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Survey: Interpolation Methods
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Abstract— Image interpolation techniques often are required
in medical imaging for image generation (e.g., discrete back
projection for inverse Radon transform) and processing such as
compression or resampling. Since the ideal interpolation function
spatially is unlimited, several interpolation kernels of finite size
have been introduced. This paper compares 1) truncated and win-
dowed sinc; 2) nearest neighbor; 3) linear; 4) quadratic; 5) cubic
B-spline; 6) cubic; g) Lagrange; and 7) Gaussian interpolation
and approximation techniques with kernel sizes from 1 � 1 up to
8� 8. The comparison is done by: 1) spatial and Fourier analyses;
2) computational complexity as well as runtime evaluations; and
3) qualitative and quantitative interpolation error determinations
for particular interpolation tasks which were taken from common
situations in medical image processing.

For local and Fourier analyses, a standardized notation is intro-
duced and fundamental properties of interpolators are derived.
Successful methods should be direct current (DC)-constant and
interpolators rather than DC-inconstant or approximators. Each
method’s parameters are tuned with respect to those properties.
This results in three novel kernels, which are introduced in this
paper and proven to be within the best choices for medical
image interpolation: the 6 � 6 Blackman–Harris windowed sinc
interpolator, and the C2-continuous cubic kernels with N = 6
and N = 8 supporting points.

For quantitative error evaluations, a set of 50 direct digital
X rays was used. They have been selected arbitrarily from
clinical routine. In general, large kernel sizes were found to be
superior to small interpolation masks. Except for truncated sinc
interpolators, all kernels with N = 6 or larger sizes perform
significantly better than N = 2 or N = 3 point methods
(p� 0:005). However, the differences within the group of large-
sized kernels were not significant. Summarizing the results, the
cubic 6 � 6 interpolator with continuous second derivatives,
as defined in (24), can be recommended for most common
interpolation tasks. It appears to be the fastest six-point kernel
to implement computationally. It provides eminent local and
Fourier properties, is easy to implement, and has only small
errors. The same characteristics apply to B-spline interpolation,
but the 6 � 6 cubic avoids the intrinsic border effects produced
by the B-spline technique.

However, the goal of this study was not to determine an
overall best method, but to present a comprehensive catalogue of
methods in a uniform terminology, to define general properties
and requirements of local techniques, and to enable the reader
to select that method which is optimal for his specific application
in medical imaging.
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I. INTRODUCTION

I
MAGE interpolation has many applications in computer

vision. It is the first of the two basic resampling steps

and transforms a discrete matrix into a continuous image.

Subsequent sampling of this intermediate result produces

the resampled discrete image. Resampling is required for

discrete image manipulations, such as geometric alignment and

registration, to improve image quality on display devices or

in the field of lossy image compression wherein some pixels

or some frames are discarded during the encoding process

and must be regenerated from the remaining information

for decoding. Therefore, image interpolation methods have

occupied a peculiar position in medical image processing [1].

They are required for image generation as well as in image

post-processing. In computed tomography (CT) or magnetic

resonance imaging (MRI), image reconstruction requires in-

terpolation to approximate the discrete functions to be back

projected for inverse Radon transform. In modern X-ray imag-

ing systems such as digital subtraction angiography (DSA),

interpolation is used to enable the computer-assisted alignment

of the current radiograph and the mask image. Moreover,

zooming or rotating medical images after their acquisition

often is used in diagnosis and treatment, and interpolation

methods are incorporated into systems for computer aided di-

agnosis (CAD), computer assisted surgery (CAS), and picture

archieving and communication systems (PACS).

Image interpolation methods are as old as computer graphics

and image processing. In the early years, simple algorithms,

such as nearest neighbor or linear interpolation, were used for

resampling. As a result of information theory introduced by

Shannon in the late 1940’s, the sinc function was accepted

as the interpolation function of choice. However, this ideal

interpolator has an infinite impulse response (IIR) and is not

suitable for local interpolation with finite impulse response

(FIR). From the mathematical point of view, Taylor or La-

grange polynomials have been suggested to approximate the

sinc function [2]. This is documented in most textbooks on

numerical analysis [3]. Thereafter, due to their numerical

efficiency, different families of spline functions have been

used instead.

A great variety of methods with confusing naming can be

found in the literature of the 1970’s and 1980’s. B-splines

sometimes are referred to as cubic splines [4], while cubic

0278–0062/99$10.00  1999 IEEE
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TABLE I
PREVIOUS PAPERS COMPARING MORE THAN THREE INTERPOLATION METHODS

interpolation is also known as cubic convolution [5], [6],

high-resolution spline interpolation [7], and bi-cubic spline

interpolation [8], [9]. In 1983, Parker, Kenyon, and Troxel

published the first paper entitled “Comparison of Interpo-

lation Methods” [7], followed by a similar study presented

by Mealand in 1988 [6]. However, previous work of Hou

and Andrews, as well as that of Keys, also compare global

and local interpolation methods ([4] and [5], respectively)

(Table I). The Fourier transform was used in these studies to

evaluate different 2 2 and 4 4 interpolation methods.

Parker et al. pointed out that, at the expense of some increase

in computing time, the quality of resampled images can be

improved using cubic interpolation when compared to nearest

neighbor, linear, or B-spline interpolation. However, to avoid

further perpetuation of misconceptions, which have appeared

repeatedly in the literature, it might be better to refer to

their B-spline technique as B-spline approximation instead

of interpolation. Maeland named the correct (natural) spline

interpolation as B-spline interpolation and found this technique

to be superior to cubic interpolation [6].

In more recent reports, not only hardware implementations

for linear interpolation [15] and fast algorithms for B-spline

interpolation [10] or special geometric transforms [8], [9], [14],

but also nonlinear and adaptive algorithms for image zoom-

ing with perceptual edge enhancement [16], [17] have been

published. However, smoothing effects are most bothersome

if large magnifications are required. In addition, shape-based

and object-based methods have been established in medicine

for slice interpolation of three-dimensional (3-D) data sets

[18]. In 1996, Appledorn presented a new approach to the

interpolation of sampled data [19]. His interpolation functions

are generated from a linear sum of a Gaussian function and

their even derivatives. Kernel sizes of 8 8 were suggested.

Again, Fourier analysis was used to optimize the parameters

of the interpolation kernels. Contrary to large kernel sizes

and complex interpolation families causing a high amount

of computation, the use of quadratic polynomials on small

regions was recommended by Dodgson in 1997. He reduces

the computation time of cubic kernels to 60% by the use of

quadratic functions yielding similar quality [11].

Table I summarizes previous work comparing interpolation

methods. In addition to Appledorn’s and Dodgson’s recent pro-

posals, most comparative studies include neither the windowed

sinc technique nor the Lagrange method and also exclude

large kernels for cubic interpolation with 6 6 or 8

8 supporting points. We will see below that those methods

perform superiorly in most applications.

In medical diagnostic applications, not only the kernel’s

frequency properties must be taken into account but also

the appearance of images after resampling. Keep in mind

that many imaging systems violate the sampling theorem and

introduce aliasing. Unser, Aldroubi, and Eden asked subjects

to rank as lifelike the magnified Lena test image in descending

order [10]. Although this type of evaluation particularly de-

pends on the images and their geometric transforms, visually

assessed interpolation quality was found to be important for

kernel selection [4], [5], [7], [11], [13], [14], [16], [20]. Others

use the Fourier power spectrum of their test images before and

after interpolation to determine the quality of their technique

[8], [17]. Alternatively, Schaum suggests an error spectrum for

comparing the performance of various interpolation methods

[12]. Table I also summarizes characteristics used by previous

authors to compare interpolation methods.

However, other bases for evaluating the appropriateness of a

given interpolation scheme may be indicated, depending on the

task. For example, the visual performance can be quantified

in terms of similarity or sharpness [17], [21]. Furthermore,

magnifications by factors of eight [10] or even two seldom

are required in many clinical applications and, thus, comparing

this capability may be irrelevant if not inappropriate for cer-

tain tasks. Accordingly, determining the optimal interpolation

method for a variety of specific clinical applications is still a

problem.

This paper presents a comprehensive survey of existing

image-interpolation methods. They are expressed using a stan-

dardized terminology and are compared by means of lo-
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cal and Fourier analyses, qualitative and quantitative error

determinations, computational complexity evaluations, and

run time measurements. Three representative interpolation

tasks have been selected from clinical routine for comparing

performance. These are described in detail in the next section.

Relative performance and task-specific dependencies likewise

are examined with regard to variations between image types

and transform parameters. The interpolation methods as well

as their parameters and variations are presented and discussed

in Section III. The results of analyzing Fourier properties,

interpolation errors, and run time are presented in Section IV

and discussed in the last section of this paper.

II. INTERPOLATION TASKS IN MEDICAL IMAGING

Image resampling is required for every geometric transform

of discrete images except shifts over integer distances or

rotations about multiples of 90 . Geometric transforms differ

with respect to their complexity. Usually, affine transforms

such as magnifications [4], [7], [10], [11], [16], [17], [20], [22]

or rotations [1], [8], [9], [14] are used to evaluate interpolation

methods. High enlargements up to 4; 5.25; and 8 times ([11],

[16], [22]; [5]; and [4], [10], [22], respectively) as well as 10

or 16 repetitions of the transform ([20] and [14] respectively)

are used to enhance the blurring effects incorporated with in-

terpolation. In this paper, simple expansions in one dimension,

different rotations, and complex perspective transforms within

the range of clinical applications are used to compare the inter-

polation methods. Representative clinical images produced by

a variety of diagnostic modalities provide a reasonable basis

for evaluation. These include medical photographs, magnetic

resonance displays, and digital radiographs.

A. Correction of Aspect Ratios in CCD-Photographs

Magnifications in only one dimension are required to correct

aspect ratios of digital photographs acquired with CCD-sensors

and frame grabber cards. To preserve the original information,

one dimension of the image is expanded, rather than shrinking

the other.

Fig. 1 shows a digital photograph of a human eye. The

positions of the Purkinje reflections within the pupil are used

for strabometry [23]. The picture was selected because of its

uniform histogram and its excellent sharpness. The defraction

patterns of the reflections in the pupil and the eyelashes are

particularly sharp and thus provide an interpolation challenge.

The correction of its -aspect ratio requires the expansion

of the axis by 1.3. Note that in this task the pixels in every

third column of the expanded image can be taken from the

original data without any modification.

B. Rotation of MRI Sections

Fig. 2 shows an MRI of the human head. In multimodal

image registration, CT or MRI slices must be transformed

as an affine projection to fit data from functional imaging

modalities, such as positron emission tomography (PET) or

single photon emission computed tomography (SPECT) [24].

By restricting affine transformations to rotations, the number of

image points remains approximately constant both before and

(a)

(b)

Fig. 1. CCD-arrays or frame grabber often require the correction of their
aspect ratio. (a) In this example, the image of a human eye was acquired for
strabometry [23]. (b) The 4=3 expansion in x direction was performed by
linear interpolation.

after resampling. In performing rotations on a discrete grid,

neither image rows nor columns can be reproduced unless the

rotation angle is a multiple of 90 . Therefore, this task results

in larger interpolation errors than those produced by a simple

correction of aspect ratio.

C. Perspective Projection of X-Ray Images

In intraoral radiology, the geometric transform of one ra-

diograph into another from the same dental region acquired at

a different time is described by a perspective projection [25].

Each pixel within the reference image is transformed

into the position in the subsequent image

and (1)

Suppose Fig. 3(a) was acquired with an imaging plate

perpendicular to the beam cone and the viewpoint is behind the

image plate looking toward the X-ray tube. Fig. 3(b) illustrates

the rotation of the image plate with its upper right corner

moving toward the X-ray tube. Although distortions in clinical

routine are less drastic, the parameters of the perspective
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(a)

(b)

Fig. 2. Interpolation is required to rotate discrete images. The MR image (a)
was 45� rotated using linear interpolation (b).

projection have been chosen such that the number of pixels

containing information is roughly halved after the projection.

Therefore, the interpolation errors will be greatest within the

examples presented here.

III. INTERPOLATION METHODS

For image resampling, the interpolation step must recon-

struct a two-dimensional (2-D) continuous signal from

its discrete samples with and

. Thus, the amplitude at the position must be

estimated from its discrete neighbors. This can be described

formally as the convolution of the discrete image samples

with the continuous 2-D impulse response of a 2-D

reconstruction filter

(2)

Usually, symmetrical and separable interpolation kernels are

used to reduce the computational complexity

(3)

Fig. 4 illustrates the interpolation of the point in a 4

4 neighborhood. Interpolation is performed in the direction

(a)

(b)

Fig. 3. Intraoral X rays are acquired with respect to perspective projection.
Therefore, perspective transforms must be performed for automatical adjust-
ment. The parameters ai in (1) are chosen as follows: a1 = 1:25, a2 = 0:35,
a3 = 1:10, a4 = 0:20, a5 = 0:80, a6 = 5:00, a7 = 0:002, a8 = �0:0006.
This equals a movement of the upper right corner of the image plate toward
the X-ray tube. The 340 � 256 original pixels (a) are reduced to only 39 770
pixels (45.7%) which still contain image information after interpolation (b).

Fig. 4. One-dimensional decomposition of the 2-D N �N interpolation of
the point (x; y). (Reprinted with permission from [1].)

first. The small grey intermediate points in Fig. 4 are generated

by four one-dimensional (1-D) interpolations. They are used

for the final 1-D interpolation in the direction.

A. Ideal Interpolation

Following the sampling theory, the scanning of a continuous

image yields infinite repetitions of its continuous
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(a) (b) (c)

Fig. 5. Ideal interpolation. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 6. Truncated sinc interpolation, N = 5. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

spectrum in the Fourier domain, which do not overlap

since the Nyquist criterion is satisfied. If this is so, and

only then, the original image can be reconstructed

perfectly from its samples by multiplication of an

appropriate rectangular prism in the Fourier domain. The 1-

D ideal interpolation equals the multiplication with a rect

function in the Fourier domain and can be realized in the

spatial domain by a convolution with the sinc function

(4)

Fig. 5(a) shows the ideal IIR-interpolator . The plot

was truncated within the interval . The magnitude

of the Fourier transform of the infinite

kernel is plotted within the interval

is shown in Fig. 5(b). The interval

is called passband and or the cutoff

point or Nyquist frequency. The transfer function of the ideal

interpolator is constant and one in the passband. In addition, a

logarithmical plot of the filter’s Fourier response is presented

in Fig. 5(c) to emphasize ripples in the stopband .

The ideal kernel’s transfer function is zero valued within

the stopband. Note that Figs. 5–24 are constructed in similar

fashion using the same scaling and plotting conventions.

Some fundamental properties of any interpolator can be

derived from this ideal interpolation function. is

positive from zero to one, negative from one to two, positive

from two to three, and so on. For these zero crossings

guarantee that the image is not modified if it is resampled on

the same grid. Therefore, kernels satisfying

(5)

avoid smoothing and preserve high frequencies. They are

called interpolators. We will see below that better suited

kernel functions tend to have this general shape. In contrast

to interpolators, kernels that do not fulfill (5) are named

approximators. Note that this strict distinction is not always

reflected in literature.

Sampling the interpolated (continuous) image is equivalent

to interpolating the (discrete) image with a sampled interpo-

lation function [7]. The sampling of the interpolation function

aliases the higher frequencies of the interpolation function into

the lower ones. In the case of ideal interpolation only, higher

frequencies do not exist and therefore, within the interval

, the sampled interpolation function has the

same Fourier spectrum as the unsampled function. However, it

is necessary to examine not only the continuous interpolation
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(a) (b) (c)

Fig. 7. Truncated sinc interpolation, N = 6. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 8. Blackman–Harris windowed sinc interpolation N = 6. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

function but also typically sampled interpolation func-

tions . Particularly, the sum of all samples should be one

for any displacement

(6)

This means that for any displacement the direct current (DC)-

amplification will be unity and the energy of the resampled

image remains unchanged. In other words, the mean brightness

of the image is not affected if the image is interpolated

or resampled. Therefore, kernel functions that satisfy or fail

condition (6) are named DC-constant or DC-inconstant, re-

spectively. The next sections will show that superior kernels

are DC-constant.

Equation (6) also is called the partition of unity condition

[20], which easily can be evaluated in the Fourier domain.

Referring to information theory, the sum (6) of discrete sam-

ples of the kernel equals the area under the continuous

function obtained by multiplying (or sampling) with a

train of delta functions

(7)

where

and, by definition, the weight of a single delta impulse

corresponds to the amplitude of the kernel at the position

of . Recognizing the Russian letter “scha,” the train of delta

functions is named the scha-function . If the integrand in

(7) is extended by e , which equals 1 for , one can

discover the definition of the Fourier transform in (7). Then,

the function to be Fourier transformed is and

from (6) and (7) we obtain

(8)

where denotes the Fourier transform of . Because

the conditions in (8) are not sufficient but necessary in the

context of interpolation, they are used to distinguish DC-

constant from DC-inconstant kernels in the Fourier domain.

B. Sinc Interpolation

Although the sinc function provides an exact reconstruction

of , it spatially is unlimited. There are two common
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(a) (b) (c)

Fig. 9. Nearest neighbor interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 10. Linear interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

approaches for overcoming this drawback, truncation and

windowing with a window function

and , respectively

elsewhere
(9)

where denotes the number of the finite kernel’s supporting

points. By definition, fulfills the requirement (5). In

other words, all windowed or truncated sinc kernels necessarily

are real interpolators.

Truncation is equivalent to the multiplication of

with a rectangular function in the spatial domain, which is

tantamount to a convolution with a sinc function in the fre-

quency domain. Therefore, truncations of the ideal interpolator

produce ringing effects in the frequency domain because a

considerable amount of energy is discarded. Figs. 6 and 7

demonstrate this effect, which also is referred to as the Gibbs’s

phenomenon [4], produced by a truncated sinc function with

and supporting points, respectively. In addition,

the partition of unity condition (8) is violated by any choice

of . In other words, all truncated sinc kernels are DC-

inconstant. The area of the function differs more from one for

even kernel sizes than for odd. Therefore, raising the kernel

from to significantly enlarges the overshoots

within the passband. With respect to the passband properties

of a truncated kernel, odd numbers of supporting points are

preferable.

Another idea to make the sinc function usable for spatial

convolution might be to use it with a less severe window

than the rect function. Ostuni et al. discuss the use

of a cosine function for reslicing fMRI

data [26]; Schaum uses a Hanning window, which is just a

raised cosine, to taper the interpolation kernel’s edges and

remove Gibbs’s overshoot in the transform [12]; and Wolberg

compares several window functions for interpolation with

windowed sinc kernels by Fourier analysis [13]. A systematic

approach on the use of windows for harmonic analysis with

the discrete Fourier transform is given by Harris who declared

the Kaiser–Bessel and Blackman–Harris windows to be the top

performers [27]. When using the three-term Blackman–Harris

window

(10)

with and
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(a) (b) (c)

Fig. 11. Quadratic approximation, a = 1=2. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 12. Quadratic interpolation, a = 1. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

a DC-constant interpolator is obtained. Note that most other

window functions, including those used in [12] and [13] result

in kernels that do not have this superior property.

Fig. 8 shows the Blackman–Harris windowed sinc kernel.

The kernel’s half wave between is suppressed

significantly in comparison with the ideal or truncated kernels.

Therefore, the ripples in the stopband are below 0.01%, but

higher frequencies within the passband are attenuated also.

The largest gain within the stopband is 0.5 at the cutoff point.

C. Nearest Neighbor Interpolation

The easiest way to approximate the sinc function by a

spatially limited kernel is given by the nearest neighbor

method. The value at the location is chosen as the

next known value . Therefore, only supporting

point is required for the nearest neighbor interpolation. This

is tantamount to convolution with a rect function [Fig. 9(a)]

elsewhere.
(11)

Clearly, is a DC-constant interpolator.

Fig. 9(b) shows that the Fourier spectrum of the nearest

neighbor kernel equals the sinc function (expressed in the

frequency domain). The logarithmical scale shows prominent

sidelobes in those regions of the frequency domain where the

repetitions of caused by scanning should be suppressed

[Fig. 9(c)]. The gain in the passband rapidly falls off to

% at the cutoff point, and the amplitude of the

side maxima is more than 20%. Therefore, strong aliasing

and blurring effects are associated with the nearest neighbor

method for image interpolation.

D. Linear Interpolation

For separated bi-linear interpolation, the values of both

direct neighbors are weighted by their distance to the opposite

point of interpolation. Therefore, the linear approximation of

the sinc function follows the triangular function

elsewhere.
(12)

The triangular function corresponds to a modest

low-pass filter in the frequency domain (Fig. 10).

Again, and

Therefore, the linear kernel is a DC-

constant interpolator. The sidelobes in the stopband are below

10%, which still is considerable. Therefore, the main disad-

vantages of linear interpolation are both the attenuation of
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(a) (b) (c)

Fig. 13. Cubic B-spline approximation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

high-frequency components and the aliasing of the data beyond

the cutoff point into the low frequencies [7].

E. Quadratic Approximation

One of the most frequently applied concepts to create sinc

like interpolation kernels is the use of algebraic polynomials.

Their advantage is easy determination and uniform approxima-

tion of continuous functions at finite intervals. In the previous

sections, constant and linear polynomials have been discussed.

Quadratic functions have been disregarded largely because

they have been thought to introduce phase distortions. In

fact, if the polynomials span 1 to 2, asymmetric kernels

with nonlinear phases are produced [28]. However, Dodgson

showed this not to be the general case and recently derived

a family of quadratic functions that is better behaved [11].

In contrast with other polynomial interpolation methods, this

quadratic family is based on a symmetric 3 3 neighborhood

from to , and the contacting points are fractions.

In terms of separated kernels, the three nearest points are

used for interpolation. Both direct neighbors and a third point

sometimes are located on the left-hand side and other times

on the right.

A symmetric quadratic kernel is given by

elsewhere

with and due to C1-continuity (we call

a function C continuous if its th derivation is holomorph).

To form a kernel useful for interpolation, additional restrictions

must be imposed. The polynomials should fit exactly at

the kernel’s starting and ending points as well as at their

contacting points. In addition, (6) must be satisfied to obtain

a DC-constant kernel. Hence, the following four equations are

required to establish appropriate values for the five remaining

parameters:

which reduce the general quadratic form to one degree of

freedom, [see (13) at the bottom of this page].

Note that all members of this one parameter family of

quadratics are real and even in the spatial domain and therefore

have a linear phase in the frequency domain. To remove the

final degree of freedom we can force the first derivatives

of the polynomials to fit at their contact points .

This sets . The resulting kernel (Fig. 11) does not

satisfy condition (5). For that, the quadratic kernel is

called a quadratic approximator. By definition, the quadratic

approximator is DC-constant. It has a prominent sidelobe in

the Fourier domain with an amplitude of about 1%. The main

lobe still considerably deviates from the ideal rectangular

shape. Higher frequencies within the passband are attenuated.

Therefore, interpolation with the quadratic approximator will

cause strong blurring effects.

F. Quadratic Interpolation

One also can use the single degree of freedom in (13) to

force the quadratic kernel to satisfy the zero-crossing condition

(5). In this case, is obtained and the finite kernel is

elsewhere

(13)
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(a) (b) (c)

Fig. 14. Cubic B-spline interpolation. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 15. Cubic interpolation, N = 4; a = �1:3. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 16. Cubic interpolation, N = 4; a = �1=2. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

a DC-constant interpolator. The kernel has a little nook at

. However, the nook is covert in Fig. 12(a) because

of the scaling of the plot. Note, that condition (5) can not

be enforced at the same time as the C1-continuity. This C1-

discontinuity raises the kernel’s stopband attenuation for high

frequencies above 2% [Fig. 12(c)]. However, the quadratic

interpolator shows acceptable passband properties [Fig. 12(b)].

G. B-Spline Approximation

Basis splines (B-splines) are one of the most commonly used

family of spline functions [4]. They can be derived by several

self-convolutions of a so called basis function. Actually, the

linear interpolation kernel from (12) can be considered

as the result of convolving the rectangular nearest neighbor
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(a) (b) (c)

Fig. 17. Cubic interpolation, N = 6. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 18. Mitchell and Netravali’s subjective best interpolation, b = 1=3; c = 1=3. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic
plot of magnitude.

(a) (b) (c)

Fig. 19. Notch filter, b = 3=2; c = �1=4. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.
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(a) (b) (c)

Fig. 20. Lagrange third-order interpolation, N = 4. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 21. Lagrange fourth-order interpolation, N = 5. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 22. Gaussian second-order interpolation. (a) Kernel plotted for jxj < 3. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

kernel from (11) with itself

Therefore, the rect function can be used for the con-

struction of uniform B-splines of order

Subsequently, for this process converges to a

Gaussian function . For we obtain the quadratic

B-spline which, in fact, equals the previously mentioned

quadratic approximator for . For

we obtain the cubic B-spline [4] [see (14)].

elsewhere.

(14)
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(a) (b) (c)

Fig. 23. Gaussian sixth-order interpolation. (a) Kernel. (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

(a) (b) (c)

Fig. 24. Gaussian tenth-order interpolation. (a) Kernel plotted for jxj < 3, (b) Magnitude of Fourier transform. (c) Logarithmic plot of magnitude.

Note that the B-spline kernel fails to occupy the null

positions of the sinc function: and,

therefore, the B-spline kernel is actually not an interpolation

but rather an approximation kernel. Consequently, B-spline

approximation displays strong blurring effects but also allows

for the attenuation of unwanted high-frequency noise in the

output image [29].

However, the B-spline approximator enjoys the valuable ca-

pacity to retain the properties of DC-amplification [Fig. 13(c)].

Furthermore, Fig. 13 demonstrates that the cubic B-spline

function has a favorable stopband response. The amplitude

of the sidelobes is lower than 1%. Nevertheless, the Fourier

transform of the cubic B-spline kernel is equivalent to a

function that results in over smoothing in the passband. The

gain at the cutoff frequency is only about 16.4%. Increasing

the order of the spline not only improves the quality of

interpolation but also increases the smoothing effects. There-

fore, was selected for this study to represent the B-spline

approximation method. This choice corresponds to those of

other authors [4], [5], [7], [11].

H. B-Spline Interpolation

To create an interpolating B-spline kernel, the B-spline

approximator is applied to a different set of samples .

Since the B-spline kernel is symmetrical and separable, the

reconstruction (2) yields

(15)

with , as defined in (14). Note that the general case

(15) reduces to (2) if the samples are taken directly from the

image data: .

Here, the must be derived from the image’s sample

points in such a way that the resulting curve interpolates

the discrete image. From (15) and (14) we obtain

(16)

which, ignoring edge effects, results in a set of equations to

solve

...
...

...

(17)
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Labeling the three matrices above as , , and , respectively,

the coefficients in may be evaluated by multiplying the

known data points with the inverse of the tridiagonal matrix

(18)

In all other methods included in this paper, the coefficients

used for convolution with the interpolation kernel are taken to

be the data samples themselves. Because the coefficients for

B-spline interpolation are determined by solving a tridiagonal

matrix system, the resulting kernel is infinite.

To simplify its analytical derivation, the interpolated image

and the data samples now are called and ,

respectively. From (16) we obtain and in the

frequency domain

(19)

Inversion of (19) yields

(20)

Hence, (15) can be written as and

with (20) we finally obtain

(21)

Fig. 14(a) plots within the interval .

Although the kernel is infinite, the amplitudes of the half waves

are reduced significantly when compared with that of the ideal

IIR-interpolator [Fig. 5(a)]. The cubic B-spline interpolation

shows excellent passband characteristics [Fig. 14(b)] and the

amplitude of the sidelobes in the stopband is below 1%

[Fig. 14(c)]. Note that satisfies the zero crossing

condition (5) as well as the partition of unity condition (6)

and, therefore, is a true DC-constant interpolator.

I. Cubic Interpolation

Cubic polynomials are used frequently because of their abil-

ity to fit C2-continuous. Also, the B-spline approximator ,

as defined in (14), as well as the Lagrange interpolator

in (28), are constructed piecewise from cubic polynomials. Of

course, cubic polynomials also can be used to approximate

the sinc function.

1) Two-Point Interpolation: In the case of cubic interpola-

tion with two points, a symmetric kernel can be defined with

elsewhere.

The parameters to can be determined by applying the

following boundary conditions:

• , C0-continuity;

• , C1-continuity;

• for , see (5);

• for , see (5).

For , those boundary conditions yield four equations

for the four parameters resulting in ;

elsewhere.
(22)

It should be pointed out that, by definition, is a

DC-constant interpolator. The resulting curves are similar to

those obtained by linear interpolation, but the pieces fit C1-

continuously in the spatial domain. Two sidelobes occur in

the positive Fourier plane. The first lobe raises up to 2%. It is

located within while the second’s amplitude is

about 1% between .

2) Four-Point Interpolation: When using cubic interpola-

tion with points, seven of the eight coefficients are

determined from the above constraints and one extra free

parameter is retained [see (23) at the bottom of the next

page].

Different concepts have been used to determine this param-

eter. With the constant negative, the kernel is positive in the

interval from zero to one and negative from one to two and,

hence, an interpolator is obtained.

According to Danielsson and Hammerin, when ,

the result is a kernel whose Fourier transform

deviates minimally from the ideal rectangular function [8], [9].

Fig. 15 shows the corresponding interpolation function in the

spatial and Fourier domains. Frequencies directly below the

cutoff point are amplified slightly, and the transition between

the passband and the stopband is quite sharp. The amplitude of

the first sidelobe is above 10%, but the ripples reduce below

1% for .

If is determined in order to match the slope of the sinc

function at , then is obtained [29], [30].

The intensification of frequencies just below the cutoff point

is reduced when compared to the situation that

is chosen, but the transition between the passband and the

stopband is not as sharp as before. This trend continues if

is increased further. If the second derivatives of

both polynomials in (23), shown at the bottom of the page, are

made equal for their contact point of , then

is obtained. Park and Schowengerdt found to

minimize the sampling and reconstruction error for images

dominated by edges [30].

Keys determined the constant by forcing the Taylor series

expansion of the sampled sinc function to agree in as many

terms as possible with the original signal resulting in

[5]. When using this choice of , the first three terms of
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the Taylor series expansion of the input signal agree with the

interpolated function. Thus, cubic interpolation with

can reconstruct any second-degree polynomial. Furthermore,

the approximation error is proportional to the third power of

the sampling increment [5]. Only in the case of does

the cubic kernel not have any overshoots within the

passband. Fig. 16 shows the flat spectrum at low frequencies,

which fall off to the cutoff frequency. Only two sidelobes

appear in the positive Fourier half plane, and the amplitude

of both distinct lobes is below 1%. Because for most digital

images a preponderance of energy exists at low frequencies,

Park and Schowengerdt also derived to be optimal

for the image-independent case [30]. Reichenbach and Park, as

well as Dodgson, showed that this choice for the parameter

corresponds to both the Catmull–Rom blended spline and the

piecewise cubic Hermite interpolation [31], [32]. In addition,

Dodgson pointed out that the Bezier form of the cubic spline

interpolation is related to [32].

3) Six-Point and Eight-Point Interpolation: Increasing the

interpolation kernel size improves the quality of resampling.

From the boundary conditions defined above, only

equations are obtained to determine the parameters. Hence,

there are two degrees of freedom for and three free

parameters for . Again, many ideas have been used to

determine these parameters. Danielsson and Hammerin forced

the kernel to have its first minimum value at the same position

as the sinc function [8], [9]. With the kernel suggested by

Keys, the sidelobes are further subdued, and the transition

between the passband and the stopband is sharpened when

compared to the 4 4 kernels [5].

Nevertheless, not all of those concepts are generic for every

choice of . In addition, it is doubtful whether any a priori

attempt to fit the kernel to the sinc function results in a

valuable interpolation scheme. This is true because the implicit

supposition, i.e., the applicability of the sampling theorem,

is violated often in medical imaging systems. However, the

missing smoothness of the kernel is responsible for unwanted

ripples in the Fourier domain. Exactly independent

equations are obtained if the second derivatives of the poly-

nomials are forced to match for all contacting points. Using

those boundary conditions, we obtain (24) and (25), shown at

the bottom of this page, for and , respectively.

Fig. 17 shows the cubic interpolation kernel corresponding to

(24). Compared with the other examples of cubic kernels, the

plateau of the passband is enlarged and sharp edged while

the amplitudes of the sidelobes are further reduced. Higher

frequencies within the passband are amplified somewhat.

The reader should notice that only DC-constant interpolators

have been derived in this subsection. Equation (5) is fulfilled

by the definition of the boundary conditions and the partition

of unity condition (8) is satisfied for all kernel sizes and

parameters (Figs. 15–17).

J. Mitchell and Netravali’s Method

Mitchell and Netravali developed a family of point

cubic filters that can be either approximators or interpolators

[33]. The constraints they use are the following:

• , CO-continuity;

• , C1-continuity;

• , see partition of unity condition (6).

That leaves us with a two-parameter family of solutions [13],

[33] [see (26) at the bottom of this page].

Several well known cubic filters are derivable from (26)

through an appropriate choice of the parameter tuple .

For instance, is the cubic B-spline approximator (14),

and corresponds to the four-point cubic interpolator

family (23).

Mitchell and Netravali partitioned the parameter space into

regions characterizing artefacts, such as blurring, anisotropy,

and ringing. Measured by subjective inspection, the tuple

was found to offer superior image quality [33].

Fig. 18 shows Mitchell and Netravali’s subjective best kernel,

which is not an interpolator. However, it is a DC-constant ker-

nel. Higher frequencies within the passband are absorbed and

the image is smoothed during resampling. The two sidelobes

in the stopband are similar to those of the cubic interpolator

shown in Fig. 16.

elsewhere

(23)

elsewhere

(24)

elsewhere

(25)

elsewhere

(26)
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Another parameter tuple suggested by Mitchell and

Netravali is yielding the so-called notch filter

(Fig. 19). The frequency response of this DC-constant

approximator is zero at all integer and half-integer multiples

of the sampling rate except zero. On the one hand, the notch

kernel cuts signal energy very near to the Nyquist frequency

or , which contributes primarily to aliasing

effects and Moiré patterns [33]. On the other, the gain within

the passband drops off quickly resulting in strongly blurred

images.

K. Lagrange Interpolation

In numerical analysis, the Taylor polynomials are used fre-

quently. As a major drawback for image resampling, the Taylor

polynomials are expanded from a single point, which might

cause problems when they are applied to image interpolation.

Using Lagrange polynomials instead, several points through

which the polynomial must pass can be specified. Particularly,

the Lagrange polynomial of degree passes through

points [3]. For an infinite number of points these polynomials

approach the sinc function [2]

Therefore, the Lagrange interpolation formula often is con-

founded with a terminated product representation of the sinc

function giving bad interpolation results [1].

The Lagrange interpolation kernel presented here refers

to various textbooks on numerical analysis. The Lagrange

kernel of degree for an region with

is defined by

elsewhere
(27)

with .

Because the neutral element of multiplications is one, the

Lagrange kernel for equals the nearest neighbor

interpolation. One can easily show that in the case of

(27) equals the linear interpolation method. As mentioned

above, the Lagrange kernel for supporting points results

in cubic polynomials [see (28) at the bottom of this page]. For

, (27) yields fourth-order polynomials [see (29) at the

bottom of this page].

A little algebra shows that all Lagrange kernels are DC-

constant interpolators. However, the even Lagrange interpola-

tors do not fit C1-continuously at the connecting points

causing significant sidelobes within their Fourier transforms.

Figs. 20 and 21 visualize the Lagrange kernels for

and , respectively. shows a sharp edge at

the center of the mask in the spatial domain. The amplitude

of the sidelobe in the Fourier domain is about 4%. The odd

Lagrange kernel is not CO-continuous. Therefore,

the amplitude of the sidelobe is raised up to 10%. However,

the plateau in the passband is wider causing the major lobe to

approximate more closely the ideal rectangular shape. In other

words, the passband characteristic is improved by raising the

order of the Lagrange kernel. Furthermore, odd kernels should

be used for scenes where high contrasts dominate.

L. Gaussian Interpolation

Appledorn has recently introduced a new approach to the

generation of interpolation kernels [19]. The objective was

to exploit the characteristics of the Gaussian function in

both the spatial and the frequency domain. In particular,

the Gaussian function is recurrent with respect to operations

such as derivation and Fourier transform. Hence, Appledorn

published a scheme to develop simple interpolation kernels

that are both locally compact in the signal space and almost

band limited in the frequency domain and, in addition, are

easy to manipulate analytically.

Consequently, we will denote the th partial derivative of

the unit area Gaussian function

with zero mean and variance as

Hence we obtain

Then, the th-order Gaussian interpolation kernel is given

by

elsewhere.

(30)

elsewhere

(28)

elsewhere

(29)
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(a) (b) (c)

Fig. 25. Sum of sampled interpolation kernels as a function of the displacement d. (a) Gaussian second-order, N = 6. (b) Gaussian tenth-order, N = 8.
(c) Result of scaling a constant image using Gaussian second-order interpolation (effects have been enhanced).

The weighting factors and the variances are determined

from the following constraints [19].

• The Gaussian kernels should equal the ideal interpolator,

at least for

• The Fourier transforms of the Gaussian

kernels should equal those of the ideal interpolator, at

least for

• Furthermore, should be as flat as possible

without any slope or curvature for

for even

Note that the first and the second constraints cover only one

part of the interpolation condition (5) and the DC-constant

condition (8), respectively. The latter constraint is imposed

to approximate the passband characteristics of the ideal low-

pass filter and therefore to minimize the corruption of the

image’s Fourier spectrum by the interpolation. Hence, all

weights must be 0 if is odd. In addition,

for Because the Gaussian function always

approximates zero for large , for the sake of simplicity, the

explicit behavior of these values relative to the kernel’s defined

range in neglected. Accordingly, the first existing orders of

Gaussian kernels are given by [19]

(31)

(32)

(33)

with

Although all kernels are one at , the zero cross-

ings do not match exactly. Therefore, the Gaussian kernels

are actually approximators. However, the deviation from the

interpolator’s general shape is quite small. Fig. 22 shows the

infinite second-order Gaussian kernel within the

interval . The zero points are

and . Increasing the order of the kernel

improves the approximation of the ideal rectangular low-pass

filter (Fig. 23). In other words, the passband is widened and

the transition to the stopband is narrowed. Even for order

, neither sidelobes nor ripples occur. The main lobe

is flat for low frequencies but falls off with a broad slope.

Fig. 24 displays the infinite tenth-order Gaussian kernel with

nearly perfect frequency properties. Nevertheless, the first zero

point of is approximately at and

or .

Note that the sum of all sampled interpolation values is not

equal to one for truncated Gaussian kernels and, hence, the

Gaussian FIR-kernels actually are not DC-constant. Fig. 25(a)

and (b) plots the sum of sample points from (6) as a function

of the displacement for and , respec-

tively. The distortion effect resulting from interpolation with

DC-inconstant kernels is visualized in Fig. 25(c). Therefore,

the Gaussian kernels have impressive frequency properties

only when the approximation is created from enough points to

reflect accurately the bulk of energy distribution (Figs. 22–24).

Fig. 26 shows the logarithmic plots of the Fourier magnitude

for truncated Gaussian kernels. Because the ripples in the

stopband are below 0.1%, effects resulting from truncation

of Gaussian kernels are negligible.
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(a) (b) (c)

Fig. 26. Logarithmic plots of the Fourier magnitude for truncated Gaussian kernels. (a) Gaussian second-order, N = 6. (b) Gaussian sixth-order,
N = 6. (c) Gaussian tenth-order, N = 8.

IV. RESULTS

These kernels have been compared on various images

including situations typically encountered in medical applica-

tions. In each case, the efficiency and accuracy of a particular

interpolation technique was evaluated by analyzing its Fourier

properties, visual quality, interpolation error, complexity, and

runtime.

A. Fourier Analysis

The Fourier properties of each method have been described

in the previous sections. Figs. 5–24 allow the comparison of

the interpolation kernels in both spatial and Fourier domains.

For quality assessment in the Fourier domain, we have focused

on three characteristics: 1) deviation from the ideal constant

gain within the passband; 2) the amplitude and slope of the

kernel’s Fourier transform at the cutoff frequency; and 3)

the occurance and the amplitudes of ripples and sidelobes

in the stopband. Deviation within the passband is important

because attenuation within the passband causes blurring, while

amplification improves the interpolated image’s sharpness

along with image noise. The importance of amplitude at cutoff

frequency stems from the fact that high cutoff amplitudes in

small slopes cause aliasing effects. Sidelobe anomalies can be

significant because they alias the repetitions of the discrete

image spectrum into the passband. Note that the importance

of each criterion depends on the Fourier spectrum of the image

to be interpolated. The ideal mask yields a rectangular Fourier

shape with constant amplification in the passband, infinite

slope at cutoff frequency, and zero values in the stopband

(Fig. 5). However, truncations in the spatial domain result in

notable overshoots in the passband and extensive ripples in

the stopband (Figs. 6 and 7).

1) Passband: Nearest neighbor and linear interpolation,

as well as quadratic and cubic B-spline approximation and

the notch filter, show the largest deviation from the ideal

rectangular shape in the passband (Figs. 9, 10, 11, 13, and

19, respectively). Therefore, images will be strongly smoothed

during interpolation, and these methods only should be used

for scenes without sharp edges and high local contrasts.

The best passband characteristics are provided by windowed

sinc and cubic B-spline interpolations, as well as cubic,

and Lagrange interpolations with large kernel sizes and all

Gaussian kernels (Figs. 8, 14, 17, 21, 22, and 24, respectively).

2) Cutoff Point: The notch filter produces the best cutoff

performance (Fig. 19). Truncated sinc and cubic B-spline in-

terpolations, as well as cubic, Lagrange, and Gaussian kernels

with are suitable also (Figs. 6, 7, 14, 17, 21, and

24, respectively). The worst cutoff performance is shown by

the nearest neighbor interpolator (Fig. 9). The use of linear

interpolation and the Mitchell and Netravali’s subjective best

method should be avoided also regarding the cutoff criterion

(Figs. 10 and 18, respectively).

3) Stopband: Similar to the kernels’ gain at the cutoff

point, the stopband characteristics are responsible for aliasing

and Moiré effects. Truncated sinc, nearest neighbor, linear,

and quadratic interpolation, the 4 4 cubic interpolation

, the notch filter, and the Lagrange interpolators

produce ripples or sidelobes with amplitudes larger than 1%

(Figs. 6, 7, 9, 10, 12, 15, 19–21, respectively). The ripples of

the truncated Gaussian kernels are below 0.1% (Fig. 26) and

those of the Blackman–Harris windowed sinc interpolator are

even below 0.01% (Fig. 8).

Summarizing the Fourier analysis of passband, stopband,

and cutoff frequency, the nearest neighbor and linear interpo-

lations should be avoided, while the preferred method is the

Gaussian kernel with large sizes.

B. Interpolation Quality

The sharply focused photograph of a human eye (Fig. 1)

is interpolated when correcting the aspect ratio. After initial

histogram stretching, the aspect ratio correction was per-

formed by each of the interpolation methods. To visualize

the interpolation error, the aspect-ratio-corrected image was

interpolated again for downsizing to its initial size. The same

interpolation method was used for both forward and backward

transformation. This approach was favored over that suggested

by Unser et al., which advocates the use of loops rather than

reciprocal transforms because the loop approach works only

for certain applications, e.g., 16 successive rotations of 22.5

[14].
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(a) (b) (c)

(d) (e) (f)

Fig. 27. Results of aspect ratio correction of the photograph. Pixels with error >1:0 are displayed in black. The frame indicates the inner area for quantitative
error comparisons ignoring border effects. (a) truncated sinc, N = 7. (b) Blackman–Harris windowed sinc, N = 6. (c) Linear interpolation. (d) Quadratic
approximation. (e) Quadratic interpolation. (f) Cubic B-spline approximation.

The interpolation quality is assessed by the pixelwise abso-

lute difference before and after the successive interpolations.

The subtractions in Fig. 27 appreciably demonstrate the qual-

itative difference in interpolation quality performed with each

method. All pixels that differ by more than one grey scale

unit after forward and successive backward transformation are

shown in black, while all others are displayed in white.

1) Interpolation Versus Approximation: In Fig. 27, inter-

polators versus approximators can be recognized. Because

every third column is reproduced exactly by real interpolation,

the error images must show every third vertical image

line in white. Contrarily, approximators modify all pixels.

Fig. 27(d), (f), (o), and (p) obviously identifies approximation

methods: the quadratic and cubic B-spline approximators, the

Mitchell and Netravali’s subjective best, and the notch filter,

respectively. In the previous section, the Gaussian kernels are

shown not to be real interpolators. Especially those kernels

with small orders fail to fit exactly the zero points of

the ideal sinc function. This effect is verified by inspecting

Fig. 27(t), (u), and (v) from Gaussian , ,

and , respectively.

2) DC-Constancy Versus DC-Inconstancy: By inspecting

the subtraction images in Fig. 27, DC-constant versus DC-

inconstant kernels are also differentiable. The eight-bit values

of the eye image (Fig. 1) range from 0 (black) to 255 (white).

Since DC-inconstancy usually affects high grey values more

than lower ones, the interpolation error by DC-inconstant

kernels is concentrated in bright image regions. From that

point of view, Fig. 27(a) and (t)–(x) corresponds to DC-

inconstant kernels, the truncated sinc as well as the Gaussian

family, respectively.

For most common applications, approximators as well as

DC-inconstant kernels produce poor results. Quality differ-

ences in DC-constant interpolators are indicated by the number

of black pixels. Fig. 27(c), (h), and (l) shows many error pixels

in linear, two-point cubic, and four-point cubic interpolations

with , respectively. Note the latter kernel’s overshoot

in the passband [Fig. 15(b)]. Nearest neighbor interpolation
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(g) (h) (i)

(j) (k) (l)

Fig. 27. (Continued.) Results of aspect ratio correction of the photograph. Pixels with error >1:0 are displayed in black. The frame indicates the inner area
for quantitative error comparisons ignoring border effects. (g) Cubic B-spline interpolation. (h) Cubic interpolation, N = 2. (i) Cubic interpolation, N = 4;
a = �1=2. (j) Cubic interpolation, N = 4; a = �3=4. (k) Cubic interpolation, N = 4; a = �1. (l) Cubic interpolation, N = 4; a = �1:3.

would even be worse. However, in this particular task, the

nearest neighbor method exactly reproduces the image because

the interpolation error introduced with the first transform

is compensated exactly by the second. Therefore, nearest

neighbor is not displayed in Fig. 27.

The four-point cubic interpolators often are used in

image processing. Fig. 27(i)–(l) compares the interpolation

error for the parameter descending from to

respectively. For , the lowest number of error

pixels is shown. Note that this parameter is obtained if the

cubic kernel is forced to be C2-continuous. The same effect

is observed for six point cubics. In this experiment, the

C2-continuous kernel [Fig. 27(n)] is superior to that proposed

by Keys [Fig. 27(m)]. The overall smallest error values are

indicated by nearly white error images with only a few labeled

pixels: the cubic B-spline interpolation, as well as the C2-

continuous cubics and the Lagrange interpolators, each with

large kernel sizes [Figs. 27(g), (n), and (r)–(s), respectively].

C. Quantitative Error Analysis

The interpolation quality was quantitatively compared using

a mathematical similarity measure. Again, the original image

and the one obtained after computing a forward and backward

geometric transform, and , respectively, were

used for evaluation. According to our previous work, the

normalized cross-correlation coefficient was used to assess

image similarity [21]

(34)

where and denote the mean of the original and the twice

interpolated image of the dimensions , respectively.

To avoid border effects, the centered subimages within a 25-

pixel frame have been extracted before (34) was computed.

In Fig. 27, this border is indicated by the rectangle. The

border width was chosen with respect to the B-spline kernel.

In contrast to all other methods discussed in this paper, the

resulting B-spline interpolation kernel is infinite.

However, for . Because the

number of pixels is halved by the perspective transform of our

third experiment, the frame width was selected to be .

This size has also been confirmed experimentally.
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(m) (n) (o)

(p) (q) (r)

Fig. 27. (Continued.) Results of aspect ratio correction of the photograph. Pixels with error >1:0 are displayed in black. The frame indicates the inner area
for quantitative error comparisons ignoring border effects. (m) Cubic interpolation, N = 6 (Keys). (n) Cubic interpolation, N = 6 (C2-cont.). (o) Mitchell
and Netravali’s subjective best, N = 4. (p) Notch filter, N = 4. (q) Lagrange interpolation N = 4. (r) Lagrange interpolation N = 5.

In most medical applications of interpolation, the geometric

transform is rather moderate and the number of pixels con-

taining structured information may be reduced only slightly

after interpolation. Therefore, the correlation coefficients are

expected to be nearly 1.0 for all methods. To rank the various

interpolation methods a linear score is computed. According

to the kernel size, linear interpolation is scored zero and cubic

B-spline interpolation is scored one

(35)

Three common tasks of image interpolation in medical

imaging have been introduced in Section II for the experimen-

tal comparison of interpolation methods. The first experiment

was designed to quantify the qualitative results obtained in

Section IV.B (Interpolation quality). However, experimental

results depend on both the content of the scene and the

geometric transform, which are analyzed by the second and

third experiments, respectively.

1) Correction of Aspect Ratios in CCD-Photographs:

Table II shows the similarities and scores obtained

by the aspect ratio correction of the eye image (Fig. 1).

As mentioned before, the nearest neighbor method exactly

reproduces the image in this specific task. The kernel’s

CO-discontinuities at result in a shift of the pixel

values. In the case of aspect ratio expansion, this shift is

backtracked during the restoration of the initial image size.

Therefore, no score is given for the nearest neighbor kernel.

The odd Lagrange kernels also show CO-discontinuities at

. Like the nearest neighbor effect incorporated with

this specific transform, the scores of the odd

Lagrange kernels do not reflect the general method’s quality.

The cubic B-spline interpolator’s quality also is obtained by

the C2-continuous cubic interpolators with and

points. Note that the continuity of the second derivation of

polynomials also results in the best 4 4 kernel. However,

nearly half of the improvement from the linear FIR-

kernel to the B-spline IIR-interpolator already is

obtained by the 2 2 cubic interpolation. All approximators

and the DC-inconstant truncated sinc interpolators result in

worse than linear interpolation, independent of the size of

the kernel. In contrast to the excellent Fourier properties, the

Gaussian kernels are not convincing in this experiment, which
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(s) (t) (u)

(v) (w) (x)

Fig. 27. (Continued.) Results of aspect ratio correction of the photograph. Pixels with error >1:0 are displayed in black. The frame indicates the inner
area for quantitative error comparisons ignoring border effects. (s) Lagrange interpolation, N = 8. (t) Second-order Gaussian interpolation, N = 4.
(u) Second-order Gaussian interpolation, N = 6. (v) Sixth-order Gaussian interpolation, N = 6. (w) Sixth-order Gaussian interpolation, N = 8. (x)
tenth-order Gaussian interpolation, N = 8.

is caused by both their insufficient interpolator characteristics

and their DC-inconstancy.

2) Rotation of MRI Sections: The second interpolation task

was performed by rotating the MR image (Fig. 2). In contrast

to the aspect ratio correction, the number of pixels contribut-

ing to the image nearly is unchanged and almost all pixels

must be recalculated for both forward and backward rotation.

Therefore, the absolute value of the correlation coefficient

is reduced in general. Nevertheless, the amount of image

distortion caused by interpolation depends on the chosen

angulation. Fixed angles of 22.5 , 30 , and 43 have been used

for the comparison of interpolation methods in [14], [1], and

[9], respectively. In this paper, 50 normal distributed angles

have been determined randomly

and used for quantitative interpolation error evaluation. The

mean correlation of 50 corresponding forward and

backward rotations is summarized in Table III and scored in

the same fashion as in the previous example. The standard

deviations verify the dependency of the current geo-

metric transform and were used for -value determination by

the Student’s -test.

This time, only the tenth-order Gaussian kernel with

support points is superior significantly to the cubic B-spline

interpolator . The C2-continous 8 8 cubic

and the -point Lagrange kernel have scores equal

to the cubic B-spline interpolator and no significance was

demonstrated. In general, differences in scores of at least

0.01 are required in Table III for statistical significance

. Hence, the C2-continous cubic interpolator is best for

and points. Note that slight variations of the

free parameter for the four-point cubic interpolation scheme

raise the scores from negative values (even worse than linear

interpolation) up to 90% of the cubic B-spline’s IIR quality.

The C2-continuous four-point cubic performs

significantly better than all other cubic four-point

kernels including those suggested by Keys.

3) Perspective Projection of X-Ray Images: The third ex-

periment was designed to assess the influence of the test

image selection on the interpolation errors. A set of 50 dental

radiographs was arbitrarily chosen from clinical records. Some

of these in vivo radiographs show teeth with or without fillings,

while others show dental implants (Fig. 3). The radiographs
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TABLE II
RESULTS OF ASPECT RATIO CORRECTION OF THE PHOTOGRAPH

were acquired from the jaws of both humans and dogs. Each

image was projected perspectively both forward and backward.

Again, the standard deviation of the interpolation error as well

as its mean were determined and analyzed for all methods

included in this study.

The results of the third experiment are presented in

Table IV. Although the selected perspective transform

approximately halves the number of pixels, the mean

correlation is still about 1.0, but smaller in comparison to the

former experiments. Since the standard deviation is enlarged,

the results in general depend more on the image content than

on the interpolation task. However, all kernels with

significantly outperform the linear interpolator except the two-

point cubic . The -values are below 0.005 except

for the 0.40-scored Mitchell and Netravali’s subjective best

kernel . The Lagrange kernels with and

points, the sixth-order Gaussian method with ,

and Keys’ 6 6 cubic interpolator are scored larger than the

cubic B-spline interpolator. Again, the C2-continuous cubics

with and equal the performance of the cubic

B-spline interpolator. Note that the differences among the

large group of methods scored above 0.85 are not significant

statistically. As with the other experiments, the C2-continuous

cubic interpolator turned out to be the best cubic 4 4 mask.

Significance was found to the kernel

and all other four-point cubics except the

kernel introduced by Keys. The C2-continuous

cubic kernel already yields 96% of the improvement obtained

by the migration from linear to B-spline interpolation. As

mentioned previously, it depends on the contents of the image

whether there is a gain from using a four-point C2-continuous

cubic kernel or the cubic B-spline IIR-interpolator.

D. Computational Complexity

The convolution of mask points with the weights

of a separated kernel takes multiplications,

additions and memory accesses. The only

differences in complexity between the various interpolation

and approximation methods are expressed by the complexity

of the kernel and by the prefiltering step in the case of

B-spline interpolation. Table V shows the complexities of the

mere kernels and the computation of the prefiltered image

values necessary for B-spline interpolation for one dimension

only. Some kernels additionally require the evaluation of

mathematical functions such as sine or cosine, which can be

efficiently implemented by library calls.

The nearest neighbor kernel itself needs no computations at

all. Linear interpolation simply uses the distances as weights

whose computations involve one addition in each dimension.

The number of additions of the piecewise quadratic and cubic

polynomials was reduced by specializing the kernel for the

various distances. Instead of computing the distance to the

current mask point first and then evaluating the polynomial, the

polynomials’ coefficients are adjusted such that all polynomi-

als take the distance to the center of the mask as argument and

no other distances need to be computed. This also reduces the

number of terms in some polynomials, e.g., in the case of the

one-parameter cubics. All polynomials are implemented using

the Horner scheme. The 1-D quadratic kernel with a mask size

of requires six multiplications and five additions. The

piecewise cubic kernels need multiplications. Depending

on the parameter choice, some coefficients are zero and

the number of additions varies. If B-spline interpolation is

intended, the image must be prefiltered. Unser et al. have

developed a fast recursive prefiltering algorithm, which in one

dimension only needs two multiplications and two additions

[10]. Additionally, the coefficients for convolution have

to be scaled once. Furthermore for each pixel and each

dimension, two values must be retrieved from memory and

one intermediate result, as well as the new pixel value, must

be stored. Compared with traditional matrix approaches such

as LU factorization, this involves either fewer multiplications

and additions (if the LU factorization is computed together

with the adjusted image points) or fewer memory accesses (if

the LU factorization is precomputed). Each Lagrange term is

the product of scaled distances from the interpolated

point to the mask points with the distance to the current mask

point missing. If one splits each term into two products of the

distances left and right from the current position and computes

all terms together, both subproducts can be determined in

an iterative manner. In our implementation of the Gaussian

kernel, all terms with the same power are combined, their

coefficient is precomputed, and the Horner scheme is applied.

This significantly reduced the number of operations (Table V).
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TABLE III
RESULTS OF ROTATING THE MR IMAGE

E. Runtime Measurements

The runtimes of the various interpolation schemes were

measured on a Sun Ultra 1. Sources have been compiled

using GNU’s gcc version 2.7 without optimization. A shell

script was used to average 50 rotations of the MR image

of the head. As the rotation is quite time consuming and

hinders the comparison of the mere interpolation times, Fig. 28

distinguishes between interpolation and geometric transform

time. The listed runtimes, however, refer to the entire task:

interpolation and rotation.

The rotation of the 256 256 pixel image took approxi-

mately 0.10 s. Simple interpolation methods such as nearest

neighbor, linear, and 2 2 cubic interpolation are fairly

fast and require less time than the rotation of the pixel

coordinates. Also the 3 3 kernels run quickly, both for

quadratic and Lagrange interpolations, with 0.12 and 0.13 s,

respectively. Compared with the 4 4 cubic kernel quadratic

interpolation took 70.6% of the cubic interpolation time.

Our theoretical examinations suggest a performance gain of

approximately 60%. In general, the Lagrange kernels are a

bit slower than the piecewise cubic polynomials of the same

mask size. Interpolation with the cubic B-spline took about

1.5 times as long as interpolation with a 4 4 cubic kernel,

but less time than interpolation with a 6 6 cubic kernel. The

Gaussian interpolation required around 0.63, 1.10, and 1.54 s

for mask sizes of 16, 36, and 64 pixels, respectively. This poor

performance is caused by the evaluations of the exponential

function necessary to determine the weights. Increasing the

order of the Gaussian kernel slows the interpolation only

modestly. Even so, this is time consuming, and efficiency can

be gained by precomputing the kernel’s weights and storing

them in a lookup table (LUT). Then, only the indexes are

determined during interpolation and the weights to convolve

with are retrieved from memory resulting in memory

accesses. The dotted lines in Fig. 28 indicate the limits given

by 4 4, 6 6, and 8 8 LUT’s filled with 10 000

elements per unit. These sizes have been determined according

to unchanged interpolation errors and correspond to those

suggested by Ostuni et al. [26]. This is advantagous for com-

putationally intensive kernels like the Gaussians or truncated

sincs. However, direct computation of the cubic and Lagrange

weights is faster than retrieving them from memory, as in the

LUT approach.

If the image is only zoomed in or out, further accelera-

tions can be achieved. Especially for rotations, Danielson and

Hammerin, and Unser et al. describe fast separable algorithms

which perform the rotation through successive 1-D distortions

([8], [9], and [14], respectively).

V. DISCUSSION

Although image interpolation is as old as computer vision,

interpolation techniques are still discussed, and new techniques

are introduced [11], [19]. Furthermore, different names refer to

the same techniques, and several names are used redundantly



LEHMANN et al.: SURVEY: INTERPOLATION METHODS 1073

TABLE IV
RESULTS OF PESPECTIVE PROJECTION OF X-RAY IMAGES

TABLE V
COMPUTATIONAL COMPLEXITY

to describe different methods. Therefore, one might have

trouble in finding the optimal kernel for a specific interpolation

application.

This paper compares the most commonly used interpolation

techniques, including FIR-kernels with sizes of 1 1 to 8

8 and the cubic B-spline IIR-interpolator. Here, we did

not differentiate between the processes of decreasing and

increasing the data rate, which sometimes is called decimation

versus interpolation, respectively [4]. Instead, we define the

general characteristics of approximator versus interpolator

[11] and of DC-constancy versus DC-inconstancy. The in-

terpolation error increases with the more severe geometric

deformations and depends on the content of the image. If the

number of image pixels before and after the interpolation is

comparable, the interpolation error is expected to be smaller.

All interpolation methods smooth the image more or less.

Images with sharp-edged details and high local contrast are

more affected by interpolation than others. The comparison

is accomplished by spatial and Fourier analysis of the kernel

functions, visual quality assessment, quantitative interpolation

error determination, computational complexity analysis, and

run time measurement based on representative applications

and clinical images.

For each interpolation technique discussed in this paper,

examples can be given where each scheme is optimal. In

the following, each method’s key features are stressed. In the
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Fig. 28. Run times measured on a Sparc Ultra 1. Further speedup of the Gaussian and truncated sinc kernels is achieved by implementation via look
up tables (LUT).

frequency space, the ideal interpolation method is represented

by the IIR sinc kernel. Simple truncations of the infinite

sinc function result in DC-inconstant interpolators, but proper

windowing enables the design of high quality kernels. The

Blackman–Harris windowed sinc yields the best stopband

response in the Fourier domain. The nearest neighbor method

is the fastest technique, but also incurs the largest interpolation

error. The linear kernel requires no further multiplications. Al-

though it has limited features, linear interpolation was recently

discovered by Grevera and Udapa to be the most frequently

mentioned method in publications during the past five years

[34]. However, with just a little increase of computation time

the 2 2 cubic kernel performs better when compared with

the linear interpolator in all the quantitative experiments of this

study. If the situation requires small kernel sizes, the two-point

cubic method should be chosen, which confirms Maeland’s

conclusion [6].

In general, large kernel sizes were found to be superior

to small interpolation masks. Although modern computers are

able to process a huge amount of data in realtime, fast methods

might be required for online resampling of image sequences

or films [15]. Using quadratic 3 3 instead of cubic 2

2 interpolations, the interpolation error is decreased further.

Our experiments show the three-point Lagrange technique to

have smaller errors than the three-point quadratics, but odd

Lagrange kernels are CO-discontinuous while even kernels

are C1-discontinuous, which might be a knock-out criterion

in some applications.

Several approaches to the design of four-point cubic kernels

could be found in the literature. The two parameter approach

[31], [33] comprises interpolators as well as approximators.

The notch filter is the best kernel with respect to the cutoff

frequency characteristics, but it is weak in practice. Wolberg

claims that despite the added flexibility made possible by a

second parameter, the benefits of the two-parameter method

compared to the one-parameter case should be scrutinized [13].

Ultimately, the authors suggest that merging image restoration

with reconstruction can yield significant improvements in the

quality of reconstruction filters.

From our numerical simulations, the C2-continuous cubics

seem superior to other cubic approaches. In addition, the C2-

continuity yields a generic concept suitable for the design of a

family of kernels with different sizes. There are some interpo-

lation tasks where the kernel’s dimensions should be locally

adaptive, e.g., transforming cartesian into polar coordinates on

a rigid grid. Based on their definitions, Gaussian, Lagrange,

and C2-continuous cubic interpolations seem to be suitable

for such generic kernel families.

The B-spline interpolation method differs from all other

techniques in this study. Since the B-spline approximator

is not applied directly to the image data, its corresponding

kernel is unlimited spatially. In other words, the B-spline

interpolator is an IIR-filter. It produces one of the best results

in terms of similarity to the original image, and of the top

methods, it runs the fastest. Theory, efficient design, and

applications of B-spline signal processing are analyzed by

Unser, Aldroubi, and Eden [35]–[37]. They found the third-

order (cubic) B-spline interpolator to be sufficient for several

practical applications [10]. Further enlargement of the kernel’s

order will not only improve the interpolation quality, but

also increase the numerical complexity of the kernel and the

prefilter. In addition, this will magnify the edge effects, which
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already are considerable when compared to FIR methods.

The Gaussian method introduced by Appledorn was de-

signed to have excellent Fourier properties [19]. Using large

kernels, the interpolation error was found to be quite small.

However, the sum of the samples of the Gaussian kernel is

not necessarily one, and the zero crossings do not fit exactly.

Since those properties are essential for interpolation, artifacts

are introduced, e.g., during aspect ratio correction of the eye

image (see Fig. 27). Therefore, at the expense of some minor

irregularities in the Fourier domain, the Gaussian method

might be substantially improved if the kernels were forced

to be DC-constant interpolants and agree with (5) and (6).
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Tech. Rep. LiTH-ISY-I-11521990.

[9] P. E. Danielsson and M. Hammerin, “Note: High accuracy rotation of
images,” CVGIP: Graph. Models Image Processing, vol. 54, no. 4, pp.
340–344, 1992.

[10] M. Unser, A. Aldroubi, and M. Eden, “Fast B-splines transforms for
continuous image representation and interpolation,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 13, pp. 277–285, 1991.
[11] N. A. Dodgson, “Quadratic interpolation for image resampling,” IEEE

Trans. Image Processing, vol. 6, pp. 1322–1326, 1997.
[12] A. Schaum, “Theory and design of local interpolators,” CVGIP: Graph.

Models Image Processing, vol. 55, no. 6, pp. 464–481, 1993.
[13] G. Wolberg, Digital Image Warping. Los Alamitos, CA: IEEE Com-

puter Society, 1990.
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“Observer-independent registration technique of perspective projection
prior to subtraction of in-vivo radiographs,” Dentomaxillofacial Radiol.,
vol. 27, no. 3, pp. 140–150, 1998.

[26] J. L. Ostuni, A. K. S. Santha, V. S. Mattay, D. R. Weinberger, R. L.
Levin, and J. A. Frank, “Analysis of interpolation effects in the reslicing
of functional MR images,” J. Comp. Assisted Tomogr., vol. 21, no. 5,
pp. 803–810, 1997.

[27] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier-transform,” Proc. IEEE, vol. 66, pp. 51–83, 1978.

[28] R. W. Schafer and L. R. Rabiner, “A digital signal processing approach
to interpolation,” Proc. IEEE, vol. 61, pp. 692–702, 1973.

[29] I. Her and C. T. Yuan, “Resampling on a pseudohexagonal grid,”
CVGIP: Graph. Models Image Processing, vol. 56, no. 4, pp. 336–347,
1994.

[30] S. K. Park and R. A. Schowengerdt, “Image reconstruction by parametric
cubic convolution,” CVGIP, vol. 23, pp. 258–272, 1983.

[31] S. E. Reichenbach and S. K. Park, “Two-parameter cubic convolution
for image reconstruction,” Proc. SPIE, vol. 1199, pp. 833–840, 1989.

[32] N. A. Dodgson, “Image resampling,” Univ. Cambridge Comp. Lab.,
Cambridge, U.K., Tech. Rep. 261, 1992.

[33] D. P. Mitchell and A. N. Netravali, “Reconstruction filters in computer
graphics,” Comp. Graph., vol. 22, no. 4, pp. 221–228, 1988.

[34] G. J. Grevera and J. K. Udapa, “An objective comparison of 3-D image
interpolation methods,” IEEE Trans. Med. Imag., vol. 17, no. 4, pp.
642–652, 1998.

[35] M. Unser, A. Aldroubi, and M. Eden, “Polynomial spline signal ap-
proximations: Filter design and asymptotic equivalence with Shannon’s
sampling theorem,” IEEE Trans. Inform. Theory, vol. 38, pp. 95–103,
1992.

[36] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
I—Theory,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 821–833,
1993.

[37] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
II—Efficient design and applications,” IEEE Trans. Signal Processing,
vol. 41, no. 2, pp. 834–848, 1993.


