
Survey, Comparison and Evaluation of Cross
Platform Mobile Application Development Tools

Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, Navid Nikaein
Mobile Communication Department, EURECOM

Sophia Antipolis, France
{dalmasso, dattas, bonnet, nikaeinn}@eurecom.fr

Abstract—Mobile application development is becoming more
challenging with diverse platforms and their software
development kits. In order to reduce the cost of development and
reach out to maximum users across several platforms, developers
are migrating to cross platform application development tools. In
this paper, we provide several decision criteria beyond the
portability concerns for choosing suitable cross platform tool for
application development. The desirable requirements in a cross
platform framework are identified. A general architecture for
cross platform application development is discussed. Then a
survey of several write once run anywhere tools (PhoneGap,
Titanium, Sencha Touch) are provided along with a classification
and comparison among the tools. To examine the performance in
terms of CPU, memory usage, power consumption, Android test
applications are developed using such tools. It is found that
PhoneGap consumes less memory, CPU and power since it does
not included dedicated UI components. Finally the paper
summarizes the contributions and concludes with some future
directions.

Keywords-mobile development; cross platform tools;
PhoneGap; Titanium; Android.

I. INTRODUCTION
The landscape of mobile platforms has seen major

evolution in recent past. While BlackBerry, Bada and
Symbian failed to reach out to the masses, iOS and Android
have won the war of mobile platforms. In the era of
smartphones and tablets, mobile applications are providing
added value to several industries including transport,
ecommerce, net banking, travel, retail and enterprise services.
Developers are exploiting the state-of-the-art functionalities of
the smart devices to offer revolutionizing user experience. In-
turn they are becoming the engine for innovation. Thus it is of
prime importance for a mobile platform provider to attract
more and more developers in order to boast external
investment and revenue via them. Not only the mobile
platform owners and handset manufacturers but also network
service providers and chipset makers are investing heavily to
develop and release software development kits to reach out to
the developers. Also there are several tool vendors like cross-
platform tool vendors (PhoneGap, Titanium), app diagnostic
tool vendors (BugSense) and more who are also trying to
catch the attention of mobile application developers.

But the diversity of mobile platforms and the variety SDKs
and other tools pose unique challenges. They include choice of

SDK, user experience, stability of framework, ease of
updating, cost of development for multiple platform and time
to market an app. Most of the developers would like to release
apps for major mobile platforms (iOS, Android) and provide a
consistent user experience (UX) across the platforms.
Developing an app for separate mobile platforms require in-
depth knowledge of them and their SDKs. This increases the
cost of development, ease of updating and time to market an
app. This is where the cross platform development tools come
into picture. Table I provides an in-depth comparison among
native, mobile web and cross platform app development
approaches.

Cross platform tools (e.g. PhoneGap, Titanium, Rhomobile)
allow implementing an app and its user interface (UI) using
web technologies like HTML, CSS. Then the app can be built
for several mobile platforms (e.g. iOS, Android, Windows
Phone 7, BlackBerry). This process is helpful only when a
developer is willing to compromise user experience and more
importance is given to launching of the app in several
platforms to reach to maximum users. This approach allows
developing app for multiple mobile platforms at the same
time. Thus the cost of development and time to market the app
is reduced.

TABLE I. DECISION FACTORS
Decision
criterion

Native
approach

Mobile web
approach

Cross platform
approach

Quality of
UX

Excellent Very good Not as good as
native apps

Quality of
apps

High Medium Medium to low

Potential
users

Limited to a
particular
mobile
platform

Maximum
including
smartphones,
tablets and other
feature phones

Large - as it
reaches to users
of different
platforms

App
development
cost

High Low Medium to low

Security of
app

Excellent Depends on
browser security

Not good

Supportabili
ty

Complex Simple Medium to
complex

Ease of
updating

Complex Simple Medium to
complex

Time-to-
market

High Medium Short

App
extension

Yes Yes Yes

The research is sponsored by the French project WL-Box 4G Pole SCS.

This paper presents several criteria beyond portability
concerns to choose an appropriate cross platform tool for
development. Several such tools are present at the moment. We
have put forward the requirements of cross platform framework
and the high level architecture of the same. In-depth survey of
several such Write Once Run Anywhere (WORA) enlightens
about the API & documentation, development environment,
deployment, advantages and weakness. To evaluate the
performance of such tools, we have developed Android apps
with four such tools and measured the CPU usage, memory
usage and power consumption. During the test, it is found that
PhoneGap consumes less CPU, memory and power than other
tools. But the app developed using PhoneGap does not have a
very good UI. To create a better UI, additional tools are
required. In that case, Sencha 2.0 stands out among others.

The rest of the paper is as follows. Section II outlines the
basic requirements of a cross platform development
framework. Section III portrays a general architecture of cross
platform mobile application development. Section IV presents
a detail survey of WORA tools. Section V classifies WORA
tools and provides a comparison among the tools. Section VI
demonstrates the performance testing results. Finally the paper
concludes with some future directions.

II. REQUIREMENTS OF A CROSS-PLATFORM FRAMEWORK
We have identified the desirable requirements of any cross-

platform framework as stated below:

• Multiple mobile platform support: The framework
must support several mobile platforms. Support for
Android and iOS are very essential since they have the
largest share in the application markets.

• Rich user interface: Currently the cross platform tools
can not provide rich user interface (UI) as native apps.
Since the success of an application highly depends on
user experience of the interface, rich UI development
should be incorporated. Support for sophisticated
graphics (2D, 3D), animation, multimedia are
necessary.

• Back-end communication: Mobile devices promote
an "always-connected" model in which the users are
sharing material in social networking sites, watching
videos, communicating via live chat, gathering
information 24X7. There smooth support for backend
communication protocols and data formats are absolute
mandatory.

• Security: Applications developed by cross platform
tools are not highly secure. Proper research needs to be
carried out to secure the tools and applications.

• Support for app-extensions: It is required to install
app extensions on top of existing applications like in-
app purchase/billing capability.

• Power consumption: It is an important issue now-a-
days with thousands of smartphones and tablets are
being activated daily. The generated applications must
be optimized for power.

• Accessing built-in features: The tools must be able to
access the built-in features of a smart device. Use of
camera, sensors, geo-localization and more features
helps to provide better user experience.

• Open source: It attracts more of application
developers and the developer community can
participate in bug-fixes and further development. It is
to be noted that this is not a technical requirement.

III. GENERAL ARCHITECTURE OF CROSS PLATFORM
APPLICATION DEVELOPMENT

This section provides a general architecture of cross
platform application development portrayed in Figure 1.

Figure 1: General architecture of cross platform mobile application

development.

The application developer implements the business logic or
the application functionalities using web technologies. The
cross platform framework allows implementing user interface
and access storage facility and device features (sensors, camera
and contacts) which interacts with a JavaScript API. The API
will in turn interact with the native API of a mobile platform.
The application is then built separately to generate the
executables for different platforms. The APIs for the mobile
platforms actually allow generating the respective application.
Thus the generated application can be run in corresponding
mobile device.

IV. SURVEY OF WRITE ONCE RUN ANYWHERE TOOLS
There are several WORA tools available in the market e.g.

PhoneGap, Titanium, Rhomobile, JQuery Mobile and more.
This paper presents a survey of these tools to provide a quick
overview to application developers.

A. PhoneGap
The PhoneGap open source framework provides a decent

toolbox for building native mobile applications using only
HTML, JavaScript and CSS [1], [11], [12], [13]. It’s quite
popular among users mainly because of its flexibility,
straightforward architecture and ease of use.

• API & Documentation: It offers a pure JavaScript /
HTML / CSS API (Webkit framework) together with

a library wrapping material's resources. PhoneGap
also provides documentation for the proprietary API.

• Environment Dev/Build: It provides a Eclipse plug-
in but can also be used from other IDEs to build
mobile applications.

• Deployment: The binary file generated at the build
cannot be published on any mobile application
market. The developer obtains the final release
through the pricing PhoneGap Build service.

• Framework stability: It is a mature framework.
• Advantages: All native wrapper source code is

provided so it can be customized further. Broad
ranges of platforms are supported by PhoneGap.
Apps are built purely in HTML, JavaScript and CSS
allowing web developers to adopt the tool easily.

• Weakness: There is lack of support for native UI
components, design patterns and dev tools. However,
the developers are free to combine PhoneGap with
another tool like JQuery or Sencha to produce a
better UI for the apps.

B. Sencha Touch 2.0
• API & Documentation: Sencha Touch 2.0 is a

powerful yet a complex framework. The HTML code
is generated by JavaScript APIs. In theory Sencha
SDK Tools are self-contained development platform
providing an access to a subset of phone native API
(e.g. camera, notification, connection, orientation). It
also offers to build native packaging deployable on
iOS and Android application markets [4].

• Framework stability: It is a mature framework.
• Alternatively Sencha may be installed as JavaScript/

CSS resources of a PhoneGap project. This is a
workaround but permits to develop the UI using
Sencha API.

C. PhoneGap + Sencha Touch 2.0
• API & Documentation: : A complete JavaScript

framework with MVC concept and complete API
documentation are available for developers.

• Environment Dev/Build: Uses imported main CSS/
JavaScript files.

• Framework stability: It is a mature framework.

D. PhoneGap + JQuery mobile
JQuery mobile is a light-weight API and development of

any application querying web services is quite easy [3].
• API & Documentation: JQuery Mobile is built on

top of JQuery API and offers a JavaScript library of
CSS and other components. Good documentation of
the mobile API allows developers to familiarize with
the tools quickly.

• Environment Dev/Build: The environment uses
imported CSS and JavaScript file for a project and
builds as any regular Android application.

• Framework stability: It is a mature framework.

E. Application Craft
It is a cloud based development environment for mobile,

tablet and desktop. Application Craft permits to design a web
application by connecting the platform through a browser,. The
code generated is stored to the servers, with private/public
address to run the application. The code generated is
downloadable.

F. Appcelerator Titanium Studio 2.0
• API & Documentation: It provides a rich API and

low level objects like TCP Sockets. UI objects are
customizable through a JavaScript API. There is no
HTML and CSS coding here. The tools presents good
API documentation but the SDK tools usage
(compiler etc) are not exposed [2].

• Environment Dev/Build: The IDE Titanium Studio
(based on Eclipse IDE) is mandatory. It embeds the
SDK and tools. The generation to native code then
the compilation and packaging to a native application
is made thanks a python script (for Android).

• Framework stability: It is a mature framework.
• Advantages: The native code output is very quick

and smoothly executes on mobile devices. The setup
is easy for new developers. The documentation is
excellent and potentially supports tablet
development.

• Weakness: It has restrictive APIs and small set of
phones are supported.

V. CLASSIFICATION OF WRITE ONCE RUN ANYWHERE
TOOLS

In this paper we concentrate on WORA tools as they
provide the opportunity to implement an application for several
mobile platforms. Efforts have been made to broadly
categorize the tools based on the functionalities they provide.
Five high level factors are listed that can guide developers to
select a possible category.

A. Application development tools
• Hybrid App: This category of tools provides a

platform-specific shell application which has the
capability of rendering pre-packaged HTML pages. It
extends the HTML capabilities through APIs which
allow access to device specific features. Some Tools
include libraries to render platform specific UI.
AppMobi and PhoneGap are such category tools.

• Mobile Web: These tools are primarily JavaScript
libraries which in combination with suitable HTML5
and associated CSS are rendering your mobile website
on different types of device. Some of these tools can
work in conjunction with Hybrid App tool and the
result can be packaged into a native application. For
example, JQTouch, JQurey Mobile and Sencha Touch.

• Generator: These are tools where a developer writes
the application in a specific language (JavaScript or
PHP) and the tool translates it into a deployable native
application for different specific platforms. The

deployable application may include a runtime engine
or a virtual machine. The main difference between a
Generator and a Hybrid App is the potential
performance gain using the generated native code
instead of translating HTML for graphic objects
access. Appcelerator and Rhomobile[9] are typical
examples of such tools.

B. User Interface Tools
• Visual Tools: They provide a visual interface where

elements / widgets are dropped into the screen and
the internal application plumbing is taken care by the
tool. The result, depending on the tool is either a
native application or a mobile website. Some
visualization tools may be used in conjunction with
application development tools (mainly the Hybrid
App tools). Dragon rad [5], Application Craft [6],
July Systems [7], NetBiscuit [8] are some examples
of visual tools.

C. Guildeline for developers
We provide a guideline for developers to select an above

mentioned category.

• Native user experience: If the resulting application is
desired to have user experience similar to native
applications, then "Generator" must be chosen. When
user experience can be compromised, any other
category is sufficient.

• Offline/online usage: Mobile web applications only
allow online usage through a browser. Generator and
hybrid apps create installable applications which
permit offline usage.

• Compatibility: The mobile devices are evolving very
fast in terms of hardware, mobile platforms and
SDKs. If an cross platform application is desired for a
long term, mobile web is the least risky as mobile
devices are all supporting HTML5 and newer
versions.

• Limited access of built-in features: In this case,
hybrid apps can be preferred. But if applications
require frequent access of built-in features, generator
should be chosen although native approach will more
suitable.

• Security: Hybrid and generator are likely to be more
secure than pure mobile web applications. Better
security can be offered by native approach.

D. Types of applications developed using WORA Tools
Several types of mobile applications are generated using the

WORA tools: business, games, multimedia, tools,
entertainment, ecommerce and social.

Some applications developed by PhoneGap are: Wikipedia
(multimedia), BBC Olympics (multimedia), UnTapp (social),
Facebook (social) and Zinga Game - Mafia Wars Mobile Game
(game).

Some applications developed by Titanium are: Legoland
Parc California (multimedia /entertainment / ecommerce),
Ebay Corporate (business). New York Senate (multimedia) and
ZipCar (ecommerce).

VI. PERFORMANCE EVALUATION
To examine the performance, Android test applications

have been developed using cross platform method. They have
the following features and can be categorized as a part of a
'business' type application.

• The UI presents buttons, each of which has request
type. When clicking on a button the application queries
free web services (available on the internet) over
AJAX, REST and SOAP technologies.

• Parse and display the different formats of responses:
Text, XML, JSON.

The applications are installed and tested on an Archos tablet
running Ice Cream Sandwich (Android 4.0.4). The testing
environment consists of Linux Fedora, Eclipse IDE Indigo
Classic, web development Plug-ins and Android ADT 16.
Figure 2 depicts the user interfaces of the test applications. It is
to be noted that no measure has been taken to make a
sophisticated user interface and the default version is adopted.

The above applications are representative of mobile
machine-to-machine applications. Within the framework of the
project WL-Box 4G [19], we are developing mobile
applications that receive data from various sensors via a device
gateway. The data is processed on-the-fly and the UI of the
applications are updated.

A. Memory usage
It is found that such type of applications are developed in

Titanium. But when the 'Guidelines for developers' are
considered, the choice points to PhoneGap because of the
application requirement. So the application is developed using
the following tools and then the memory & CPU usage and
power consumption are noted.

• Only PhoneGap.

• PhoneGap & JQuery mobile

• PhoneGap & Sencha Touch 2.0

• Titanium

The memory usage information is obtained from DDMS
tool of ADT.

• Proportional set size (PSS): PSS is the amount of
memory shared with other processes, account in a way
that the amount is divided evenly between the
processes that share it. This is memory that would not
be released if the process was terminated, but is
indicative of the amount that this process is
“contributing” to overall memory load.

• Unique set size (USS): USS is the set of pages that
are unique to a process. This is the amount of memory
that would be freed if the application gets terminated.

Table II provides the memory usage metrics.

TABLE II. MEMORY USAGE METRICS

Developed app PSS USS

PhoneGap only 12091 6036

PhoneGap + Jquery Mobile 14730 9424

PhoneGap + Sencha Touch 2.0 24526 20164

Titanium 17500 8676

From the above table it is clear that the application written
in PhoneGap only has smallest PSS and USS value. This is due
to the fact that PhoneGap by design does not use any styling
element or tools for betterment of UI. So we can conclude that
the memory usage will increase with the addition of features to
generate better UI.

PhoneGap integrated with JQuery Mobile or Sencha Touch
2.0 is a complete environment for better UI development for
application. In this case the memory usage increases with the
use of HTML and JavaScript files.

Titanium comprises of a full SDK and the memory usage is
thus on the higher side.

B. CPU usage
To measure the CPU usage,, the apps are developed using

PhoneGap and other tools. The code segments to measure the
CPU usage are added to the Android activity through
PhoneGap. But no app could be developed using Titanium as it
does not allow to add the activity. A plug-in could be
developed for this purpose but that is time consuming. We
have followed the two different avenues to record CPU usage
as follows:

• The first approach takes a CPU snapshot at each state
of the Activity life cycle (i.e. onCreate, onStart,
onPause, onStop and onDestroy) of the apps.

• The other approach is to read a 'top' result every second
during the whole life cycle of the apps. Then an
average for each state of the Activity life cycle is
computed.

The developed apps perform the same functionalities as the
previous test. Table III portrays the results of the test.

The values obtained from CPU snapshot approach is
computed when the app is doing much computation and is thus
represented using very high values. Also it is to be noted that
these values may vary a lot from a millisecond to another since
they are snapshot at CPU usage for very short amount of time.

The values obtained from 'top' result shows varying CPU
usages. The min value is always 0 as - once the app fetches the
requested page and shows it, the app does not use any CPU
waiting for the next system input. The average value is
computed using the total elapsed time. From this approach, it is
clear that the first app utilizes very less CPU but the user
experience is not very sophisticated. When Sencha Touch 2.0
is used along with PhoneGap, the CPU usage is more but the
user experience is significantly better.

TABLE III. CPU USAGE METRIC

Developed app CPU usage from
snapshot approach

CPU usage from 'top'
command approach

PhoneGap +
HTML + CSS
tools

81.92771% Max: 10%

Min: 0%

Average: 2%

PhoneGap +
JQuery + HTML

80.26316% Max: 42

Min: 0%

Average: 10%

PhoneGap +
Sencha Touch 2.0

44.0% Max: 32%

Min: 0%

Average: 8%

C. Power consumption
Power consumption of mobile applications has received

much attention of the researchers recently [14], [15], [16]. To
effectively use the battery of mobile devices, the apps
developed using the cross platform tools should be power
efficient. We have measured the power consumption of the
same apps using "Power Tutor' [17], [18]. It is a very popular
Android app that reports power consumption of individual apps
installed in a mobile device. Table IV tabulates the results. It is
to be noted that the reported values are average power
consumption of the apps.

TABLE IV. POWER CONSUMPTION METRIC

Developed app Power consumption (mW)

PhoneGap + HTML +
CSS tools

107

PhoneGap + JQuery +
HTML

168

PhoneGap + Sencha
Touch 2.0

120

Again the result points out that the first app consumes least
power among the three apps. The reason is attributed to the fact
that the UI is very simple. The app developed with PhoneGap
and Sencha Touch 2.0 also works efficiently since it consumes
120mW power.

From the above evaluations, it is quite clear that PhoneGap
and Sencha Touch 2.0 work efficiently in terms of CPU usage
and power consumption. But currently there is no leader cross
platform development tool in the market that fits all the general
requirements. However the most popular tool among the
developers are PhoneGap and Titanium. We identify the main
differences between them in the Table V.

The above results are also analyzed with respect to the
requirements of cross platform tools mentioned in Section II.

• The chosen tools are open source and can build
applications for multiple operating systems. This paper
describes the performance of the Android applications
and iPhone applications will be developed and
evaluated in future works.

• PhoneGap does not contain sophisticated UI building
tools. Thus the memory, CPU and power requirements
are less than PhoneGap combined with JQuery or
Sencha Touch 2.0.

• Back-end communications are supported by all the
tools.

• Rest of the requirements like security, app-extension
will be evaluated in future work.

TABLE V. DIFFERENCE BETWEEN PHONEGAP AND TITANIUM

PhoneGap Titanium

• A PhoneGap application is
written in HTML5 and runs in
an native container.

• Developers can utilize HTML5,
CSS and JavaScript also.

• The UI elements may be
rendered using JQuery Mobile,
Snecha Touch or some other
JavaScript web mobile
development framework.

• A Titanium application is
written in JavaScript and
complies into a native
application and utilizes native
controls.

• It is not an HTML5 application
running in a web container.

• By design, this tool can provide
better performance and better
user experience.

VII. CONCLUSION
In a nutshell, we have concentrated on cross platform

development tools since they build apps for several platforms
and the development cost and time to market are less. Although
the user experience is not as good as native apps, but the apps
can be released in several platforms at once to reach out to
most of the potential users. We have described the general
requirements of cross platform framework and its general
architecture. Then a detail survey is presented that covers
several aspects of the tools allowing developers to gain insight
about the tools. Some high level guidelines to choose among
the categories are provided for the developers. Example of
applications developed by PhoneGap and Titanium are given.
The performance of the Android test apps are measured in
terms of memory, CPU usage and power consumption. The app
written in PhoneGap is found to use minimum memory, CPU
and power but provides a very simple user experience. It is also
reported that PhoneGap with Sencha Touch 2.0 work
significantly well when available memory is not an issue and
better UI is desired.

In future we are targeting to identify several other
performance test cases. At the same time, the other cross
platform tools need to be examined using the memory, CPU
and power consumption metrics described in this paper.
Applications will be developed for iOS platform. Further
experiments will be carried out to examine the security and app
extension capabilities of the cross platform tools. One
important issue that has not been addressed yet is access to
context information from sensors as current mobile computing
heavily depends on it. Such information mining using cross
platform approach has to be researched further.

REFERENCES
[1] http://phonegap.com
[2] http://www.appcelerator.com
[3] http://jquerymobile.com
[4] http://www.sencha.com
[5] http://dragonrad.com
[6] http://www.applicationcraft.com
[7] http://julysystems.com
[8] http://www.netbiscuits.com
[9] http://www.rhomobile.com
[10] http://www.appmobi.com
[11] https://github.com/remy/PhoneGap-Plugin-WebSocket
[12] https://github.com/phonegap/phonegap-

plugins/tree/master/iPhone/InAppPurchaseManager
[13] https://github.com/anismiles/websocket-android-phonegap
[14] S. K. Datta, “Android stack integration in embedded systems,” in

International Conference on Emerging Trends in Computer &
Information Technology, Coimbatore, India, 2012.

[15] Datta, S.K.; Bonnet, C.; Nikaein, N., "Android power management:
Current and future trends," First IEEE Workshop on Enabling
Technologies for Smartphone and Internet of Things (ETSIoT),
pp.48,53, 18 June 2012.

[16] Lee, J.; Hyunwoo Joe; Hyungshin Kim, "Smart phone power model
generation using use pattern analysis," 2012 IEEE International
Conference on Consumer Electronics (ICCE), pp. 412,413, 13-16 Jan.
2012.

[17] L. Zhang, et al. “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones.” In Proc. Of
ACM CODES+ISSS’10, Arizona, USA, 2010, pp. 105-114.

[18] https://play.google.com/store/apps/details?id=edu.umich.PowerTutor
[19] http://www.pole-scs.org/projet/wl-box4g

PhoneGap Sencha JQueryMobile Titanium

Figure 2: User interfaces of the test Android applications.

	I. Introduction
	II. Requirements of a Cross-Platform Framework
	III. General architecture of cross platform application development
	IV. Survey of write once run anywhere tools
	A. PhoneGap
	B. Sencha Touch 2.0
	C. PhoneGap + Sencha Touch 2.0
	D. PhoneGap + JQuery mobile
	E. Application Craft
	F. Appcelerator Titanium Studio 2.0

	V. Classification of write once run anywhere tools
	A. Application development tools
	B. User Interface Tools
	C. Guildeline for developers
	D. Types of applications developed using WORA Tools

	VI. Performance Evaluation
	A. Memory usage
	B. CPU usage
	C. Power consumption

	VII. Conclusion
	References

