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Abstract

Dengue fever affects over a 100 million people annually hence is one of the world’s most important vector-borne diseases.
The transmission area of this disease continues to expand due to many direct and indirect factors linked to urban sprawl,
increased travel and global warming. Current preventative measures include mosquito control programs, yet due to the
complex nature of the disease and the increased importation risk along with the lack of efficient prophylactic measures,
successful disease control and elimination is not realistic in the foreseeable future. Epidemiological models attempt to
predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this
paper aims at analyzing the different modeling methods and their outputs in terms of acting as an early warning system. We
found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the
modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-
environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.
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Introduction

Dengue fever virus
Dengue fever (DF) is one of the most common widespread

vector borne diseases in the world [1,2,3,4]. There are currently

2.5 billion people living in areas at risk of DF transmission, with

100 million cases reported annually [5,6]. DF is a flaviviral disease

caused by one of four serotypes of dengue virus (DEN 1–4) which

are transmitted by mosquito vectors, in particular the peridomestic

species Aedes aegypti [2,7], and Ae. albopictus, which has recently been

expanding its geographic distribution as seen in several outbreaks

[8].

Infection by one serotype will provide lifelong immunity to that

particular strain but not to the remaining three [1,9]. Cross-strain

infections are common and can have severe consequences, with

extreme cases leading to death [10]. Over the past 40 years the

incidence and geographic distribution of DF has increased in

many countries, particularly in those with tropical and sub-tropical

climates [6,11,12,13,14]. DF has strong spatial and temporal

patterns which have been linked to climatic and environmental

conditions [15]. Thus the inclusion of spatial and temporal data in

analytic processes may potentially allow for the identification of

DF characteristics linked to these parameters and have significant

applications in the prevention and control of this disease.

Additionally, as discussed in the Intergovernmental Panel on

Climate Change report [16], with global temperatures likely to

increase, it is predicted that the endemic range of DF will expand

geographically [17,18,19,20,21]. Altered extrinsic incubations

periods (EIP), biting rates hence transmission levels [18,22] of

the disease will increase its capacity as a vector, more specifically

its competence and activity, and is linked to climate and

environment, amongst other factors [23].

Surveillance of vector borne diseases
Several surveillance system methods exist for a variety of vector

borne diseases [24], [25], yet successful early warning strategies

are limited due to the complex and dynamic nature of the disease,

environmental factors, the vectors and the hosts involved as well as

the necessary health system infrastructure needed to combine all

the factors in an integrated manner. In Europe, the VBORNET

network which combines knowledge from entomologists and

public health experts [26] was recently developed with aim at

building an integrated approach to surveillance of vector borne

diseases. The report highlights the different parameters and

methods needed to establish surveillance activities, as well as the

various data types and collection strategies (www.vbornet.eu).

Sentinel surveillance is a type of risk based surveillance which

can serve as an early warning system, and has had some general

success in terms of prediction for diseases such as Bluetongue

disease [27], Rift Valley fever [28] and West Nile [29]. The main

objective of an early warning system is the collection of

information leading to timely decision making processes which

trigger disease intervention strategies in order to reduce the

burden and effect of the disease on a specified population.

As summarised in Beatty et al., 2010, recommendations suggest

a comprehensive approach to dengue fever virus control, with
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emphasis on mosquito control, environmental measures, efficient

data collection and sharing platforms including laboratory

networks and finally the development of an early detection system

[30].

Yet the use of actual epidemiological models for early warning

predictions in vector borne diseases is more constraint. In recent

years, mapping methods have been tried in terms of forecasting

risk zones for vector borne diseases as described in Bergquist 2011,

through the use of satellite based data [31]. Recent developments

studying the combination of mapping and mathematical modelling

will be discussed further.

As with many infectious diseases, one of the success measures of

a surveillance system depends on the ability to predict an

imminent outbreak through an early warning system. The process

of identifying a potential threat and targeting surveillance and

control methods form part of an early warning system. Such an

approach is categorized as a targeted surveillance system as

opposed to random surveillance [32]. This is an important

difference in order to increase the probability of detection of any

first or repeated incursion of disease at the earliest time possible.

The ability to create an early warning system through the

combination of climate, environmental, host and vector based data

through various processes such as mathematical modelling and

Geographical Information System (GIS) mapping have been used

in many ways to improve veterinary and public health surveillance

systems [33]. The combination of different prediction, surveillance

and control methods and the tools involved in each process present

a great potential in the combat against a variety of disease as

described in Eisen & Eisen 2011 [34]. This paper aims at

providing an insight into the current DF surveillance and

modelling processes and the implementation of their outputs in

terms of applicability as an early warning system.

Methods

Through a comprehensive literature review, major databases

including Blackwell synergy, CSA Illumina, Web of Science,

Academic Search Elite, CINAHL with full text, Georef, medline,

Professional Development Collection, Informaworld, Informit-

Search, Proquest, Springerlink, Wiley Interscience and Pubmed

(http://www.ncbi.nlm.nih.gov/pubmed) were searched. The key

words used in this literature search were Dengue, Dengue fever, climate

change, Dengue haemorrhagic fever, Climate anomalies, Risk factors and

dengue fever, Dengue fever and modelling, vector borne diseases, Dengue fever

and Aedes aegypti, Dengue fever and Aedes aegypti, vector borne disease

modelling, regression analysis, spatio-temporal models, infectious disease

surveillance and early warning systems. Studies were included if the use

of one or more epidemiological models were reported. During the

initial search, studies were selected based on a review of titles and

abstracts. Full studies were retrieved and reviewed for all relevant

articles as seen in Figure 1.

In order to analyse the DF models, it was important to review

the background information as well as the method used in output

generation (Figure 2). Due to the difference in output objectives,

biological factors, spatio-temporal parameters, geographical scales

and mathematical equations used in more current models, the

comparison of efficacy between models is complex. A synopsis of

the different pathways and risk factors found in the literature

review is shown in Figure 3.

Results

Although many studies use a combination of epidemiological

tools, three main focus areas were identified: 1) mapping tools, 2)

mathematical models and finally 3) a combination of 1 and 2. The

purpose of the maps and models are aimed at dengue reporting

and surveillance, usually based on risk factors although recent

studies have been introducing disease forecasting as their main

objective.

As seen in Table 1, different categories for the analysis of the

models existed, such as spatial scale, data collection time frame,

model type and finally the incorporated risk factors. Although the

main countries in the study were Argentina, Australia, Brazil,

China, Cuba, India, Indonesia, Mexico, Puerto Rico, Singapore,

Thailand and the USA, the actual spatial scale used in the models

varied from community level to multi-country. Collection time

points spanned from daily measures to biannual analysis. Although

the mathematical basis of many of the models shared a common

regression point, these varied from logistic, autoregressive, spatio-

temporal or Poisson equations. Finally, one of the most

encompassing and diverse parameters were the risk factors used

in the dengue model creation such as temperature, precipitation,

vegetation indices, wind velocity or even hygienic markers.

There were a number of different models capable of producing

prediction equations for the transmission of dengue fever. The

type of model selected was dependent on the type of data collected

and the nature of the variables (Figure 2), and due to the subtle

differences involved in each outbreak, no universal models existed

for analysis and prediction.

Traditionally, the data usually consisted of serologic and

environmental or socioeconomic variables. Recently, socio-envi-

ronmental changes have been identified as important determinants

in the transmission of DF, and spatial and temporal aspects of

these changes have been increasingly incorporated into studies

[35]. The inclusion of spatial data allows for the identification of

spatial patterns of occurrence and the ability to identify areas at

high risk of disease. The majority of previous studies in the past

decade have implemented logistic or multiple regression models to

identify possible risk factors. A drawback of these models is that

they are not capable of accounting for autocorrelation in time-

series data, which may limit the predictive capabilities of the

resultant model.

Author Summary

Despite mass vaccination campaigns and large scaled
improvements in global surveillance, infectious diseases
are a worldwide problem. In recent years, the ability to use
models as a tool to help visualize, understand and combat
infectious diseases has become more feasible and reliable.
In this context, modelling focuses on transmission patterns
between the different animal, human or vector compo-
nents as well as including parameters which affect these
pathways such as environmental, climatic or geographic
ones. The output of these models can help in decision
making processes concerning control purposes, surveil-
lance methods and hopefully also as good predictive tools.
Prediction forms part of surveillance systems, and more
specifically in early warning systems. It is the timely
collection and analysis of data as well as the use of risk-
based assessments in order to aid in prompt health
interventions such as movement control, vaccination
campaigns or the distribution of important information.
Early warning systems for vector borne diseases are
especially complex due to the involvement of various
factors originating from the human, animal and insect
sector as well the disease itself. The authors investigate the
variety and depth of available models for dengue fever
surveillance and their use as early warning tools.

Early Warning Modeling in Dengue Fever
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Figure 1. Graphical summary of the literature search process.
doi:10.1371/journal.pntd.0001648.g001

Early Warning Modeling in Dengue Fever

www.plosntds.org 3 May 2012 | Volume 6 | Issue 5 | e1648



Mapping tools in dengue surveillance
In the past decade, mapping techniques and software have been

able to incorporate a range of variables according to available data

including socio-demographic, ecological, disease attributed factors,

household infestation levels as well as many other climate, host or

vector based ones [36] [34]. These maps allow for the risk

visualisation of the disease through different avenues, be it human

and/or vector associated.

Mapping tools for dengue surveillance also exist for more

specific aspects on human derived risk factors [37], land based

factors [38] or from a vector point of view [39]. The information

on these more focussed maps is more detailed than for maps which

combine many factors together yet might not allow for large scaled

conclusions to be made concerning surveillance recommendations,

giving each level of mapping tool its advantages and disadvantag-

es.

Mathematical methods in dengue surveillance
Similarly with the mapping techniques, mathematical models

exist for a whole range of factors affecting dengue virus disease

transmission. Mathematical models for dengue fever range from

simple compartmental SEIR transmission equations, to complex

equations involving the dynamics between human (DENSiM) and

mosquito (CIMSiM) population dynamics and dengue transmis-

sion [40,41]. The ability to combine various parameters adds

complexity to sensitivity analyses [42], yet due to the intricate

nature of vector borne diseases is a necessary measure. Recent

models focus on climate driven factors such as correlating dengue

cases to temperature or relative humidity, and as discussed further

on, sea surface temperature and proximity to water bodies has also

been analysed.

In terms of choice of mathematical methods, the AutoRegres-

sive Integrated Moving Average (ARIMA) and Seasonal Auto-

Regressive Integrated Moving Average (SARIMA) models, which

have the ability to cope with stochastic dependence of consecutive

data, have become well established in the commercial and

industrial fields [43,44]. A DF study in Queensland, Australia

used ARIMA modelling to examine the relationship between

weather variables and the disease [45]. The implementation of

SARIMA accounts for auto-correlations in time-series as well as

seasonality, long-term trends and lags. Consequently, SARIMA

has higher predictive capabilities than other models described

above. However, this approach requires the input of a large

amount of data meaning that SARIMA may not be suitable for

studies with a small sample sizes. SARIMA is also based on the

assumption of normality. For diseases that are rare or occur less

Figure 2. Flow chart process for data incorporation in dengue fever outbreak modelling.
doi:10.1371/journal.pntd.0001648.g002
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frequently, the assumption of normality may not be met and thus

SARIMA might not be an appropriate choice.

Combined GIS and mathematical models for dengue
surveillance

Combining GIS and mathematical models also exist for a range

of dengue related parameters as seen in a study by Khormi &

Kumar, 2011 [46], whereby socioeconomic parameters were used

to show the relationship between dengue cases and spatial data in

Saudi Arabia through Geographically Weighted Regression

(GWR) analysis. Another example studies the relationship between

population density and water supply in Vietnam through GIS and

the Ross-MacDonald mathematical model using the basic

reproductive number (R0) [47].

Another approach to predicting the spatial dynamics of both

human dengue cases in relation to vector presence was presented

through ecological niche modelling using GARP (Genetic

Algorithm for Rule-set Prediction) in combination with GIS

ecological landscape maps of Mexico [48]. The model allowed for

an average predictive value of 80% in terms of forecasting

Figure 3. Transmission pathway and risk factors involved in dengue fever outbreaks.
doi:10.1371/journal.pntd.0001648.g003
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mosquito occurrence in Mexico, a useful component in dengue

surveillance. The concept of ecological niche (similar to climatic

suitability envelope) modelling, defines how key climatic, environ-

mental and topographical variables form a niche which is

occupied by a specific species [27].

The depth and scope reached by combining maps and

mathematical models provide a realistic platform to base

surveillance and control decisions, as well as aiding in predicting

outbreaks, yet limitations still occur in spatial and temporal terms.

This is not including the extra risk factors which are difficult to

forecast such as the introduction of dengue fever virus through

infected human or mosquito into a potential hot spot.

Early warning systems in dengue
As seen in Table 1, Figures 2 and 3, there are several different

data collection and analysis pathways used to model DF

transmission and intervention strategies. In terms of using the

outputs of these models, two main objectives were identified: the

use of DF models as a retrospective and validating method, and as

an early warning tool to predict potential epidemics. Retrospective

models use data as a validation method as seen in [49] for DF in

Peru where data from 1994 to 2006 was analysed, and validated in

latter epidemics throughout the region by evaluating the degree of

association with demographic and geographic variables. Such

techniques also allow for intervention and control strategies to be

tested firstly on a hypothetical level, and then applied in the field,

as seen in Luz et al [50]. In this study, epidemiological and

economic assessments of different vector control strategies were

tested in the city of Rio de Janeiro in Brazil in relation to DF.

Although many models discussed above include risk factors

involving basic climate and household information, the calcula-

tions are mainly based on human and vector borne parameters.

Through the advancement and access to technology, various

software programs and improvements in database infrastructure

allow for the use of multidimensional values to be included in

models in order to progress from a purely applied mathematically

based theme to more a dynamic one. Especially important in

developing countries, is the role of resource-limited settings in the

development of timely prediction tools. Chang et al [51],

demonstrate how the use of Google Earth and GIS mapping

technologies can aid in dengue surveillance, especially where

unplanned urbanisation, a risk factor for the disease, is abundant.

Another advantage of using web based tools including Google

search functions is demonstrated in Chan et al [52], whereby

dengue fever case reporting was collected in a quicker time frame

than normally available in traditional official sources, and easily

applied into a mapping visualization tool.

A large expanse of surveillance methods involved in dengue as

well as the various combinations of parameters used for

epidemiological modelling were found in the literature. As

mentioned, the models include different transmission mechanisms,

clinical manifestation data, current disease and vector control

methods, treatment options, socio economic and risk factors of DF

as well as the potential of developing into dengue hemorrhagic

fever. The risk factors for developing DF included biological,

human, vector, environmental, socio-demographic data as well as

climate and parameters linked to climate change (Figure 3).

The ability to combine the GIS techniques with statistical and

mathematical models with the intended output being a spatio-

temporal tool for early warning system is not impossible given the

quality and availability of data from surveillance systems as well as

advanced technologies. As noted by LaDeau et al [53], due to the

primary host of dengue being humans, not only must an early

warning system be based on vector presence and activity but also

on the complex nature of human movement and organisation.

The role of imported cases can serve as a basic type of dengue

outbreak early warning based on human movement [54],

especially when certain climatic conditions are suitable for disease

spread into local areas. Although this method is spatially limited, it

is an important indicator considering the amount of travel which

exists into dengue endemic areas.

Discussion

As seen in the reports and studies reviewed, there are a large

number of environmentally related as well as disease based

parameters which influence the intensity, frequency, location and

spread of a DF outbreak. Several limitations exist when using

models as predictive tools in DF outbreaks. One of the main

limitations for such models as mentioned is the geographic

restriction due to data sources, often meteorological stations which

might affect the availability of data as well as the spatial

applicability. In order to be less constraint on such static datasets,

Fuller et al., 2009 [55], included vegetation indices data, as well as

sea surface temperatures in relation to El Niño Southern

Oscillation (ENSO). Using this model, the authors suggested that

a DF outbreak could be predicted with a 40 week advance in

Costa Rica, although as discussed by the authors, could be

Table 1. Setting and parameters used in predictive dengue model creation.

Spatial scale Collection time frame Model Risk factors

Community Daily Poisson Temperature

Parish Weekly Time-series Precipitation

District Monthly Autoregressive [75] Wind velocity

Municipality Bi-monthly Multiple regression Sea surface temperature

Province Annually Step-wise regression Humidity

City Bi-annually Logistic regression Geographical settings

State Autoregressive Integrated Moving Average
(ARIMA)

Hygienic parameters

Country Classification & Regression Tree (CART) Socio environmental factors

Multi- country Spatio-temporal regression Proximity to potential artificial breeding sights

Vegetation dynamics

doi:10.1371/journal.pntd.0001648.t001
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improved with the incorporation of data based on vector

population dynamic models as well as seasonal autoregressive

modelling methods. Secondly, the differences in input parameters

vary due to both natural and artificial factors. Biologically,

differences in egg survival time, extrinsic incubation periods,

median of lag phase are all directly or indirectly affected by

external factors including temperature, humidity or even the

immune system on an individual level [15]. The effects of socio-

environmental factors on mosquito vectors and transmission of DF

are often not immediate, which involves a lag time between

exposure to a risk factor and the development of the disease. The

inclusion of temporal data allows for the identification of lag times

and patterns of transmission over time [15]. Spatial data alone

cannot provide the analysis of the temporal kinetics of an outbreak

whereas the use of temporal data does not allow for the

identification of high risk areas [15]. Ideally, studies should

include both spatial and temporal aspects in the analysis to

maximise the ability of the resultant equation to predict future

outbreaks.

Through the literature review, several interesting parameters

were indentified which affect the predictive ability of models, such

as the range of transmission of DF being at temperatures of 15–

33.2uC, with females feeding more frequently when temperatures

are higher [4,56]. Directly affecting the biology of the vector,

temperature also plays an important role on pathogen replication,

maturation and period of infectivity. Transmission was also higher

in areas where two or more serotypes were found to circulate

simultaneously [7]. On the clinical level, facts such as the range in

viraemic phase of DF which lasts from 2 to 12 days [57] will affect

the precision of the model output. On an artificial level, models

can vary due to the choice of regression analysis, the choice of map

in terms of digital charting such as raster or vector outputs,

although current methods favour vector maps due to their more

flexible nature. Within these also lie the choice of geometric factors

such as point or polygonal data which in turn will affect the

predictive power of the models [58].

Although modelling studies promote the need for a DF vaccine

[59], a suitable chimeric vaccine that accounts for all four

serotypes of DF is yet to be developed, hence the most effective

means of controlling DF is through prevention via vector control.

However, many vector control programs deteriorate as the

economic condition of most high risk countries is unfavourable

[60]. The identification of areas most at risk of DF transmission is

essential to ensure the most efficient and effective use of resources

for the continuation of vector control and eradication programs.

With the predicted socio-environmental changes brought by

urbanisation, climate change and globalisation, the regions at risk

of transmission along with the economic impact of DF are set to

increase. The analysis of previous outbreaks of DF may provide a

means of predicting future epidemics in order to establish early

warning systems and allocate resources more efficiently [61,62,63].

The use of models as a prediction method or part of a

surveillance system in terms of early warning have been done for

other vector borne diseases such as malaria [64,65], Rift Valley

Fever [24]and Bluetongue virus [66], which after determining the

basic transmission pattern in a mathematical model, could then

apply climatic events to predict potential outbreaks through

Geographical Information Systems (GIS). Such models have been

created on a local scale to predict DF outbreaks based on climatic

factors as seen in Brazil [67] which used thermal, hydroclimatic,

wind, atmospheric pressure, and humidity data as well as in and

Puerto Rico [68] where climatic water budget indicators were used

to create an early warning system, with the latter study being able

to predict a DF outbreak with a three week warning period.

Few studies have been able to collect the necessary amount of

spatio and temporal data as well as epidemiological information to

analyse the correlation between all these factors. Bayesian spatio-

temporal modelling takes into account the effect of covariates and

correlations as well as being able to correct for possible errors

arising from median estimates of random effects as seen in Yang et

al [69]for schistosomiasis, whereby conditional autoregressive

models (CAR) were used in the Bayesian smoothing process.

Another study addressing the advantages of this modelling

technique is seen for dengue in Brazil [70], but as mentioned,

data constraints, in this case the lack of socio-economic and

meteorological covariates affect the predictive power of the model.

Through the analysis of various dengue models and the ability to

include varying levels of qualitative and quantitative data, the

CAR method seems to have the most potential for developing a

robust climate-based epidemic forecasting model.

The identification of high risk areas and trigger factors such as

humidity, precipitation, temperature or even travel related disease

could allow for early implementation of such interventions so that

DF can be effectively and efficiently controlled and prevented.

Through the modelling, eventual intervention strategies have been

analysed such as the effect of vaccination and the reduction in the

number of susceptible individuals [14,71].

This review highlights the benefits of combining various

epidemiological tools focussing on the ability to incorporate

climatic, environmental, epidemiological and socio economic

factors to create an early warning system. Some recent nationwide

systems have shown encouraging results using these methods, as

seen in the Chinese Infectious Disease Automated alert and

Response System (CIDARS), which uses a combination of a fixed

threshold, spatial and temporal detection methods for real time

warning of many infectious diseases on a national scale [72].

Information gathering and sharing platforms [73] as seen in the

multi-disease data management system interface are promising

tools for infectious disease surveillance.

In conclusion, interventions based on early warning systems

aimed at preventing DF transmission require significant financial

resources and human input, thus it is desirable to target areas and

populations at high risk of DF. Modelling processes have shown

their potential in identifying such high risk areas. The authors

encourage the collection of information on both a spatial and

temporal level, along with climatic and socio-environmental

variables during future outbreaks of DF, as this will allow for the

development of models with maximum predictive capabilities.

Multiple and logistic regression models are most often used for

analyses, yet as mentioned they are limited due to their inability at

accounting for possible confounding factors, auto-correlations,

trends and lags in a sufficient manner thus limiting their predictive

performance. Recently, the use of spatial and temporal data has

enhanced the ability of models to predict outbreaks of DF by

allowing for the spatial identification of high risk areas whilst

taking into account the temporal kinetics of DF transmission [15].

Certain factors will have to be taken into consideration when

modelling DF in light of climate change and travel trends as well

as vector habitat alterations. Due to the emerging spread of Aedes

albopictus [74], models will have to be able to accommodate for the

slightly different biology of these mosquitoes, as seen in the spatial

modelling using socio environmental indicators in Brazil which

had different breteau indices for both Ae. aegypti and Ae. albopictus

[75]. Similarly to other vector borne disease, models vary in their

complexity, methodology and area of study which can be very

specific and not easily applied to other geographical areas, hence

the comparison of less traditional mathematical techniques is more

problematic. Transparency is a key factor which will allow for the

Early Warning Modeling in Dengue Fever

www.plosntds.org 7 May 2012 | Volume 6 | Issue 5 | e1648



improved accuracy and performance of models, not only for DF

but for many other vector borne diseases which have complex

transmission cycles.
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