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Abstract

We have developed and evaluated three generalized sys-

tems for event detection. The first system is a simple brute

force search method, where each space-time location in

the video is evaluated by a binary decision rule on whether

it contains the event or not. The second system is build on

top of a head tracker to avoid costly brute force search-

ing. The decision stage is a combination of state of the art

feature extractors and classifiers. Our third system has a

probabilistic framework. From the observations, the pose

of the people are estimated and used to determine the pres-

ence of event. Finally we introduce two ad-hoc methods

that were designed to specifically detect OpposingFlow

and TakePicture events. The results are promising as we

are able to get good results on several event categories,

while for all events we have gained valuable insights and

experience.

1 Introduction

Event detection in uncontrolled environments is critical

to video-based surveillance systems, which is one of the

ultimate goals of vision technologies. The challenges are

mainly on two-fold: the vast diversity of one event viewed

from different view angles, at different scales, and with

different degrees of partial occlusions, and the demand

for efficient processing of huge amount of video data, not

to mention the inherent semantic gap between motion pat-

terns and events. Thus, we strive to extract efficient image

features that are pertinent to events of interests and learn

multiple one-against-all classifiers to grasp the essential

of individual events. As different individuals may have

dramatically different appearances, the most relevant im-

age features of events are those capable of encoding the

shape and motion patterns.

In the following section (2) we discuss our three gen-

eralized approaches for event detection. In contrast to the

ad-hoc approaches we developed for TakePicture and Op-

posingFlow event (see section 3), these general methods

can be trained and used for detection of any pre-defined

action categories. We report the results in terms of Actual

DCR and Minimum DCR scores in section 4 and finally

conclude in section 5.



2 Main Approaches

Data Pre Processing

In addition to the labels provided by NIST, which only

showed starting and ending points of the events, we

recorded the spatial location of several instances of five

selected events (CellToEar, Embrace, Pointing, Object-

Put, PersonRuns) by drawing a bounding box of fixed as-

pect ratio around the person performing the action. We

used this new localized annotation set as our training data

for training most of our algorithms.

2.1 Brute Force Action Search

The first system we consider treats the problem of action

detection as a retrieval problem. The hypothesis space is

kept as large as possible by considering every fixed sized

space-time entity with significant foreground as a candi-

date for one of the action sought after. We exhaustively

search over all possible space-time locations in the video

over a range of scales. From every candidate space-time

window, motion descriptor features are extracted, which

have been shown to have good performance in similar

tasks [4]. Then the distance to every single example in the

database is measured. If there is an action in the database

within the R-neighborhood of the candidate window, we

keep it and it is considered for detection in the next step,

otherwise it is pruned out. The last step in the detection

process is mean shift clustering. This is based on the as-

sumption that, if there is a true instance of an action where

a likely candidate has been found, there will be multi-

ple detections with slight shifts in space and time around

the candidate. Thus, through clustering of the candidate

points we can obtain a more robust action detection pro-

cess. See figure 1 for an overview of our system.

2.1.1 Candidate Region Selection

The evaluation video is exhaustively searched over all

possible scales and locations. In this system the length

of the action in time is fixed to be 30 frames long. This is

consistent with the median length of most events provided

in the annotations, and recently it has been argued [14]

that a short snapshot of an action can be discriminative

enough to distinguish it from everything else. We have

also modelled the spatial scales of actions with respect to

their vertical location in the frame. It can be deduced that

there is a clear linear relationship between the spatial lo-

cations of the actions and their possible sizes. Therefore

when exhaustively searching for the candidate regions, we

only consider scales that were observed in the training set.

We further prune out candidate regions that do not have

enough foreground in them. This is done by estimating

the scene foreground using Zivkovic et al.’s background

subtraction algorithm using improved Gaussian Mixture

Models [17].

2.1.2 Feature Extraction

We have tested several shape and flow descriptors [9, 3, 4]

and have concluded that the generality and performance

(both speed and accuracy) of Efros et al.’s [4] motion de-

scriptor is the most suitable for this task. The feature

extraction process can be described as follows. First the

optical flow between consecutive frames is calculated in

grayscale. In our system we have used Lukas-Kanade

method for estimating the optical flow in horizontal and

vertical directions. The horizontal and vertical channels

are further divided into their respective positive and nega-

tive components, which eventually gives four images (i.e.

1. positive flow in horizontal direction, 2. negative flow

in horizontal direction, 3. positive flow in horizontal di-

rection, 4. negative flow in horizontal direction). These

four images are resized to (7x7) images by linear inter-

polation. We further downsample in time domain, in

which we extract these motion features only at every 6’th

frame. Thus every candidate window eventually yields a

7× 7× ( 30
6 + 1)× 4 = 1176 dimensional feature vector.

2.1.3 Matching

Each candidate window is compared with examples by

measuring the Euclidean distance between the features

of the current candidate window and the features of the

events in the development set. Note that at this stage met-

ric training can be considered for added accuracy [15].

However we intended this approach to be a baseline sys-

tem, with as little human in the loop training as possi-

ble. Another consideration is while learning strategies are

ultimately very rewarding in detection problems where

the object has very distinct characteristics (e.g. faces),



Figure 1: The system diagram for event detection by brute force search.

their efficiency in the context of event search is still an

open question due to the large variability in the appear-

ance individual events. After measuring finding the near-

est neighbors, we only keep the candidate windows which

have a neighbor in the development set, whose distance is

less than R. The value of R has been determined in the

training stage such that only about 1% of the candidate

windows would be retained after thresholding.

Finally the remaining candidate regions after threshold-

ing, will be clustered in 3D xyt-space. Our system out-

puts each cluster center with the number of cluster mem-

bers as the confidence measure for event detection. We

have used popular mean shift [2] as the clustering method

of choice. We employed a uniform 3D rectangular kernel

(box kernel) for efficient implementation. Our submis-

sions included three versions of this system each differing

in kernel size. In the results section we report the results

of the best performing kernel which was the smallest one

(10, 10 and 1 in x, y and t directions respectively).

2.1.4 Discussion

The results of our brute force searching method serves as

a reliable baseline for more sophisticated approaches. It

is interesting to observe that the simple nearest neighbor

finding can produce competitive results in several cases.

This can be attributed to the strength of the feature de-

scriptor as well as the wide range of variations in event

appearances, where nearest neighbor has a clear advan-

tage due to the fact that there is no explicit or implicit

modeling of event appearances.

2.2 Action Detection with a Tracker

Our second system mainly follows the framework of hy-

pothesis generation, feature extraction, and classification.

The candidate regions are generated based on human de-

tection and tracking which can significantly reduce the so-

lution space. Then, we aim to detect events of two cate-

gories: 1) events that require understanding of the articu-

lated body motion of a single person, such as CellToEar,

ObjectPut, and Pointing; 2) events that can be revealed

by the moving trajectories of a single person, such as Op-

posingFlow and ElevatorNoEntry. For the first category,

we combine three different classification methods based

on bags of interest points and motion features, which

will be elaborated in the following sections. For the sec-

ond category, we apply rule-based classifiers on locations

and trajectories. In the post-processing stage, the frame-

based classification results are linked to event segments

by heuristics. The system diagram is illustrated in Fig. 2.



Figure 2: The system diagram for human event detection.

2.2.1 Human detection and tracking

We apply a Convolutional Neural Network (CNN) [8]

to detect human heads in an image and than track mul-

tiple human [5] by fusing color and contour informa-

tion [1, 16]. In general, up to 30 candidates regions are

evaluated for each frame. Some typical human detection

and tracking results for different camera views are shown

in Fig. 3.

2.2.2 The combination of three learning methods

Given the human detection and tracking results, to detect

the events that requires understanding of articulated body

motion, i.e., CellToEar, ObjectPut, and Pointing, we com-

bine three machine learning algorithms: a cascaded Ad-

aboost classifier based on motion features, an SVM clas-

sifier based on spatial pyramid matching [7] of a bag of

interest point descriptors [10], and a CNN classifier based

on raw images.

The motion feature extraction for the Adaboost classi-

fier is explained as follows. For consecutive frames, we

first calculate the frame difference images which only re-

tain the motion information, and then we perform Canny

edge detection to make the observations cleaner. The mo-

tion edges are accumulated to a single image with a for-

getting factor. This is a tradeoff between retaining all rel-

evant information and efficient processing. On one hand,

this approach preserves some temporal shape information,

on the other hand, to analyze one image is much com-

putationally cheaper than analyzing spatio-temporal vol-

umes. Afterwards, we extract Haar-like features from the

accumulated motion edge image based on the detected or

tracked human heads and train a cascaded Adaboost clas-

sifier. One example of the feature extraction process is

illustrated in Fig. 4.

The spatial pyramid matching (SPM) [7] of a bag of in-

terest point descriptors demonstrates superb performance

in object and scene categorization due to its power to de-

lineate the local shape patterns. However, the original

spatial pyramid matching feature is extracted from a fig-

ure in a single frame. The occurrence of an event is a tem-

poral process, so it is unable to capture the comprehensive

event character without considering the temporal infor-

mation. Therefore, we improve SPM features by incor-

porating temporal information. As shown in Fig. 5, after

extracting the dense SIFT features [10], we construct the

original SPM features from a single human figure in one

spatial-temporal cube at each frame. The spatial-temporal

cube is defined as the aggregation of the regions in the

successive frames which are along the temporal axis with

the same image coordinates w.r.t the base human figure.

Then, for each cube two statistical features, i.e. the mean

and the difference-power of the SPM features, are calcu-

lated and fed to the SVM learner.

The CNN classifier is trained based on raw images in

a single frame given the human detection and tracking re-

sults.

For each candidate region, the classification confi-

dences of aforementioned three classifiers are linearly

weighted combined. If the combined confidence is larger



Figure 3: Sample human detection and tracking results for camera 1,2,3,5.

Figure 4: Illustration of the motion feature extraction. From left to right: (a) the original frame, (b) the frame difference

image, (c) Canny edge detection, (d) accumulated motion edge image

Figure 5: Illustration of the improved SPM feature.

than a threshold T , this frame is regarded as positive. The

weights {ω1, ω2, ω3} and the threshold T are determined

by cross-validation on the development set. The frame

based results are linked to generate the event segments by

heuristics considering the spatial and temporal smooth-

ness and consistency.

2.2.3 The Rule-based method

For the events OpposingFlow and ElevatorNoEntry, the

location and trajectory are sufficient to reveal their occur-

rences. Given the human detection and tracking results,

we train rule-based classifiers utilizing the location, ve-

locity, orientation, and trajectory. The parameters and the

rules are determined by the cross-validation on the devel-

opment set.

2.2.4 Discussion

From the 5-fold cross-validation results on the develop-

ment set, we observe that the false positives rates are still

fairly high. A considerable portion of the false positives

appear similar in terms of the motion patterns, e.g. touch-

ing hair is occasionally misclassified to CellToEar and it

is very hard to distinguish between ObjectPut and Ob-

jectGet. The majority of the false positive are induced by

cluttered background, the occlusions in a crowd, and the

complicated interactions among people.

The combination of three classification methods out-

performs individual ones. However, the combination



weights vary dramatically w.r.t different events in differ-

ent cameras, which indicates that the performance and

the generalization ability are not stable. Moreover, the

heuristics in the post-processing stage are not trivial and

also play an important role in determining the final per-

formance.

2.3 Action Detection using Latent Pose

Conditional Random Fields

In our third system, we consider only three events: Cell-

ToEar, ObjectPut, and Pointing. And three kinds of event

classifiers are trained on the development set: CRF (con-

ditional random field) [6], LDCRF (latent dynamic CRF)

[11], and LPCRF (latent pose CRF). CRF and LDCRF are

two existing models and LPCRF is our own work (the de-

tails are given below). More specifically, we first use the

NEC tracker (section 2.2.1) to obtain the motion trajec-

tories for the human in the scenario. Then for each con-

sidered event, we trained three classifiers (CRF, LDCRF,

and LPCRF), using the manually labeled events in the de-

velopment set as positive samples. The negative samples

are randomly selected from tracking trajectories. Then

for each camera and each event, we choose the best clas-

sifier. The best classifiers take the motion trajectories in

the evaluation set as input and decide the occurrences of

the corresponding events.

Fig. 6 gives the graphical structures of three models:

CRF, LDCRF, and LPCRF. Much like a Markov random

field, a CRF is an undirected graphical model in which

each vertex represents a random variable whose distribu-

tion is to be inferred, and each edge represents a depen-

dency between two random variables. In a CRF, the dis-

tribution of each discrete random variable in the graph is

conditioned on an input sequence. The LDCRF model

[11] incorporates hidden state variables into the tradi-

tional CRF to model the sub-structure of human actions,

and combines the strengths of CRFs and HCRFs [13] to

capture both extrinsic dynamics and intrinsic structure.

Interested readers are referred to [6, 11].

2.3.1 The Model

Our latent pose conditional random fields (LPCRF) model

is a generalization of CRF and LDCRF. Fig. 6 illustrates

its graphical structure. The latent pose estimator learns

to convert an observation vector x into a more compact

and informative representation y, and the model recog-

nizes human actions based on the pose sequence Y =
{y1,y2, · · · ,yn}. Later we denote the latent pose esti-

mator as P (y|x,Θ) in probabilistic form or y = Ψ(x,Θ)
in deterministic form, where Θ is the set of parameters of

the latent pose estimator and is jointly optimized with the

random fields using a gradient ascent algorithm.

2.3.2 Formulation of Our LPCRF Model

Our model is defined as

P (z|X, Ω) = P (z|Y,Φ) =
∑

h∈Hz

P (h|Y, Φ) (1)

where Y = Ψ(X, Θ) is the optimal estimation of the la-

tent pose estimator given observations X and parameters

Θ, and Ω = {Φ,Θ} represents all the model parameters.

The joint distribution over the hidden state sequence h

given Y still has an exponential form

P (h|Y,Φ) = (2)

exp
(
∑

j VΦ(j, hj , Y ) +
∑

j EΦ(j, hj−1, hj , Y )
)

KΦ(Y,H)
,

where KΦ(Y,H) is the observation dependent normaliza-

tion.

If the parameters Θ for the latent pose estimator are

fixed, our LPCRF model collapses into an LDCRF model.

If each class label z ∈ Z is constrained to have only

one hidden sub-action, i.e., |Hz| = 1, the LDCRF model

further collapses into a CRF model. Hence, our LPCRF

model is a more general framework of CRF and LDCRF.

However, our LPCRF model is essentially different from

both CRF and LDCRF in some aspects. In our model, in-

put features used by the random fields are trainable and

are jointly optimized with the random fields, while in

CRF and LDCRF, the input features are fixed and cannot

be tuned for the given recognition task. The latent pose

estimator encodes the knowledge of multimodal image-

to-pose relationship and provides optimal feature repre-

sentation for action recognition. This knowledge can be

acquired from existing well-trained models (if available)

and adapted for action recognition in the learning process.
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Figure 6: Graphical structures of our LPCRF model and two existing models: CRF [6] and LDCRF [11]. In these

models, x is a visual observation, z is the class label (e.g., walking or hand waving) assigned to x , and h represents

a hidden state of human actions (e.g., left-to-right/right-to-left walking). The subscripts index the frame number of

the video sequence. In our LPCRF model, the observation layer of the random fields is replaced with a latent pose

estimator that learns to compress the high dimensional visual features x into a compact representation (like human

pose) vy. Our model also enables transfer learning to utilize the existing knowledge and data on image-to-pose

relationship. The dashed rectangles means that y’s are technically deterministic functions of x when the parameters

of the latent pose estimator are fixed.

In all, the latent pose estimator is seamlessly integrated

and globally optimized with the random fields.

The model parameters Ω = {Φ,Θ} are learned

from training data consisting of labeled action sequences

(X(t), z(t)). The labeled image-to-pose data (x(t),y(t)),
if available, can also be utilized as auxiliary data. The

optimal parameters Ω∗ is obtained by maximizing the ob-

jective function:

L(Ω) =
∑

t

log P (z(t)|X(t),Ω)

︸ ︷︷ ︸

L1(Ω)

−
1

2σ2
‖Φ‖2

︸ ︷︷ ︸

L2(Ω)

(3)

+ η
∑

t

log P (y(t)|x(t),Θ)

︸ ︷︷ ︸

L3(Ω)

where the first term, denoted as L1(Ω), is the condi-

tional log-likelihood of the action training data. The sec-

ond term L2(Ω) is the log of Gaussian prior P (Φ) ∼
exp

(
− 1

2σ2 ‖Φ‖2
)

with variance σ2 and it prevents Φ from

drifting too much. And the third term L3(Ω) is the con-

ditional log-likelihood of the image-to-pose training data.

η is a constant learning rate. Note that our model enables

the image-to-pose data to be naturally added to the learn-

ing process.

2.3.3 Discussion

Our LPCRF model can bridge the gap between the high

dimensional observations and the random fields. This

model replaces the observation layer of random fields

with a latent pose estimator that learns to convert the high

dimensional observations into more compact and infor-

mative representations under the supervision of labeled

action data. The structure of our model also enables trans-

fer learning to utilize the existing knowledge and data on

image-to-pose relationship.

Our model works better than CRF and LDCRF for

some cameras, while the latter works better for other cam-

eras. So in the testing stage, we dynamically choose the

model according to video scenarios.



3 Event Specific Approaches

3.1 Take Picture

The training data provided included instances of people

taking picture where the camera flash was activated. This

is an indoor environment and the shots being taken mostly

were compositions of several people. Under these imag-

ing conditions it is reasonable to expect that the hand held

cameras will produce a burst of flash. To look for picture

taking events we utilize a flash detector. Our flash de-

tection algorithm looks for an substantial increase in the

number of pixels in the top portion of the red channel his-

togram. Formally:

FlashScoret =

255∑

k=200

(RedHistogramt(k) − RedHistogramt(k))

(4)

where the range of k covers the brightest pixel values.

3.2 Opposing Flow

Under the setting of provided data, there are three doors

in the view of Camera 1 through which people can walk

through in the wrong direction. We have performed our

experiments on the rightmost and center doors on Cam-

era 1, which had all the instances of opposing flow in the

training data. In our basic approach we selected a rectan-

gular region, with its center about the shoulder height of

an average person and performed continuous 3D filtering

with our space-time Gabor filter [12], which was specifi-

cally tuned to detect right-to-left motion patterns.

G(x, y, t) = exp
[

−
(

X2

2σ2
x

+ Y 2

2σ2
y

+ T 2

2σ2

t

)]

(5)

× cos
(

2π
λx

X
)

cos
(

2π
λy

Y
)





X

Y

T



 =





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



 (6)

×





cos ω 0 − sin(ω)
0 1 0

sin(ω) 0 cos(ω)









x

y

t





here ω and θ determine the 3D orientation of the filter

in space-time and λ determines the effective support of

the filter. We empirically evaluated several combinations

of parameters and chose the best performing set for final

method.

The response of the space-time Gabor filter is averaged

over the rectangular regions corresponding to both doors

and thresholded for detection only when the door is in

an open state. We learn the models for door open/close

states by clustering the average value of a 5 × 5 region

on the top left corner of each door using the Expectation

Maximization algorithm.

4 Results

We have submitted results for individual runs of the sys-

tems, as well as 3 combined results. When combining the

outputs of the event detectors, we used a simple weighted

combination scheme. Each system is assigned a weight

according to their relative strength and for each frame we

multiply this weight by the confidence output of the de-

tector for that particular frame. If the weighted combina-

tion of detector confidences for a frame is above a given

threshold we deem that the frame has the event. The re-

sults of our systems can be seen in tables 1 and 2

It can be seen that the first system has a high Actual

DCR score as there was no tuning of the confidence mea-

sure. In terms of minimum DCR scores, all systems be-

come competitive. This may be attributed to the fact that

all systems perform their best with either one false pos-

itive or one true detection output. However it is encour-

aging to note that some systems were able to get a DCR

score below 1.0 with proper tuning of the confidence pa-

rameter. The OpposingFlow detection was quite reliable

with false positives only being produced when a person

walks right-to-left in the shopping area and is tall enogh

to occlude one of the doors. The detector for TakePicture



Actual DCR Brute

Force

Search (1)

Tracking &

Detection

(2)

LPCRF

(3)

(1) & (2)

Combined

(1) & (3)

Combined

(1),(2) & (3)

Combined

CellToEar 1.3689 0.9985 1.0258 1.0166 1.0080 1.0092

ObjectPut 1.2537 1.0044 1.0437 1.0208 1.0094 1.0099

Pointing 1.2205 1.0029 1.0902 1.0440 1.0429 1.0293

OpposingFlow 0.4296 0.7632 1.0000 1.0000 0.4296

TakePicture 0.9577 1.0000 1.0000 0.9577

PersonRuns 1.0019 1.0089 1.0000 1.0089

Embrace 1.4042 4.0653 1.0000 4.0653

Elevator No Entry NA

Table 1: Actual DCR Scores by method and event

Minimum DCR Brute

Force

Search (1)

Tracking &

Detection

(2)

LPCRF

(3)

(1) & (2)

Combined

(1) & (3)

Combined

(1),(2) & (3)

Combined

CellToEar 1.0284 0.9971 0.9986 0.9978 1.0012 0.9987

ObjectPut 1.0019 0.9993 1.0020 1.0037 1.0036 1.0013

Pointing 1.0007 1.0007 1.0055 1.0000 1.0014 1.0005

OpposingFlow 0.4268 0.7632 1.0000 1.0000 0.4237

TakePicture 0.9577 1.0000 1.0000 0.9577

PersonRuns 1.0019 1.0089 1.0000 1.0089

Embrace 1.0046 1.0124 1.0000 1.0124

Elevator No Entry NA

Table 2: Minimum DCR Scores by method and event

event performed much below expectations because of the

fact that in the evaluation set there were many instances of

people taking picture with cameras that didn’t fire a flash.

5 Conclusions

Event detection in video is an emerging application area.

Literature on this subject is advancing fast and existing

test datasets are quickly being rendered too easy. Trecvid

surveillance event detection task is an interesting chal-

lenge to test the applicability of such algorithms in a real

world setting. Based on our key observation that there is

a wide variety in the appearance of the event types, we

have implemented and tested various algorithms and fea-

tures to detect eight of the ten required event categories.

The results reflect the magnitude of the difficulty of the

problem at hand, while we believe we have gained much

insight to the practical problems, and future evaluations

have the potential to produce much better results.
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