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ABSTRACT

We survey and evaluate popular audio fingerprinting sche-

mes in a common framework with short query probes cap-

tured from cell phones. We report and discuss results im-

portant for mobile applications: Receiver Operating Char-

acteristic (ROC) performance, size of fingerprints generated

compared to size of audio probe, and transmission delay if

the fingerprint data were to be transmitted over a wireless

link. We hope that the evaluation in this work will guide

work towards reducing latency in practical mobile audio re-

trieval applications.

1. INTRODUCTION

Audio fingerprinting provides the ability to derive a com-

pact representation which can be efficiently matched against

other audio clips. With smart phones becoming ubiquitous,

there are several applications of audio fingerprinting on mo-

bile devices. A common use case is query-by-example mu-

sic recognition: a user listens to a song in a restaurant, shop-

ping mall, or in a car, and wants to know more information

about the song. Shazam [1] and SoundHound [2] are ex-

amples of popular music recognition applications on cell-

phones. Other applications of audio fingerprinting on mo-

bile devices include copyright detection [4], personalized

entertainment and interactive television without extraneous

hardware [8].

Mobile query-by-example applications pose a unique set

of challenges. First, the application has to be low-latency

to provide users with an interactive experience. To achieve

low latency, the retrieval framework has to adapt to stringent

memory, computational, power and bandwidth requirements

of the mobile client. It is important that the size of the data

generated needs to be as small as possible to reduce network

latency, which is typically the bottleneck in 3G networks.

Second, the length of the audio required to get a match
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should be short for mobile applications (e.g., <10 seconds).

Current applications Shazam [1] and SoundHound [2] often

require >10 seconds for retrieval. For copyright detection,

one might use 30-60 second probes for retrieval [4], which

is not feasible for interactive mobile applications. Third, the

distortions introduced by cell phones tend to be more severe

than simple degradations like compression artifacts, time-

offsets, amplitude compression or structured noise present

in near-duplicate detection problems [4]. On mobile de-

vices, we need to be mindful of ambient noise present in

shopping malls or cafes, errors in sampling through tele-

phony equipment, low bit-rate voice compression and other

quality-enhancement algorithms that might be built into the

mobile device or introduced by the carrier network. In this

work, we evaluate the state-of-the-art in content-based au-

dio retrieval with focus on query-by-example mobile appli-

cations.

2. PRIOR WORK AND MOTIVATION

State-of-the-art audio retrieval applications use a set of low

level fingerprints extracted from the audio sample for re-

trieval. The fingerprints are typically computed on the spec-

trogram - a time frequency representation of the audio. Hait-

sma et al. [11] propose fingerprints based on Bark Frequency

Cepstrum Coefficients (BFCC). Highly overlapping frames

are considered to ensure that the query probe can be detected

at arbitrary time-alignment. Each fingerprint is 32 bits and

can be compared efficiently with Hamming distances. Ke

et al. [14] improve the performance of the fingerprinting

scheme in [11] using the AdaBoost technique from com-

puter vision. Baluja et al. [4] propose a scheme based on

wavelets. The overlapping spectrogram images are trans-

formed into a sparse wavelet representation and the pop-

ular min-hash technique [5] is used to obtain a 100 byte

fingerprint which can be compared directly with byte-wise

Hamming distances. In contrast to the three schemes above,

Wang [17, 18] proposes looking only at spectrogram peaks.

The authors are not aware of a comprehensive evaluation

of the different fingerprinting schemes in a common frame-

work. In contrast, several such evaluations exist for im-

age features in the computer vision community for content-

based image retrieval [15, 19]. Fingerprints developed for



applications like query-by-humming and cover song detec-

tion are outside the scope of this paper. In particular, we

are interested in factors affecting practical query-by-exact-

example mobile applications. The questions that are most

critical for mobile applications are:

• How much fingerprint data does each scheme generate?

• How does the size of the fingerprint data compare to

the size of the compressed audio needed for accurate re-

trieval?

• What would the transmission delay be if the fingerprints

were transmitted over a typical 3G network?

• How discriminative are the different fingerprinting sche-

mes?

• How do the different schemes perform for really short(∼5

seconds) and noisy query probes captured by cell phones

?

• How does the performance of each scheme vary as a

function of probe length in the range of 5 to 15 seconds

typical for mobile applications?

3. CONTRIBUTIONS

We survey and evaluate popular audio fingerprinting sche-

mes in a common framework with short noisy query audio

probes captured from cell phones. We report and discuss re-

sults important for mobile applications: Receiver Operating

Characteristic (ROC) performance, size of fingerprints gen-

erated compared to size of audio probe, and transmission

delay if the fingerprint data were to be transmitted over a

wireless link. We hope that the evaluation in this paper will

provide key insights and guide us towards developing low

latency retrieval systems. In Section 4, we survey the differ-

ent audio fingerprinting schemes. In Section 5, we describe

the evaluation framework and provide experimental results.

4. SURVEY OF FINGERPRINTING SCHEMES

Before we survey popular audio fingerprinting schemes, we

discuss the typical pipeline for audio retrieval applications.

First, a set of fingerprints are extracted from the query song.

The fingerprints could be extracted at uniform sampling rate,

or only around points of interest in the spectrogram (e.g.,

spectrogram peaks in the case of Wang [18]). For mobile

applications, it is critical that individual fingerprints be ro-

bust against ambient noise, compared to the corresponding

database fingerprint.

Next the query is compared with a database of reference

tracks to find candidate matches. To avoid pairwise com-

parison between the query and all of the reference tracks,

the database is partitioned. The partitioning of the database

is precomputed for the database, and each partition is asso-

ciated with a list of database songs (also called an inverted

index). The partitioning on the database could be done by

direct hashing of the fingerprints (e.g., a 32 bit fingerprint

could be directly hashed into a table with 4 billion entries),

Locality Sensitive Hashing or techniques based on Vector

Quantization. This partitioning allows approximate-nearest-

neighbor-search as exact-nearest-neighbor search is infeasi-

ble in a database with billions of fingerprints. The inverted

file for each cell consists of a list of song IDs and the timing

offsets at which the fingerprints appear. The timing infor-

mation is used in the final step of the pipeline. Based on the

number of fingerprints they have in common with the query

probe from the inverted index, a short list of potentially sim-

ilar database songs is selected from the database.

Finally, a temporal alignment step is applied to the most

similar matches in the database. Techniques like Expecta-

tion Maximization [14], RANSAC [9], or Dynamic Time

Warping [6] are used for temporal alignment. In the case of

linear correspondence (i.e., the tempo of the database and

query songs are the same), Wang [18] proposes using a sim-

ple and fast technique that looks for a diagonal in the time-

vs-time plot for matching database and query fingerprints.

The existence of a strong diagonal indicates a valid match.

The temporal alignment step is used to get rid of false posi-

tives, and enables very high precision retrieval.

In this Section, we review three fingerprinting schemes in

detail: Ke [14], Baluja [4] and Wang [18]. In the interest of

space, we omit the scheme proposed by Haitsma [11] as the

fingerprint by Ke improves directly upon their scheme [14].

For a comparison of the two schemes by Ke and Haitsma,

interested readers are referred to [14]. For each scheme, we

first discuss the details of the scheme and the motivation

behind the approach, followed by system parameters sug-

gested by the authors that provide good trade-off between

accuracy and computational complexity.

4.1 Ke, Hoiem and Sukthankar

4.1.1 Description

Ke’s approach builds on popular classification techniques in

the computer vision community. Ke provides the important

insight that 1-D audio signals can be processed as conven-

tional images when viewed in the time-frequency spectro-

gram representation. The time-frequency spectrogram data

is treated as a set of overlapping images. To compute a com-

pact fingerprint on each image, the authors first train simple

AdaBoost classifiers based on box-filters, a technique pop-

ular in face detection. The training data for classification

is obtained by considering audio samples and their corre-

sponding versions degraded by noise. The output of each

classifier yields a binary value. E.g., each classifier outputs

a 1 or a 0 based on the differences between values aggre-

gated in two sub-rectangular regions of the spectrogram im-

age. The concatenated output of the set of classifiers is then

used as a fingerprint of the spectrogram image.



4.1.2 System Parameters

Ke and Haitsma use the same set of parameters for comput-

ing the spectrogram. The spectrogram, obtained by Short

Term Fourier Transform (STFT), represents the power in

33 logarithmically-spaced frequency bands spaced 300 Hz

and 2000 Hz. Overlapping spectrogram images measured

over 0.372s windows are considered in 11.6 ms increments

(∼100 fingerprints/second). The short increments coupled

with large spectrogram images at each step are used to make

the scheme robust to sampling errors and small time-offsets.

For a 10 second probe, the scheme produces 860 finger-

prints. For the AdaBoosting step, 32 classifiers are chosen

out of a candidate list of 25000 filters. We use the training

data sets and code provided by the authors at [13]. Two fin-

gerprints are considered to be a match if they have a Ham-

ming distance <2, in the feature matching step of the re-

trieval pipeline.

4.2 Baluja and Covell

4.2.1 Description

Similar to Ke’s work, Baluja’s fingerprint is also inspired

from the image retrieval community. The pipeline for com-

puting “waveprints”(the term used by the authors to describe

their wavelet-based fingerprints) is illustrated in Fig. 1, and

in inspired from [12].

First, the authors compute overlapping spectrogram im-

ages using the same approach proposed by Ke. Next, the

spectrogram images are decomposed using multi-resolution

Haar wavelets. Wavelets are chosen due to their effective-

ness in the retrieval work presented in [12]. An image pro-

duces as many wavelet co-efficients as pixels. Next, the au-

thors retain only the top-t few wavelets, where t is chosen

to be much smaller than the size of the spectrogram im-

age. Next, the authors observe that the top-t wavelets are

sparse. To obtain a compact represenation, the authors only

retain the sign information (an approach also found effective

in [12]), and use the Min-Hash technique to generate a set

of p bytes that is used to represent the original spectrogram

image. Two spectrogram images can now be compared di-

rectly by computing the byte-wise Hamming distance of the

p bytes. For this approach to be effective, p needs to be

large (typically chosen to be 100). Nearest neighbor search-

ing in a 100 dimensional space is non-trivial. Hence, in the

final step, Locality Sensitive Hashing (LSH) is used to find

approximate-nearest-neighbor fingerprints in this space.

4.2.2 System Parameters

The authors optimize system parameters for accuracy and

computational complexity in [3, 4]. We use the parame-

ters recommended by the authors in [3]. Overlapping spec-

trogram images measured over 0.372 second windows are

considered in 0.09 second strides (∼10 fingerprints/second).

t = 200 top wavelets are considered. p is chosen to be

Figure 1. Pipeline for extracting waveprint features proposed by
Baluja [4]. Spectrogram images are represented as p bytes obtained from
Min-Hashing, which can be compared byte-wise directly for computing
similarity.

100, i.e., each fingerprint is represented as 100 bytes. For

LSH, the 100-byte fingerprint is divided into 25 equal 4-byte

bands. Each 4-byte band is stored as a 32 bit hash table. In

the feature-matching step, two fingerprints are considered to

be a match if their 4-byte representations match in at least

one of the 25 LSH bands.

Figure 2. Illustration of audio fingerprints proposed by Wang [17].
Triplet information ((t2 − t1, f1, (f2 − f1)) is quantized to form the fin-
gerprint.)

4.3 Wang

4.3.1 Description

While the schemes by Ke and Baluja use dense sampling

and compute fingerprints over fairly large spectrogram im-

ages, Wang proposes looking only at spectrogram peaks.

There are two reasons for choosing spectrogram peaks: First,

spectrogram peaks are more likely to survive ambient noise.

Second, spectrogram peaks satisfy the property of linear su-

perposition, i.e., a spectrogram peak analysis of music and

noise together will contain spectral peaks due to the music

and the noise as if they were analyzed separately [17]. The

fingerprinting scheme is illustrated in Fig. 2. For pairs of

peaks (t1, f1) and (t2, f2), the fingerprint is computed on

a triplet of ((t2 − t1), f1, (f2 − f1)). Each number in the

triplet is quantized and the concatenated value is treated as

the fingerprint.

4.3.2 System Parameters

For this scheme, we adapt the implementation provided by

Ellis [7]. We optimize over a parametric space, and choose

the following set of parameters. The frequency data in the

spectrogram is divided into 256 levels linearly. We con-

sider neighboring peaks in an adjacent frequency range of

64 units, and timing range of 64 units (sampling rate of the

audio signal is set to 8 KHz). The values ((t2−t1), f1, (f2−



f1)) are represented as 6,8 and 6 bits respectively to ob-

tain a 20 bit fingerprint. For this data set, the 20 bit fin-

gerprint works better than a 32-bit fingerprint suggested by

Wang in [18] - note that over quantization could affect per-

formance adversely. We generate 20 fingerprints per second.

5. EXPERIMENTAL RESULTS

We use our own data set as we were not able to find any

publicly available data sets captured from mobile phones.

Most existing data sets introduce artificial distortions to the

audio (e.g., adding noise), and are not representative of dis-

tortions typical in the mobile scenario. We captured audio

clips on a Nexus One phone from a set of 39 songs played

on TV and from laptop speakers in noisy environments. In

our data collection, we tried to capture noise from differ-

ent ambient noise sources. Our song data set contains pop-

ular songs from artists like Lady Gaga, Michael Jackson,

Green Day, Avril Lavigne, to name a few. Each of these

clips is between 60 and 90 seconds long, which we divide

into non-overlapping 5, 10 and 15 second snippets to use

as query probes. This gives us a ground truth data set of

over a 1000 pairs of query probes and their corresponding

uncorrupted reference songs. All pairs between query and

reference, both positive and negative examples, are consid-

ered to generate Receiver Operating Characteristic (ROC)

curves.

5.1 Receiver Operating Characteristic

We evaluate the different fingerprinting schemes first after

the fingerprint indexing step, and subsequently, the temporal

alignment step.

5.1.1 Fingerprint Indexing

The inverted index on the database enables fast retrieval and

provides a shortlist of candidates to be considered for a more

extensive temporal alignment check. Each query fingerprint

votes for all the database fingerprints that it finds in the in-

verted index. The similarity between the database song and

query song is the number of fingerprints in common be-

tween them, based on the approximate-nearest-neighbor in-

dexing strategy. For Ke, the similarity measure is the num-

ber of fingerprints that have <2 Hamming distance. For

Baluja, the similarity measure is the number of fingerprints

that have >=1 matches in the 25 LSH bands. For Wang, the

similarity measure is the number of 20-bit fingerprints that

get hashed to the same bin.

We compute such a similarity score for matching and

non-matching pairs of ground-truth query and database songs,

for the different schemes. From these similarity scores, we

form two histograms, one for matching pairs and one for

non-matching pairs, as illustrated in Fig. 3. The overlap-

ping between the two histograms depends on the fingerprint-

ing scheme, and more importantly, the length of the query

probe. The longer the query probe, the lower the overlap be-

tween the two histograms, and the better the performance of

the scheme. Also, the more discriminative the fingerprint,

the lower the overlap between the two histograms. From

the two histograms we obtain a Receiver Operating Char-

acteristic (ROC) curve which plots correct match fraction

against incorrect match fraction. The different points on the

ROC curve are obtained by adjusting the similarity measure

threshold. The higher the ROC curve, the more effective the

retrieval system.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incorrect match faction

C
o

rr
e

c
t 

m
a

tc
h

 f
a

c
ti
o

n

ROC Curve

 

 

Wang et al. (5)

Wang et al. (10)

Wang et al. (15)

Ke et al. (5)

Ke et al. (10)

Ke et al. (15)

Baluja et al. (5)

Baluja et al. (10)

Baluja et al. (15)

Figure 4. ROC performance of different schemes. The number in brack-
ets is the length of the query probe in seconds. The performance of each
fingerprinting scheme increases as the query length increases. Baluja’s
scheme performs the best.

We plot the ROC performance of the three schemes in

Fig. 4. For each scheme, we note that the ROC performance

improves as the length of the query probe increases from 5

to 15 seconds, as expected. Typically, the returns are dimin-

ishing beyond 10 seconds. Baluja’s fingerprinting scheme

performs the best for all query probe lengths. The Min-

Hash based fingerprints (100 bytes each) are highly discrim-

inative and capture information over a longer time-duration

than Wang’s scheme.

The Wang fingerprints are far more compact - however,

the fingerprints are sensitive to small offsets in spectrogram

peak localization. The low dimensionality of the finger-

print makes it less discriminative, causing the scheme to re-

quire a longer probe to achieve a comparable performance to

Baluja’s scheme. Also, the lower dimensionality of the de-

scriptor implies that it does not scale well as the size of the

database grows. As the length of the query probe increases

to 15 seconds, Wang’s scheme catches up in performance.

Finally, we observe that Ke’s scheme performs poorly

for the short query probes that we are interested in. For

Ke’s scheme to catch up in ROC performance, much longer

probes would be required. The scheme also suffers due to

its dependence on the set of AdaBoost classifiers used to

generate the fingerprint. For our evaluation, we used the

AdaBoost classifiers provided by the authors in [13]. A
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Figure 3. Distribution of scores for matching and non-matching pairs of query probe and reference songs illustrated for the different fingerprinting schemes.
Ideally, we would like to have the matching pairs to have very high scores, and non-matching pairs to be exactly 0. The overlap in the distributions causes
errors in retrieval. This overlap depends on the discriminativeness of the fingerprinting scheme and also on the length of the query probe. Longer query probes
provide a better separation between the two distributions.

mismatch between training and test data can affect the per-

formance of this scheme adversely. We require robustness

against a broad range of mobile environments and noise

sources, and training a set of AdaBoost classifiers for dif-

ferent environments is not practical.

5.1.2 Temporal Alignment

Based on computational resources available, accuracy re-

quirements and the size of the database, retrieval systems

choose an operating point on the curve shown in Fig. 4.

E.g., state-of-the-art retrieval systems would typically op-

erate in the 80-90% True Positive Rate regime. At the oper-

ating point, we apply the Temporal Alignment (TA) scheme

proposed by Wang to get rid of false positives. It is rela-

tively easy to achieve high precision for audio retrieval ap-

plications. By requiring a minimum number of fingerprint

matches to satisfy TA, we can get rid of most false positives.

We set the minimum number of temporally aligned matches

to 5 for this experiment. We plot the percentage of queries

passing the temporal alignment check as a function of query

probe length in Fig. 5. Again, we observe Baluja’s scheme

performs the best, followed by Wang and Ke respectively.

The performance for each scheme improves as the length

of the query probe increases. We conclude that highly dis-

criminative fingerprints help significantly for short 5 second

query probes. Next, we study the amount of data generated

for each fingerprinting scheme.
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Figure 5. Recall as a function of query probe length for different sc-
hemes. Precision is 100% as the temporal alignment step eliminates false
positives.

5.2 Data Size and Transmission Delay

The different fingerprinting schemes generate different amo-

unts of data. Here, we present results for a 10 second probe,

as 10 second probes provide a balance between accuracy and

latency for all three schemes. Ke’s scheme produces 729

4-byte fingerprints, Baluja’s scheme produces 87 100-byte

fingerprints, and Wang’s scheme produces 587 20-bit finger-

prints on average for 10 second probes. The amount of data

generated for the different schemes is shown in Fig. 7. We

compare the size of fingerprint data to the size of a 10 second

Vorbis compressed audio at 64 kbps (80 KB). We observe

that the size of fingerprint data is significantly lower than

the size of the compressed audio for all fingerprinting sche-

mes (<10 KB). This motivates computing the fingerprints

on the device, whenever possible. We note that Wang’s

scheme produces less data than Baluja’s or Ke’s scheme.

For a fair comparison between the different schemes, we

plot the bitrate-Equal Error Rate (EER) performance in Fig-

ure 6. We note that the reduction in data for Wang’s scheme

comes at the cost of ROC performance shown in Fig. 6.

If fingerprinting were to be done on the device, how long

would the transmission delay be for sending the fingerprint

data? The transmission delay would depend on the wireless

network used: 3G or WLAN (Wireless LAN). WLAN sys-

tems provide much higher bandwidth compared to 3G, and

transmission delay is negligible even for large packet sizes.

Here, we present transmission delay numbers only for a 3G

connection, as it is the most prevalent on mobile phones to-

day [16]. For network transmission delay experiments, we

use the data presented in [10, 16]. The authors conduct ex-

periments in an AT&T 3G wireless network, with a total of

more than 5000 transmissions at locations where a typical

audio retrieval system would be used.

We present the time it would take to transmit fingerprint

data for the different schemes in Fig. 7(b). Transmitting fin-

gerprint data takes in the order of a few seconds, while trans-

mitting the compressed audio could take tens of seconds,

based on the wireless link. Note that the delay numbers

shown here only represent the data transmission delay for
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Figure 6. Equal Error Rate (EER) vs. bitrate tradeoff. Baluja scheme
works well at high bitrates, while Wang’s scheme works well at low bi-
trates.

different fingerprinting schemes. The end-to-end system la-

tency would depend on the streaming protocol, the length of

query probe considered, transmission delay and processing

delay on the server. Based on the experimental results pre-

sented here and in [10], we would expect the transmission

delay to be the bottleneck in 3G networks, which motivates

computing fingerprints on the device.
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Figure 7. Fig.(a) shows size of data generated by different schemes.
Fig.(b) shows the associated transmission delay if the data were to be trans-
ferred over a 3G network. The data and transmission delay numbers are
presented for 10 second query probes. Data for 5 and 15 second probes can
be extrapolated linearly.

Finally, we draw some parallels between mobile image

retrieval and audio retrieval. We note that Ke and Baluja

were both inspired by work in computer vision literature.

Interest point detectors and descriptors have been well stud-

ied in computer literature: readers are referred to the sur-

vey papers [15, 19]. What has pushed the field forward is

the availability of good image and patch level data sets that

capture the distortions (e.g., perspective and lighting in im-

ages) that interest point detectors and descriptors need to

be robust against. The availability of similar ground-truth

data sets will be useful for designing interest point detectors

and descriptors for audio retrieval. Spectrogram peaks pro-

posed by Wang is one example of interest point detection,

but other schemes need to be explored. Interest point de-

tectors are the first step in the pipeline, and improvements

here could affect blocks further down the pipeline. Next,

we note that the best descriptors in the vision literature are

high-dimensional and capture salient characteristics in a lo-

cal neighborhood around the interest point. In the case of

audio retrieval, we need descriptors around interest points to

be robust against small timing offset errors, and distortions

introduced by ambient noise. Both interest point detectors

and descriptors for audio retrieval in highly noisy environ-

ments are interesting areas for future work. We conclude by

noting that techniques and algorithms developed in recent

image retrieval literature can be used to further improve ef-

ficiency and performance of audio retrieval systems.

6. CONCLUSION
We perform a thorough survey and evaluation of popular

audio fingerprinting schemes in a common framework. We

report and discuss results important for mobile applications:

Receiver Operating Characteristic (ROC) performance, size

of fingerprints generated compared to size of the compressed

audio sample, transmission delay if the fingerprint data were

to be transmitted over a 3G wireless link and computational

cost of fingerprint generation.
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