
Survey and Benchmark of Block Ciphers for
Wireless Sensor Networks

YEE WEI LAW, JEROEN DOUMEN, and PIETER HARTEL

University of Twente

Cryptographic algorithms play an important role in the security architecture of wireless sensor

networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to

the facts that these networks are meant to operate without human intervention for a long period of

time with little energy supply, and that available storage is scarce on these sensor nodes. However,

to our knowledge, no systematic work has been done in this area so far. We construct an evaluation

framework in which we first identify the candidates of block ciphers suitable for WSNs, based

on existing literature and authoritative recommendations. For evaluating and assessing these

candidates, we not only consider the security properties but also the storage- and energy-efficiency

of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for

WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory

and required security (energy efficiency being implicit). In terms of operation mode, we recommend

Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]—

Real-time and embedded systems; C.4 [Performance of Systems]—Measurement techniques; E.3

[Data Encryption]—Standards

General Terms: Measurement, Performance, Security

Additional Key Words and Phrases: Sensor networks, cryptography, block ciphers, energy efficiency

1. INTRODUCTION

A wireless sensor network (WSN) is a network composed of a large number of
sensors that (1) are physically small, (2) communicate wirelessly among each
other, and (3) are deployed without prior knowledge of the network topology. Due
to the limitation of their physical size, the sensors tend to have storage space,
energy supply, and communication bandwidth so limited that every possible
means of reducing the usage of these resources is aggressively sought. For
example, a sensor typically has 8∼120 KB of code memory and 512∼4096 bytes
of data memory. The energy supply of a sensor is such that it will be depleted in

This work is partially supported by the EU under the IST-2001-34734 EYES project.

Authors’ address: Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands; email: {yee.wei.law, jeroen.doumen, pieter.hartel}@utwente.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1550-4859/06/0200-0065 $5.00

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006, Pages 65–93.

66 • Y. W. Law et al.

Table I. Comparison of the EYES Node with Smart Dust and the Intel Research Mote

Smart Dust EYES Node Intel Mote

CPU 8-bit, 4 MHz 16-bit, 8 MHz 16-bit, 12 MHz

Flash memory 8 KB 60 KB 512 KB

RAM 512 B 2 KB 64 KB

Frequency 916 MHz 868.35 MHz 900 MHz

Bandwidth 10 kbps 115.2 kbps 100 kbps

less than 3 days if operated constantly in active mode [Zhang et al. 2004]. The
transmission bandwidth ranges from 10 kbps to 115 kbps. Table I compares
the sensor node used in the EYES project [van Hoesel et al. 2003] with Smart
Dust [Hill et al. 2000] and the Intel Research mote [Kling 2003].

Karlof and Wagner [2003] made an interesting observation that WSNs will
more likely ride Moore’s Law downward, that is, instead of relying on the com-
puting power to double every 18 months, we are bound to seek ever cheaper
solutions. However looking at the current development of WSNs (Table I), com-
puting power is indeed increasing, though not necessarily at the rate predicted
by Moore’s Law. Either way, we are conservative and assume that the hardware
constraints of WSNs will remain constant for some time to come.

Cryptographic algorithms are an essential part of the security architecture
of WSNs. Using the most efficient and sufficiently secure algorithm is thus an
effective means of conserving resources. By ‘efficient’ in this article we mean
requiring little storage and consuming little energy. Although transmission con-
sumes more energy than computation, our focus in this article is on computation
and we can only take transmission energy into account when considering the
security scheme as a whole. The essential cryptographic primitives for WSNs
are block ciphers, message authentication codes (MACs) and hash functions.
Among these primitives, we are only concerned with block ciphers, because
MACs can be constructed from block ciphers [Preneel 1998], and hash func-
tions are relatively cheap. Meanwhile, public-key algorithms are well-known
to be prohibitively expensive [Carman et al. 2000].

Our selection of block ciphers is Skipjack [NIST 1998], RC5 [Rivest 1995],
RC6 [Rivest et al. 1998], Rijndael [Daemen and Rijmen 1999], Twofish [Schneier
et al. 1998], MISTY1 [Matsui 1997], KASUMI [3GPP 1999] and Camellia [Aoki
et al. 2001b]. Although Rijndael has been selected by the American National
Institute of Standards and Technology (NIST) as the Advanced Encryption
Standard (AES) after a five-year long standardization process that included
extensive benchmarking on a variety of platforms ranging from smart
cards [Hachez et al. 1999] to high end parallel machines [Worley et al. 2001],
the selection of Rijndael for our platform is not obvious. This is because the fact
that Rijndael is on average the best performer on a range of standard platforms,
does not mean that it also performs best on our platform, which is Texas Instru-
ments’ 16-bit RISC-based MSP430F149 [Texas Instruments, Inc. 2001], chosen
for its ultra-low power consumption. This microcontroller has 60 KB of Flash
memory, 2 KB of RAM, 16 registers, an instruction set of 51 instructions and
5 power-saving modes, and is typically used in sensor systems. The fact that it
is not commonly used in smart cards or any mainstream 32/64-bit computing

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 67

platform, which are the platforms the AES committee mainly focused on,
further suggests the necessity of our study. Although with the advent of
IEEE 802.15.4 or ZigBee [IEEE 2003], hardware implementations of AES are
expected to appear, there would still be customized sensor nodes that are not
equipped with such hardware for cost and other reasons (e.g., our nodes), and
software implementations offer more flexibility (e.g., in software updates), so
our benchmark results are therefore still applicable.

The contribution of this article is three-fold: (1) to identify the candidates
of block ciphers suitable for WSNs based on existing literature; (2) to provide
a systematic methodology for assessing the suitability of the ciphers, in terms
of both security and efficiency; and (3) to select the suitable ciphers for WSNs
based on the evaluation results.

Our evaluation framework consists of (1) literature survey, and (2) bench-
marking. The rest of this article is organized as follows. Section 2 contains the
literature survey of the block ciphers, explaining why they are selected and why
others are not, as well as shedding light on their security properties. Section 3
details aspects of our benchmarking. Section 4 provides our observation and
evaluation results. Section 5 concludes.

2. LITERATURE SURVEY

A typical cipher consists of three components: (1) the encryption algorithm, (2)
the decryption algorithm and (3) the key expansion algorithm (also known as
key scheduling or key setup). The key expansion algorithm expands the user
key or cipher key to a larger intermediate key, to allow (ideally) all bits of the
cipher key to influence every round of the encryption algorithm. For most ci-
phers, key expansion only needs to be done once to cater for both encryption
and decryption; for other ciphers however, key expansion has to be done sep-
arately for encryption and decryption (e.g. for Rijndael). The most important
parameters of a block cipher are (1) the key length(s) it supports, (2) the block
size and (3) the nominal number of rounds. In the ensuing discussion, for each
cipher we give the reasons why we have chosen to evaluate the cipher, as well
as providing status quo information on its security strength. Table II explains
some of the terms we use in the following discussion. Note that in Table II we
adopt Lenstra and Verheul’s [2001] definition of security margin. The definition
can be understood as follows. Suppose (1) cDES is the number of computations
required to break DES, (2) cX is the number of computations required to break
cipher X , and (3) an attacker that can afford cDES computations starting from
1982, can afford cX computations starting from year y , then the security of ci-
pher X in year y is computationally equivalent to the security of DES in 1982,
or in other words, the security margin of cipher X is y . The year 1982 is chosen
as the baseline because DES was standardized in 1977 and set for review in
1982. If the best known attack against a cipher with key length k is exhaustive
key search, y can be calculated according to Equation 1 [Lenstra and Verheul
2001]:

y = 1982 + 30

23
(k − 56) (1)

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

68 • Y. W. Law et al.

Table II. Terminology in Cryptanalysis

Term Definition

Encryption/decryption oracle An abstraction that is independent of the adversary, but

encrypts/decrypts plaintexts/ciphertexts for the

adversary on request.

Known-plaintext attack An attack whereby the adversary, who has no access to

the encryption or decryption oracle, uses a number of

known plaintext-ciphertext pairs in his analysis to

recover the key.

Chosen-plaintext attack An attack whereby the adversary, who has no access to

decryption oracle, feeds a number of plaintexts of his

choice to the encryption oracle, in order to get the

corresponding ciphertexts that would help in his

analysis to recover the key.

Chosen-ciphertext attack Similar to chosen-plaintext attack, except that the

adversary (1) has access to the decryption oracle

instead of the encryption oracle, (2) the adversary

feeds the oracle with ciphertexts of his choice, and (3)

the adversary uses a potentially different kind of

analysis.

Linear cryptanalysis A known-plaintext attack whereby the adversary

studies the linear approximation to: Plaintext[i1, i2,

. . . , ia] ⊕ Ciphertext[j1, j2, . . . , jb] = Key[k1, k2, . . . ,

kc], where i1, i2, . . . , ia, j1, j2, . . . , jb, k1, k2, . . . , kc
denote fixed bit locations [Matsui 1993].

Differential cryptanalysis A chosen-plaintext attack whereby the adversary

encrypts a pool of plaintext pairs with chosen

differences and filters those pairs that have the

expected ciphertext differences—these pairs reveal

internal behaviour of the cipher that helps the

adversary determine bits of the secret key [Biryukov

1999].

Security margin The year until which breaking the cipher requires more

effort than breaking DES in 1982 [Lenstra and

Verheul 2001].

Hence in the discussion below, when a cipher with 80-bit keys has a security
margin of 2013, or when a cipher with 128-bit keys has a security margin of
2076, we consider the cipher to be “secure.”

2.1 Skipjack

We have chosen to evaluate Skipjack because it is used in TinySec [Karlof et al.
2004], SenSec [Li et al. 2005], and TinyKeyMan [Liu et al. 2005]. As TinySec is
an optional part of TinyOS, the de facto operating system for WSNs, to the user
community of TinyOS, justifying the use of Skipjack seems like a favor waiting
to be fulfilled.

2.1.1 Security. Skipjack is a 64-bit block cipher with an 80-bit key. The
fact that it is declassified by the NSA raises natural suspicions over its secu-
rity. However since its declassification in 1998, Skipjack has resisted years
of cryptanalysis. The best attack on Skipjack with full 32 rounds is still

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 69

exhaustive key search. With reduced rounds, the best known attack is Biham
et al.’s [1999] cryptanalysis with impossible differentials that breaks 31-round
Skipjack slightly faster than exhaustive search using 234 chosen plaintexts, 264

memory, and 278 encryptions. Reichardt and Wagner [2002] observe that as the
nonlinear permutation of Skipjack affects only a quarter of the bits at each
round, it is relatively easy to follow differentials across multiple rounds. How-
ever, they also show that there are no meaningful truncated differentials for
Skipjack with full 32 rounds, providing heuristic evidence that Skipjack may
be secure against truncated differential distinguishing attacks.

Differential cryptanalysis aside, it is easy to see exhaustive key search as
a promising attack against Skipjack due to its relatively short key length of
80 bits, but there is a computationally cheap way to increase the effective key
length of any block cipher. This mechanism, originally conceived for DES by
Rivest in 1984, is known as the DESX contruction [Kilian and Rogaway 1996].
In fact this is the mechanism Li et al. [2005] use to extend Skipjack to what they
call Skipjack-X in their SenSec framework. The mechanism works as follows.
Denote P as the plaintext, K as an 80-bit key, K1 and K2 as two 64-bit keys, then
Skipjack-XK ,K 1,K 2(P) = K2⊕ SkipjackK (K1 ⊕ P). The new key, of Skipjack-X, is
therefore 80 + 64 + 64 = 208 bits long. Applying Kilian and Rogaway’s [1996]
analysis, we can show that an adversary’s advantage at distinguishing between
a Skipjack-X and a random permutation is bounded by t/2(143−log2 m), where t
is the total number of trial encryptions/decryptions the adversary can perform,
and m is the number of plaintext-ciphertext pairs the adversary can obtain. This
means the effective length of Skipjack-X is 143 − log2 m. However, if we apply
Biryukov and Wagner’s [2000] sliding with a twist cryptanalysis on Skipjack-
X, we will get an attack that requires 2(64+1)/2 = 232.5 known plaintexts and
280−1+32.5 = 2111.5 offline trial Skipjack encryptions. This means the 208-bit
keys that are used with Skipjack-X are only about as strong as 111-bit keys—
such a strategy does not seem to constitute a sound investment of memory.
Therefore we do not think of Skipjack-X as a worthy replacement for Skipjack
in WSNs.

To conclude, we note that while mainstream cryptography is moving away
from keys smaller than 128 bits, Skipjack with full 32 rounds is secure as of
today, with a security margin of 2013.

2.2 RC5

We have chosen to evaluate RC5 [Rivest 1995] because RC5 is a well-known
algorithm that has been around since 1995 without crippling weaknesses.
Although distributed.net has managed to crack a 64-bit RC5 key in RSA
Laboratories’ Secret-Key Challenge after 1757 days of computing involving
58,747,597,657 distributed work units, the standard key length of RC5 is 128
bits and RC5 has managed to withstand years of cryptanalysis.

In terms of design, RC5 is an innovative cipher that uses data-dependent
rotations and is fully parameterised in word size, number of rounds, and key
length. Such flexibility is rare among mainstream ciphers. RC5 is also designed
to be suitable for hardware as well as software implementations. Last, Perrig

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

70 • Y. W. Law et al.

et al. [2001], Xue and Ganz [2003] and Liu et al. [2005] choose to use RC5 for
WSNs. We would like to find out if their choice is justified.

2.2.1 Security. RC5 is conventionally represented as RC5-w/r/b, where w,
the word size, is the number of bits in a word of the target computing platform,
r is the number of rounds, and b, the key length, is the number of bytes of a key.
The attacks found up to year 1998 have been summarized in Kaliski and Yin’s
[1998] technical report. The best attack cited is by Biryukov and Kushilevitz
[1998], which breaks RC5-32/12/16 with just 244 chosen plaintexts (compared
with 243 known plaintexts for DES), and RC5-32/16/16 with 261 chosen plain-
texts. Biryukov and Kushilevitz therefore recommend increasing the number
of rounds to at least 18.

After Biryukov and Kushilevitz [1998], Borst et al. [1999] manage to reduce
the storage requirements drastically for attacking RC5 (with 64-bit block size)
and RC6 (with 128-bit block size) using the linear hull effect [Nyberg 1995].
This is known as the first experimentally executed known plaintext attacks on
reduced versions of RC5 (with up to 5 rounds).

Shimoyama et al. [2000] introduce another route of attack based on statistical
correlations derived from χ2 tests. They have managed to derive the last round
key of up to 17 rounds by using a chosen plaintext attack. While Shimoyama
et al. use a chosen plaintext attack, Miyaji et al. [2002] use a known plaintext
attack, which breaks RC5-32/10/16 with 263.67 plaintexts at a probability of 90%.

The attacks described so far are theoretical. Ironically, intended as a se-
curity feature, data-dependent rotation invites implementation-based attacks.
One such attack (on RC5-32/12/16) has been proposed by Handschuh and Heys
[1998] which only needs about 220 encryption timings and a time complexity be-
tween 228 and 240. Kelsey et al. [1998] describe another implementation-based
attack by observing the processor flags.

To conclude, in view of Biryukov and Kushilevitz’s [1998] recommendation
and Shimoyama et al.’s [2000] discovery, RC5-32/18/16 (18 rounds) should be
secure.

2.3 RC6

We have chosen to evaluate RC6 [Rivest et al. 1998] because like RC5, RC6 is
parameterized and has a small code size. RC6 is one of the five finalists that
competed in the AES challenge and according to some AES evaluation reports
[Nechvatal et al. 2000; Worley et al. 2001], it has reasonable performance. Last,
RC6 has been chosen as the algorithm of choice by Slijepcevic et al. [2002] for
WSNs. We are interested in seeing if their choice is justified.

2.3.1 Security. The technical report of the Cryptography Research
and Evaluation Committee (CRYPTREC), Information-Technology Promotion
Agency (IPA) of Japan [CRYPTREC 2001] has a summary of the attacks known
up to year 2001. The first notable attack is by Knudsen and Meier [2000]. Their
attack is based on statistical correlations derived from χ2 tests. By observing
the nonuniformness of the five least significant bits from each of the two Feistel
halves in RC6, they require approximately 213.8+16.2r plaintexts to distinguish

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 71

3 + 2r-round RC6 from a pseudorandom permutation. For RC6 with 17 rounds,
they estimate that at most, about 2118 plaintexts are required.

At the same time, Gilbert et al. [2000] present a theoretical attack of 14-
round RC6 based on an iterative statistical weakness found in RC6’s round
function. The attack requires 2118 known plaintexts, a memory size of 2112 and
2122 operations.

Takenaka et al. [2002, 2003] propose the Transition Matrix Computation
technique for evaluating security against χ2 attacks, by which they are able to
deduce the “weakest key” of RC6 against χ2 attacks.

Shimoyama et al. [2002] show that the 64-bit target extended key of 18-round
RC6 with a weak key (which exists once in every 290 keys), can be recovered
with a probability of 95% by multiple linear cryptanalysis with 2127.423 known
plaintexts, a memory of size 264, and 2193.423 computations of the round-function.

To conclude, RC6-32/20/16 (20 rounds) is secure.

2.4 Rijndael

We have chosen to evaluate Rijndael [Daemen and Rijmen 1999] because
Rijndael is the Advanced Encryption Standard, mandated by the NIST of
the United States, chosen after extensive scrutiny and performance evalu-
ation (http://csrc.nist.gov/encryption/aes). It is also one of the ciphers
recommended by the New European Schemes for Signature, Integrity and
Encryption (NESSIE) Consortium (www.cryptonessie.org), and Japan’s
CRYPTREC [2003]. Rijndael, as the AES, is well studied and there are efficient
implementations on a wide range of platforms (www.rijndael.com). We would
however like to obtain first-hand experience of evaluating Rijndael on our
particular platform, which has never been studied before during the evaluation
process of the AES.

2.4.1 Security. Like most modern block ciphers, Rijndael is designed with
resistance against differential and linear cryptanalysis in mind, using the lat-
est results in cryptographic research [Daemen and Rijmen 1999]. For example,
Cheon et al.’s [2002] impossible differential cryptanalysis requires 291.5 cho-
sen ciphertexts and 2122 encryptions to attack 6-round Rijndael-128 (128-bit
keys). Gilbert et al. [2000] describe (1) an attack on 7-round Rijndael-196 and
Rijndael-256 with 232 chosen plaintexts and a complexity of about 2140, and (2)
an attack on 7-round Rijndael-128 with 232 chosen plaintexts and a computa-
tional complexity slightly less than exhaustive search. Ferguson et al. [2001a]
report a related-key attack of 9-round Rijndael-256 with time complexity 2224,
which is of course far from practical. No attack is known for Rijndael with more
than 9 rounds.

On the other hand, although Rijndael has been chosen as the AES, the secu-
rity of Rijndael has gone through twists and turns of controversy. The algebraic
nature of Rijndael [Ferguson et al. 2001b], has interestingly opened up possi-
ble avenues of other nontraditional attacks as summarized in the Crypto-Gram
Newsletter of September 2002 [Schneier 2002a]. It started with Courtois and
Pieprzyk [2002a, 2002b] presenting evidence that the security of Rijndael might

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

72 • Y. W. Law et al.

not grow exponentially as intended with the number of rounds. Their technique
is based on expressing the S-boxes of Rijndael in an overdefined system of mul-
tivariate quadratic equations that can be solved by an algorithm called XSL.
XSL is in turn based on XL [Courtois et al. 2002]. The security of Rijndael
therefore lies with the computational complexity of XL, which to date remains
an open problem [Courtois and Patarin 2003]. In spite of Moh’s [2002] dispute,
whether the technique would not work, remains to be proven [Schneier 2002b].
In the meantime, Murphy and Robshaw [2002b] derive an alternative repre-
sentation of Rijndael that is easier to cryptanalyse, by embedding Rijndael in
a cipher called BES which uses only simple algebraic operations in GF(28).
They show that Rijndael encryption can then be described by an extremely
sparse overdetermined multivariate quadratic system over GF(28), whose so-
lution would recover the key. In another paper, Murphy and Robshaw [2002a]
argue that while XSL does not have estimates accurate enough to substantiate
claims of the existence of a key recovery attack, XSL does help solve their GF(28)
system of equations more efficiently than Courtois et al.’s GF(2) system of equa-
tions. Combining Coppersmith’s [2002] correction of Courtois et al.’s estimates,
Murphy et al. further deduce that the security of Rijndael-128 would be reduced
from the theoretical complexity of exhaustive key search, 2128 to 2100, if XSL is
a valid technique.

On the other front, Fuller and Millan [2002] unravel serious linear redun-
dancy in the only nonlinear component—the S-box, of Rijndael: the 8 × 8 S-box
behaves actually like a 8 × 1 S-box. They, by studying the invariance proper-
ties of the local connection structure of affine equivalence classes, discover that
the outputs of the S-box are all equivalent under affine transformation. The
essence of their discovery can be summarized in the following simple mathe-
matical expression: Let bi(x) and bj (x) be two distinct outputs of the S-box, then
there exists a nonsingular 8 × 8 matrix Dij and a binary constant ci j such that
bj (x) = bi(x)Dij ⊕ ci j .

Independently of the above development, Filiol shocked the scientific com-
munity in January 2003 by announcing a break of Rijndael with his plaintext-
dependent repetition codes cryptanalysis technique [Filiol 2003]. By detecting
bias in the Boolean functions of Rijndael, Filio claimed that he was able to
obtain 2 bits of a Rijndael key with only 231 ciphertexts and a computational
complexity of mere O(231). Fortunately, several independent cryptographers
were quick to dismiss the claim [Courtois et al. 2003].

To conclude, the research on Rijndael has entered an interesting era. More
and more previously unknown properties are now being discovered and ana-
lyzed [Barkan and Biham 2002; Tri Van Le 2003; Youssef and Tavares 2002].
Despite the above debate, we are adopting the recommendation of NESSIE
[Preneel et al. 2003] and CRYPTREC [2003] that Rijndael is secure.

2.5 Twofish

We have chosen to evaluate Twofish [Schneier et al. 1998] because it allows a
wide range of tradeoffs between size and speed. It is also designed to be efficient
on a wide range of platforms. Since Twofish is more efficient than RC6 on some

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 73

embedded processor platforms, for example, on 8-bit Z80 [Sano et al. 2001] and
on 8-bit 6805 [Keating 1999], and since we are investigating RC6, Twofish is
also included in our investigation.

2.5.1 Security. One of the earliest cryptanalytic attempts [Mirza and
Murphy 1999] from outside the Twofish design team found flaws in the origi-
nal security assessment of the key schedule, but this resulted in no practical
implication. One of the unprecedented features of Twofish is its key-dependent
S-boxes (conventional S-boxes are fixed), but Murphy [2000] and Murphy and
Robshaw [2002c], using primarily (1) the fact that the key-dependent S-boxes
are determined only by half of the key, and (2) differential cryptanalysis, show
that key-dependent S-boxes, as used in Twofish, provide no additional security
over well-designed fixed S-boxes, and may in fact improve the range of options
available to attackers. Nevertheless, it is still an open question whether any
practical attack will result from Murphy et al.’s analysis [Schneier et al. 1999a;
Kelsey 2000]. Biham and Furman’s [2000] impossible differential cryptanalysis
needs 1.82 × 2128 one-round computations and 264 chosen plaintexts to break
6-round Twofish with 128-bit keys. The best known attack is Lucks’ [2002] sat-
uration attack, which requires 2127 chosen plaintexts and 2126 encryptions (two
times faster than exhaustive search) to break 7-round Twofish with 128-bit
keys.

To conclude, 16-round Twofish is secure.

2.6 MISTY1

We have chosen to evaluate MISTY1 [Matsui 1997] because MISTY1 is one
of the CRYPTREC-recommended [2003] 64-bit ciphers and is the predecessor
of KASUMI, the 3GPP-endorsed encryption algorithm [3GPP 1999]. MISTY1
is specifically designed to resist differential and linear cryptanalysis. MISTY1
is designed for high-speed implementations on hardware as well as software
platforms by using only logical operations and table lookups. We find MISTY1
to be particularly suitable for 16-bit platforms. MISTY1 is a royalty-free open
standard documented in RFC2994 [Ohta and Matsui 2000].

2.6.1 Security. Babbage and Frisch [2001] demonstrate the possibility of
a 7th order differential cryptanalytic attack on 5-round MISTY1. According
to them, none of the S-boxes with optimal linear and differential properties
has an optimal behaviour with respect to higher order differential cryptanal-
ysis, however as improvement, the number of rounds of the FI function could
be increased. As we will see later, KASUMI, derived from MISTY1, incorpo-
rated such improvement, in that it has four instead of three S-boxes in its FI
function.

Kühn [2001] found an impossible differential attack on 4-round MISTY1
using 238 chosen plaintexts and 262 encryptions. In the same paper, a collision-
search attack has also been described—the attack requires 228 chosen plain-
texts and 276 encryptions. In a later paper, Kühn [2002] shows that the FL
function introduces a subtle weakness in 4-round MISTY1. This weakness al-
lows him to launch a slicing attack with as few as 222.25 chosen plaintexts, with

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

74 • Y. W. Law et al.

a memory requirement of 234.2 bytes and time complexity of 245, on 4-round
MISTY1.

The best known attack on 5-round MISTY1 so far is Knudsen and
Wagner’s [2002] integral cryptanalysis, at a cost of 234 chosen plaintexts and
248 time complexity.

To conclude, MISTY1 with full 8 rounds is secure.

2.7 KASUMI

We have chosen to evaluate KASUMI [3GPP 1999] because KASUMI, as the
3GPP-endorsed encryption algorithm [3GPP 1999], is presumably well-suited
for embedded applications, and has gone through considerable expert scrutiny.

2.7.1 Security. KASUMI more or less inherits the security and perfor-
mance benefits of MISTY1.

At the same time, reporting attacks on MISTY1 and MISTY2, Kühn [2001]
is also able to extend the attacks to KASUMI. His impossible differential attack
on 6-round KASUMI requires 255 chosen plaintexts and 2100 encryptions.

Kang et al. [2001a, 2001b] prove that 3-round KASUMI is not a pseudoran-
dom permutation ensemble but 4-round KASUMI is a pseudorandom permu-
tation ensemble. However Tanaka et al. [2001] show that 4-round KASUMI
without the FL functions can be attacked using effective 2nd order differen-
tials. The attack can be used to find the 6 sub-keys at the 4th round, at a cost
of 1416 chosen plaintexts and 222.11 times FO function operations.

To conclude, KASUMI with full 8 rounds is secure.

2.8 Camellia

We have chosen to evaluate Camellia [Aoki et al. 2001a] because Camellia is one
of the NESSIE- and CRYPTREC-recommended [2003] 128-bit ciphers. Camel-
lia is designed for high-speed implementations on hardware as well as software
platforms by using only logical operations and table lookups. Aoki et al. [2001b]
claim their hardware implementation of Camellia occupies only 7.875K gates
using a 0.11 μm CMOS ASIC library and is in the smallest class among all
existing 128-bit block ciphers. Camellia is designed not only to be resistant
to differential cryptanalysis, linear cryptanalysis, higher order differential at-
tacks, interpolation attacks, related-key attacks, truncated differential attacks,
boomerang attacks, and slide attacks, but also with a large safety margin in
view of anticipated progress in cryptanalysis techniques [Aoki et al. 2001a;
Matsui and Tokita 2000]. Futhermore, Camellia is royalty-free.

2.8.1 Security. He and Qing [2001] discover that the Square attack
[Daemen et al. 1997] is not only applicable to the Square block cipher but also
to ciphers with a Feistel structure. The complexity of their attack on 6-round
Camellia is 3328 chosen plaintexts and 2112 encryptions. Sugita et al. [2001]
found a nontrivial 7-round impossible differential. Lee et al.’s [2002] truncated
differential cryptanalysis of 7-round Camellia without the FL/FL−1 functions,
requires only 192 encryptions, but 282.6 chosen plaintexts, to recover an 8-bit
key. Yeom et al. [2002] propose a Square attack on 9-round Camellia with

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 75

256-bit keys, at a cost of 260.5 chosen plaintexts and 2202.2 encryptions. Hatano
et al.’s [2002] attack of 11-round Camellia with 256-bit keys, requires 293 cho-
sen plaintexts and 2255.6 encryptions, which is just a little less than brute force
search.

To conclude, 18-round Camellia is secure.

2.9 Other Ciphers That Are Not Considered

-DES [Schneier 1996] is not considered because it is inefficient, involving 3
encryptions. IDEA and SAFER++ (of the SAFER family of ciphers) are not
considered, because there are concerns in the NESSIE consortium about
IDEA’s key schedule, and certain structural properties of SAFER++ [NESSIE
Consortium 2003]. Among the AES finalists, MARS [Burwick et al. 1999] and
Serpent [Anderson et al. 1998] are not considered. For MARS, the reason
is its high algorithmic complexity, which results in the highest RAM and
ROM usage among the AES finalists [Nechvatal et al. 2000; Sano et al. 2001;
Schneier and Whiting 2001], and it actually received the least number of
votes during the last round of voting for the AES. While Serpent was the
1st runner-up during the last round of voting, it consistently performs poorly
in software encryption and decryption [Nechvatal et al. 2000; Worley et al.
2001] due to its large security margins—researchers who voted for Serpent
prioritized security over performance. MARS and Serpent also have not been
submitted to, nor considered by NESSIE or CRYPTREC. Blowfish [Schneier
1994] is not considered because it is superseded by Twofish, which improves
on Blowfish’s key schedule, and en/decryption speed [Schneier et al. 1999b].
SHACAL-2 [Handschuh and Naccache 2000] is a new 256-bit hash function-
based block cipher recommended by NESSIE, but has not been been studied by
NIST or CRYPTREC. The specific reasons it is not chosen for our investigation
are that (1) the security offered by a key length of 256 bits is out of proportion
with the relative lack of physical security in sensor nodes; (2) using 256-bit
keys requires twice the storage that is required by 128-bit keys, causing an
unnecessary strain on the available memory that is already scarce—note that
256-bit keys are not used in TinySec [Karlof et al. 2004] either.

3. METHODOLOGY AND CONSIDERATION

For benchmarking, we consider: (1) the cipher parameters, (2) the cipher oper-
ation modes, (3) the compiler toolchain, and (4) the implementation sources.

3.1 Cipher Parameters

Table III lists the parameters we have adopted for each cipher (some of them ac-
tually have fixed, unadjustable parameters but we list them anyway for clarity’s
sake). The number of rounds for each cipher is nominal except for RC5, where
18 is used instead of the nominal 12, for security reasons already described
in Section 2.2. Although RC5 and RC6 allow variable word size, without the
backing of relevant cryptanalytic research, we are not sure how many rounds
to use if we pick a nonstandard word size of 16 bits, which is the word size of

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

76 • Y. W. Law et al.

Table III. Cipher Parameters (Lengths in Bytes)

Cipher Skipjack RC5 RC6 Rijndael Twofish MISTY KASUMI Camellia

Block length 8 8 16 16 16 8 8 16

Key length 10 16 16 16 16 16 16 16

Rounds 32 18 20 10 16 8 8 18

Table IV. Comparison of Operation Modes

Operation Mode On Ciphertext Error. . . On Synchronization Error. . .

Cipher-Block Chaining (CBC) An erroneous bit affects

the entire current block

and the corresponding

bit of the next block.

Lost blocks need to be

retransmitted to decrypt

the next block.

Cipher Feedback Mode (CFB) An erroneous bit affects

the corresponding bit of

the current block and

the entire next block.

Lost blocks need to be

retransmitted to decrypt

the next block.

Output Feedback Mode (OFB) An erroneous bit affects

the corresponding bit of

the current block.

Lost blocks do not need to

be retransmitted.

Counter (CTR) Similar to OFB. Similar to OFB.

our platform. Therefore, for RC5 and RC6, we are using the standard word size
of 32 bits.

3.2 Operation Modes

The naïve approach of encrypting a message longer than one block, by divid-
ing the message into multiple blocks and encrypting the blocks separately, is
called the electronic codebook mode (ECB) mode. ECB is insecure since an adver-
sary can construct valid ciphertexts from the original ciphertext by arbitrarily
rearranging, repeating and/or omitting blocks from the original ciphertext. The
more secure operation modes in Table IV are used in practice. These operation
modes do not only affect the security, but also the energy efficiency of the en-
cryption scheme, which will be measured in the following investigation.

As stated in Table IV, different operation modes also have different fault
tolerance characteristics against ciphertext errors (where ciphertext bits are
changed during transmission), and synchronization errors (where whole cipher-
text blocks are lost), but we will explain why these characteristics do not really
matter.

In case of a ciphertext error, a node would typically either request the cor-
responding packet to be retransmitted, or ignore the error. If retransmission is
requested, regardless of the operation mode used, the same penalty, in the form
of energy required for transmitting a packet, applies. Otherwise, using differ-
ent modes only means putting up with different degrees of error, for example,
CBC and CFB have to put up with more errors compared with OFB and CTR
according to Table IV.

To put synchronization error into context, we first need to know how cipher-
text blocks are transmitted. Usually, a network packet corresponds to one or
more ciphertext blocks, and every packet contains an initialization vector (IV)

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 77

in the header, allowing it to be decrypted independently from other packets, as
is the case with TinySec. So a lost packet does not constitute a synchronization
error, unless the packet is fragmented, and one or more of the fragments are
lost. When a node discovers it has lost a packet fragment, there are typically
3 options: (1) request the fragment to be retransmitted, (2) abort receiving all
ensuing fragments, or (3) wait for the ensuing fragments to arrive naturally
until a time-out. If option 1 is taken, then the same retransmission penalty ap-
plies to all operation modes. If option 2 is taken, all ensuing fragments are lost
and so the same penalty in the form of information loss applies to all operation
modes. If however option 3 is taken, only OFB and CTR can decrypt all received
fragments (all fragments that arrived naturally) according to Table IV. That
is to say, in theory, using option 3 means putting up with different degrees of
information loss according to the operation mode used. For example, if 3 frag-
ments are transmitted, each of the fragments contains 4 ciphertext blocks, and
if only the 1st and 3rd fragment are successfully received, OFB and CTR would
be able to decrypt all ciphertext blocks in the 1st and 3rd fragment correctly,
whereas CBC and CFB would only be able to decrypt the ciphertext blocks in
the 1st fragment, and the last 3 blocks in the 3rd fragment. In practice, when
one fragment is lost, ensuing fragments would likely be lost too [Szewczyk et al.
2004], in which case the same information loss penalty applies to all operation
modes.

Summarizing from the above analysis, in the event of a ciphertext error or
synchronization error, using different modes either leads to the same (whether
energy or information loss) penalty, or different information loss penalties. In
other words, the different fault tolerance characteristics of operation modes
do not result in different penalties in energy. We can thus safely consider the
energy efficiency of an operation mode solely from an algorithmic point of view.

Some notes about our implementation: our CBC supports ciphertext steal-
ing [Schneier 1996], so padding is not required. For CFB and OFB, we are using
a feedback size that is equal to the block size.

3.3 Compilers

For compilation, we are currently only using IAR Systems’ MSP430 C Com-
piler V2.20A/W32 (www.iar.com) with a patched linker, IAR Universal Linker
of version 4.56F. For debugging and profiling, we use IAR Systems’ Embed-
ded Workbench 3.2 with the integrated C-Spy Debugger and profiler plug-in.
Another viable compiler is the GNU C compiler in the MSPGCC toolchain
(mspgcc.sf.net), however we are not using it due to the lack of profiling sup-
port by the toolchain. That said, we do not rule out the possibility of performing
our benchmarks using the toolchain as it continues to mature in the future.
Note that the chip supplier itself, Texas Instruments, offers only the Kickstart
version of the toolchain we are using.

In our benchmarks, we compare maximum size optimization with maximum
speed optimization. The IAR compiler supports 3 levels of optimization in terms
of size or speed: High, Medium and Low, as well as 4 kinds of transformations:
common subexpression elimination (ELIM), loop unrolling (UNROLL), function

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

78 • Y. W. Law et al.

Fig. 1. Key expansion strategies for Skipjack.

inlining (INLINE), and code motion (MOTION). How these optimizations and trans-
formations are used is described in the next section.

3.4 Implementation Sources

To avoid reinventing the wheel, we try to use and improve as much existing
source code as possible. The following describes how and from where the im-
plementation of each cipher is adapted.

The implementation of Skipjack is adapted from TinySec. Skipjack consists
of executing two shift register algorithms called Rule A and Rule B: 8 rounds of
Rule A, then 8 rounds of Rule B, then 8 rounds of Rule A and 8 rounds of Rule
B again, resulting in a total of 32 rounds. At each round, 4 bytes of it are used,
and when the key is exhausted, it is used from the beginning again (wrapped
around). This offers a lot of freedom in the implementation. For example, to min-
imize storage, we can use exactly as many bytes for the expanded key as there
are in the user key—our size-optimized implementation adopts this strategy.
For another example, to minimize the number of instructions, we can expand
the user key to 4 × 32 bytes so that the key pointer never has to wrap around
(Figure 1(a))—TinySec’s implementation adopts this strategy. As a compromize,
we can also expand the key such that the key pointer only wraps around after 8
rounds of Rule A or Rule B (Figure 1(b))—our speed-optimized implementation
adopts this strategy. Measurements show that compared to TinySec’s strategy,
our strategy not only saves 90 bytes of memory per expanded key but is also
slightly more efficient when speed-optimized.

The implementation of RC5 is adapted from that of OpenSSL (www.openssl.
org). The speed-optimized version is basically the same as the size-optimized
version, with some loops unrolled.

RC6 is implemented from scratch according to the specification. The speed-
optimized version does not have its loops unrolled because the resultant code
size exceeds 10 kB, with marginal increase in energy efficiency.

The implementation of Rijndael is adapted from that of OpenSSL. In
OpenSSL, Rijndael is fully accelerated using 10 tables, occupying 10 kB of
memory (ROM in our case). Following Hachez et al.’s [1999] suggestion, we
use only 4 tables—2 tables for S-boxes, 2 tables for combined S-box lookups,
matrix multiplications and rotations—reducing the table space from 10 KB to
2600 bytes, in both our size- and speed-optimized implementations. In principle,

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 79

Table V. Optimizations and Transformations

Cipher Size Optimization Speed Optimization

Skipjack High High, ELIM, MOTION

RC5, RC6, Rijndael High, ELIM, MOTION High, ELIM

Twofish High High

MISTY1, KASUMI Low, ELIM∗ Low

Camellia High, ELIM, MOTION High, ELIM, MOTION

∗Applied only to the key setup routine.

we can reduce the code size of the size-optimized version further by doing away
with the last 2 tables, but the resultant code size generated by the IAR compiler
far exceeds the table space saved. So the number of tables used in our case can
be considered minimum.

The implementation of Twofish is adapted from Whiting’s [1998] optimized
implementation. Whiting’s implementation by design offers 4 layers of perfor-
mance tradeoffs, in decreasing en/decryption speed: (1) full keying, (2) partial
keying, (3) minimal keying, and (4) zero keying. All options, except zero keying,
are however impractical for MSP430F149, as the amount of table space for the
key schedule is at least 1 KB, which is half the size of the RAM. Therefore, our
size-optimized implementation of Twofish is based on Whiting’s implementa-
tion with zero keying. Our speed-optimized implementation is also based on
Whiting’s implementation with zero keying, but with Worley et al.’s [2001] op-
timization incorporated.

The implementation of MISTY1 is adapted from Matsui and Tokita [2000].
In our size-optimized version, only the minimum number of expanded keys
are stored in the RAM, while in our speed-optimized version, more expanded
keys are stored to speed up en/decryption. Attemps to accelerate MISTY1
further using Botan’s (botan.randombit.net) table-lookup technique fail, be-
cause the IAR compiler fails to terminate on medium- and high-level speed
optimization.

The implementation of KASUMI is adapted from the reference implementa-
tion in the specification [3GPP 1999]. The speed-optimized version is basically
the same as the size-optimized version, with some loops unrolled.

The implementation of Camellia is adapted from the reference implementa-
tion [Mitsubishi Electric Corp. 2001]. The size-optimized and speed-optimized
versions are the same code, but compiled with different compiler options.

The invocation interface of each cipher follows that of OpenSSL. Table V
lists the levels of optimization and kinds of transformations we use for each
cipher. Furthermore, all code is compiled to use the hardware multiplier. For
MISTY1 and KASUMI, the IAR compiler has trouble applying Medium/High
size/speed optimization, hence only Low optimization is used. Our source code
and benchmark results can be found at http://wwwes.cs.utwente.nl/eyes/
crypto_test.zip.

4. RESULTS

We have performed our measurements in standalone mode—without interac-
tion with an OS. We have taken care in making the interface of the cipher

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

80 • Y. W. Law et al.

implementations as uniform as possible, so that no difference in performance
is a result of the difference in the interfaces. Our benchmark parameters are
memory and CPU cycles. The results in terms of these two parameters are
given in Section 4.1 and Section 4.2, followed immediately by our observation
and analysis in Section 4.3.

4.1 Memory

We refer to two types of memory: (1) code memory, in the form of flash mem-
ory and (2) data memory, in the form of RAM. The memory organization of
MSP430F149 is such that data memory ranges from address 0200h to 09FFh,
whereas code memory ranges from 01100h to 0FFFFh. The IAR compiler gen-
erates 3 types of segments for MSP430: CODE, CONST and DATA. A typical
policy is to put CODE and CONST segments in the code memory, and DATA
segments in the data memory. Each segment type is further divided into the
following subtypes:

(1) CODE: CODE (program code), CSTART and INTVEC;

(2) CONST: DATA16 AC, DATA16 C (constants including string literals),
DATA16 ID (initial values of static and global variables) and DIFUNCT;

(3) DATA: CSTACK (the C runtime stack), DATA16 AN, DATA16 I (initialised
variables), DATA16 N, DATA16 Z and HEAP.

Of all the above segment subtypes, we use only the underlined ones. The mem-
ory usage of these segments can be read off the list files generated by the
compiler, and the results are shown in Tables VI and VII.

In Table VI, some entries have two figures separated by a comma. The first
figure applies to encryption, and the second, decryption, for example, size-
optimized Rijndael needs 14 bytes of RAM for setting up an encryption key,
but 30 bytes for setting a decryption key. When an entry has only one figure,
the figure for encryption equals the figure for decryption.

In Table VII, the code memory for each CBC module takes into account (1)
the code memory for key setup, (2) the code memory for barebone encryption
and decryption, (3) the code memory for lookup tables, as well as (4) the code
memory for CBC-specific parts. CFB, OFB and CTR do not use the decryp-
tion function [Schneier 1996], hence the code memory for each CFB/OFB/CTR
module is similarly calculated except that the code memory for decryption, de-
cryption key setup and lookup tables for decryption are not included. Note that
the storage for plaintext, ciphertext, and cipher key is not included in Table VI
nor Table VII.

4.2 CPU Cycles

The computational complexity of an algorithm translates directly to its energy
consumption. Assuming the energy per CPU cycle is fixed (which is justified in
the Appendix), then by measuring the number of CPU cycles executed per byte
of plaintext processed, we get the amount of energy consumed per byte. For
example MSP430F149 draws a nominal current of 420 μA at 3 V and at a clock
frequency of 1 MHz in active mode [Texas Instruments, Inc. 2001]—this means

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 81

Table VI. Data Memory Requirements

Component Skipjack RC5 RC6 Rijndael Twofish MISTY1 KASUMI Camellia

Size-optimized:

Expanded key 12 152 176 176 168 32 128 208

Key setup 4 64 60 14, 30 58, 50 4 58 170

CBC 54 58 94 92, 96 88, 92 56 56 142

CFB 38 42 62 60 56 40 40 110

OFB 38 42 62 60 56 40 40 110

CTR 40 44 64 62 58 42 42 112

Speed-optimized:

Expanded key 38 152 176 176 168 64 128 208

Key setup 6 64 58 10, 26 56, 44 4 38 184

CBC 56 62, 58 98 96, 100 90, 94 60 60 146

CFB 36 42 62 60 54 40 40 110

OFB 36 42 62 60 54 40 40 110

CTR 38 44 64 62 56 42 42 112

Table VII. Code Memory Requirements

Mode Skipjack RC5 RC6 Rijndael Twofish MISTY1 KASUMI Camellia

Size-optimized:

CBC 1812 2076 2732 8684 9612 7972 9842 19864

CFB 850 1104 1328 4276 7786 4538 5446 12382

OFB 778 1032 1256 4204 7714 4466 5374 12310

CTR 856 1110 1406 4354 7864 4544 5452 12460

Speed-optimized:

CBC 2610 7502 3174 9984 12538 8596 11078 29516

CFB 1068 4290 1340 4590 9302 4906 5994 17148

OFB 988 4210 1260 4510 9222 4826 5914 17068

CTR 1066 4288 1412 4662 9374 4904 5992 17220

that the energy per instruction cycle (for the processor alone) is theoretically
1.26 nJ.

To evaluate the ciphers, we must determine the range of plaintext lengths
that is of greatest interest to WSNs. Here is how we arrive at the choice of
8 to 96 bytes. The lower limit of 8 bytes is close to the minimum packet size
(usually the size of control packets) used in mainstream link-layer protocols [Ye
et al. 2002; van Dam and Langendoen 2003; Polastre et al. 2004]. The upper
limit of 96 bytes is close to the maximum packet size used for simulating and
benchmarking WSN protocols [Polastre et al. 2004; van Dam and Langendoen
2003].

Figure 2 shows our measurements for CBC encryption. CBC decryption con-
sumes a slightly different number of CPU cycles, but the relative ordering be-
tween the various ciphers remains the same. Since an RC5/RC6 en/decryption
executes a different number of rotations depending on the key and the plain-
text/ciphertex, the figures for RC5 and RC6 in Figure 2 are obtained by aver-
aging over 450 encryptions using a different pseudorandomly generated key
and plaintext each time. Only 450 encryptions are used because (1) the keys
and plaintexts are pseudorandomly generated offline and downloaded to the
60 KB ROM of the MSP430F149, and (2) they can be done in under a minute on

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

82 • Y. W. Law et al.

Fig. 2. CPU usage of CBC encryption when (a) size-optimized, and (b) speed-optimized.

the profiler. That the plots for the 64-bit block ciphers: Skipjack, RC5, MISTY1
and KASUMI, appear as straight lines, should be interpreted as follows: the
measurements are only taken at full block lengths for these ciphers. Were the
measurements taken at nonfull block lengths, the plots for these ciphers would
appear jagged-like, just as the plots for other, 128-bit block ciphers do. When
size-optimized, the CPU cycles per byte of Rijndael, Skipjack and KASUMI are
only a few clock cycles apart, with Rijndael slightly more efficient than Skipjack,
and Skipjack slightly more efficient than KASUMI at large packet sizes.

For CFB, OFB, and CTR, with the exception of RC5 and RC6, we found that
the number of CPU cycles consumed per byte, y , can be approximated by

y ≈ C f + xCb + ⌈ x
B

⌉
CB

x
(2)

where x is the plaintext length, B is the cipher’s block length (both in bytes)
and C f , Cb, and CB are constants. In Equation 2, the first term, C f , accounts
for the function call overhead, the second term, xCb, accounts for the overhead
of organizing x bytes into B-byte blocks, and the last term accounts for the ac-
tual en/decryption process, and in CTR’s case the increment of a counter. This
approximation does not apply to CBC because with ciphertext stealing, CBC
involves more complicated computation. This approximation does not apply to
RC5 and RC6 either because an RC5/RC6 en/decryption executes a different
number of rotations depending on the data and the key, resulting in a non-
constant value for CB. Thus for RC5 and RC6, the following equation is more
appropriate:

y ≈ C f + xCb + ⌈ x
B

⌉
VB

x
(3)

where VB is a variable. Table VIII lists the values of C f , Cb, CB (for Skipjack,
Rijndael, Twofish, MISTY1, KASUMI and Camellia), and the average value
of VB (for RC5 and RC6) obtained through least squares fitting. The standard
error of each of the constants is less than 10−11. Note that CFB, OFB and
CTR consume exactly the same number of CPU cycles for both encryption and
decryption.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 83

Table VIII. Values of C f , Cb, CB (or VB) for CFB, OFB and CTR

Mode Param. Skipjack RC5 RC6 Rijndael Twofish MISTY1 KASUMI Camellia

Size-optimized:

C f 94 94 94 94 94 94 94 94

CFB Cb 51 51 51 51 51 51 51 51

CB(VB) 3550 9241 16924 6537 8230 3363 3849 11949

C f 82 82 82 82 82 82 82 82

OFB Cb 27 27 27 27 27 27 27 27

CB(VB) 3550 9241 16923 6537 8230 3363 3849 11949

C f 90 90 90 90 90 90 90 90

CTR Cb 33 33 33 33 33 33 33 33

CB(VB) 3593 9285 16982 6594 8287 3406 3892 12006

Speed-optimized:

C f 86 86 86 86 86 86 86 86

CFB Cb 35 35 35 35 35 35 35 35

CB(VB) 1594 8322 16279 4573 4866 2859 3561 5885

C f 82 82 82 82 82 82 82 82

OFB Cb 27 27 27 27 27 27 27 27

CB(VB) 1594 8322 16278 4573 4866 2859 3561 5885

C f 90 90 90 90 90 90 90 90

CTR Cb 33 33 33 33 33 33 33 33

CB(VB) 1637 8366 16328 4622 4915 2902 3604 5934

Fig. 3. CBC vs CFB vs OFB vs CTR for Rijndael encryption when (a) size-optimized, and

(b) speed-optimized.

We now look at the operation modes. Although Figure 3 only compares
the operation modes in the context of Rijndael encryption, the same compar-
ison applies to all other ciphers. Figure 3 shows that in terms of efficiency,
OFB > CTR > CFB > CBC when size-optimized (‘>’ meaning ‘is more efficient
than’). When speed-optimized, OFB is still the most efficient mode, but CBC >

CFB > CTR at plaintext lengths = integer × block size, and CFB > CTR >

CBC at other plaintext lengths—this is when ciphertext stealing is activated,
thereby degrading the efficiency of CBC. Anyhow the performance difference be-
tween all modes is smaller when they are speed-optimized than when they are
size-optimized.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

84 • Y. W. Law et al.

Table IX. CPU Cycles for Key Setup (per Key)

Operation Skipjack RC5 RC6 Rijndael Twofish MISTY1 KASUMI Camellia

Size-optimized:

Enc 163 44927 45701 ∗1637 +11187 977 2564 23211

Dec 163 44927 45701 9832 10696 977 2564 23211

Enc→Dec 0 0 0 8195 10696 0 0 0

Dec→Enc 0 0 0 1637 491 0 0 0

Speed-optimized:

Enc 187 40579 43246 1195 8049 615 1485 15335

Dec 187 40579 43246 5591 7553 615 1485 15335

Enc→Dec 0 0 0 4396 7553 0 0 0

Dec→Enc 0 0 0 1195 496 0 0 0

∗Applicable only to CBC mode; 1717 cycles in CFB/OFB/CTR mode.
+Applicable only to CBC mode; 10707 cycles in CFB/OFB/CTR mode.

Note:

(1) Enc (Dec) = setting up an encryption (decryption) key from scatch.

(2) Enc→Dec (Dec→Enc) = converting an encryption (decryption) key to a decryption (encryption) key.

Apart from en/decryption, we are also interested in the efficiency of the
key setup algorithms. Table IX has the results. Notice that only Rijndael and
Twofish incur overhead when converting an encryption key to a decryption key,
and converting a decryption key to an encryption key. For Skipjack, the speed-
optimized version performs worse than the size-optimized version because the
expanded key used in the speed-optimized version is 38 bytes long compared
with 12 bytes in the size-optimized version (the difference in expanded key
length is explained in the next section). Using a longer expanded key allows
en/decryptions to execute faster.

4.3 Observation and Analysis

First about the operation mode. According to the results in the previous section,
OFB is the most energy-efficient mode, and CBC is the least energy-efficient
mode when there are partial (plaintext/ciphertext) blocks. OFB is the obvious
choice if we only consider the case of two communicating parties. However
energy-efficient communications in WSNs often require more than two parties
to be involved in a secure group, for example in the form of passive partic-
ipation [Zhu et al. 2003]. In passive participation, a node decides whether to
transmit its own packets based on the packets it received from its neighbours—
not reporting data that are superseded by a neighbour’s, helps save
energy.

Using OFB, and for that matter CFB and CTR, effectively in a group setting is
problematic. For example in a group composed of nodes A, B and C, all sharing
the same key K and the same IV n (or counter in case of CTR mode), when A
broadcasts a packet encrypted with K and n, if B succeeds but C fails to receive
the packet, C would not know it should use a different IV than n. If C decides
to send a packet encrypted with K and the same IV n, all is lost because the
IV in the OFB/CFB/CTR mode can never be reused. A suggestion to overcome

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 85

this is to use a longer IV and to partition the IV space by node ID. In this
approach, the IV can be variable in length if the group communication protocol
is to dynamically accommodate a variable number of members at the expense
of protocol complexity. If the IV is fixed according to the maximum supported
group size, bandwidth and energy are wasted whenever the actual group size
is lower than the maximum supported group size. Either way, using OFB in the
group setting is awkward and not energy-efficient. CBC in contrast is easier
and safer to use for group communications [Karlof et al. 2004]. CBC is not the
most efficient mode, but we may find comfort in the fact that CBC is actually
quite close to other operation modes in efficiency when speed-optimized, and
the difference only gets smaller with increasing plaintext length according to
Equation 2.

Next we analyze Figure 2 and Tables VI, VII, VIII, and IX cipher by cipher:
Skipjack: Skipjack produces the shortest expanded key, and requires the

least code and data memory. When size-optimized, it is slightly less energy-
efficient than Rijndael, but when speed-optimized, it is the most energy-efficient
cipher.

RC5: RC5 requires little code memory but has poor energy efficiency because
multiplication and rotation are the Archilles’ heel of MSP430F149: multiplica-
tion takes 9 cycles and rotation can only be done one bit at a time. It is for the
same reason that speed optimization does not improve the energy efficiency of
RC5 significantly.

RC6: Like RC5, RC6 is lean in code size. The code size is in the range of 1 KB,
close to the code size of Sano et al.’s [2001] implementation on the ZiLOG Z80 8-
bit microprocessor. In terms of CPU cycles, our measurements are not far from
Hachez et al.’s [1999] measurements on the 8-bit processor Intel 8051: when
speed-optimized, key setup takes 43246 clock cycles on MSP430F149, compared
to 43200 on 8051; encryption of one block takes 16265 on MSP430F149, com-
pared to 14400 on 8051. For the same reason that applies to RC5, RC6 is poor in
energy efficiency, and is barely improved by speed optimization. The observation
that RC6 is a big RAM consumer and performs poorly on 8/16-bit architectures
such as the MSP430F149, is confirmed by benchmarks done over a spectrum of
architectures [Hachez et al. 1999; Nechvatal et al. 2000; Schneier and Whiting
2001].

Rijndael: Rijndael has moderate code size for the number of tables we use
in the implementation. It is the second most energy-efficient cipher both when
size-optimized and when speed-optimized.

Twofish: Twofish has larger code size than Rijndael. The tables used by
Twofish cannot be economized without seriously degrading its energy efficiency.
Twofish is almost as energy-efficient as Rijndael in en/decryption when speed-
optimized, but is significantly worse in key agility.

MISTY1: MISTY1 has moderate code size, larger than RC5 and RC6,
but smaller than Rijndael. Its RAM usage is only larger than Skipjack’s.
When size-optimized, MISTY1 is the most energy-efficient cipher. There is
no significant speed increase in the speed-optimized version mainly because
the IAR compiler has a problem applying any level of optimization above
Low.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

86 • Y. W. Law et al.

Table X. Ranking of Ciphers∗

Code Memory Data Memory En/decryption Efficiency Key Setup Efficiency

CBC OFB CBC OFB CBC OFB Encryption Decryption

Skipjackz Skipjackz Skipjackz Skipjackz Skipjacks Skipjacks Skipjackz Skipjackz

RC5z Skipjacks MISTY1z MISTY1z Rijndaels Rijndaels Skipjacks Skipjacks

Skipjacks RC5z Skipjacks Skipjacks Twofishs Twofishs MISTY1s MISTY1s

RC6z RC6z MISTY1s MISTY1s MISTY1s MISTY1s MISTY1z MISTY1z

RC6s RC6s KASUMIz KASUMIs Camellias Camellias Rijndaels KASUMIs

RC5s Rijndaelz KASUMIs KASUMIz MISTY1z Rijndaelz KASUMIs KASUMIz

MISTY1z RC5s RC5 RC5 KASUMIs MISTY1z Rijndaelz Rijndaels

MISTY1s MISTY1z Twofishz Twofishs Rijndaelz Skipjackz KASUMIz Twofishs

Rijndaelz Rijndaels Twofishs Twofishz Skipjackz KASUMIs Twofishs Rijndaelz

Twofishz MISTY1s RC6z Rijndael KASUMIz KASUMIz Twofishz Twofishz

KASUMIz KASUMIz Rijndaelz RC6 Twofishz Twofishz Camellias Camellias

Rijndaels KASUMIs RC6s Camelliaz Camelliaz Camelliaz Camelliaz Camelliaz

KASUMIs Twofishz Rijndaels Camellias RC6s RC6s RC5s RC5s

Twofishs Twofishs Camelliaz RC5s RC5s RC6s RC6s

Camelliaz Camelliaz Camellias RC6z RC6z RC5z RC5z

Camellias Camellias RC5z RC5z RC6z RC6z

∗Subscript z means size-optimized, s means speed-optimized.

KASUMI: KASUMI has larger code size than MISTY1 and Rijndael. Al-
though the key setup of KASUMI is linear [Dunkelman 2002], it takes more
than 2 times as long as that of MISTY1 which is nonlinear. KASUMI is less
energy-efficient than MISTY1, since it is algorithmically more complicated, and
speed optimization does not provide significant improvement for the same rea-
son given previously for MISTY1.

Camellia: Although Camellia is more energy-efficient than RC5 and RC6, it
has the largest code and data memory requirements. The expanded key occupies
more than 10% of the RAM, but computing the round subkeys on the fly would
significantly worsen the the energy efficiency in en/decryption, which is already
lacking.

To conclude our observations, we now discuss the ranking of the ciphers in
Table X. Skipjack is the winner in all categories. The fact that RC5 and RC6
have small code size does not help them in their overall ranking, as they range
from moderate to poor in all other categories. Rijndael and Twofish fare well if
only en/decryption efficiency is taken into account. MISTY1 is excellent in key
agility and data memory usage, and is moderate in code size. If the expanded
key is not kept in the RAM and must be generated on the fly, for example
when the amount of RAM available to security is scarce, MISTY1 has better
en/decryption efficiency than Twofish. KASUMI is an average performer in all
categories. Camellia is moderate when it comes to en/decryption efficiency, but
does poorly in all other categories.

5. CONCLUSION

First about the operation mode. The OFB mode should be used on pairwise
secure links, for example, for mutual authentication between a base station and
a node. The CBC mode should be used for group communications, for example,
in passive participation, as mentioned in the previous section.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 87

Fig. 4. Selection of an energy-efficient cipher under the constraints of available memory and

required security.

On the most suitable cipher to use, we will reach our verdict by first ruling out
the unlikely candidates. First we would like to emphasise that MSP430F149
is one of the most high-end in the Texas Instrument’s MSP430 series. In other
words, a total code memory of 59.7 KB and data memory of 2 KB is a hard limit
in the MSP430 family of processors. For this reason, we first rule out Camel-
lia, which occupies 1/5 of the total code memory even after size optimization,
and even though it has decent energy efficiency for en/decryption when speed-
optimized. The next to be ruled out are RC5 and RC6, which have poor energy
efficiency and key agility (the ability to change keys quickly and with a mini-
mum amount of resources). KASUMI lags behind MISTY1 in all categories, so
we should consider MISTY1 instead of KASUMI. Rijndael and Twofish require
about the same amount of data memory, but Rijndael has a smaller code size
and better en/decryption efficiency, so Rijndael instead of Twofish should be
considered. Finally the verdict is given in the form of Figure 4.

Reviewing some of the proposals in the literature so far, we conclude that
there are better options to the use of RC5 and RC6 in WSNs. We note the fact
that we use 18 instead of 12 rounds for RC5 based on our security analysis, may
explain the difference in performance perceived by us and other researchers.
One discouraging factor against the use of RC5 or RC6 is that most embedded
processors do not support the variable-bit rotation instruction like ROL of the
Intel architecture [Intel Corporation 1997], which RC5 and RC6 are designed
to take advantage of. Another, nontechnical, discouraging factor is that they
are patented.

In conclusion, we have presented a detailed benchmark for one of the most im-
portant cryptographic primitives for WSNs: block ciphers. Taking into account
the security properties, storage- and energy-efficiency of a set of candidates,
we have arrived at a systematically justifiable selection of block ciphers and
operation modes.

ACKNOWLEDGMENTS

The authors would like to thank Adrian Perrig and the anonymous reviewers
for their inspiring comments, which have vastly improved this article.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

88 • Y. W. Law et al.

REFERENCES

3GPP. 1999. Specification of the 3GPP Confidentiality and Integrity Algorithms Document 2:

KASUMI Specification. ETSI/SAGE Specification Version: 1.0.

ANDERSON, R., BIHAM, E., AND KNUDSEN, L. 1998. Serpent: A Proposal for the Advanced Encryption

Standard. http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf.

AOKI, K., ICHIKAWA, T., KANDA, M., MATSUI, M., MORIAI, S., NAKAJIMA, J., AND TOKITA, T. 2001b. Camel-

lia: A 128-Bit Block cipher suitable for multiple platforms. In Proceedings of the Selected Areas in
Cryptography (SAC’00), D. Stinson and S. Tavares, Eds. Number 2012 in LNCS. Springer-Verlag,

39–56.

AOKI, K., ICHIKAWA, T., KANDA, M., MATSUI, M., MORIAI, S., NAKAJIMA, J., AND TOKITA, T. 2001a. Spec-

ification of Camellia—A 128-Bit Block Cipher. Specification Version 2.0, Nippon Telegraph and

Telephone Corporation and Mitsubishi Electric Corporation.

BABBAGE, S. AND FRISCH, L. 2001. On MISTY1 higher order differential cryptanalysis. In 3rd
International Conference on Information Security and Cryptology, ICISC 2000. LNCS, vol. 2015.

Springer-Verlag, 22–36.

BARKAN, E. AND BIHAM, E. 2002. In how many ways can you write rijndael. In Advances in
Cryptology—ASIACRYPT 2002: 8th International Conference on Theory and Application of
Cryptology and Information Security, Y. Zheng, Ed. LNCS, vol. 2501. Springer-Verlag, 160–

175.

BIHAM, E., BIRYUKOV, A., AND SHAMIR, A. 1999. Cryptanalysis of Skipjack reduced to 31 rounds

using impossible differentials. In Advances in Cryptology—EUROCRYPT’99: International Con-
ference on the Theory and Application of Cryptographic Techniques. LNCS, vol. 1592. Springer-

Verlag, 12–23.

BIHAM, E. AND FURMAN, V. 2000. Improved impossible differentials on twofish. In Progress in
Cryptology—INDOCRYPT 2000: First International Conference in Cryptology in India. LNCS,

vol. 1977. Springer-Verlag, 80–92.

BIRYUKOV, A. 1999. Methods of cryptanalysis. Ph.D. thesis, Technion.

BIRYUKOV, A. AND KUSHILEVITZ, E. 1998. Improved Cryptanalysis of RC5. In Advances in
Cryptology—EUROCRYPT ’98, International Conference on the Theory and Application of Cryp-
tographic Techniques. LNCS, vol. 1403. Springer-Verlag, 85–99.

BIRYUKOV, A. AND WAGNER, D. 2000. Advanced slide attacks. In Advances in Cryptology—
EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic
Techniques. LNCS, vol. 1807. Springer-Verlag, 589–606.

BORST, J., PRENEEL, B., AND VANDEWALLE, J. 1999. Linear cryptanalysis of RC5 and RC6. In Fast
Software Encryption, 6th International Workshop, FSE ’99, L. Knudsen, Ed. LNCS, vol. 1636.

Springer-Verlag, 16–30.

BURWICK, C., COPPERSMITH, D., D’AVIGNON, E., GENNARO, R., HALEVI, S., JUTLA, C., JR., S. M. M.,

O’CONNOR, L., PEYRAVIAN, M., SAFFORD, D., AND ZUNIC, N. 1999. MARS—a candidate cipher for

AES. http://researchweb.watson.ibm.com/security/mars.pdf.

CARMAN, D., KRUUS, P., AND MATT, B. 2000. Constraints and approaches for distributed sensor

network security. Tech. Rep. #00-010, NAI Labs.

CHEON, J., KIM, M., KIM, K., AND J.-Y. LEE, S. W. K. 2002. Improved impossible differential crypt-

analysis of rijndael and crypton. In 4th International Conference on Information Security and
Cryptology, ICISC 2001, K. Kim, Ed. LNCS, vol. 2288. Springer-Verlag, 39–49.

CHIEN, P. and Wen, V. 1998. CS199—StrongARM Energy Measurement Report. Online slides:

http://www.cs.berkeley.edu/∼vwen/strongarm/slides/cs199.ppt.

COPPERSMITH, D. 2002. Re: Impact of Courtois and Pieprzyk results. Forum message at http:

//aes.nist.gov/aes/.

COURTOIS, N., GOUBIN, L., MEIER, W., AND TACIER, J.-D. 2002. Solving underdefined systems of

multivariate quadratic equations. In PKC 2002. LNCS, vol. 2274. Springer-Verlag, 211–227.

COURTOIS, N., JOHNSON, R., JUNOD, P., PORNIN, T., AND SCOTT, M. 2003. Did Filiol Break AES? Cryp-

tology ePrint Archive: Report 2003/022.

COURTOIS, N. AND PATARIN, J. 2003. About the XL Algorithm over GF(2). In Topics in Cryptology—
CT-RSA 2003, The Cryptographers’ Track at the RSA Conference 2003, M. Joye, Ed. LNCS, vol.

2612. Springer-Verlag, 141–157.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 89

COURTOIS, N. AND PIEPRZYK, J. 2002a. Cryptanalysis of Block Ciphers with Overdefined Systems

of Equations. Cryptology ePrint Archive: Report 2002/044.

COURTOIS, N. AND PIEPRZYK, J. 2002b. Cryptanalysis of block ciphers with overdefined systems

of equations. In Advances in Cryptology—ASIACRYPT 2002: 8th International Conference on
Theory and Application of Cryptology and Information Security, Y. Zheng, Ed. LNCS, vol. 2501.

Springer-Verlag, 267–287.

CRYPTREC. 2001. Analysis of RC6. (trans.: Evalua-

tion report of cryptographic algorithms and related technologies) no. 1086.

CRYPTREC. 2003. (trans.: Specification of e-

government-recommended ciphers). http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/

cryptrec20030425_spec01%.html.

DAEMEN, J., KNUDSEN, L., AND RIJMEN, V. 1997. The block Cipher SQUARE. In Fast Software
Encryption, 4th International Workshop, FSE ’97, E. Biham, Ed. LNCS, vol. 1267. Springer-

Verlag, 149–165.

DAEMEN, J. AND RIJMEN, V. 1999. AES Proposal: Rijndael.

DUNKELMAN, O. 2002. Comparing MISTY1 and KASUMI. NESSIE Public Report

NES/DOC/TEC/WP5/029/a, Computer Science Department, Technion. Dec.

FERGUSON, N., KELSEY, J., LUCKS, S., SCHNEIER, B., STAY, M., WAGNER, D., AND WHITING, D. 2001a.

Improved Cryptanalysis of Rijndael. In Fast Software Encryption, 7th International Workshop,
FSE 2000, B. Schneier, Ed. LNCS, vol. 1978. Springer-Verlag, 213–230.

FERGUSON, N., SCHROEPPEL, R., AND WHITING, D. 2001b. A Simple Algebraic Representation of

Rijndael. In Selected Areas in Cryptography, 8th Annual International Workshop, SAC 2001.

LNCS, vol. 2259. Springer-Verlag, 103–111.

FILIOL, E. 2003. Plaintext-Dependant Repetition Codes Cryptanalysis of Block Ciphers—The

AES Case. Cryptology ePrint Archive: Report 2003/003.

FULLER, J. AND MILLAN, W. 2002. On Linear Redundancy in the AES S-Box. Cryptology ePrint

Archive: Report 2002/111.

GILBERT, H., HANDSCHUH, H., JOUX, A., AND VAUDENAY, S. 2000. A statistical attack on RC6. In Fast
Software Encryption, 7th International Workshop, FSE 2000. LNCS, vol. 1978. Springer-Verlag,

64–74.

GILBERT, H. AND MINIER, M. 2000. A collision attack on 7 rounds of Rijndael. In Proceedings of the
3rd AES Conference (AES3).

HACHEZ, G., KOEUNE, F., AND QUISQUATER, J.-J. 1999. cAESar results: Implementation of four AES

candidates on two smart cards. In 2nd AES Candidate Conference (AES2).
HANDSCHUH, H. AND HEYS, H. 1998. A timing attack on RC5. In Selected Areas in Cryptography

’98, SAC’98, S. Tavares and H. Meijer, Eds. LNCS, vol. 1556. Springer-Verlag, 306–318.

HANDSCHUH, H. AND NACCACHE, D. 2000. SHACAL. In Proceedings of the First Open NESSIE
Workshop.

HATANO, Y., SEKINE, H., AND KANEKO, T. 2002. Higher order differential attack of Camellia(II). In

Selected Areas in Cryptography. 9th Annual International Workshop, SAC 2002, K. Nyberg and

H. Heys, Eds. LNCS, vol. 2595. Springer-Verlag, 129–146.

HE, Y. AND QING, S. 2001. Square Attack on Reduced Camellia Cipher. In Information and Com-
munications Security: Third International Conference, ICICS 2001, S. Qing, T. Okamoto, and

J. Zhou, Eds. LNCS, vol. 2229. Springer-Verlag, 238–245.

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D., AND PISTER, K. 2000. System architecture

directions for networked sensors. SIGOPS Oper. Syst. Rev. 34, 5, 93–104.

IEEE. 2003. IEEE Standard for Information technology—Telecommunications and information

exchange between systems—Local and metropolitan area networks—Specific requirements Part

15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low

Rate Wireless Personal Area Networks (LR-WPANs).

Intel Corporation 1997. Intel Architecture Software Developer’s Manual Volume 2: Instruction
Set Reference. Intel Corporation.

KALISKI, B. AND YIN, Y. 1998. On the Security of the RC5 Encryption Algorithm. Tech. Rep. TR-602,

RSA Laboratories. Sept.

KANG, J.-S., SHIN, S.-U., HONG, D., AND YI, O. 2001a. Provable security of KASUMI and 3GPP en-

cryption mode f 8. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

90 • Y. W. Law et al.

on the Theory and Application of Cryptology and Information Security, C. Boyd, Ed. LNCS, vol.

2248. Springer-Verlag, 255–271.

KANG, J.-S., YI, O., HONG, D., AND CHO, H. 2001b. Pseudorandomness of MISTY-Type Transfor-

mations and the Block Cipher KASUMI. In Proceedings of the 6th Australasian Conference on
Information Security and Privacy, ACISP 2001, V. Varadharajan and Y. Mu, Eds. LNCS, vol.

2119. Springer-Verlag, 60–73.

KARLOF, C., SASTRY, N., AND WAGNER, D. 2004. TinySec: A link layer security architecture

for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd International Con-
ference on Embedded Networked Sensor Systems. ACM Press, New York, NY, USA, 162–

175.

KARLOF, C. AND WAGNER, D. 2003. Secure routing in wireless sensor networks: Attacks and coun-

termeasures. Elsevier’s Ad Hoc Networks Journal, Special Issue on Sensor Network Applications
and Protocols 1, 2–3, 293–315.

KEATING, G. 1999. Performance Analysis of AES candidates on the 6805 CPU core. In 2nd AES
Candidate Conference (AES2).

KELSEY, J. 2000. Key Separation in Twofish. Tech. Rep. #7, Counterpane Internet Security, Inc.

Apr.

KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. 1998. Side channel cryptanalysis of product

ciphers. In Computer Security (ESORICS’98). LNCS, vol. 1485. Springer-Verlag, 97–110.

KILIAN, J. AND ROGAWAY, P. 1996. How to protect DES against exhaustive key search. In Advances
in Cryptology—CRYPTO ’96: 16th Annual International Cryptology Conference. Number 1109 in

LNCS. Springer-Verlag.

KLING, R. 2003. Intel mote: An Enhanced Sensor Network Node. In International Workshop on
Advanced Sensors, Structural Health Monitoring and Smart Structures.

KNUDSEN, L. AND MEIER, W. 2000. Correlations in RC6 with a reduced number of rounds. In Fast
Software Encryption, 7th International Workshop, FSE 2000. LNCS, vol. 1978. Springer-Verlag,

94–108.

KNUDSEN, L. AND WAGNER, D. 2002. Integral cryptanalysis. In Fast Software Encryption, 9th Inter-
national Workshop, FSE 2002, J. Daemen and V. Rijmen, Eds. LNCS, vol. 2365. Springer-Verlag,

112–127.

KÜHN, U. 2001. Cryptanalysis of reduced-round MISTY. In Advances in Cryptology—
EUROCRYPT 2001. LNCS, vol. 2045. Springer-Verlag, 325–339.

KÜHN, U. 2002. Improved Cryptanalysis of MISTY1. In Fast Software Encryption, 9th Interna-
tional Workshop, FSE 2002. LNCS, vol. 2365. Springer-Verlag, 61–75.

LEE, S., HONG, S., LEE, S., LIM, J., AND YOON, S. 2002. Truncated differential cryptanalysis of

Camellia. In 4th International Conference on Information Security and Cryptology, ICISC 2001,

K. Kim, Ed. LNCS, vol. 2288. Springer-Verlag, 32–38.

LENSTRA, A. K. AND VERHEUL, E. R. 2001. Selecting cryptographic key sizes. Journal of Cryptol-
ogy 14, 4, 255–293.

LI, T., WU, H., WANG, X., AND BAO, F. 2005. SenSec Design. Tech. Rep. TR-I2R-v1.1, InfoComm

Security Department,Institute for Infocomm Research. Feb.

LIU, D., NING, P., AND LI, R. 2005. Establishing pairwise keys in distributed sensor networks.

ACM Trans. Inf. Syst. Secur. 8, 1, 41–77.

LUCKS, S. 2002. The saturation attack—A Bait for Twofish. In Fast Software Encryption, 8th
International Workshop, FSE 2001. LNCS, vol. 2355. Springer-Verlag, 1–15.

MATSUI, M. 1993. Linear Cryptanalysis of DES. In Advances in Cryptology—EUROCRYPT ’93:
Workshop on the Theory and Application of Cryptographic Techniques. LNCS, vol. 765. Springer-

Verlag, 386–397.

MATSUI, M. 1997. New Block Encryption Algorithm MISTY. In Fast Software Encryption, 4th
International Workshop, FSE ’97, E. Biham, Ed. LNCS, vol. 1267. Springer-Verlag, 54–68.

MATSUI, M. AND TOKITA, T. 2000. MISTY, KASUMI and Camellia Cipher Algorithm. Mitsubishi
Electric ADVANCE (Cryptography Edition) 100, 2–8.

MIRZA, F. AND MURPHY, S. 1999. An observation on the key schedule of twofish. In Proceedings of
the 2nd AES Conference (AES2).

MITSUBISHI ELECTRIC CORP. 2001. http://info.isl.ntt.co.jp/crypt/camellia/dl/camellia.c.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 91

MIYAJI, A., NONAKA, M., AND TAKII, Y. 2002. Known plaintext correlation attack against RC5. In

Topics in Cryptology—CT-RSA 2002, The Cryptographers’ Track at the RSA Conference 2002,

B. Preneel, Ed. LNCS, vol. 2271. Springer-Verlag, 131–148.

MOH, T. 2002. On the Courtois-Pieprzyk’s Attack on Rijndael . Web page: http://www.usdsi.

com/aes.html.

MURPHY, S. 2000. The key Separation of twofish. In Proceedings of the 3rd AES Conference
(AES3).

MURPHY, S. AND ROBSHAW, M. 2002a. Comments on the Security of the AES and the XSL Technique.

http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/xslnote.pdf.

MURPHY, S. AND ROBSHAW, M. 2002b. Essential algebraic structure within the AES. In Advances
in Cryptology—CRYPTO 2002, 22nd Annual International Cryptology Conference, M. Yung, Ed.

LNCS, vol. 2442. Springer-Verlag, 1–16.

MURPHY, S. AND ROBSHAW, M. 2002c. Key-dependent s-boxes and differential cryptanalysis. Des.
Codes Cryptography 27, 3, 229–255.

NECHVATAL, J., BARKER, E., BASSHAM, L., BURR, W., DWORKIN, M., FOTI, J., AND ROBACK, E. 2000. Re-

port on the Development of the Advanced Encryption Standard (AES). Tech. rep., NIST.

NESSIE CONSORTIUM 2003. Portfolio of recommended cryptographic primitives. NESSIE

Consortium.

NIST 1998. Skipjack and KEA Algorithm Specifications Version 2.0. NIST.

NYBERG, K. 1995. Linear approximations of block ciphers. In Advances in Cryptology—
EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic Techniques. LNCS,

vol. 950. Springer-Verlag, 439–444.

OHTA, H. AND MATSUI, M. 2000. A Description of the MISTY1 Encryption Algorithm. RFC 2994,

Network Working Group, IETF. Nov.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TYGAR, J. 2001. SPINS: Security protocols for

sensor networks. In Proceedings of the 7th Annual International Conference on Mobile Computing
and Networking. ACM Press, 189–199.

POLASTRE, J., HILL, J., AND CULLER, D. 2004. Versatile low power media access for wireless sensor

networks. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems. ACM Press, 95–107.

PRENEEL, B. 1998. Cryptographic primitives for information authentication—state of the art.

In State of the Art in Appplied Cryptography, B. Preneel and V. Rijmen, Eds. LNCS, vol. 1528.

Springer-Verlag, 50–105.

PRENEEL, B., BIRYUKOV, A., OSWALD, E., ROMPAY, B. V., GRANBOULAN, L., DOTTAX, E., MURPHY, S., DENT,

A., WHITE, J., DICHTL, M., PYKA, S., SCHAFHEUTLE, M., SERF, P., BIHAM, E., BARKAN, E., DUNKELMAN,

O., QUISQUATER, J.-J., CIET, M., SICA, F., KNUDSEN, L., PARKER, M., AND RADDUM, H. 2003. NESSIE

Security Report. Deliverable D20, NESSIE Consortium. Feb.

REICHARDT, B. AND WAGNER, D. 2002. Markov truncated differential cryptanalysis of skipjack. In

Selected Areas in Cryptography: 9th Annual International Workshop (SAC 2002). LNCS, vol.

2595. Springer-Verlag, 110–128.

RIVEST, R. 1995. The RC5 Encryption Algorithm. In Proceedings of the 1994 Leuven Workshop on
Fast Software Encryption. Springer-Verlag, 86–96.

RIVEST, R., ROBSHAW, M., SIDNEY, R., AND YIN, Y. 1998. The RC6TM Block Cipher. Specification

version 1.1.

SANO, F., KOIKE, M., KAWAMURA, S., AND SHIBA, M. 2001. Performance evaluation of aes finalists on

the high-end smart card. In Proceedings of the 3rd AES Conference (AES3).
SCHNEIER, B. 1994. Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish). In

Fast Software Encryption, Cambridge Security Workshop Proceedings. LNCS. Springer-Verlag,

191–204.

SCHNEIER, B. 1996. Applied Cryptography: Protocols, Algorithms and Source Code in C, 2nd ed.

John Wiley & Sons, Inc.

SCHNEIER, B. 2002a. AES News. Crypto-gram newsletter, Counterpane Internet Security, Inc.

Sept.

SCHNEIER, B. 2002b. More on AES Cryptanalysis. Crypto-gram newsletter, Counterpane Internet

Security, Inc. Oct.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

92 • Y. W. Law et al.

SCHNEIER, B., KELSEY, J., WHITING, D., WAGNER, D., HALL, C., AND FERGUSON, N. 1998. Twofish: A

128-Bit Block Cipher. http://www.schneier.com/paper-twofish-paper.pdf.

SCHNEIER, B., KELSEY, J., WHITING, D., WAGNER, D., HALL, C., AND FERGUSON, N. 1999a. On the

twofish key schedule. In Selected Areas in Cryptography ’98, SAC’98, S. Tavares and H. Meijer,

Eds. LNCS, vol. 1556. Springer-Verlag, 27–42.

SCHNEIER, B., KELSEY, J., WHITING, D., WAGNER, D., HALL, C., AND FERGUSON, N. 1999b. The Twofish
Encryption Algorithm: A 128-Bit Block Cipher. Wiley.

SCHNEIER, B. AND WHITING, D. 2001. A performance comparison of the five AES finalists. In Pro-
ceedings of the 3rd AES Conference (AES3).

SHIMOYAMA, T., TAKENAKA, M., AND KOSHIBA, T. 2002. Multiple linear cryptanalysis of a reduced

round RC6. In Fast Software Encryption, 9th International Workshop, FSE 2002, J. Daemen and

V. Rijmen, Eds. Vol. 2365. Springer-Verlag, 76–88.

SHIMOYAMA, T., TAKEUCHI, K., AND HAYAKAWA, J. 2000. Correlation Attack to the Block Cipher RC5

and the Simplified Variants of RC6. In Proceedings of the 3rd AES Conference (AES3).
SLIJEPCEVIC, S., TSIATSIS, V., ZIMBECK, S., SRIVASTAVA, M., AND POTKONJAK, M. 2002. On communi-

cation security in wireless ad-hoc sensor networks. In 11th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises. 139–144.

SUGITA, M., KOBARA, K., AND IMAI, H. 2001. Security of reduced version of the block cipher camel-

lia against truncated and impossible differential cryptanalysis. In Advances in Cryptology—
ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology
and Information Security, C. Boyd, Ed. LNCS, vol. 2248. Springer-Verlag, 193–207.

SZEWCZYK, R., POLASTRE, J., MAINWARING, A., AND CULLER, D. 2004. Lessons from a sensor network

expedition. In Proceedings of the 1st European Workshop Wireless Sensor Networks (EWSN 04).
LNCS, vol. 2920. Springer-Verlag, 307–322.

TAKENAKA, M., SHIMOYAMA, T., AND KOSHIBA, T. 2002. Theoretical Analysis of “Correlations in RC6”.

Cryptology ePrint Archive: Report 2002/176.

TAKENAKA, M., SHIMOYAMA, T., AND KOSHIBA, T. 2003. Theoretical analysis of χ2 attack on

RC6. In Proceedings of the 8th Australasian Conference on Information Security and Privacy
(ACISP2003). LNCS, vol. 2727. Springer-Verlag, 142–153.

TANAKA, H., ISHII, C., AND KANEKO, T. 2001. On the strength of KASUMI without FL functions

against higher order differential attack. In 3rd International Conference on Information Security
and Cryptology, ICISC 2000. LNCS, vol. 2015. Springer-Verlag, 14–21.

TEXAS INSTRUMENTS, INC. 2001. MSP430x13x, MSP430x14x Mixed Signal Microcontroller.

Datasheet.

TRI VAN LE. 2003. Novel Cyclic and Algebraic Properties of AES. Cryptology ePrint Archive:

Report 2003/108.

VAN DAM, T. AND LANGENDOEN, K. 2003. An adaptive energy-efficient MAC protocol for wireless

sensor networks. In Proceedings of the First International Conference on Embedded Networked
Sensor Systems. ACM Press, 171–180.

VAN HOESEL, L., DULMAN, S., HAVINGA, P., AND KIP, H. 2003. Design of a low-power testbed for

wireless sensor networks and verification. Tech. Rep. TR-CTIT-03-45, Centre for Telematics and

Information Technology, University of Twente, The Netherlands. Sept.

WHITING, D. 1998. http://www.schneier.com/code/twofish-optimized-c.zip.

WORLEY, J., WORLEY, B., CHRISTIAN, T., AND WORLEY, C. 2001. AES Finalists on PA-RISC and IA-64:

Implementations & performance. In Proceedings of the 3rd AES Conference (AES3).
XUE, Q. AND GANZ, A. 2003. Runtime security composition for sensor networks (SecureSense). In

IEEE Vehicular Technology Conference (VTC Fall 2003).
YE, W., HEIDEMANN, J., AND ESTRIN, D. 2002. An energy-efficient MAC protocol for wireless sensor

networks. In Proceedings of the IEEE Infocom. USC/Information Sciences Institute, IEEE, New

York, NY, USA, 1567–1576.

YEOM, Y., PARK, S., AND KIM, I. 2002. On the security of CAMELLIA against the square attack.

In Fast Software Encryption, 9th International Workshop, FSE 2002, J. Daemen and V. Rijmen,

Eds. LNCS, vol. 2365. Springer-Verlag, 128–142.

YOUSSEF, A. AND TAVARES, S. 2002. On Some Algebraic Structures in the AES Round Function.

Cryptology ePrint Archive: Report 2002/144.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

Survey and Benchmark of Block Ciphers for Wireless Sensor Networks • 93

ZHANG, P., SADLER, C. M., LYON, S. A., AND MARTONOSI, M. 2004. Hardware design experiences in

ZebraNet. In 2nd International Conference on Embedded Networked Sensor Systems. ACM Press,

227–238.

ZHU, S., SETIA, S., AND JAJODIA, S. 2003. LEAP: Efficient security mechanisms for large-scale

distributed sensor networks. In 10th ACM Conference on Computer and Communications Security
(CCS ’03). ACM Press, 62–72.

Received May 2005; revised October 2005; accepted December 2005

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.

