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Abstract: Road vehicle accidents are mostly due to human errors, and many such accidents could
be avoided by continuously monitoring the driver. Driver monitoring (DM) is a topic of growing
interest in the automotive industry, and it will remain relevant for all vehicles that are not fully
autonomous, and thus for decades for the average vehicle owner. The present paper focuses on the
first step of DM, which consists of characterizing the state of the driver. Since DM will be increasingly
linked to driving automation (DA), this paper presents a clear view of the role of DM at each of the
six SAE levels of DA. This paper surveys the state of the art of DM, and then synthesizes it, providing
a unique, structured, polychotomous view of the many characterization techniques of DM. Informed
by the survey, the paper characterizes the driver state along the five main dimensions—called here
“(sub)states”—of drowsiness, mental workload, distraction, emotions, and under the influence. The
polychotomous view of DM is presented through a pair of interlocked tables that relate these states to
their indicators (e.g., the eye-blink rate) and the sensors that can access each of these indicators (e.g., a
camera). The tables factor in not only the effects linked directly to the driver, but also those linked to
the (driven) vehicle and the (driving) environment. They show, at a glance, to concerned researchers,
equipment providers, and vehicle manufacturers (1) most of the options they have to implement
various forms of advanced DM systems, and (2) fruitful areas for further research and innovation.

Keywords: survey; driver monitoring; driver state; sensor; indicator; drowsiness; mental workload;
distraction; emotions; under the influence

1. Introduction

A report published in 2018 [1] provides the results of an analysis performed on data
about the events and related factors that led to crashes of small road vehicles from 2005
to 2007 across the USA. It indicates that the critical reasons for these crashes are likely
attributable to the driver (in 94% of the cases), the vehicle (2%), the environment (2%), and
unknown causes (2%). An overwhelming proportion of these crashes is thus due to human
error. It is widely recognized that most of them could be avoided by constantly monitoring
the driver [2,3], and by taking proper, timely actions when necessary.

Monitoring the driver is thus critically important, and this applies to all vehicles,
with the exception of those that are fully autonomous, that is, where the driver does not
control the vehicle under any circumstances. Given that the average driver will not own
a fully-autonomous vehicle for decades to come, “driver monitoring (DM) ” will remain
critically important during all this time. Note that the list of all abbreviations and their
definitions appears after Section 11, before the appendices.

This paper focuses on the topic of DM, which is usefully viewed as consisting of
two successive steps. In the first, one characterizes the driver, or more precisely the
state of the driver, and, in the second, one decides what safety actions to take based on
this characterization. For example, in the monitoring of drowsiness, the first step might
compute the level of drowsiness, whereas the second might check whether this level is at,
or will soon reach, a critical level. More generally, the decision process should ideally fuse
the various characterization parameters available and predict the future state of the driver
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based on them. This paper focuses almost exclusively on the characterization of the state
of the driver, that is, on the first step in DM, which is also the one that is almost exclusively
considered in the literature.

By “state of the driver” or “driver state”, we mean, in a loose way, the state or
situation that the driver is in from various perspectives, in particular physical, physiological,
psychological, and behavioral. To deal with this driver state in a manageable, modular
way, we consider a specific number of distinct facets (such as drowsiness) of this driver
state, which we call “driver (sub)states”. In the sequel, “state” thus refers either to the
global state of the driver or to one of its facets, or substates. This paper covers the main
(sub)states of drowsiness, mental workload, distraction, emotions, and under the influence,
which emerge as being the most significant ones in the literature.

The core of the paper focuses on the characterization of each of these (sub)states, using
indicators (of this state) and sensors (to access the values of these indicators in real time
and in real driving conditions). In the example of the (sub)state of drowsiness, an indicator
thereof is the eye-blink rate, and it can be accessed using a camera.

DM is important, whether the vehicle is equipped with some form of “driving automa-
tion (DA)” (except for full automation) or not. In future vehicles, DA and DM will need to
increasingly interact, and they will need to be designed and implemented in a synergistic
way. While the paper focuses on DM (and, more precisely, on its characterization part), it
considers and describes, at a high-level, how DM and DA interact at the various, standard
levels of DA.

As suggested by its title, the paper comprises two main phases: (1) it reports on a
systematic survey of the state of the art of DM (as of early 2021); (2) it provides a synthesis
of the many characterization techniques of DM. This synthesis leads to an innovative,
structured, polychotomous view of the recent developments in the characterization part of
DM. In a nutshell, this view is provided by two interlocked tables that involve the main
driver (sub)states, the indicators of these states, and the sensors allowing access to the
values of these indicators. The polychotomy presented should prove useful to researchers,
equipment providers, and vehicle manufacturers for organizing their approach concerning
the characterization and monitoring of the state of the driver.

Section 2 describes the standard levels of DA, and the role played by DM for each.
Section 3 indicates the strategy for, and the results of, our survey of the literature on
DM. Section 4 describes the rationale and strategy for expressing the characterization of
the driver state as much as possible in terms of the triad of the (sub)states, indicators,
and sensors. Section 5 provides our innovative, structured, polychotomous view of the
characterization part of DM. Sections 6–10 successively describe the five driver (sub)states
that the survey revealed as being the most important. Section 11 summarizes and concludes.

2. Driving Automation and Driver Monitoring

In autonomous vehicles—also called self-driving or fully-automated vehicles—DM
plays a critical role as long as the automation allows the driver to have some control over
the vehicle. This section describes the interaction between DM and DA in the context of the
six levels of DA defined by the Society of Automotive Engineers (SAE) International [4],
ranging from zero (no automation) to five (full automation).

Table 1, inspired by the SAE J3016 Levels of Driving Automation Graphic, describes
the role of each of the three key actors in the driving task, namely the driver, the driver-
support (DS) features, and the automated-driving (AD) features, at each of the six SAE
levels. We also integrated into this table a fourth actor, that is, DM, as its role is crucial at all
levels except the highest, to ensure that the state of the driver allows him/her to perform the
driving task safely, when applicable. Throughout, we use the inclusive pronoun “he/she”
and adjective “his/her” to refer to the driver.
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Table 1. This table shows the role played by each of the four key actors, that is, driver, driver-support (DS) features,
automated-driving (AD) features, and driver monitoring (DM), at each of the six SAE Levels of driving automation (from 0
to 5).

Actors

SAE Levels 0 1 2 3 4 5
No

Driving
Automation

Driver
Assistance

Partial
Driving

Automation

Conditional
Driving

Automation

High
Driving

Automation

Full
Driving

Automation

Driver
Driving

and
supervising DS features

Driving
when

AD features
request it

Driving
(if desired) when

AD features
reach their limits

/

Driver-Support
(DS)

Features

Warning and
temporary

support

Lateral or
longitudinal

support

Lateral and
longitudinal

support
/ / /

Automated-
Driving (AD)

Features
/ / /

Driving
when AD features

permit it
Driving

Driver
Monitoring

(DM)
Monitoring Monitoring

with relevant indicators

Monitoring
fallback-

ready driver

Monitoring
when driver

in control
/

We now discuss some terminology. In Section 1, we introduced the term “driving
automation (DA)” (as a convenient, companion term for DM) and, in the previous para-
graph, the SAE-suggested term “automated driving (AD)”. While these two terms seem
to further add to a jumble of terms and abbreviations, they both appear in the literature
through their corresponding systems, that is, the “driving-automation system (DAS)” and
“automated-driving system (ADS)”. An ADS is a system consisting of the AD features, and
a DAS is a system that includes, among other things, both DS features and AD features.
One could also view the DS features as constituting a system, but this is not needed here.

In future vehicles with progressively increasing degrees of automation, the develop-
ment of DASs and, in particular, of ADSs should go hand-in-hand with the development of
driver-monitoring systems (DMSs). The next four paragraphs complement the information
in Table 1.

At Levels 0 to 2, the driver is responsible for the driving task, and he/she may be aided
by a variable number of DS features such as automatic emergency braking, adaptive cruise
control, and lane centering. At Level 1, the DS features execute the subtask of controlling
either the lateral motion or the longitudinal motion of the vehicle (but not both), expecting
the driver to perform the rest of the driving task. At Level 2, the DS features execute the
subtasks of controlling both the lateral motion and the longitudinal motion, expecting the
driver to complete the object-and-event-detection-and-response (OEDR) subtask and to
supervise these features. At Levels 0 to 2, a DMS should thus be used continuously. At
Levels 1 and 2, for monitoring the state of the driver, a vehicle-related indicator of driving
performance should be either avoided or used only when compatible with the DS features
that are engaged. The speed cannot, for instance, be used as an indicator of the driver state
when an adaptive cruise control is regulating this speed. As more and more DS features
are introduced in vehicles, vehicle-related indicators of driving performance become less
and less relevant for monitoring the state of the driver, whereas, driver-related parameters
(both physiological and behavioral) remain reliable indicators.

At any of Levels 3 to 5, and when the corresponding AD features are engaged, the
driver is no longer in charge of the driving task and does not need to supervise them.
Additionally, at Level 3, and at any time, the driver must, however, be fallback-ready,
namely, ready to take over the control of his/her vehicle when the AD features request
it (that is, ask for it). A DMS should, therefore, be capable of (1) assessing whether the
current state of the driver allows him/her to take over the control of his/her vehicle if
requested now or in the near future, and of (2) monitoring his/her state as long as he/she
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is in control. El Khatib et al. [5] discuss the potential need for a DMS even when the vehicle
is in control and does not require the driver to supervise the driving or to monitor the
driving environment. Whenever the driver has the option of, for example, engaging in
some entertainment activity, he/she must be prepared to regain control in due course.
Therefore, at Level 3, despite that the driver is allowed to perform a secondary task, a DMS
is still necessary to ensure that the driver is ready to take control at any time. Although the
findings of various studies are sometimes contradictory, Johns et al. [6] suggest that it may
be beneficial for the driver to maintain a certain level of mental workload while his/her
vehicle is operated by a DAS, as this could lead to better performance during a transfer of
control from automated to manual.

At Level 4, the AD features can only drive the vehicle under limited conditions, but
they will not require the driver to respond within some specified time delay to a take-over
request. The operational design domain (ODD) specifies the conditions under which the
DAS is specifically designed to operate, including, but not limited to, (1) environmental,
geographical, and time-of-day restrictions, and/or (2) the requisite presence or absence of
certain traffic or roadway characteristics. Still at Level 4, the AD features are capable of
automatically (1) performing a fallback of the driving task and (2) reaching a minimal-risk
condition (e.g., parking the car) if the driver neither intervenes nor takes over the driving
task within the delay. If the driver decides to respond to the take-over request, one can
assume that the DMS would check that his/her state allows for this, even though the SAE
J3016 does not say so explicitly.

At Level 5, the driving is fully automated under all possible conditions, and no DMS is
required as the driver is never in control, and becomes, in effect, a passenger of the vehicle.

3. Survey of Literature on Driver Monitoring

This section describes our survey of the literature on DM and DMSs. The subsections
below successively describe (1) our strategy for building an initial set of references, (2) some
conclusions drawn from these references, (3) the design of a table for organizing them, (4)
comments about the content of this table, and (5), (6) trends observable in it or in some
references. The analysis performed here guides the developments in subsequent sections.

3.1. Strategy for Building Initial Set of References, and Number of These

To build an initial set of relevant references, we used an approach inspired from
Gutiérrez et al. [7]. The block (or flow) diagram of Figure 1 describes it.

Our search focused on surveys, reviews, and similar studies about DM and DMSs.
We independently performed two searches during February 2021. The first focused on
publications from IEEE, ScienceDirect, and Sensors, and the second on publications from
ResearchGate; these four databases appeared well-suited for providing a useful set of
initial references. We used the search engine specific to each database and a boolean query
equivalent to (“survey” OR “review”) AND (“driver” OR “driving”) AND (“detection” OR

“detecting” OR “behavior” OR “state” OR “monitoring”). We limited the search to publications
in English, and did not place any constraint on the dates of publication. The two searches
yielded 124 and 30 items, respectively. After removing 16 duplicates, we obtained a set
of 138 references. We manually screened these, and only kept the ones satisfying the two
criteria of (1) being in scientific journals or conference proceedings, and (2) providing a
survey, review, or similar study of one or more aspects of the domain of interest. This
screening led to 56 references, which appear in the first column of Table 2 and in the
References section, the latter containing additional references quoted later. Appendix A
provides a version of this table that is suitable for printing.
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Search  
database  

Screen  
for inclusion 

Remove  
duplicates 

Database 1:  
IEEE, ScienceDirect, 

Sensors

Database 2:
ResearchGate

124 30 

154

16  
removed

138

82 
removed

56 publications  
used as starting point  

for the review

Search  
database  

Figure 1. The flow diagram (1) illustrates the strategy used for our survey of the literature on driver
monitoring (DM) and driver-monitoring systems (DMSs), and (2) shows the number of publications
at each stage of the process.
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Table 2. The first column of the table lists, by alphabetical order of first author, the 56 references that resulted from our survey on driver monitoring (DM) and related systems (DMSs). The
next three megacolumns and the last column briefly describe, for each reference, the states, indicators, sensors, and test conditions considered therein.

References
States Indicators Sensors

Tests
Drowsiness

Mental
Workload

Distraction Emotions Under the
Influence

Driver
Vehicle Environment Driver Vehicle EnvironmentPhysiological Behavioral Subjective

Ahir and Gohokar [8] V HR, brain gaze, blink, PERCLOS, facial, body wheel, lane, speed cam, elec ext cam real, sim

Alluhaibi et al. [9] V V ang speech wheel, lane, brake, speed cam*, mic* V*

Arun et al. [10] vis, cog HR, brain, EDA, pupil gaze, blink, body V wheel, lane, brake, speed cam, wea d, eye t V sim

Balandong et al. [11] V HR, brain gaze, blink, PERCLOS, body V wheel, lane, brake, speed elec sim

Begum [12] V V stress HR, brain seat, ste w, saf b, wea d real, sim

Chacon-Murguia and
Prieto-Resendiz [13]

V HR, brain, EDA gaze, blink, body wheel, lane, brake, speed ste w, cam radar real

Chan et al. [14] V HR, brain blink, PERCLOS, facial, body wheel, brake, speed cam*, mic* real

Chhabra et al. [15] V V alc breath gaze, PERCLOS, facial, body wheel road seat, cam*, mic* V* real, sim

Chowdhury et al. [16] V HR, brain, EDA blink, PERCLOS sim

Chung et al. [17] stress HR, breath, brain, EDA, pupil speech V wheel, lane, brake, speed cam, wea d V real, sim

Coetzer and Hancke [18] V brain gaze, PERCLOS, facial, body wheel, lane, speed cam V real, sim

Dababneh and El-Gindy [19] V brain, EDA, pupil blink, PERCLOS, body wheel, lane, speed road cam, wea d radar real, sim

Dahiphale and Rao [20] V V gaze, blink, facial, body wheel cam real

Dong et al. [21] V V HR, brain, pupil gaze, blink, PERCLOS, facial, body V wheel, lane, speed road, wea cam V real

El Khatib et al. [5] V man, vis, cog HR, breath, brain, EDA, pupil gaze, blink, PERCLOS, facial, body, hands wheel, lane, speed cam V* ext cam, radar real, sim

Ghandour et al. [22] man, vis, aud, cog stress HR, breath, brain, EDA gaze, facial, body, speech V wheel, brake, speed cam, wea d real, sim

Hecht et al. [23] V V V HR, brain, EDA, pupil gaze, blink, PERCLOS, facial, body V elec, eye t real, sim

Kang [24] V V HR, breath, brain, EDA gaze, blink, facial, body wheel, lane, brake, speed seat, ste w, cam V real, sim

Kaplan et al. [25] V V HR, brain gaze, blink, PERCLOS, facial, body, speech wheel, lane, brake, speed ste w, cam*, mic*, wea d V real, sim

Kaye et al. [26] V stress HR, breath, brain, EDA V real, sim

Khan and Lee [27] V man, vis, aud, cog HR, brain, EDA gaze, PERCLOS, body wheel, lane, brake, speed wea d real

Kumari and Kumar [28] V HR, brain gaze, blink, PERCLOS, body V wheel, lane cam

Lal and Craig [29] V HR, brain, EDA PERCLOS, facial cam sim

Laouz et al. [30] V HR, brain, EDA blink, PERCLOS, facial, body V wheel, speed seat, cam, wea d ext cam real

Leonhardt et al. [31] HR, breath seat, ste w, saf b, cam real

Liu et al. [32] V HR, brain, pupil gaze, blink, PERCLOS, body wheel, lane, speed cam V real

Marquart et al. [33] V pupil gaze, blink, PERCLOS V eye t real, sim

Marina Martinez et al. [34] ang brake, speed V*

Mashko [35] V HR, brain, EDA gaze, blink, body wheel, lane, brake, speed cam, wea d V ext cam, radar real, sim

Mashru and Gandhi [36] V HR, breath blink, PERCLOS, facial, body V wheel, lane seat, ste w, cam, wea d sim

Melnicuk et al. [37] V V cog stress, ang HR, brain blink, PERCLOS, facial wheel, brake, speed road, traf, wea seat, ste w, saf b, cam*, wea d V* real

Mittal et al. [38] V HR, brain, pupil blink, PERCLOS, body V wheel, lane, brake, speed cam, elec V ext cam real

Murugan et al. [39] V HR, breath, brain, EDA, pupil blink, PERCLOS, body V wheel, lane, speed cam, elec V sim

Nair et al. [40] V V alc gaze, PERCLOS, facial, body lane seat, cam* V radar

Němcová et al. [41] V stress HR, breath, brain, EDA gaze, blink, PERCLOS, facial, body wheel, lane, brake, speed seat, ste w, cam, wea d, eye t V real, sim
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Table 2. Cont.

References
States Indicators Sensors

Tests
Drowsiness Mental

Workload Distraction Emotions Under the
Influence

Driver
Vehicle Environment Driver Vehicle Environment

Physiological Behavioral Subjective

Ngxande et al. [42] V blink, PERCLOS, facial, body cam

Oviedo-Trespalacios et al. [43] V V gaze wheel, lane, brake, speed real, sim

Papantoniou et al. [44] V V HR, breath, brain gaze, blink, speech V wheel, lane, speed cam ext cam, radar real, sim

Pratama et al. [45] V HR, brain, EDA gaze, blink, PERCLOS, facial, body, hands V wheel, lane cam, wea d, elec ext cam real, sim

Ramzan et al. [46] V HR, breath, brain blink, PERCLOS, facial, body wheel, lane, speed cam, wea d, elec V real, sim

Sahayadhas et al. [47] V HR, brain, pupil gaze, blink, PERCLOS, body V wheel, lane seat, ste w, cam, wea d V real, sim

Scott-Parker [48] stress, ang HR, brain, EDA gaze, facial V wheel, lane, brake, speed traf eye t ext cam real, sim

Seth [49] V cam V real

Shameen et al. [50] V brain gaze, blink elec sim

Sigari et al. [51] V gaze, blink, PERCLOS, facial, body cam real

Sikander and Anwar [52] V HR, brain, pupil gaze, blink, PERCLOS, body V wheel, lane seat, ste w, saf b, cam, wea d, elec real

Singh and Kathuria [53] V V V V pupil gaze, blink, PERCLOS, facial wheel, brake, speed road, traf cam, wea d V ext cam, radar real

Subbaiah et al. [54] V HR, brain, pupil blink, PERCLOS, facial, body cam real, sim

Tu et al. [55] V HR, brain blink, PERCLOS, facial, body wheel, lane, speed cam*, wea d, elec V real, sim

Ukwuoma and Bo [56] V HR, breath, brain blink, PERCLOS, facial, body wheel, lane, brake cam, wea d, elec real

Vilaca et al. [57] V V brain gaze, body wheel, lane, brake, speed cam, mic V ext cam

Vismaya and Saritha [58] V gaze, blink, PERCLOS, body cam, eye t real, sim

Wang et al. [59] V brain, pupil gaze, blink, PERCLOS, body lane cam, wea d real, sim

Welch et al. [60] stress, ang HR, breath, brain, EDA blink, facial, speech wheel, brake, speed seat, ste w, cam, wea d V real, sim

Yusoff et al. [61] vis, cog HR, brain, EDA, pupil gaze, body V lane, speed eye t

Zhang et al. [62] V HR, brain gaze, blink, PERCLOS, body lane, speed cam ext cam real, sim
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3.2. Conclusions from Preliminary Analysis of 56 Initial References

The preliminary analysis of the 56 initial references led to the following high-level
conclusions:

1. To characterize the (global) state of a driver, one should consider the five main
substates of drowsiness, mental workload, distraction, emotions, and under the
influence.

2. A wide variety of parameters, which we call “indicators”, are used to characterize
each of these substates, and some indicators are applicable to more than one substate.

3. Ideally, a DMS should monitor not only the driver, but also the (driven) vehicle and
the (driving) environment.

4. A value for each indicator is obtained by processing data (mainly signals and images)
obtained from sensors “observing” the driver, the vehicle, and the environment.

5. A DMS generally involves one or more types and/or instances of each of the following:
substate, indicator, and sensor.

These conclusions guided the structuring and writing of the bulk of the paper.
When the context is clear, we use “state” for the global state and each of the five

substates. The phrase “state i” and the plural “states” imply that one is talking about one
substate and several substates, respectively.

3.3. Design of Structure of Table Organizing Initial References

We used the above conclusions to design the structure of a table—namely Table 2—for
organizing the 56 initial references in a useful way, in particular for the later synthesis in
this paper.

The 56 references are listed in the first column, labelled “References”, by alphabetical
order of first author. The three megacolumns following the first column successively
correspond to the three key items above, and are accordingly labelled “States”, “Indicators”,
and “Sensors”. The last column, labelled “Tests”, indicates whether the technique or system
described in a reference was tested in the laboratory, or in real conditions (“in the wild”),
or both.

The “States” megacolumn is divided into 5 columns corresponding to the 5 (sub)states
of interest. Each of the “Indicators” and “Sensors” megacolumns is divided into 3 columns
corresponding to the 3 previously-listed items that a DMS should ideally monitor, that is,
the driver, vehicle, and environment. The column corresponding to the indicators for the
driver is further divided into 3 subcolumns corresponding to the qualifiers “physiological”,
“behavioral”, and “subjective”. Some other columns could be further subdivided, such as
for “Distraction”, but the table deals with such additional subdivisions in a different way.

3.4. Description of Content of Table of References

We successively describe the three megacolumns of Table 2.

3.4.1. States

For each of the 56 papers, we indicate which particular (sub)state(s) it addresses. If a
paper addresses drowsiness, we place the checkmark “V” in the corresponding column,
and similarly for mental workload. For the three other states, we either use a general
“V” or give more specific information, often via an abbreviation. There are four types of
distraction, that is, manual, visual, auditory, and cognitive, respectively abbreviated via
man, vis, aud, and cog. These types are self-explanatory, but they are addressed later. For
emotions, we indicate the type, that is, stress or anger (ang). For under the influence, we
also indicate the type; in all cases, it turns out to be alcohol (alc).

As an example, the second paper, by Alluhaibi et al. [9], addresses drowsiness, dis-
traction, and the emotion of anger.

All abbreviations used in Table 2, for this and other (mega)columns, are defined in
Table 3.
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3.4.2. Indicators

The indicator(s) used by a paper is (are) indicated in the same way as above.

3.4.3. Sensors

The sensor(s) used by a paper is (are) indicated in a similar, but not identical, way. If a
sensor is embedded in a mobile device (typically a smartphone), rather than in the vehicle,
we add a “*”, leading to “cam*”/”mic*” for a camera/microphone of a mobile device. In
the vehicle column, “V” indicates that the sensor is integrated in the vehicle, whereas “V*”
indicates that it is part of a mobile device. For example, the vehicle speed can be obtained
via the controller-area-network (CAN) system/bus or a mobile device.

Table 3. The table defines the abbreviations used in Table 2. They are organized according to the megacolumns and columns
of Table 2, and are listed in alphabetical order.

States Indicators Sensors Tests

Distraction Driver Driver real real conditions
aud auditory blink blink dynamics cam camera sim simulated conditions
cog cognitive body body posture elec electrode(s)
man manual brain brain activity eye t eye tracker
vis visual breath breathing activity mic microphone

Emotions EDA electrodermal activity saf b safety belt
ang anger facial facial expressions ste w steering wheel
Under the Influence hands hands parameters Environment
alc alcohol HR heart rate/activity ext cam external camera

pupil pupil diameter
Vehicle

brake braking behavior
lane lane discipline

wheel wheel steering
Environment

road road geometry
traf traffic density
wea weather

3.5. Trends Observable in Table

Table 2 reveals the following trends.
Drowsiness is the most covered state (with 44 references among the total of 56),

distraction is the second most covered (with 20 references), and more than one (sub)state is
considered in only 19 references.

Indicators are widely used in most references, in various numbers and combinations.
Subjective indicators are not frequent (which is to be expected given the constraints of real-
time operation). While several authors, such as Dong et al. [21] and Sahayadhas et al. [47],
emphasize the importance of the environment and of its various characteristics (e.g., road
type, weather conditions, and traffic density), few references (and, specifically, only 6) take
them into account.

While the three “Sensors” columns seem well filled, several references either neglect to
talk about the sensor(s) they use, or cover them in an incomplete way. Some references give
a list of indicators, but do not say which sensor(s) to use to get access to them. References
simply saying that, for example, drowsiness can be measured via a camera or an eye tracker
do not help the reader. Indeed, these devices can be head- or dashboard-mounted, and
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they can provide access to a variety of indicators such as blink dynamics, PERCLOS, and
gaze parameters.

Many systems are tested in real conditions, perhaps after initial development and
validation in a simulator. Many papers do not, however, document systematically the test
conditions for each method that they describe.

3.6. Other Trends Observable in References

Other trends are not directly observable in Table 2, but can be identified in some
individual references.

Experts agree that there does not exist any globally-accepted definition for each of the
first four states that we decided to consider. For example, even though many authors try to
give a proper definition for drowsiness, there remains a lot of confusion and inconsistencies
about the concepts of drowsiness and fatigue, and the difference between them. There is
thus a need to define, as precisely as possible, what the first four states are, and this is done
in the sequel.

In the more recent references, one sees a trend, growing with time, in the use of mobile
devices, and in particular of smartphones [5,9,14,15,24,25,34,37,40,55]. A smartphone is
relatively low-cost, and one can easily link it to a DMS. This DMS can then use the data
provided by the smartphone’s many sensors, such as its inertial devices, microphones,
cameras, and navigation system(s). A smartphone can also receive data from wearable
sensors (e.g., from a smartwatch), which can provide information such as heart rate (HR),
skin temperature, and electrodermal activity (EDA). A smartphone can also be used for its
processing unit.

4. Driver-State Characterization via Triad of States, Indicators, and Sensors

Our survey of the field of DM and DMSs led us to the idea of synthesizing this field
in terms of the three key components of states, indicators, and sensors. The next two
subsections discuss the first two components, and the third subsection brings all three
components into a system block diagram (BD).

4.1. States

Our survey convinced us that the (global) state of a driver should be characterized
along at least the five dimensions—called here states—of drowsiness, mental workload,
distraction, emotions, and under the influence.

One goal of a DMS is to determine the levels of one or more of these states in real
time, nearly continuously, and, preferably, in a non-invasive way. We use “level” in a very
general sense. The level can take several forms, such as a numerical value or a label. The
numerical value can be on a continuous scale or on a discrete scale. A label can be the most
likely (output) class of a classifier together with its probability, likelihood, or equivalent. A
level can be binary, e.g., 0 and 1, or “alert” and “drowsy”. The levels of one or more of the
five states can then be used to issue alerts or take safety actions; this is, however, not the
object of this paper.

The first four states present a formidable challenge in that they are not defined in a
precise way and cannot be measured directly, by contrast with, say, physical quantities
such as voltage and power. The fifth state can be defined precisely, at least in the case of
alcohol, but the measurement of its level requires asking the driver to blow in a breathalyzer
and/or to submit to a blood test, both of which can be performed neither in real time nor
non-invasively. In short, for all practical purposes, one cannot directly measure or obtain
the level of any of the five states in any simple way. This is the reason for having recourse
to “indicators” of each of these states.

4.2. Indicators

While one may have an intuitive idea of what an indicator is, it is useful to define, as
precisely as possible, what it is. In a nutshell, an indicator must be well defined, and there
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must be a clear procedure for computing its values (at a succession of time instants) based
on input data provided by one or more sensors.

For the purpose of this paper, a “quantity” or “item” is called an indicator for a given
(sub)state if it satisfies all of the following conditions:

• it has a precise definition based on science (e.g., physics, mechanics, chemistry, biology,
physiology);

• it can be measured, or characterized in some way, with real-time constraint when
necessary, based upon data obtained from relevant sensors available in the application
of interest;

• it must take values (such as numbers or labels) within a pre-specified domain, and
these values must preferably correspond to physical units (such as seconds or Hertz);

• it is not a unique and full descriptor of the state;
• it is recognized, in the literature, as being linked, in some meaningful way, to the state

or trend thereof;
• it is possibly useful with respect to one or more related, or unrelated, states;
• it is reproducible, meaning that its value is always the same for fixed data.

For example, the eye-blink rate (that is, the blink rate of the left or right pair of eyelids)
is scientifically recognized as being indicative of drowsiness. This parameter obeys all
conditions above, and is thus an indicator of drowsiness.

Similarly to the level of a state, we talk about the value of an indicator. We use both
“value” and “level” simply as a way to implicitly communicate wether one is talking about
an indicator or a state. Ultimately, a set of values of the indicators of a state must be
converted into a level of this state. The conversion may require the use of an advanced,
validated algorithm.

Indicators are generally imperfect. In most cases, an indicator cannot be guaranteed to
be fully correlated with a related state. Due to the presence of complex interrelationships
between each (sub)state and its indicators, it is important to use as many indicators as
possible to promote a valid and reliable interpretation of the (sub)state of the driver and,
ultimately, of the (global) state of the driver. An example follows. The heart rate (HR)
is known to be an indicator of drowsiness. But, imagine that one relies solely on the HR
to monitor drowsiness, and that the driver must suddenly brake to avoid an accident.
Inevitably, this will cause his/her HR to undergo important variations. These particular
variations have, however, no direct link with his/her level of drowsiness. Thus, while it
is true that the HR is an indicator of drowsiness, one cannot rely on it alone to provide a
reliable level of drowsiness. The environment, among other things, needs to be considered.

The values of indicators are obtained through algorithms applied to data collected via
sensors.

4.3. System View of Characterization of a (Sub)State

Figure 2 shows a system BD that uses the terminology introduced above, that is, sensors,
indicators (and values thereof), and states (and levels thereof). The BD is drawn for a single,
generic state, and one must specialize it for each of the five states of interest (or others).

Situation  
(driver, vehicle,
environment)

Extract 
(via algorithms) 

Values of  
indicators

Convert 
(via algorithms) 

Level of  
state

Acquire 
(via sensors)

Data

e.g., signals,
images 

e.g., values of  
eye-blink rate,

heart rate 

e.g., level of
drowsiness 

Figure 2. The figure shows, for the context of driver monitoring (DM), the system block diagram applicable to the
characterization of a generic (sub)state. The input is the situation of interest and the output is the level of the state. The
operation of each of the three subsystems is described in the text.
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The BD is self-explanatory. The input is the situation of interest (with the driver,
vehicle, and environment). One or more sensors acquire data, typically signals and images.
Algorithms extract the values of the indicators that are deemed relevant for the state of
interest. Other algorithms convert these values into a level of the state. The three successive
subsystems are labelled with the operation they perform, that is, acquire, extract, and
convert. The input and output of each subsystem should ideally be viewed as being
functions of time.

If several states are used simultaneously, the value of a given indicator can be used to
compute the level of any state that this indicator relates to.

5. Synthesis of Driver-State Characterization via Two Interlocked Tables

The previous section shows the key role played by the triad of states, indicators, and
sensors (also emphasized in Figure 2) in driver-state characterization, which is the first of
two key steps in DM, and the object of this paper. The present section describes our ap-
proach to synthesize, in terms of this triad, the techniques for driver-state characterization
found in the literature.

Our approach aims at answering, in a simple, visual way, the two following questions:
(1) For a given state, what indicator(s) can one use? (2) For a given indicator, what sensor(s)
can one use? We achieve this goal by naturally providing two tables (or matrices) of
“states vs indicators” and “sensors vs indicators”. These two tables can be viewed as being
two-dimensional (2D) views of a 3D table (or array) of “states vs indicators vs sensors”,
as illustrated in Figure 3, where the positions shown for the three dimensions and for the
“dihedral” they subtend make the tables on the right appear in numerical order from top to
bottom. The figure shows visually that the tables share the “Indicators” dimension, and
are thereby interlocked. It gives a simplified representation of each of the tables that are
progressively filled in Sections 6–10, that is, Tables 4 and 5.

Table 4

Sensors

In
di

ca
to

rs

State
s

Table 5 

In
di

ca
to

rs

States

D

V

E 

S1 S2 S3 S4 S5

Table 4

D

V

E 

Table 5

In
di

ca
to

rs

Sensors

D V E 

Figure 3. The figure shows simplified representations of key Table 4 (states vs. indicators) and
Table 5 (sensors vs. indicators). It also suggests that these tables can naturally be interpreted as being
two views of an underlying 3D array. Si, D, V, and E stand for “State i”, “Driver”, “Vehicle”, and
“Environment”, respectively.
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5.1. Preview of Two Key Tables

In Figure 3, the simplified representations of Tables 4 and 5 give the high-level struc-
tures of these tables.

In Table 2, the megacolumn “Indicators” is partitioned into the three columns “Driver”,
“Vehicle”, and “ Environment”. Figure 3 shows, via the simplified representations, that
Tables 4 and 5 are also partitioned in this way, but in megarows and with the corresponding
abbreviations D, V, and E. In Table 2, the megacolumn “Sensors” is partitioned in the same
way as the megacolum “Indicators”. This is reflected in Figure 3 by the partitioning of
Table 5 into the megacolumns D, V, and E. The figure shows that Table 4 is partitioned into
the five megacolumns corresponding to the five states, denoted here by S1, . . . , S5, where
Si stands for “State i”. This quoted phrase appears at the beginning of the titles of the next
five sections, with the successive values of i.

Each lowest-level cell in both tables is destined to contain 0, 1, or more related refer-
ences.

The pair of tables allows one to answer other questions such as: (1) If one invests in
the calculation of an indicator for a particular state, what other state(s) can this indicator be
useful for? (2) If one invests in a particular sensor for a particular state, what other state(s)
can this sensor be useful for?

5.2. Further Subdivision of Rows and Columns

The rows and columns of Tables 4 and 5 are further divided as follows. The D-
megarows of Tables 4 and 5 are subdivided as the D-megacolumns of Table 2 are, that is,
into the rows “Physiological”, “Behavioral”, and “Subjective”.

The D-megacolumns of Table 5 are subdivided in a way that does not already appear
in Table 2, that is, into the columns “Seat”, “Steering Wheel”, “Safety Belt”, “Internal
Camera”, “Internal Microphone”, and “Wearable”. Observe that the D-megarows and
D-megacolumns are not subdivided in the same way, even though they correspond to the
driver.

The V- and E- rows and columns are also further divided as necessary.

5.3. Categories of Indicators and Sensors

We give examples of the various categories of indicators and sensors that are further
discussed in the next five sections. Below, we use the self-explanatory terminology of
"X-based indicators" and "X-centric sensors", where X can be replaced by driver (or D),
vehicle (or V), or environment (or E).

5.3.1. Indicators

D-based indicators relate to the driver. They include physiological indicators (e.g.,
heart activity, brain activity, electrodermal activity (EDA)), behavioral indicators (e.g., eye
blinks, gaze direction, hands positions), and subjective indicators (which are not suited for
real-world operation, but can be used for validation at some point in the development of a
DMS).

V-based indicators relate to how the driver controls his/her vehicle, for example, how
he/she controls the speed, steers, and brakes.

E-based indicators relate to the environment, viewed here as consisting of three parts,
that is, (1) the outside environment (outside of vehicle), (2) the inside environment (inside of
vehicle), and (3) the contextual environment (independent of the previous two). Examples
of characteristics of these parts of the environment are, respectively, (1) the road type,
weather conditions, and traffic density; (2) the temperature and noise; and (3) the time
of day and day of year. Each of these characteristics (e.g., road type) can be used as an
E-based indicator.
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5.3.2. Sensors

Some D-centric sensors are placed in the seat (e.g., radar for breathing activity),
steering wheel (e.g., electrodes for electrocardiogram (ECG)), and safety belt (e.g., magnetic
induction (MI) sensors). Some D-centric sensors, in particular cameras (e.g., RGB) and
microphones, are appropriately placed in the cockpit to monitor the driver. We qualify these
sensors of “internal”, to distinguish them from similar sensors monitoring the external
environment, and qualified of “external”. Some D-centric sensors are wearables (e.g., a
smartwatch measuring HR and/or skin temperature). Since the aim is to monitor the state
of the driver, we assume throughout this paper that the seat, safety belt, and similar items
are related to the driver.

V-centric sensors are mostly sensors—whether integrated in the vehicle or not—that
allow for the acquisition of vehicle parameters such as speed, steering angle, and braking
level. Such parameters are often obtained via the CAN bus. Sensors (e.g., accelerometers,
gyroscopes) built into recent mobile devices can, however, also provide some of this
information.

E-centric sensors are sensors that allow for the acquisition of parameters related to the
environment. Cameras and radars can provide, for example, information about the driving
scene.

5.4. Preview of Next Five Sections

The next five sections successively cover the five selected states in detail. In general,
each section defines a state, the indicators that characterize it, and the sensors that allow
access to them, and progressively fills Tables 4 and 5 with relevant references.

At the end of the last of these five sections, both tables are complete. They, together
with the explanations in the five sections, constitute the main contribution of this paper.

The structures of Tables 2, 4, and 5 were obtained after a significant number of
iterations. This implies that the ultimate structure of Table 2 was informed by the content
of Sections 4–10.

6. State 1: Drowsiness

We provide a detailed description of (the state of) “drowsiness”, and we then present
the indicators and sensors that can be used to characterize it.

6.1. Description

Johns [63] appears to have provided the earliest, accurate definition of drowsiness,
that is, the state of being drowsy. Massoz [64] provides useful, recent information about
this state. Drowsiness is an intermediate arousal state between wakefulness and sleep,
that is, between being awake and being asleep; it thus refers to a state just before potential
sleep. A drowsy person has both a difficulty to stay awake and a strong inclination to sleep.
It is a continuous, fluctuating state of (1) reduced awareness of the “here and now” [65]
and (2) impaired cognitive and/or psychomotor performance. It is often the result of a
monotonous activity, such as a long drive on a monotonous road. It can have a detrimental
effect on the safety of driving. For example, in the USA in 2018, there were 785 fatal
accidents due to drowsiness for a total of 36,835 people killed in motor vehicle crashes
and, in 2019, these numbers were 697 vs. 36,096 [66]. It can be viewed as a state of basic
physiological need like hunger and thirst, that is, as an indication that one needs to sleep.
It can be considered to be synonymous with sleepiness, somnolence, and sleepening, the
latter being a less common term meaning “entry into sleep” [67].

Drowsiness is, however, not synonymous with fatigue. These are two distinct physio-
logical states that are often confused, even in the scientific literature. Fatigue corresponds
to the feeling of being tired or exhausted as a result of long periods of physical activity
and/or cognitive activity. It is characterized by an increasing difficulty to accomplish an
effort linked to a task. It can be considered to be synonymous with tiredness. Talking about
fatigue helps one to further narrow down what drowsiness is and is not.
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May and Baldwin [68] suggest that, for driving, one should distinguish between
sleep-related (SR) fatigue and task-related (TR) fatigue, based on the causing factors. SR
fatigue can be caused by sleep deprivation, long wakefulness, and time of day (with
effect of circadian rhythm), while TR fatigue can be caused by certain characteristics of
driving, like task demand and duration, even in the absence of SR fatigue. These suggested
subcategories of fatigue clearly intersect with drowsiness, but it is difficult to say exactly
how.

Fatigue can be alleviated by taking a break (without necessarily sleeping), while
drowsiness can be alleviated by sleeping, even by taking a nap or a power nap. One
can be drowsy without being fatigued and vice-versa, and one can be both. Fatigue and
drowsiness both lead to decrements in performance. In practice, it is difficult to distinguish
between them, and even more to quantify how much of a decrement is due to each of
them individually, especially in real time and non-invasively. Their indicators appear to be
mostly the same. In the driving context, one focuses on monitoring drowsiness, with the
main goal of preventing the driver from falling asleep at the wheel.

There are many publications about the various ways of characterizing
drowsiness [64,69–71], and apparently fewer for fatigue [72]. Very few papers tackle
both phenomena [73].

6.2. Indicators

We start with the driver-based indicators, divided into the three categories of physio-
logical, behavioral, and subjective indicators.

The most substantial changes in physiology associated with changes in the level of
drowsiness (LoD) lie in the brain activity as measured by the electroencephalogram (EEG).
Tantisatirapong et al. [74] model EEG signals using the fractal Brownian motion (fBm)
random process. They carried out experiments in a driving simulator, and considered the
three time periods of before, during, and after sleep, where they mimic sleep by asking
the driver to close his/her eyes, pretending to try to fall asleep. They saw corresponding
changes in the computed fractal dimension (related, for self-replicating random processes,
to the Hurst exponent), which allows them to classify the driver as alert or drowsy. They
conclude that the fractal dimension of an EEG signal is a promising indicator of drowsiness.
Changes in physiology also manifest themselves in the heart activity, as measured by the
ECG. Indeed, as drowsiness increases, the HR decreases and the heart rate variability
(HRV) increases [75]. However, HRV data vary both between individuals and over time
for each individual, depending on both internal and external factors. Therefore, the many
confounding factors that also influence HRV must be accounted for in order to use HRV
as an indicator of drowsiness [76]. The breathing activity is an indicator of drowsiness,
as changes in breathing rate or inspiration-to-expiration ratio occur during the transition
from wakefulness to drowsiness [77]. Drowsiness leads to changes in EDA, also called
skin conductance or galvanic skin response (GSR), which relates to the electrical resistance
measured via electrodes placed on the surface of the skin. The skin resistance fluctuates
with sweating, the level of which is controlled by the sympathetic nervous system, which
autonomously regulates emotional states such as drowsiness [78]. The pupil diameter
instability has been linked to drowsiness. Indeed, several studies found that the pupil
diameter fluctuates at a low frequency and with a high amplitude whenever a subject
reports being drowsy [79–81].

Eye behavior is a good indicator of drowsiness. In a clinical setting, one traditionally
characterizes this behavior by electrooculography (EOG) [82], which implies the use of
electrodes. In operational settings where a non-invasive characterization is highly desirable,
one generally uses video sequences of the eye(s) and applies image-analysis methods to
them. The dynamics of eye closures (in particular, long and slow closures) is recognized
as a strong and reliable indicator of drowsiness [83]. The most-standard indicator of
spontaneous eye closure is the percentage of closure (PERCLOS) [84–86]. It is usually
defined as the proportion of time (over a given time window) that the eyelids cover at
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least 70% (or 80%) of the pupils. As the LoD increases, the eye closures become slower
and longer, and the upper eyelid droops, and all of this contributes to an increase in
PERCLOS. Other reliable, standard indicators include mean blink duration [83,87], mean
blink frequency or interval [83,88], and eye closing and reopening speeds [83]. Recently,
Hultman et al. [89] used electrophysiological data obtained by EOG and EEG to detect
drowsiness with deep neural networks, and found that, for driver-drowsiness classification,
EOG data (and, more precisely, the related blink data) are more informative than EEG data.

All the above elements constitute objective indicators of drowsiness. Besides these,
there are subjective indicators, consisting of questionnaires and self-reports. While they
are not suitable for real-time characterization of drowsiness, they can be used to validate
other indicators, as ground truth to train models, and/or to evaluate the performances of
systems. These subjective indicators include the Karolinska sleepiness scale (KSS) [90], the
Stanford sleepiness scale (SSS) [91], and the visual analog scale (VAS) [92].

The above information allows one to fill the cells of Table 4 at the intersection of
the “Drowsiness” column and the “Driver” megarow. The latter lists a total of fourteen
indicators. We stress that these may or may not be relevant for each of the five states.

A cell (at the lowest level) in the heart of Table 4 is either empty or filled with one or
more related reference(s). For example, this table shows that we found three significant
references about “pupil diameter” as an indicator of drowsiness, that is, [79–81], while we
found no significant reference about “gaze parameters” as an indicator of drowsiness. The
table shows, however, that we found references reporting that this last indicator is useful
for the state of emotions (discussed later).

Below, as we progressively fill Tables 4 and 5, we simply indicate which cell(s) is/are
concerned. As we progress, the discussion in the last two paragraphs remains valid, after
proper adaptation.

As should be clear from this discussion, the finer hierarchical partitioning of
Tables 4 and 5 into the lowest-level columns and rows is progressively obtained from
the developments in Sections 3–10.

We now consider the vehicle-based indicators. In the literature, they are often called
measures of driving performance, the latter being known to degrade with increasing
drowsiness [93–95]. These indicators characterize the driving behavior. Common such
indicators include speed, lateral control (or lane discipline), braking behavior, and wheel
steering. These last indicators are found in the central part of Table 4, next to the “Vehicle”
header.

The main vehicle-based indicator of drowsiness is the standard deviation of lane
position (SDLP) [96–99]. As the term suggests, SDLP measures the driver’s ability to
stay centered in his/her lane. Drowsiness can also produce greater variability in driving
speed [100]. Another important vehicle-based indicator is the steering wheel movement
(SWM) [97]. It has been shown that a drowsy driver makes fewer small SWMs and more
large ones. When a driver loses concentration, the vehicle begins to drift away from the
center of the lane, but, when the driver notices the drift, he/she compensates by large
SWMs toward the lane center [101].

Jacobé de Naurois et al. [102] conducted a study in a driving simulator, using different
artificial neural networks (ANNs) based on various data, to detect drowsiness and predict
when a driver will reach a given LoD. The data used are either (1) driver-based, physio-
logical indicators (HR, breathing rate) and behavioral indicators (blinks, PERCLOS, head
pose), or (2) vehicle-based indicators (lane deviation, steering wheel angle, acceleration,
speed). The results of the study show that the best performance is obtained with behavioral
data, successively followed by physiological data and vehicle data, for both detection and
prediction.

Most real-time, drowsiness-monitoring systems characterize the LoD at the “present”
time using sensor data located in a sliding time window butting against this present
time. Therefore, this LoD corresponds, not to the present, but to roughly the center of the
window, thus several seconds, or tens of seconds, in the past. If this “present” LoD is above
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a dangerous level, it may be too late for the driver or the vehicle to take proper action.
Given that, at 100 km/h, it takes about 2 sec to get out of lane (then possibly hitting an
obstacle), predictions just 10 to 20 sec into the future would already help. It is thus crucial
to be able to predict (1) the future evolution of the LoD and (2) the associated risks.

Ebrahimbabaie [69] and Ebrahimbabaie and Verly [103] developed and tested a pre-
diction system that (1) takes as input a discrete-time, validated LoD signal consisting
of the past LoD values produced at regular intervals, up to just before the present time,
as in [70,104] (discussed later), and (2) produces as output several types of predictions.
Treating the LoD signal as a realization of an underlying random process (RP), the au-
thors investigate the use of the RPs called “autoregressive (integrated) moving average
(AR(I)MA)” (from time-series analysis) and “geometric Brownian motion (GBM)” (found
almost exclusively in finance). They show that the LoD signal can generally be modeled as
AR(I)MA and GBM within each position of the sliding window (thus locally), they estimate
the parameters of the model for each position of the window, and they use them to make
predictions of one or more of the following three types: future values of LoD signal, first
hitting time (of a critical LoD threshold), and survival probability.

We emphasize that “to predict” means “to tell beforehand”, and thus, in the present
context, to use past data to compute now a quantity that describes some future situation.
In the literature, this “future situation” often turns out to be a “present situation”, so that
no prediction is performed.

The above information allows one to fill, in Table 4, the relevant cells of the “Drowsi-
ness” column and the “Vehicle” megarow.

Note that there are no entries in the “Environment” megarow of the “Drowsiness”
column, which means that we did not find any significant technique that uses one or more
indicators related to one of the three parts of the environment listed in Section 5.3 (that is,
outside, inside, and contextual) to determine the level of drowsiness of the driver. Some
papers attempt to use the time of day to try to capture the moments of the day where
drowsiness tends to peak. While the monotonicity of a road is known to increase driver
drowsiness, we have not found any paper using environment-based indicators of road
monotonicity (e.g., road geometry or traffic density), and describing a way to give values to
such indicators based upon available data. As an aside, studies of drowsiness in a driving
simulator often use night driving and monotonous conditions to place the driver in a
situation conducive to drowsiness.

6.3. Sensors

Similarly to the indicators, we first address the driver-centric sensors.
In a vehicle, the HR can be monitored using electrodes that can be placed at various

locations, including the steering wheel (conductive electrodes [105]) and the seat (capacitive
electrodes [106]). ECG monitoring using steering-wheel-based approaches is a feasible
option for HR tracking, but requires both hands to touch two different conductive parts of
the steering wheel.

Ballistocardiography (BCG) also allows for monitoring the cardiac activity unob-
trusively. The underlying sensing concept uses strain-gauge BCG sensors in the seat or
in the safety belt to detect both the cardiac activity and the respiratory activity of the
driver [107]. However, the vehicle vibrations make it difficult to use this sensor in real
driving conditions.

Information about the cardiac activity can be obtained using a camera looking at the
driver, in particular using photoplethysmography (PPG) imaging [108].

Radar-based methods mainly provide information about movement, which can of
course be caused by both the cardiac activity and the respiratory activity. Various sensor
locations are possible, including integration into the safety belt, the steering wheel, and the
backrest of the seat [109,110].

Thermal imaging is a tool for analyzing respiration (or breathing) non-intrusively.
Kiashari et al. [77] present a method for the evaluation of driver drowsiness based on
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thermal imaging of the face. Indeed, temperature changes in the region below the nose and
nostrils, caused by inspiration and expiration, can be detected by this imaging modality.
The procedure (1) uses a sequence of infrared (IR) images to produce a corresponding
discrete-time signal of respiration, and (2) extracts respiration information from it. (Unless
indicated otherwise, infrared (IR) means long-wave IR (LWIR), that is, with wavelengths
of 8–14µm; LWIR is the “thermal” range of IR.) The value of each successive signal sample
is the mean of the pixels in a rectangular window of fixed size, representing the respiration
region in the corresponding IR image, adjusted frame-to-frame using a tracker. The initial
respiration region is determined based on the temporal variations of the first few seconds
of the sequence, and the region is tracked from frame-to-frame by using the technique of
“spatio-temporal context learning” [111], which is based on a Bayesian framework, and
models the statistical correlation between (1) the target (that is, the tracked region) and
(2) its surrounding regions, based on the low-level characteristics of the image (that is,
the intensity and position of each pixel). The extracted information is the respiration rate
and the inspiration-to-expiration ratio. A classifier uses these rate and ratio to classify the
driver as awake or drowsy. A support vector machine (SVM) classifier and a k-nearest
neighbors (KNN) classifier are used, and the first does result in the best performance.

François [70] and François et al. [104] describe a photooculographic (POG) system
that illuminates one eye with eye-safe IR light and uses as input a sequence of images of
this eye acquired by a monochrome camera that is also sensitive in this IR range, and is
head-mounted or dashboard-mounted. A large number of ocular parameters, linked to the
movements of the eyelids (including blinks) and eyeball (including saccades), are extracted
from each video frame and combined into an LoD value, thus producing an LoD signal.
The output was validated using EEG, EOG, EMG, and reaction times. The head-mounted
system is available commercially as the Drowsimeter R100.

Using a camera, Massoz et al. [112] characterize drowsiness by using a multi-timescale
system that is both accurate and responsive. The system extracts, via convolutional neural
networks (CNNs), features related to eye-closure dynamics at four timescales, that is, using
four time windows of four different lengths. Accuracy is achieved at the longest timescales,
whereas responsiveness is achieved at the shortest ones. The system produces, from any
1-min sequence of face images, four binary LoDs with diverse trades-offs between accuracy
and responsiveness. Massoz et al. [112] also investigate the combination of these four LoDs
into a single LoD, which is more convenient for operational use.

Zin et al. [113] classify driver drowsiness by using a feature-extraction method, the
PERCLOS parameter, and an SVM classifier.

EDA is measured through electrodes placed on the skin of a person. It can thus
be measured through a wearable such as a smartwatch. Concerning the other, relevant,
physiological, driver-based indicators, (1) it is challenging to get the pupil diameter in real
conditions because of issues with illumination conditions and camera resolution, among
others reasons, and (2) it is nearly impossible, as of this writing, to characterize brain
activity in real time and in a non-intrusive, reliable way.

Teyeb et al. [114] measure vigilance based on a video approach calculating eye-closure
duration and estimating head posture. Teyeb et al. [115] monitor drowsiness by analyzing,
via pressure sensors installed in the driver seat, the changes in pressure distribution
resulting from the driver’s body moving about in this seat. The authors suggest that the
techniques of these two papers can be usefully combined into a multi-parameter system.

Bergasa et al. [116] present a system to characterize drowsiness in real time using
images of the driver and extracting from them the six visual parameters of PERCLOS,
eye-closure duration, blink frequency, nodding frequency, fixed gaze, and face pose. Using
a camera, Baccour et al. [117] and Dreißig et al. [118] monitor driver drowsiness based on
eye blinks and head movements.

Vehicle-based indicators can be collected in two main ways. Standard indicators
such as speed, acceleration, and steering wheel angle, can be extracted from CAN-bus
data [119,120]. The CAN bus enables intra-vehicle communications, linking the vehicle
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sensors, warning lights, and electronic control units (ECUs). More advanced indicators
can be obtained in appropriately-equipped vehicles [119,121]. For example, speed and
acceleration can be obtained via an inertial measurement unit (IMU), and following distance
via a forward-looking radar.

Since SDLP is considered to be a vehicle-based indicator of driver drowsiness, one
can quantify this indicator by examining the lane discipline, that is, the behavior of the
vehicle in its lane. This is traditionally done by using cameras (mounted inside, behind the
windshield, typically integrated beside the rear-view mirror) [122] and/or laser sensors
(mounted at the front of the vehicle) to track the lane-delimiting lines when present. How-
ever, one can also use the rumble strips (also called sleeper lines, audible lines, or alert strips)
when present. While these are designed to produce an audible, acoustic signal intended to
be sensed directly by the driver (as an urgent warning or wake-up call), one could imagine
using microphones and/or vibration sensors to transform this acoustic/mechanical signal
into an electrical signal that is then analyzed via signal processing.

Bakker et al. [123] describe a video-based system for detecting drowsiness in real time.
It uses computer vision and machine learning (ML), and was developed and evaluated
using naturalistic-driving data. It has two stages. The first extracts, using data from the last
5 min (1) driver-based indicators (e.g., blink duration, PERCLOS, gaze direction, head pose,
facial expressions) using an IR camera looking at the driver’s face, and (2) vehicle-based
indicators (e.g., lane positions, lane departures, lane changes) using an IR camera looking at
the scene ahead. This stage mostly uses pre-trained, deep-neural-network (DNN) models.
All indicators—also called deep features in DNNs—are inputs to the second stage, which
outputs an LoD, either binary (alert or drowsy) or regression-like. This stage uses one
KNN classifier, trained and validated using KSS ratings as ground truth for the LoD, and
personalized for each driver by weighting more his/her data during training, thereby
leading to higher performance during operation.

The above information allows one to fill the relevant cells of Table 5.

7. State 2: Mental Workload

We provide a detailed description of (the state of) “mental workload”, and we then
present the indicators and sensors that can be used to characterize it.

7.1. Description

Mental workload, also known as cognitive (work)load (or simply as driver workload
in the driving context), is one of the most important variables in psychology, ergonomics,
and human factors for understanding performance. This psychological state is, however,
challenging to monitor continuously [124]. In this section, we consider “mental” and
“cognitive” to be synonyms.

A commonly-used definition of mental workload is the one proposed by Hart and
Staveland [125]. They define mental workload as the cost incurred by a person to achieve
a particular level of performance in the execution of a task. It is thus the portion of an
individual’s mental capacity—necessarily limited—that is required by the demands of
this task [126,127], that is, the ratio between the resources required to perform it and the
available resources of the person doing it [128,129].

In the literature on mental workload, one often finds references to another state called
cognitive distraction. Mental workload and cognitive distraction are two different concepts,
even if they can be linked when a driver performs secondary tasks while driving. Cognitive
distraction increases the mental workload of a driver. An increase in mental workload is,
however, not in itself an indication of cognitive distraction. First, mental workload can
increase in the absence of distraction, for example, when a driver is focusing to execute
the primary task of driving correctly and safely. Second, mental workload can increase
significantly with an increasing complexity of the driving environment [130]. Cognitive
distraction is further considered later as a particular category of (the state of) distraction.
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Mental workload and stress are also linked since an increasing mental workload
usually induces some stress in the driver.

7.2. Indicators

In the driving context, visual tasks and mental tasks are closely linked. Indeed, while
driving, a driver is constantly perceiving his/her driving environment and analyzing what
he/she sees in order to make the right decisions whenever required, for example, scanning
a crossroad and simultaneously judging the time and space relationships of other road
users to decide when it is safe to cross an intersection. Therefore, it is logical that many
researchers use eye-related parameters (e.g., blinks, fixations, and pupil diameter) to assess
the mental workload of a driver [33].

Among the driver-based, physiological indicators, EDA [131], HR [132], and HRV [133]
are often used as indicators of mental workload. HR increases as a task gets more diffi-
cult [134] or if other tasks are added [135]. EEG is also a valuable indicator for studying
mental workload because it records the electrical activity of the brain itself, but it is com-
plex to analyze [136]. The pupil diameter is considered to be an indicator of mental
workload [132,137,138]. Indeed, Yokoyama et al. [139] indicate that the mental workload
of a driver may be predicted from the slow fluctuations of the pupil diameter in daylight
driving. All physiological parameters mentioned in this paragraph are, however, also influ-
enced by other aspects of the mental and physical situation of the driver (e.g., drowsiness
and TR fatigue) and by environmental situation (e.g., illumination and temperature).

Among the driver-based, behavioral indicators, Fridman et al. [140] have shown that
the visual scanning by a driver decreases with an increasing mental workload. Further-
more, since the interval of time between saccades has been shown to decrease as the task
complexity increases, saccades may be a valuable indicator of mental workload [141,142].

Subjective measures of mental workload exist, like the NASA task load index (NASA
TLX) [125], which is a workload questionnaire for self-report, and the rating scale mental
effort (RSME).

Driving performance can diminish as a result of an increase in mental workload. The
vehicle-based indicators which are the most sensitive to such an increase are SDLP and
SWM [130].

Palasek et al. [143] use the driving environment to estimate the attentional demand
required from the driver to drive. The features extracted from the analysis of the driving
environment are thus indicators of the mental workload of the driver.

The above information allows one to fill, in Table 4, the relevant cells of the “Mental
Workload” column.

7.3. Sensors

Cameras are often used in the literature to characterize mental workload as they are
particularly well suited to extract driver-based, behavioral indicators and are non-invasive.

Fridman et al. [140] describe a system for characterizing, non-invasively, via a camera
facing the driver, what they call his/her cognitive load (CL). The system exploits the well-
documented, experimental observation that the angular distribution of gaze direction (often
characterized by the 2D pupil position) tends to become more concentrated, especially
vertically, when the CL increases. Using video imagery, the system classifies the CL of
the driver into one of the three CL levels (low, medium, high), as he/she engages in
activities other than the primary task of driving, such as a conversation or the adjustment
of the infotainment system. The system extracts, from a 90-frame, 6-second video clip, via
computer vision, the face and the region of one eye of the driver. It then uses one of two
methods: (1) mainly active appearance models (AAMs) for the face, eyelids, and pupil
(when visible) to produce a sequence of pupil 2D positions, and (2) one hidden Markov
model (HMM) for each of the three CL levels. The second method uses a single 3D CNN
with three output classes corresponding to these levels. The two methods thus rely on a
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sequence of pupil positions and on a sequence of eye images, respectively. The output of
the system is one of the three CL levels.

In order to develop this system, the authors first acquired training data in real-driving
conditions while imposing on the driver a secondary task of a given CL level. This
imposition of a given CL level while performing a primary task (here driving) is commonly
achieved in the literature through the standard “n-back” task, where the three values of
n, that is, n = 0, 1, and 2, are viewed as corresponding to low, medium, and high CL.
For the n-back task, a sequence of numbers is dictated to the subject, who is asked, for
each number, whether it matches the one dictated n positions earlier in the sequence. For
example, for n = 2, the subject must indicate whether the current number is the same as
the one he/she heard 2 steps before, all this while he/she performs the primary task, here
driving.

The authors indicate (1) that the differences in cognitive loading for the three levels
have been validated using, among others, physiological measurements (e.g., HR, EDA,
and pupil diameter), self-report ratings, and detection-response tasks, and (2) that these
levels have been found to cover the usual range of secondary tasks while driving, such as
manipulating a radio or a navigation system.

It is noteworthy that the data used for building the system was acquired through
real driving, during which the driver repeatedly performed n-back tasks, while a camera
was recording his/her face and surrounding area, this by contrast with the many other
developments made using a driving simulator, in highly controlled conditions, and difficult
to implement in real-life conditions.

The authors indicate that, while they use the term “cognitive load”, the literature often
uses synonyms like “cognitive workload”, “driver workload”, and “workload”.

Musabini and Chetitah [144] describe another system that is also based on eye-gaze
dispersion. They use a camera facing the driver, produce a heatmap representing the gaze
activity, and train an SVM classifier to estimate the mental workload based on the features
extracted from this representation.

Le et al. [145] characterize the mental workload based on the involuntary eye move-
ments of the driver, resulting from head vibrations due to changing road conditions. They
report that, as the mental workload increases, these involuntarily eye movements become
abnormal, resulting in a mismatch between the actual eye movements measured via an
eye-tracking device and the predicted eye movements resulting from a "VOR + OKR"
model, where VOR and OKR are the abbreviations of vestibular–ocular reflex and optoki-
netic response. For each driver, the VOR parameters are estimated during the first 10 s
of driving in condition of normal mental workload, whereas the OKR parameter is fixed.
The hypothesis of abnormal eye movements while driving under mental workload was
validated using a t-test analysis. Different levels of mental workload were induced in a
driving simulator using the n-back task.

Palasek et al. [143] use an external camera recording the driving environment to
estimate the attentional demand using attentive-driving models. Indeed, the task of driving
can sometimes require the processing of large amounts of visual information from the
driving environment, resulting in an overload of the perceptual systems of a human being.
Furthermore, traffic density is known to increase the mental workload [146], so that urban
environments lead to a higher mental workload than rural and highway environments
do [147], all other conditions being equal.

The above information allows one to fill the relevant cells of Table 5.

8. State 3: Distraction

By contrast with the two previous sections, we start with some background informa-
tion (up to Section 8.1) on the state of distraction.

The globally accepted definition of driver distraction follows: it is a diversion of
attention, away from activities critical for safe driving (the primary task) and toward a
competing activity [148,149].
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Inattention, sometimes used—mistakenly—as a synonym of distraction, is defined as
a diminished attention to activities that are critical for accomplishing a primary task, but
not necessarily in the presence of a competing activity [149]. Therefore, driver distraction
is one particular form of driver inattention [150]. Inattention is a broader term as it can
be caused, for example, by drowsiness. It indeed occurs in a wide range of situations in
which the driver fails to attend to the demands of driving, such as when a desire to sleep
overcomes a drowsy driver.

Driver distraction can be caused by any cognitive process such as daydreaming, mind
wandering, logical and mathematical problem solving, decision making, using any kind of
in-vehicle system, for example, for entertainment, navigation, communication (including a
cell phone), and any other activity that may affect the driver’s attention to driving [151]. It
is helpful to distinguish between four types of distractions [21,152]: (1) manual distraction
(e.g., manually adjusting the volume of the radio); (2) visual distraction (e.g., looking
away from the road); (3) auditory distraction (e.g., answering a ringing cell phone); and
(4) cognitive distraction (e.g., being lost in thought). Several distracting activities may,
however, involve more than one type of distraction (e.g., talking on the phone while driving
creates at least an auditory distraction and a cognitive distraction, under the assumption
that a hands-free system is used, thereby avoiding manual distraction).

When distracted, the driver looses awareness of the current driving situation. Be-
ing aware of a situation (whether for driving or for some other activity) is often called
situational awareness (SA). A loss of SA while driving results in a reduction of vigilance
and in an increase of the risk of accident. In driving, a major aspect of SA is the ability
to scan the driving environment and to sense dangers, challenges, and opportunities, in
order to maintain the ability to drive safely. As a driver moves through the environment,
he/she must—to avoid getting into an accident—identify the relevant information in
rapidly changing traffic conditions (e.g., distance to other vehicles, closing speed), and
be prepared to react to suddenly-appearing events (e.g., braking because of an obstacle,
obeying a road sign). To achieve SA, a driver must thus perceive correctly his/her driving
environment [153], be attentive, and have a working memory [129]. It follows that any
distraction that harms the driver’s attention may adversely impact SA [154].

Kircher and Ahlström [155] argue that existing definitions of distraction have limita-
tions because they are difficult to operationalize, and they are either unreasonably strict
and inflexible or suffering from hindsight bias, the latter meaning that one needs to know
the outcome of the situation to be able (1) to tell what the driver should have paid attention
to and, then, (2) to judge whether he/she was distracted or not. The authors are also con-
cerned that distraction-detection algorithms (1) do not take into account the complexity of a
situation, and (2) generally cover only eyes-off-road (EOR) and engagement in non-driving
related activities (NDRA). They thus developed a theory, named MiRA (minimum required
attention), that defines the attention of a driver in his/her driving environment, based on
the notion of SA. Instead of trying to assess distraction directly, one does it indirectly, by
first trying to assess attention. Recall that distraction is a form of inattention.

According to the MiRA theory, a driver is considered attentive at any time when
he/she samples sufficient information to meet the demands of the driving environment.
This means that a driver should be classified as distracted only if he/she does not fulfill the
minimum attentional requirements to have sufficient SA. This occurs when the driver does
not sample enough information, whether or not simultaneously performing an additional
task. This theory thus acknowledges (1) that a driver has some spare capacity at his/her
disposal in the less complex driving environments, and (2) that some glances toward
targets other than the roadway in front of him/her may, in some situations, be needed
for the driving task (like looking at, or for, a vehicle coming from each of the branches at
a crossroad). This means that EOR and engagement in NDRA do not necessarily lead to
driver distraction.
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The MiRA theory does not conform to the traditional types of distraction (manual,
visual, auditory, cognitive) as it does not prescribe what sensory channel a certain piece of
information must be acquired through.

In an attempt to operationalize the MiRA theory, Ahlström et al. [156] present an
algorithm for detecting driver distraction that is context dependent and uses (1) eye-
tracking data registered in the same coordinate system as an accompanying model of the
surrounding environment and (2) multiple buffers. Each buffer is linked to a corresponding
glance target of relevance. Such targets include: windshield, left and right windows, (rear-
view) mirrors, and instrument cluster. Some targets and their buffers are always present
(like the roadway ahead via the windshield, and behind via the mirrors), while some other
targets and their buffers appear as a function of encountered traffic-regulation indications
and infrastructural features. Each buffer is periodically updated, and its update rate can
vary in time according to requirements that are either “static” (e.g., the presence of a specific
on-ramp that requires one to monitor the sides and mirrors) or “dynamic” (e.g., a reduced
speed that lessens the need to monitor the speedometer). At each scheduled update time,
a buffer is incremented if the driver looks at the corresponding target, and decremented
otherwise; this is a way of quantifying the “sampling” (of the environment) performed by
the driver. A buffer running empty is an indication that the driver is not sampling enough
the corresponding target; he/she is then considered to be inattentive (independently of
which buffer has run empty). Until declared inattentive, he/she is considered attentive.

This completes the background information on the state of distraction. We now
successively consider the four types of distraction. For each of the four corresponding
substates, we provide a detailed description, and we then present the indicators and sensors
that can be used to characterize it.

8.1. State 3.1: Manual Distraction
8.1.1. Description

Manual distraction, also called biomechanical distraction, occurs when the driver
is taking one or both of his/her hands off the steering wheel. The driver may do so to
answer a call or send a text message, grab food and eat, or grab a beverage and drink,
all while driving. According to the National Highway Traffic Safety Administration
(NHTSA), texting while driving is the most alarming distraction. It is mainly due to
manual distraction, but, inevitably, it also includes both visual distraction and cognitive
distraction.

8.1.2. Indicators

Unsurprisingly, the best indicator used to detect manual distraction is the behavior of
the driver’s hands, mainly through their positions and movements. For safe driving, these
hands are expected to be, most of the time, exclusively on the steering wheel, the gearshift,
or the turn-signal lever. On the contrary, a hand using a phone, adjusting the radio, or
trying to grab something on the passenger seat indicates a manual distraction [157].

Vehicle-based indicators can also be used, as shown in [158]. Using naturalistic-
driving data, the authors studied the correlation between (1) performance metrics linked to
the steering-wheel behavior and to the vehicle speed, and (2) manual and visual driver
distractions induced, for example, by texting. They found a good correlation between the
steering movements and the manual-visual distraction of the driver.

The above information allows one to fill, in Table 4, the relevant cells of the “Manual
Distraction” column.

8.1.3. Sensors

The most common solution to analyze the behavior of the driver’s hands is to use
a camera placed inside the vehicle, usually near the central mirror, looking down in the
direction of the driver.
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Le et al. [159,160] propose an approach to detecting [159] and classifying [160] human-
hand regions in a vehicle using CNNs. Their technique for hands detection is robust in
difficult conditions caused, for example, by occlusions, low resolution, and/or variations
of illumination.

Using deep CNNs, Yan et al. [161] classify six actions involving the driver’s hands, that
is, calling, eating, smoking, keeping hands on the steering wheel, operating the gearshift,
and playing on the phone. Similarly, both Baheti et al. [162] and Masood et al. [163] use ten
classes to detect when the driver is engaged in activities other than safe driving, and to
identify the cause of distraction.

Vehicle-based indicators can be obtained from the CAN bus of the vehicle [119,120].
The above information allows one to fill the relevant cells of Table 5.

8.2. State 3.2: Visual Distraction
8.2.1. Description

Visual distraction occurs when the driver is looking away from the road scene, even
for a split second. It is often called EOR, and is one of the most common distractions for a
driver. Examples of activities causing EOR are: (1) adjusting devices in the vehicle (like a
radio or navigation system); (2) looking towards other seats; (3) regarding a new message
on the phone or glancing at the phone to see who is calling; and (4) looking outside when
there is a distraction by the roadside. All generally result in the driver not looking straight
ahead, which is what he/she needs to be doing for safe driving.

8.2.2. Indicators

The gaze is the main indicator used to detect a visual distraction of a driver. The
duration of EOR is probably the most-used metric. The longer the EOR duration is, the
lower the SA of the driver is, and the higher the visual distraction of the driver is [164].
The glance pattern and the mean glance duration are other metrics [148].

Sometimes, the head direction is used to approximate the gaze direction in order to
characterize the driver visual distraction [165,166]. For example, Fridman et al. [165] classify
driver gaze regions on the sole basis of the head pose of the driver. Fridman et al. [166]
compare classifications of driver gaze using either head pose alone or both head pose and
eye gaze. They classify, based on facial images, the focus of the attention of the driver using
6 gaze regions (road, center stack, instrument cluster, rear-view mirror, left, and right). To
do so, they consecutively perform face detection, face alignment, pupil detection, feature
extraction and normalization, classification, and decision pruning. Vicente et al. [167]
similarly classify the driver gaze, but use 18 regions instead of 6.

Visual distraction can also be inferred using vehicle-based indicators such as wheel
steering, braking behavior, and speed. Indeed, a driver generally slows down when
distracted by a visual stimulus [61,168], and visual distraction impairs lateral control
because the driver needs to compensate for errors made when taking his/her eyes off the
road, which leads to larger deviations in lane positioning [61,169]. Such deviations have
various causes, including drowsiness and visual distraction. This re-emphasizes the need
to use as many indicators as possible. This also explains why more and more vehicles are
equipped with systems that keep the vehicle within its lane whenever possible.

The above information allows one to fill, in Table 4, the relevant cells of the “Visual
Distraction” column.

8.2.3. Sensors

In order to monitor driver visual distraction, one mainly uses at least one camera
facing the driver, thus as for manual distraction. The camera can be placed in various
positions as long as the head pose and/or gaze of the driver can be obtained.

Naqvi et al. [170] use a near-infrared (NIR) camera (with wavelengths of 0.75–1.4µm)
placed in the dashboard in conjunction with a deep-learning-based gaze-detection system,
classifying the driver gaze into 17 gaze zones.
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Mukherjee and Robertson [171], similarly to Fridman et al. [165], present a CNN-
based model to estimate human head pose and to classify human gaze direction. They
use, however, low-resolution RGB-depth (RGB-D), thus with a camera providing depth
information.

The above information allows one to fill the relevant cells of Table 5.

8.3. State 3.3: Auditory Distraction
8.3.1. Description

Auditory distraction occurs when some sound prevents the driver from making
the best use of his/her hearing, because his/her attention is drawn to the source of the
sound. Hearing a phone ringing, listening to a passenger, listening to music, and following
navigation instructions can all lead to auditory distraction.

This component of driver distraction is the least studied in the literature, likely because
(1) it is often accompanied by at least one other more-easily detectable source of distraction
falling among the other three types, and (2) it poses lower safety risks in comparison to the
other types of distraction, in particular visual distraction [172].

The literature does not appear to introduce the concept of “auditory indicators”, which
would characterize (1) the sounds captured both inside and outside of the vehicle, and,
preferably, (2) the distraction they create. By using several microphones (including arrays
thereof), and techniques for separating audio sources [173], one could imagine breaking
down and localizing the various sources of sounds both inside and outside the vehicle.

8.3.2. Indicators

When the driver appears to be auditorily distracted, there occur changes in pupil
diameter [152,174] and blink frequency [152,175]. Brain activity (EEG) [176] can also be
used as an indicator of auditory distraction. Sonnleitner et al. [177] describe the impact of
an auditory secondary task on a driver during a primary driving task, and show changes
in braking reaction and brain activity.

The above information allows one to fill, in Table 4, the relevant cells of the “Auditory
Distraction” column.

8.3.3. Sensors

As already indicated, obtaining the pupil diameter is challenging in real conditions
due to illumination conditions and/or camera resolution, among others. Furthermore,
brain activity cannot, at this time, be measured both in real time and in a non-intrusive,
reliable way. Blink frequency can, however, be monitored via a camera, and braking
behavior via the CAN bus.

Although microphones and, even better, arrays thereof, both inside and outside the
vehicle, would be natural sensors to provide values for auditory indicators, we did not find
any references considering such sensors for characterizing auditory distraction. One can
also envision using the microphone(s) of a smartphone linked to a DMS.

The above information did not lead to the addition of any reference to Table 5.

8.4. State 3.4: Cognitive Distraction
8.4.1. Description

In the context of driving, cognitive distraction is defined by NHTSA [178] as the
mental workload associated with a task that involves thinking about something other
than the (primary) driving task. A driver who is cognitively distracted due to a secondary
task, such as mind wandering, experiences an increase in his/her mental workload (the
state discussed in Section 7). The characterization of his/her cognitive distraction could
therefore be achieved (1) by examining how his/her mental workload evolves over time
and (2) by finding characteristics of this evolution allowing one to decide whether or not it
is caused by cognitive distraction. The monitoring of cognitive distraction is thus, before all,
a monitoring of the mental workload and/or its time variations. Section 7 shows that there
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are (1) many ways to characterize mental workload, and (2) many indicators thereof. The
challenge is to be able to pinpoint the components of, or changes in, the mental workload
that are due to distraction.

Cognitive distraction occurs when a driver is thinking about something that is not
related to the driving task. In the driving context, while visual distraction can be summa-
rized by EOR, cognitive distraction can similarly be viewed as “mind-off-road” (MOR).
While it is relatively easy to monitor EOR (with a camera facing the driver), it is difficult to
monitor MOR. It has, however, been shown that, when a driver is cognitively distracted,
his/her visual behavior is impacted. Mind-wandering and daydreaming are two causes of
cognitive distraction.

8.4.2. Indicators

As cognitive distraction induces mental workload, the indicators allowing one to
detect and characterize these two states are similar, if not identical. Therefore, it is difficult,
if not impossible, to distinguish, in the driving context (as well as others), between these
two states since they have nearly the same influences on the indicators.

Among the four types of distractions, cognitive distraction has proven to be the
most difficult to detect and characterize. This is because it happens inside the brain, and,
obviously, “observing” the brain of a driver is more challenging than observing his/her
hands and eye(s).

As for visual distraction, cognitive distraction can be characterized by indicators of
both driving performance and eye movements [141], including (1) vehicle-based indica-
tors, such as speed [179], wheel steering [169], lane discipline [169,179,180], and braking
behavior [181], and (2) driver-based, behavioral indicators, such as gaze parameters (e.g.,
fixation duration, glance frequency, and gaze distribution) [181–184] and head orientation.
A driver makes significantly fewer high-speed saccadic eye movements and spends less
time looking to the relevant periphery for impending hazards with increasing complexity
of the secondary task(s). He/She also spends less time checking his/her instruments and
mirrors [181].

Cognitive distraction can also be measured through a variety of driver-based, phys-
iological indicators. Among these, brain activity [185] and pupil diameter may be the
most convincing. Studies of EDA and HR show only weak relationships between these
indicators and cognitive distraction [61].

Among the subjective measures, the NASA TLX [125] is commonly used in driving-
distraction studies even though it is a subjective measure of mental workload, and, thus,
not a measure specific to cognitive distraction.

The above information allows one to fill, in Table 4, the relevant cells of the “Cognitive
Distraction” column.

8.4.3. Sensors

Since the main indicators of cognitive distraction are driving performance and gaze
parameters, the main sensors to characterize it are vehicle-centric sensors, and cameras.

The above information did not lead to the addition of any reference to Table 5.

9. State 4: Emotions

We provide a detailed description of (the state of) “emotions”, and we then present
the indicators and sensors that can be used to characterize it.

9.1. Description

While the concept of emotions is familiar to most people, it is difficult to define. Emo-
tions are associated with a strong feeling deriving from one’s circumstances, mood, and/or
relationships with other people. In the driving context, the emotions most commonly
monitored for safety purposes are stress and anger, as they have a negative impact on
driving, and create dangers [186,187].
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Stress is a state of physical, emotional, or psychological tension resulting from adverse
or demanding circumstances. In biology, stress is defined as a state of homeostasis being
challenged due to a stressor [188].

Anger is a strong feeling of annoyance, displeasure, and/or hostility. It is a common
negative emotion in the context of driving, where it is often called road rage [189].

9.2. Indicators

Emotion recognition is currently a hot topic in the field of affective computing, and is
gaining interest in the field of advanced driver-assistance systems (ADASs). To recognize
emotions, one can use various behavioral features, for example, speech [190] and facial
expressions [191,192].

Among the driver-based indicators of both stress and anger, physiological indicators
are commonly used. Stress causes physiological responses [193], such as variations or mod-
ifications in HR [193–196], breathing activity [193,194], blood pressure, EDA [194,195,197],
and pupil activity [198]. The two physiological features that exhibit the highest correlations
with driver stress are HR and EDA [194].

For anger in the driving context, Wan et al. [199] suggest to identify it based on
physiological indicators such as HR, EDA, breathing rate, and EEG, with the obvious,
current, practical limitations for the latter.

The self-assessment manikin (SAM) [200] is a subjective assessment technique to
characterize emotions.

The above information allows one to fill, in Table 4, the relevant cells of the “Emotions”
column.

9.3. Sensors

The development of wearable devices with physiological sensors facilitates the recog-
nition of emotions in real-driving conditions, thus outside of a laboratory context.

Facial expressions constitute a good indicator of emotions. The analysis and recogni-
tion of facial expressions is currently a field of great interest in scientific research [201,202].
Facial expressions can be monitored in a vehicle via the use of a camera facing the
driver [203–205]. Indeed, Jeong and Ko [204] recently developed an algorithm for moni-
toring the emotions of a driver based on the analysis of facial expressions. Using DNNs
performing facial-expression recognition (FER), they can identify—in real time and in real-
driving situations—anger, disgust, fear, happiness, sadness, and surprise. A smartphone
with a camera facing the user can be used for FER, here for estimating his/her emotional
state [205].

Far-infrared (FIR) imaging (with wavelengths of 15–1000µm), also called infrared
thermography (IRT), can be used to quantify stress and emotions by monitoring the
breathing activity [206]. This can be done via the use of an IRT camera facing the driver.

The recognition of emotions can also be done using wearable sensors [207] such as
the E4 wristband, which is a wearable research device that provides the means to acquire
physiological data in real time. Many studies [208–210] have indeed shown that one can
detect stress by using the physiological data that this device provides, in particular HR and
EDA data.

Bořil et al. [211] developed a stress detector employing a combination of the driver’s
speech and some CAN-bus parameters, mainly the steering-wheel angle and the speed.
Basu et al. [212] review various methods (that are not specific to the field of driving) for
recognizing emotions from speech. Zhang et al. [213] explore how to utilize a deep CNN
for the same purpose.

The above information allows one to fill the relevant cells of Table 5.
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10. State 5: Under the Influence

We provide a detailed description of (the state of) “under the influence”, and we then
present the indicators and sensors that can be used to characterize it.

10.1. Description

Driving under the influence (DUI)—also called driving while intoxicated (DWI) and
impaired driving—refers to the driving of a vehicle by a person who has consumed a quan-
tity of alcohol or drugs (including prescription medication) that causes him/her to function
in an impaired way. If the impaired driving is due only to alcohol, one also talks about
drunk driving. While DUI is obviously dangerous, it is also illegal in most countries to
drive under the influence of alcohol, cannabis (or marijuana), opioids, methamphetamines,
and any potentially-impairing drug (e.g., a psychoactive drug), whether prescribed or
over-the-counter.

A psychoactive drug, also called a psychotropic drug, is a chemical substance that
changes a person’s mental state and results in alterations in perception, mood, and/or
consciousness. Based on their effects, psychoactive drugs can be classified into the three
main categories of stimulants, depressants, and hallucinogens [214,215]. Yet, some drugs
may fall under different categories at different times (for example, cannabis is both a
depressant drug and a hallucinogen drug). Stimulants (e.g., methamphetamines, cocaine)
speed up the activity of the central nervous system, often resulting in the user feeling
more alert, euphoric, and energetic. Depressants (e.g., heroin) slow down the activity of
the central nervous system, often resulting in the user feeling more relaxed, sleepier, and
insensitive to pain. Hallucinogens (e.g., LSD) are psychoactive substances that alter human
sensory perceptions in such a way that the user perceives a distorted reality in which time,
space, colors, and forms are altered.

The substances that are most frequently detected in impaired drivers are alcohol
followed by cannabis. Studies have shown that more than one-third of adults and more
than half of teenagers admit to DUI of alcohol at some point in their lives [216]. Alcohol is
a depressant drug that affects the central nervous system and slows down brain functions.
Any amount of alcohol can affect a person’s abilities (1) by degrading attention, perception,
information processing skills, memory, reasoning, coordination, motor skills, and reaction
time, and (2) by altering the five senses and the emotions [217–220]. A person’s alcohol
level is measured by the weight of the alcohol in a specified volume of blood, called blood
alcohol concentration (BAC) and measured in grams of alcohol per deciliter (g/dL) of
blood. According to NHTSA, the effects of alcohol vary with BAC in the way shown
in Table A3, in Appendix B, and the risk of having an accident after consuming alcohol
increases exponentially as a function of BAC. For example, every additional 0.08 g of
alcohol per deciliter (dL) of blood multiplies by four the risk of accident [216]. According
to the World Health Organization [221], best practice for drunk–driving laws includes a
BAC limit of 0.05 g/dL for the general population and of 0.02 g/dL for young or novice
drivers. Although studies show considerable differences among individuals regarding their
responses to alcohol consumption [222], young drivers experience significantly stronger
effects, putting them at greater risk of accidents [223,224]. Hangovers, that is, the after-
effects occurring as a result of heavy drinking and as the BAC subsequently approaches
zero, are, however, known to also affect the performance of daily-life tasks, such as driving,
by impairing cognitive functions, such as memory, psychomotor speed, and sustained
attention [225,226].

10.2. Indicators

Several physiological indicators are used to monitor DUI such as heart activity [219,227],
breathing activity [227], body temperature [219,228], and pupil diameter [228]. Alcohol
is known to increase HR and breathing rate [227]. Cannabis is known to increase HR
and breathing difficulty. Alcohol increases the activity of arteries and other blood vessels,
therefore increasing the temperature of the face of a drunk person [228]. The variations
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of temperature are visible on the nose, eyebrows, chin, and forehead. When people drink
alcohol, their irises become darker, because the sclera is replete with blood vessels that
increase in temperature with alcohol consumption. In a sober person, the temperatures of
the sclera and the iris are the same, but with alcohol intoxication, the temperature of the
sclera increases compared to the one of the iris because of the denser blood-vessel network
in the sclera.

Behavioral indicators of DUI include parameters of gaze (due to the impairment of
some visual functions) and of slurred speech [227]. Drunk speakers may use prosodic
contours differently from sober speakers, using more or less speech emphasis. Drunk
speakers may pronounce words differently, choose certain pronunciation variants more
frequently than others, and may even select more frequently certain words, the latter
affecting the phonotactic patterns [229].

NHTSA [230] defines four categories of cues to predict that a driver is DUI, namely
problems in (1) maintaining proper lane position (e.g., weaving, drifting, swerving), (2) con-
trolling speed and brakes (e.g., varying speed, abnormally driving at low speed, stopping
beyond a limit line), (3) maintaining vigilance (e.g., driving erroneously in opposing lanes,
responding slowly to traffic signals), and (4) exercising proper judgment (e.g., following too
closely, turning illegally). In congruence with the indication by NHTSA that a drunk driver
is prone to weaving, drifting, and swerving (and thus to having difficulty keeping his/her
vehicle in the center of the lane), an increase in SDLP is recognized in the literature to be an
indicator of DUI of alcohol [231–233] and hangovers [226]. Speed and acceleration are other
indicators, as drunk drivers often experience difficulty in keeping an appropriate speed,
with abrupt accelerations or decelerations, erratic brakings, and jerky stops [231,233].

The above information allows one to fill, in Table 4, the relevant cells of the “Under
the Influence” column.

10.3. Sensors

In police operations, alcohol levels are typically measured with a breathalyzer using
air exhaled through the mouth. The amount of alcohol in breath can then be used to
determine the BAC [227]. If this BAC is above the legally authorized value, the results can,
if desired, be confirmed by a blood test. With just 100 microliter (µL) of collected blood,
one can not only measure the BAC precisely, but also identify and quantify 37 substances
that are of interest in the context of drug-impaired driving [234]. Many people, however,
drive under the influence without necessarily being stopped and checked by police every
time they do so.

To solve the issue of DUI, the literature commonly suggests the use of ignition-interlock
devices [218,235,236]. When a driver enters his/her vehicle, he/she must provide a breath
sample, and an alcohol sensor then determines whether he/she is drunk (that is, has a
BAC above a specified threshold). If this is the case, the ignition-control system prevents
the driver from starting the engine. Ignition-interlock devices are usually installed in the
vehicles of people with prior DUI convictions and in long-haul, commercial vehicles, for
example, trucks and buses [216]. This solution does not, however, allow for the real-time
monitoring of the state of the driver, and does not prevent the driver from drinking alcohol
after starting the engine.

To counter this problem, Sakairi [237] developed a system using a water-cluster-
detecting (WCD) breath sensor that can detect breath from a distance of about 0.5 m,
allowing one to monitor the driver’s alcohol level while he/she is operating his/her
vehicle. The sensor detects breath by separating positively-charged water clusters in
breath from negatively-charged ones by using an electric field and by measuring the two
corresponding electric currents.

The detection of individuals DUI of alcohol can also be achieved based on the heart ac-
tivity. Indeed, Kojima et al. [238] and Murata et al. [239] constructed a seat incorporating an
air-pack sensor that monitors, via a body-trunk plethysmogram, both the heart activity and
the breathing activity. The analysis, during 5 min, of the extracted body-trunk plethysmo-
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gram signal, called the air-pack pulse wave, reveals differences due to the consumption of
alcohol, allowing one to distinguish between sobriety and intoxication. Wu et al. [240,241]
propose to use a wearable ECG sensor, and an SVM to classify the corresponding ECG data
as sober or intoxicated.

Recognizing whether drivers are DUI of alcohol can also be achieved using a camera
that acquires IR images [242–244]. For an intoxicated person, vessels on the forehead
become more active so that, in an IR image, the intensities of the pixels in this region
are affected accordingly. Menon et al. [244] developed a system that uses IR images of
the driver’s face in order to classify him/her as sober or drunk. The system successively
(1) locates the face using a CNN, and (2) performs the binary classification based on
differences in blood temperatures at 22 points on the face of the driver using a supervised-
learning-classification algorithm based on a probabilistic model called Gaussian-mixture
model.

Rosero-Montalvo et al. [228] introduce a non-invasive system incorporating a gas
sensor, a temperature sensor, and a camera to identify a person having alcohol in the blood,
through supervised classification of the data from (1) the two sensors and (2) the results of
the analysis of the camera output via computer vision. The authors use the concentration of
alcohol in the vehicle environment, the facial temperature of the driver, and the diameters
of his/her pupils.

According to NHTSA and its four, above-mentioned cues that a driver is DUI, vehicle-
based indicators and related vehicle-centric sensors are of interest. Relevant CAN-bus
parameters, and indicators such as wheel steering and lane discipline, are widely used
to detect instances of DUI [245–250]. Harkous et al. [247] identify drunk-driving be-
haviors using HMMs based on vehicle-sensors data, available via the CAN bus. They
use wheel-steering parameters, speed, and lateral position as indicators. They found
that longitudinal-acceleration sensors achieve the best average classification accuracy for
distinguishing between sobriety and intoxication. Harkous and Artail [248] extend the
above work by replacing each HMM by a recurrent neural network (RNN). Likewise,
Berri and Osório [245] use features such as speed, acceleration, braking, steering wheel an-
gle, distance to the center lane, and geometry of the road (straight or curved) to detect DUI
of alcohol. Their system can also be used to detect the presence of any psychoactive drug
that can cause a driver to have abnormal driving behaviors. To detect an intoxicated driver,
Dai et al. [251] describe a solution that only requires a mobile phone placed in the vehicle.
Using the phone’s accelerometers, they analyze the longitudinal and lateral accelerations
of the vehicle to detect any abnormal or dangerous driving maneuvers typically related to
DUI of alcohol.

The above information allows one to fill the relevant cells of Table 5.
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Table 4. Detailed “states vs. indicators” table, introduced in simplified form in Figure 3. Each cell in the heart of the table
gives some references (if any) discussing how the corresponding indicator is useful for characterizing the corresponding
state.
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[78] [131] [61]
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[148,164,166,

167]
[181–184] [227]
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Facial Expressions [123] [191,192]

Body Posture [102,123] [165,166]

Hands Parameters [157]

Speech [190,211] [227,229]

Subjective [90–92] [125] [125] [200]
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Wheel Steering [97,101,102] [130] [158] [158] [169] [211]

Lane Discipline [96,97,99,102,123] [130] [61,169] [169,179,180] [226,231–233]

Braking Behavior [177] [181]
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Road Geometry

[143]Traffic Signs

Road Work

Traffic Density [143,146]

Obstacles
[143]

Weather



Sensors 2021, 21, 5558 32 of 48

Table 5. Detailed “sensors vs. indicators” table, introduced in simplified form in Figure 3. Each cell in the heart of the
table gives some references (if any) discussing how the corresponding sensor is useful for characterizing the corresponding
indicator. The indicators are identical to the ones in Table 4, thereby allowing one to link both tables.
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11. Summary and Conclusions

This paper focuses on the characterization of the state of a driver, which is the first
key step for driver monitoring (DM) and driver monitoring systems (DMSs). It surveys (in
Section 3) the relevant scientific and technical literature on driver-state characterization,
and subsequently provides a synthesis (in Sections 4–10) of the main, published techniques
for this characterization.

The survey yielded 56 publications in scientific/technical journals and conference
proceedings. Their examination led to the conclusion that the state of a driver should be
characterized according to five main dimensions—called here “(sub)states ”—of drowsi-
ness, mental workload, distraction (further subdivided into four types qualified of manual,
visual, auditory, and cognitive), emotions, and under the influence.

In comparison with standard physical quantities, such as voltage and power, these
states are not well defined and/or are very difficult—if at all possible—to quantify or to
label, not only in a validated way, but also in real time and non-invasively, as is required
in the driving context. The only reasonable approach, found almost universally in the
literature, is to have recourse to indicators (of each of these states), the value of which can
be obtained in a practical and validated way. Examples of indicators are the eye-blink rate,
the standard deviation of lane departure (SDLP), and the outside temperature. The values
of many indicators (but not all) are obtained by applying algorithms, often complex, to
data (typically signals and images) collected from sensors.

The last paragraph brings to light the three ingredients that, in our view, lie at the
heart of DM and DMSs, that is, the triad of states, indicators (of these states), and sensors
(providing data, which are the source of the values of these indicators). Figure 2 links these
three ingredients.

Our survey confirmed the intuition that one should monitor, not only the driver
(D), but also the (driven) vehicle (V) and the (driving) environment (E). Accordingly, we
partitioned both the indicators and the sensors into D, V, and E categories, leading to the
phrases “X-based indicators” and “X-centric sensors”, where X can be D, V, or E. For the D-
based indicators, we further distinguished between three types: physiological, behavioral,
and subjective. The three examples of indicators given earlier correspond to D, V, and E,
respectively.

The major outcome of the paper is the pair of interlocked tables “states vs indicators”
(Table 4) and “sensors vs indicators” (Table 5), where each cell contains zero, one, or more
references. These tables bring together, in an organized way, most of the useful information
found in the literature, up to the time of this writing, about driver-state characterization for
DM and DMSs. These tables constitute an up-to-date, at-a-glance, visual reference guide
for anyone active in this field. They provide immediate answers to key questions that arise
in the design of DMSs, such as the four questions posed in Section 5.

The pair of tables and the references they contain lead to the following main conclu-
sions:

1. Each state can be inferred from several indicators (which are often far from perfect),
thereby encouraging multimodal fusion.

2. The internal camera (possibly with several instances) appears to be the most-
commonly-used sensor.

3. Wearable sensors (e.g., smartwatches) are increasingly used to obtain driver-based,
physiological indicators and vehicle-based indicators.

4. Environment-based indicators are often ignored, even though there is an agreement
that they should be used.

5. Driver-based, subjective indicators, although sometimes alluded to, cannot be used in
real driving but are essential for the validation of some indicators of some states.

6. Brain activity is a recognized indicator of several states, but cannot be accessed today
in a non-invasive, reliable, and inexpensive way in real driving.

7. Several methods for characterizing each of the five states use, without surprise,
techniques of machine learning (ML) and, especially, of deep learning.
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8. The term “predict(ion)” often refers to a present state rather than to a future state, and
few papers describe techniques “to tell beforehand”, for example, the future values of
indicators and levels of states.

The next two paragraphs respectively elaborate on the last two points.
For driving safety, it is paramount that the processing and decisions made by any

algorithm used in a vehicle, including for DM, be fully explainable (to a human being)
at the time of design and certification of this algorithm. Most algorithms using ML do
not, however, have this necessary feature of explainability or interpretability, and this
is certainly the case for ML-based algorithms that would learn on-the-fly during one or
more trips. Therefore, while ML algorithms and, especially, deep-learning algorithms
often provide stellar performances on specific datasets in comparison with other types
of algorithms, they will almost certainly not be acceptable to an equipment provider or a
vehicle manufacturer. There is, however, a trend toward designing ML algorithms that
produce results that can be explained [253,254]. The above remarks apply not only to ML
but also to any approach whose operation cannot be explained simply. Our framework,
which implies the use of indicators and states, supports the desired explainability. It indeed
prevents any algorithm from going, in one fell swoop, from (nearly-)raw sensor data to
driver characterization, by forcing it to estimate both the values of indicators and the levels
of states as a stepping stone toward the ultimate characterization of the state of a driver.

The literature on DM focuses almost exclusively on characterizing the “present” state
of the driver. We use quotes because the characterization is typically based on data from
the recent past, for example, in a window that extends over several tens of seconds and
butts against almost the present time. This results in a characterization of the “recent-past”
state of the driver. If the driver is in control, a DMS using this characterization may not
have sufficient lead time to take proper emergency action (to issue an alarm and/or to take
back the control) and, if the vehicle is in control, such a DMS may hand the control over to
the driver even though he/she might be falling asleep or getting distracted in a few tens of
seconds or more. A major missing link in current DMS research and development is thus
the true prediction of the future state of the driver, at least a few tens of seconds into the
future.

On the one hand, Tables 4 and 5 show, at a glance, which areas of driver-state char-
acterization have been the object of research and with what intensity (as measured by
the number of references listed in each cell). For example, Table 4 shows that significant
research has been performed to analyze the emotions of the driver using the driver-based,
physiological indicators of heart rate, breathing activity, and electrodermal activity. On
the other hand, the two tables show, also at a glance, where little or no research has been
performed to date, thereby suggesting new, potentially-fruitful research areas. The two
tables should thus prove to be a rich source of information for both research and product
development.

Starting from a set of 56 initial references, our exploration of the field of DM led us to
examine a total of 254 references. While our criss-crossing of the field, at several different
times, led us to identify many relevant publications, our search cannot, obviously, be
exhaustive. In any case, the two histograms of “number of references vs year” of Figure A1
(for the 56 and 254 references, respectively) constitute a clue that the research activity in
DM has been accelerating over the past decade.

The methodology used in this paper can be applied to update the tables at various
times in the future to take into account new developments. This can be done by adding
and/or removing rows, columns, and/or references, as appropriate.

Characterizing the state of a driver and, more generally, DM will remain important
despite the progressive increase in vehicle automation. SAE Level 3 enables vehicles to
drive by themselves under certain conditions such as on a highway and in sunny weather,
but a driver must still be present and able to take back control of the vehicle at any time
and in a relatively short lapse of time. In order to ensure that the driver is able to take back
control, technologies for monitoring the state of the driver will become even more critical.
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These technologies are also needed to monitor the driver during the time he/she is driving,
and to possibly allow the vehicle to take back control if necessary.

Currently, some vehicle manufacturers offer DMSs based on the behavior of the driver
and/or the behavior of the vehicle, such as the detection of steering-wheel movements
and lane deviations, respectively. These systems can be useful in current vehicles with
automation up to (SAE) Level 2, but will become obsolete at higher levels of automation.
Indeed, when a vehicle drives autonomously, monitoring its behavior does not provide
any information about the state of the driver, and technologies that directly monitor both
the driver and the driving environment are a necessity as long as the driver is involved in
the driving task, at least partially.

To date, the development of driving-automation systems (DASs) has moved at a
faster pace than has the development of DMSs. This is, in major part, a consequence
of the long-held belief by some automotive-industry players that they would be able to
easily leapfrog Levels 3 and 4, and move on directly to Level 5, where there is no need to
monitor the driver. However, most experts now agree that it will be decades before most
privately-owned vehicles are fully automated, if ever. Along the long and winding road
to Level 5, the automotive industry will need to significantly boost the research on, and
the development of, DMSs. For Levels 3 and 4, the same industry will need to develop
automated-driving systems (ADSs) and DMSs in full synergy. The future could thus not be
brighter for the field of DM and DMSs.

Author Contributions: Conceptualization, J.G.V., M.V.D. and A.H; methodology, J.G.V., M.V.D. and
A.H.; investigation, A.H. and J.G.V.; writing—original draft preparation, A.H.; writing—review
and editing, J.G.V., M.V.D. and A.H.; supervision, J.G.V. and M.V.D.; funding acquisition, J.G.V. All
authors have read and agreed to the published version of the manuscript.

Funding: The work reported in this paper was supported in part by the European Regional Develop-
ment Fund (ERDF).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Printable Version of Table of 56 Initial References

Tables A1 and A2 constitute a version of Table 2 suitable for printing.

Table A1. This table gives the three main columns of Table 2 labelled “States”, “Sensors”, and “Tests”. The remaining main
column “Indicators” is provided in Table A2. This partitioning of Table 2 allows for more comfortable visualization of its
content when printed.

References
States Sensors

Tests
Drowsiness

Mental
Workload

Distraction Emotions Under the
Influence

Driver Vehicle Environment

Ahir and Gohokar [8] V cam, elec ext cam real, sim

Alluhaibi et al. [9] V V ang cam*, mic* V*

Arun et al. [10] vis, cog cam, wea d, eye t V sim

Balandong et al. [11] V elec sim

Begum [12] V V stress seat, ste w, saf b, wea d real, sim

Chacon-Murguia and
Prieto-Resendiz [13] V ste w, cam radar real

Chan et al. [14] V cam*, mic* real

Chhabra et al. [15] V V alc seat, cam*, mic* V* real, sim

Chowdhury et al. [16] V sim

Chung et al. [17] stress cam, wea d V real, sim

Coetzer and Hancke [18] V cam V real, sim

Dababneh and El-Gindy [19] V cam, wea d radar real, sim

Dahiphale and Rao [20] V V cam real

Dong et al. [21] V V cam V real

El Khatib et al. [5] V man, vis, cog cam V* ext cam, radar real, sim
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Table A1. Cont.

References
States Sensors

TestsDrowsiness Mental
Workload Distraction Emotions Under the

Influence Driver Vehicle Environment

Ghandour et al. [22] man, vis, aud, cog stress cam, wea d real, sim

Hecht et al. [23] V V V elec, eye t real, sim

Kang [24] V V seat, ste w, cam V real, sim

Kaplan et al. [25] V V ste w, cam*, mic*, wea d V real, sim

Kaye et al. [26] V stress real, sim

Khan and Lee [27] V man, vis, aud, cog wea d real

Kumari and Kumar [28] V cam

Lal and Craig [29] V cam sim

Laouz et al. [30] V seat, cam, wea d ext cam real

Leonhardt et al. [31] seat, ste w, saf b, cam real

Liu et al. [32] V cam V real

Marquart et al. [33] V eye t real, sim

Marina Martinez et al. [34] ang V*

Mashko [35] V cam, wea d V ext cam, radar real, sim

Mashru and Gandhi [36] V seat, ste w, cam, wea d sim

Melnicuk et al. [37] V V cog stress, ang seat, ste w, saf b, cam*, wea d V* real

Mittal et al. [38] V cam, elec V ext cam real

Murugan et al. [39] V cam, elec V sim

Nair et al. [40] V V alc seat, cam* V radar

Němcová et al. [41] V stress seat, ste w, cam, wea d, eye t V real, sim

Ngxande et al. [42] V cam

Oviedo-Trespalacios et al. [43] V V real, sim

Papantoniou et al. [44] V V cam ext cam, radar real, sim

Pratama et al. [45] V cam, wea d, elec ext cam real, sim

Ramzan et al. [46] V cam, wea d, elec V real, sim

Sahayadhas et al. [47] V seat, ste w, cam, wea d V real, sim

Scott-Parker [48] stress, ang eye t ext cam real, sim

Seth [49] V cam V real

Shameen et al. [50] V elec sim

Sigari et al. [51] V cam real

Sikander and Anwar [52] V seat, ste w, saf b, cam, wea d, elec real

Singh and Kathuria [53] V V V V cam, wea d V ext cam, radar real

Subbaiah et al. [54] V cam real, sim

Tu et al. [55] V cam*, wea d, elec V real, sim

Ukwuoma and Bo [56] V cam, wea d, elec real

Vilaca et al. [57] V V cam, mic V ext cam

Vismaya and Saritha [58] V cam, eye t real, sim

Wang et al. [59] V cam, wea d real, sim

Welch et al. [60] stress, ang seat, ste w, cam, wea d V real, sim

Yusoff et al. [61] vis, cog eye t

Zhang et al. [62] V cam ext cam real, sim
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Table A2. This table gives the main column of Table 2 labelled “Indicators”. The three remaining main columns “States”,
“Sensors”, and “Tests” are provided in Table A1. This partitioning of Table 2 allows for more comfortable visualization of its
content when printed.

References

Indicators

Driver Vehicle Environment
Physiological Behavioral Subjective

Ahir and Gohokar [8] HR, brain gaze, blink, PERCLOS, facial, body wheel, lane, speed

Alluhaibi et al. [9] speech wheel, lane, brake, speed

Arun et al. [10] HR, brain, EDA, pupil gaze, blink, body V wheel, lane, brake, speed

Balandong et al. [11] HR, brain gaze, blink, PERCLOS, body V wheel, lane, brake, speed

Begum [12] HR, brain

Chacon-Murguia and
Prieto-Resendiz [13] HR, brain, EDA gaze, blink, body wheel, lane, brake, speed

Chan et al. [14] HR, brain blink, PERCLOS, facial, body wheel, brake, speed

Chhabra et al. [15] breath gaze, PERCLOS, facial, body wheel road

Chowdhury et al. [16] HR, brain, EDA blink, PERCLOS

Chung et al. [17] HR, breath, brain, EDA, pupil speech V wheel, lane, brake, speed

Coetzer and Hancke [18] brain gaze, PERCLOS, facial, body wheel, lane, speed

Dababneh and El-Gindy [19] brain, EDA, pupil blink, PERCLOS, body wheel, lane, speed road

Dahiphale and Rao [20] gaze, blink, facial, body wheel

Dong et al. [21] HR, brain, pupil gaze, blink, PERCLOS, facial, body V wheel, lane, speed road, wea

El Khatib et al. [5] HR, breath, brain, EDA, pupil gaze, blink, PERCLOS, facial, body, hands wheel, lane, speed

Ghandour et al. [22] HR, breath, brain, EDA gaze, facial, body, speech V wheel, brake, speed

Hecht et al. [23] HR, brain, EDA, pupil gaze, blink, PERCLOS, facial, body V

Kang [24] HR, breath, brain, EDA gaze, blink, facial, body wheel, lane, brake, speed

Kaplan et al. [25] HR, brain gaze, blink, PERCLOS, facial, body, speech wheel, lane, brake, speed

Kaye et al. [26] HR, breath, brain, EDA V

Khan and Lee [27] HR, brain, EDA gaze, PERCLOS, body wheel, lane, brake, speed

Kumari and Kumar [28] HR, brain gaze, blink, PERCLOS, body V wheel, lane

Lal and Craig [29] HR, brain, EDA PERCLOS, facial

Laouz et al. [30] HR, brain, EDA blink, PERCLOS, facial, body V wheel, speed

Leonhardt et al. [31] HR, breath

Liu et al. [32] HR, brain, pupil gaze, blink, PERCLOS, body wheel, lane, speed

Marquart et al. [33] pupil gaze, blink, PERCLOS V

Marina Martinez et al. [34] brake, speed

Mashko [35] HR, brain, EDA gaze, blink, body wheel, lane, brake, speed

Mashru and Gandhi [36] HR, breath blink, PERCLOS, facial, body V wheel, lane

Melnicuk et al. [37] HR, brain blink, PERCLOS, facial wheel, brake, speed road, traf, wea

Mittal et al. [38] HR, brain, pupil blink, PERCLOS, body V wheel, lane, brake, speed

Murugan et al. [39] HR, breath, brain, EDA, pupil blink, PERCLOS, body V wheel, lane, speed

Nair et al. [40] gaze, PERCLOS, facial, body lane

Němcová et al. [41] HR, breath, brain, EDA gaze, blink, PERCLOS, facial, body wheel, lane, brake, speed

Ngxande et al. [42] blink, PERCLOS, facial, body

Oviedo-Trespalacios et al. [43] gaze wheel, lane, brake, speed

Papantoniou et al. [44] HR, breath, brain gaze, blink, speech V wheel, lane, speed

Pratama et al. [45] HR, brain, EDA gaze, blink, PERCLOS, facial, body, hands V wheel, lane

Ramzan et al. [46] HR, breath, brain blink, PERCLOS, facial, body wheel, lane, speed

Sahayadhas et al. [47] HR, brain, pupil gaze, blink, PERCLOS, body V wheel, lane

Scott-Parker [48] HR, brain, EDA gaze, facial V wheel, lane, brake, speed traf

Seth [49]

Shameen et al. [50] brain gaze, blink

Sigari et al. [51] gaze, blink, PERCLOS, facial, body

Sikander and Anwar [52] HR, brain, pupil gaze, blink, PERCLOS, body V wheel, lane
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Table A2. Cont.

References

Indicators

Driver Vehicle Environment
Physiological Behavioral Subjective

Singh and Kathuria [53] pupil gaze, blink, PERCLOS, facial wheel, brake, speed road, traf

Subbaiah et al. [54] HR, brain, pupil blink, PERCLOS, facial, body

Tu et al. [55] HR, brain blink, PERCLOS, facial, body wheel, lane, speed

Ukwuoma and Bo [56] HR, breath, brain blink, PERCLOS, facial, body wheel, lane, brake

Vilaca et al. [57] brain gaze, body wheel, lane, brake, speed

Vismaya and Saritha [58] gaze, blink, PERCLOS, body

Wang et al. [59] brain, pupil gaze, blink, PERCLOS, body lane

Welch et al. [60] HR, breath, brain, EDA blink, facial, speech wheel, brake, speed

Yusoff et al. [61] HR, brain, EDA, pupil gaze, body V lane, speed

Zhang et al. [62] HR, brain gaze, blink, PERCLOS, body lane, speed

Appendix B. Effects of Blood Alcohol Concentration

As of this writing (in mid 2021), the NHTSA website contains a webpage about “Drunk
Driving”, which features a table entitled “The Effects of Blood Alcohol Concentration”.
Table A3 reproduces this table, nearly verbatim, in compliance with the “Terms of Use”
of the website. The table shows, as a function of the level of blood alcohol concentration
(BAC) (in g/dL), (1) the typical effects, independently of any task, and (2) the predictable
effects for the specific task of driving.

Table A3. This table gives the effects of blood alcohol concentration (BAC). It is a nearly-verbatim reproduction of a table
present on the NHTSA website in mid 2021.

BAC
(in g/dL)

Typical Effects Predictable Effects on Driving

0.02 Some loss of judgment; relaxation, slight body warmth,
altered mood

Decline in visual functions (rapid tracking of a moving
target), decline in ability to perform two tasks at the same
time (divided attention)

0.05 Exaggerated behavior, may have loss of small-muscle
control (e.g., focusing your eyes), impaired judgment,
usually good feeling, lowered alertness, release of inhibition

Reduced coordination, reduced ability to track moving
objects, difficulty steering, reduced response to emergency
driving situations

0.08 Muscle coordination becomes poor (e.g., balance, speech,
vision, reaction time, and hearing), harder to detect danger;
judgment, self-control, reasoning, and memory are impaired

Concentration, short-term memory loss, speed control,
reduced information processing capability (e.g., signal
detection, visual search), impaired perception

0.10 Clear deterioration of reaction time and control, slurred
speech, poor coordination, and slowed thinking

Reduced ability to maintain lane position and brake
appropriately

0.15 Far less muscle control than normal, vomiting may occur
(unless this level is reached slowly or a person has
developed a tolerance for alcohol), major loss of balance

Substantial impairment in vehicle control, attention to
driving task, and in necessary visual and auditory
information processing

Appendix C. Growth of Literature on Driver Monitoring

The survey of Section 3 provided an initial set of 56 references for the field of DM.
They appear in Table 2. Our overall analysis and synthesis of the field led us to examine
in detail a total of 254 references, including the 56 initial ones. They all appear in the
“References” section.

To characterize, in an approximate way, the evolution of the number of publications
on DM over recent years, (1) we computed, for the 56 initial references, the number of
them published during each of the years they cover, and (2) we did the same for the
254 examined references. Figure A1 gives the corresponding graphs, or histograms, of
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“number of references vs year”. Each histogram shows a significant growth over the last
10 years or so. The significant dip in 2020 could be an effect of the difficult worldwide
situation during that year.
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Figure A1. Graph (a) is the histogram of the number of references vs. year for the 56 initial references on driver monitoring
(DM), and graph (b) is the corresponding histogram for the 254 examined references. These histograms suggest that the
field of DM has been the object of growing interest over the years and, in particular, over the last 10 years.
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