive Behavior Sensing has been utilized for context-
aware computing [5, 8, 9, 24, 25, 30] An interesting work ex-
plored image matching [8] to infer context information. How-
ever, the main assumptions of these approaches is that objects
in the pictures (e.g. furniture) are long lived and stable at
their locations. This may not hold for products in a shop as
they are sold, replaced or moved. Also, complex image pro-
cessing may not be scalable for localization-related applica-
tions. SurroundSense uses floor pictures and thus avoids most
short lived objects that can interfere with the data matching
process. Authors in [9] have mounted cameras on shoes to
achieve a vision of the floor; however, this is for applications
in injury-free walking and improved navigation. We combine
multiple modes of sensing towards the goal of indoor, logical
localization.

8. CONCLUSION
Various mobile computing applications benefit from know-

ing a user’s logical location, as opposed to her physical coor-
dinates (like the latitude and longitude). We presented Sur-
roundSense, a somewhat non-conventional approach to log-
ical localization. The main idea is to fingerprint a location
based on its ambient sound, light, color, RF, as well as the
layout-induced user movement. This fingerprint is then used

to identify the user’s location. SurroundSense may not qualify
as a stand-alone localization technique. However, in conjunc-
tion with GSM based macro-localization, SurroundSense can
perform micro-localization based on the inherent properties
of the ambience. We believe SurroundSense is an early step
towards a long-standing research problem in indoor localiza-
tion. Further research in fingerprinting techniques, sophisti-
cated classification, and better energy management schemes
could make SurroundSense a viable solution of the future.
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