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Abstract 

 

Biometrics, as a computer science field, can be understood as the discipline that 

study how to generate computer models of the physical (e.g. hand geometry, 

fingerprints, iris and so on) and behavioral (e.g. signature; a kind of behavior 

pattern) characteristics of the human being for single or several individuals 

identification. Usually, these characteristics are used to provide authentication 

information for security systems. However, some of these characteristics are hard 

to obtain in a properly way and it is necessary to use several algorithms both to 

process them and to use them on a security systems. In this sense, in this paper it is 

presented an overview of some Machine Learning approaches for biometric pattern 

recognition. 

 

Keywords: Biometrics, computer models, pattern recognition, security systems, 

machine learning 

 

1 Introduction 
 

Biometrics in modern computer science is defined as the automated use of 

biological properties to identify a person [1]. These properties allows humans 

identify several individuals depending on their physical and behavioral 

characteristics as well as their correct use allows computer systems to recognize 

patterns for security tasks. These certain kind of tasks have turned in a new research  
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field and, in consequence, its applications have been drastically expanded into many 

new domains. This was of being expected due the increase demand for security and 

the advantages of biometric systems; biometric features cannot be stolen, lost or 

forget [2]. In this sense, any details of the human body which differs from one 

human to other will be used as unique biometric data to serve as that person’s 

unique identification (ID) [3], it can be said that these systems provide security 

based on what you own rather than what you know (password/PIN) or what you 

have (smart-card). In this sense several number of systems have been developed 

based on various physiological and behavioral traits [4], which include fingerprint 

[5], face [6], iris [7], retina [8], voice [9], keystroke [10], ear [11], hand geometry 

[12], signature [13] and gait [14]. Biometric systems relies on the input from a 

number of fields, starting with various kinds of sensors that are used to sample the 

biometric data. At its final stage, the system outputs a decision, which links the 

acquired and processed biometric trait to an identity. In this regard, machine-

learning methods are useful in selecting appropriate feature representations that will 

facilitate the job of the decision function, in dealing with temporal information, and 

in fusing multi-modal information [15]. 

In this paper, it is presented a review of some machine learning approaches for 

biometric features dealing and decision making on different types of biometric 

systems. Section II gives brief description of biometric measures based on the 

approaches adopted for feature extraction. Section III describes biometric 

recognition approaches and performance using different machine learning methods; 

unsupervised learning, supervised learning and reinforcement learning. Finally, 

conclusion is given in Section IV. 

 

2 Biometric Measures 
 

Automated methods for verifying and/or recognizing the identity of a living 

individual can be based mainly on two biometric measure categories: (1) 

Physiological biometrics (Facial, hand and hand vein infrared thermogram, Odor, 

Ear, Hand and finger geometry, Fingerprint, Face, Retina, Iris, Palm print, Voice, 

and DNA) and (2) Behavioral biometrics (Gait, Keystroke, Signature) which 

measure the human actions [16]. Nevertheless, these biometric measures provide a 

fool-proof solution with total population coverage and new biometric measures 

have been proposed like ECG [17], EEG [18], lip-print [19], mouse dynamics [20], 

dental radiograph [21], tongue print [22] and others. 

Thus, biometric measures are expected to possess several characteristics to be 

practically usable for several applications. Listed below are described the most 

important characteristics consider for machine learning approaches taken into 

account those described in [2]. 

 

Universality: This is the ability for a specific biometric measure to be applied to a 

whole population of users. For learning tasks, this can be understood as having 

consistent data in order to avoid some learning issues as overfitting or bad training 

[23]. 
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Uniqueness: The ability to successfully discriminate people. This can translate into 

the ability to classify information. While data is not separable, learning is not 

possible or learning is not reliable. However, some data collections can be non-

linearly separable; in this case, kernel methods can solved this problems taking into 

account some criteria as k-separability [24]. 

 

Cost-efficiency: The whole process should be cost-efficient. 
 

Circumventable: The ability of the system to detect attacks. In this case, this 

characteristic can be interpreted as a robustness requirement for the learning 

algorithm. It has to be capable of dealing with inherent data anomalies. 

 

 
TABLE I: A summary of traditional biometric measures [4].  

 

Biometric Measure Approaches Adopted 
Iris Scan [7], [25] I. Complex valued 2-D Gabor Wavelets 

[19] 

II. Laplacian of Gaussian filters [20] 

III. Zero Crossing Wavelet Transform[21] 

IV. Circular Symmetry 2-D Filters [22] 

 

Advantages 

1. Potential for high Accuracy 

2. Resistance to impostors 

3. Long term stability 

4. Fast processing 

Disadvantages 

1. Intrusive 

2. High Cost 

Fingerprint [5] I. Minutiae-based methods [26] 

II. Image based methods 

 

Advantages 

1. Mature technology 

2. Easy to use /nonintrusive 

3. High accuracy 

4. Long-term stability and 

ability to enroll multiple fingers 

5. Comparatively low cost 

Disadvantages 

1. Inability to enroll some users 

2. Affected by skin condition 

3. Sensor may get dirty 

4. Association with forensic applications 

Face [6] I. Image Based a. Statistical methods 

i. Eigenfaces [27] 

ii. Fischer faces [28] 

II. Feature based [29] 

i. Geometric 

ii. Features metric 

iii. Morphable models 
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TABLE I: (Continued): A summary of traditional biometric measures [4].  

 
Advantages 

1. Non-intrusive 

2. Low cost 

3. Ability to operate covertly 

4. Potential for privacy abuse 

 

Disadvantages 

1. Affected by appearance/environment 

2. High false non-match rates 

3. Identical twins attack 

Signature [13] 

 

Feature based methods 

Advantages 

1. Resistance to forgery 

2. Widely accepted 

3. Non-intrusive 

4. No record of the signature 

Disadvantages 

1. Signature inconsistencies 

2. Difficult to use 

3. Large templates (1K to 3K) 

4. Problem with trivial signatures 

Hand Geometry [12] Feature Based: 

Finger length, width, thickness curvatures 

and relative location of features 

 

Advantages 

1. Not affected by environment  

2. Mature technology 

3. Non-intrusive 

4. Relatively stable 

Disadvantages 

1. Low accuracy 

2. High cost 

3. Relatively large readers 

4. Difficult to use for some users 

 

 

3 Machine Learning and Biometric Systems 
 

Machine learning is a subject that studies how to use computers to simulate human 

learning activities [30]. Framed in the context of biometric systems, it can be 

understood as the subject that studies biometric features in order to simulate 

individual’s identification learning tasks. This can be summarized, according to 

Kajaree and Behera [31], as the paradigm of learning from past experience (which 

in this case is previous data; face images, hand geometry databases and so on) to 

improve future performance (face recognition, fingerprint identification, etc.). 

 

As a field that is in a continuous development, machine learning has been made 

many advancements in biometric pattern recognition. In this section it is presented 

some machine learning approaches divided into three types: Unsupervised 

Learning, Supervised Learning and Reinforcement Learning, on identification, 

classification, clustering, dimensionality reduction and recognition tasks needed to 

develop biometric systems. 

 

3.1 Unsupervised Learning 

 

Consider a machine (or living organism) which receives some sequence of inputs 

𝑥1, 𝑥2 , 𝑥3, …, where 𝑥𝑖 is an input (eyes distance, number of fingerprint edges, hand  
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vein graph representation, color, image on the retina etc.) and the set 𝑋 = 𝑥𝑖 is 

called the sample set that correpond to a common database or dataset.  

In unsupervised learning the machine simply receives inputs 𝑥1, 𝑥2 , 𝑥3, …, and build 

representations of the input that can be used for decision making, predicting future 

inputs, efficiently communicating the inputs to another machine, etc. In a sense, 

unsupervised learning can be thought of as finding patterns in the data above and 

beyond what would be considered pure unstructured noise. [32]. In this way, 

unsupervised learning goal focuses mainly on clustering and dimensionality 

reduction tasks. 

Several algorithms have been developed in order to achieve this goal, but common 

approaches are based on: 

 

 k-means [33]. 

 Expectation-maximization algorithm [34]. 

 Hebbian Learning approaches [35] 

 Convolutional Neural Networks [36] 

 Gaussian Mixture Models [37] 

 

For biometric applications, unsupervised algorithms are mainly focus on individual 

data protection by encrypting biometric information [38], [39], feature level fusion 

[40], biometric data meaning extraction [41], behavioral pattern detection [42] 

among other. In addition, implemented biometric systems by using unsupervised 

learning proof exact localization of biometric features ensures better registration 

and learning policies definition, subsequently allowing better classification. For 

instance, in the MIT Lincoln Laboratories successful speaker verification system, a 

universal background model with 2048 diagonal-covariance Gaussian components 

was employed [43]. Also, in [44] Tardos code for fingerprint recognition was 

improved with an iterative Expectation-Maximization algorithm for collusion 

strategy adaptation, and Vlachos and Dermatas [45] propose a novel clustering 

algorithm named nearest neighbor clustering algorithm (NNCA), which is 

unsupervised and has been used successfully for retinal vessel segmentation. As it 

is unsupervised, it can be used for full automatic finger vein 

pattern extraction. 

 

Enclosed below are tabulated some recent works based on unsupervised learning 

applied to biometric systems and the results obtained for each one. 

In conclusion, unsupervised learning can be considered a good approach to achieve 

biometric pattern recognition. However, it only serves normally as a preliminary 

stage for data analysis, better learning policies definition, features fusion (clustering 

tasks) etc. It can be considered as a preliminary data issues dealing approach to 

improve e.g. classification labors. 
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TABLE II: Unsupervised Learning approaches applied to Biometrics.  

Description Technique Results 

Hassanat et al [46], 

presented a new way 

to identify persons, 

particularly (terrorists) 

from their victory sign. 

Their research proposed a 

computer system that can 

identify a terrorist from 

only two fingers (their 

victory sign). 

For hand segmentation 

three unsupervised learning 

approaches were used: (1) 

Otsu’s method [47], (2) k-

means clustering based on 

color information, (2) hand 

segmentation based on 

color information using 

Artificial Neural Network 

(ANN) [48] 

For hand segmentation 

results shows a perfect 

(100%) segmentation for 

the hand silhouette using 

the technique proposed in 

[48]. For classification, a 

93% total identification 

accuracy was obtained for 

identifying terrorists. 

Hasnat et al [49] proposed 

to model (deep)-features 

delivered by the deep 

neural nets as a mixture of 

von Mises-Fisher 

distributions. By 

Combining von Mises-

Fisher Mixture Models 

with deep neural networks, 

they derive a novel loss 

function which enables a 

discriminative learning. 

Von Mises-Fisher Mixture 

Models combined with 

deep neural nets based on 

the methodologies 

used in [50]–[54] 

 

Results were obtained for 4 

face datasets with 

the above performance: 

99.63% accuracy on LFW 

[55] dataset, 85% accuracy 

on IJB-A [56] dataset, 

96.46% accuracy on 

YouTube 

Faces [57] dataset and 

99.2% accuracy on CACD 

[58]. 

A distributed ultispeaker 

voice activity detection 

(DM-VAD) method for 

wireless acoustic sensor 

networks (WASNs) was 

proposed by Bahari et al 

[59] introducing a 

distributed energy signal 

unmixing method to locate 

the nodes around each 

source. The VAD problem 

is transformed into a 

clustering task, by 

extracting features from the 

energy signals and applying 

a clustering algorithm. 

 

K-Means, K-medians and 

K-medoids algorithms 

were used for voice activity 

source detection 

A VAD accuracy of 85% 

was achieved for a 

challenging scenario where 

20 nodes observe 7 sources 

in a simulated reverberant 

rectangular room. 

 

3.2 Supervised Learning 

 

Consider the input and sample set description made in Section 3.1. One can 

distinguish supervised learning from unsupervised learning, because in supervised 

learning is also given a sequence of desired outputs 𝑦1, 𝑦2 , 𝑦3, …,, and the goal of 

the machine is to learn to produce the correct output given a new input [32]. 
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Unlike unsupervised learning, supervised learning serves mainly in the final stages 

of a recognition system based on biometrics. While unsupervised techniques are 

used for discovering clusters, discovering latent factors, discovering graph 

structure, matrix completion, supervised learning is focused on classification and 

regression. It has been proofing supervised learning is useful for biometric 

modalities fusion [60], biometric data classification [61], [62] and regression for 

reliable, successful and secure multibiometric systems [63], [64]. 

Interesting results have been obtained from modern techniques. For instance, 

Taigman et al [54] presented a method of verifying identities with an accuracy up 

to 97.35% by developing an effective deep neural net (DNN) architecture and 

learning method that leverage a very large labeled dataset of faces in order to obtain 

a face representation that generalizes well to other datasets. Outline of learning 

architecture is shown on Figure 1. 

 

 
 

Figure 1 Outline of the depth face architecture proposed by Taigman et al [54] 

Enclosed below are tabulated some recent works based on supervised learning 

applied to biometric systems. Unlike Table II, Table III contains the used algorithm, 

the biometric application and associated work reference and the performance 

obtained in each paper. 

In conclusion, it could be appreciated supervised learning has been serving for 

several biometric applications using a large number of algorithms. In 

contradistinction to unsupervised learning, which only uses mainly K-means 

algorithm for biometric applications, supervised learning offers a variety of 

approaches for this kind of tasks: Convolutional Neural Nets (CNN), Kernel 

Methods (SVM, Kernel Perceptron), Decision Trees, Logistic Regression, etc., all 

useful for biometric pattern classification principally. 

 

3.3 Reinforcement Learning 
 

In reinforcement learning the machine interacts with its environment by producing 

actions 𝑎1, 𝑎2 , 𝑎3, … . These actions affect the state of the environment, which in 

turn results in the machine receiving some scalar rewards (or punishments) 𝑟1, 𝑟2, …  
[32]. As a learning problem, it refers to learning to control a system to maximize 

some numerical value, which represents a long-term objective [78]. 
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TABLE III: Supervised Learning approaches applied to Biometrics.  

Algorithm Biometric Application Performance 

Deep Learning Face recognition [65], 

Electromyographic Hand 

Gesture 

Signal classification [66], 

Inferior 

Myocardial Infarction 

detection [67], Face 

Recognition Against 

Adversarial Attacks [68] 

Metrics scores: 

Accuracy: 86% [65], 

98.31% [66], 84.54% 

[67], 99.9% [68] 

sensitivity: 85.33% [67] 

specificity: 84.09% [67] 

Decision Trees Face Recognition [62] Metrics scores: 

Accuracy: Results 

shows a maximum 

accuracy of 100% on the 

FERET [69] dataset and 

99% on the CAS-PEAL-

R1 [70] dataset. 

Support Vector 

Machines (SVM) 

 

Face Alignment [71], 

text independent speaker 

verification 

[72], Gender recognition 

based 

[73], Speech Emotion 

Classification [74] 

Metrics scores: 

Accuracy: 92.82 % [71], 

57.9% 

[72] using Principal 

component 

analysis for 

dimensionality reduction 

and Fine-SVM, 96.4% 

[73] on IITD dataset [75]. 

The baseline accuracy 

for speech emotion 

recognition in [74] was 

around 50% to 90% 

depending on the 

selected technique. 

Kernel Perceptron Facial Emotion 

Recognition [76] 
Metrics scores: 

Accuracy: The classifier 

recognizes the 6 different 

Emotions with 98.6% 

efficiency 

on the JAFFE [77] 

dataset. 

 

Reinforcement learning is based on the common sense idea that if an action is 

followed by an improvement in the state of affairs, then the tendency to produce 

that action is strengthened [79]. Based on this, reinforcement learning approaches 

for biometrics are focus mainly on classification tasks [80] [81], continuous training  
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by using a feedback reward or punish signal [82], [83], find out dominant or 

discriminant features [84] [85] and feature extraction [86]. 

As it can be seen, reinforcement learning seems to be more versatile than supervised 

and unsupervised learning. It is useful for both unsupervised labors and supervised 

labors [87-91]. However, reinforcement learning is limited to fairly lowdimensional 

problems. But, nevertheless, Deep Reinforcement Learning (DRL) has proven to 

be useful to solve this problem. In despite the successes of DRL, many problems 

need to be addressed before these techniques can be applied to a wide range of 

complex real-world problems [92], [93]. 

 

4 Conclusions 
 

As it provides several techniques and many kind of algorithms, machine learning 

offers several advantages over other approaches for biometric pattern recognition. 

In this way, this capability satisfies an increasing need for security and smarter 

applications [15]. Also, it could be appreciated that all the given unsupervised, 

supervised and reinforcement learning algorithms meet the necessary 

characteristics proposed in Section 2 for biometric measures dealing and obtained 

accuracy performances proves they are suitable for real applications. It is expected 

that the references provided will serve the reader in creating novel machine learning 

solutions to challenging biometrics problems based on novel approaches as in [62], 

[76], [86], [94]. 
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