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Survey of Clustering Algorithms
Rui Xu, Student Member, IEEE and Donald Wunsch II, Fellow, IEEE

Abstract—Data analysis plays an indispensable role for un-
derstanding various phenomena. Cluster analysis, primitive
exploration with little or no prior knowledge, consists of research
developed across a wide variety of communities. The diversity,
on one hand, equips us with many tools. On the other hand,
the profusion of options causes confusion. We survey clustering
algorithms for data sets appearing in statistics, computer science,
and machine learning, and illustrate their applications in some
benchmark data sets, the traveling salesman problem, and bioin-
formatics, a new field attracting intensive efforts. Several tightly
related topics, proximity measure, and cluster validation, are also
discussed.

Index Terms—Adaptive resonance theory (ART), clustering,
clustering algorithm, cluster validation, neural networks, prox-
imity, self-organizing feature map (SOFM).

I. INTRODUCTION

W
E ARE living in a world full of data. Every day, people
encounter a large amount of information and store or

represent it as data, for further analysis and management. One
of the vital means in dealing with these data is to classify or
group them into a set of categories or clusters. Actually, as one
of the most primitive activities of human beings [14], classi-
fication plays an important and indispensable role in the long
history of human development. In order to learn a new object
or understand a new phenomenon, people always try to seek
the features that can describe it, and further compare it with
other known objects or phenomena, based on the similarity or
dissimilarity, generalized as proximity, according to some cer-
tain standards or rules. “Basically, classification systems are ei-
ther supervised or unsupervised, depending on whether they as-
sign new inputs to one of a finite number of discrete supervised
classes or unsupervised categories, respectively [38], [60], [75].
In supervised classification, the mapping from a set of input data
vectors ( , where is the input space dimensionality), to
a finite set of discrete class labels ( , where is
the total number of class types), is modeled in terms of some
mathematical function , where is a vector of
adjustable parameters. The values of these parameters are de-
termined (optimized) by an inductive learning algorithm (also
termed inducer), whose aim is to minimize an empirical risk
functional (related to an inductive principle) on a finite data set
of input–output examples, , where is
the finite cardinality of the available representative data set [38],
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[60], [167]. When the inducer reaches convergence or termi-
nates, an induced classifier is generated [167].

In unsupervised classification, called clustering or ex-
ploratory data analysis, no labeled data are available [88],
[150]. The goal of clustering is to separate a finite unlabeled
data set into a finite and discrete set of “natural,” hidden data
structures, rather than provide an accurate characterization
of unobserved samples generated from the same probability
distribution [23], [60]. This can make the task of clustering fall
outside of the framework of unsupervised predictive learning
problems, such as vector quantization [60] (see Section II-C),
probability density function estimation [38] (see Section II-D),
[60], and entropy maximization [99]. It is noteworthy that
clustering differs from multidimensional scaling (perceptual
maps), whose goal is to depict all the evaluated objects in a
way that minimizes the topographical distortion while using as
few dimensions as possible. Also note that, in practice, many
(predictive) vector quantizers are also used for (nonpredictive)
clustering analysis [60].

Nonpredictive clustering is a subjective process in nature,
which precludes an absolute judgment as to the relative effi-
cacy of all clustering techniques [23], [152]. As pointed out by
Backer and Jain [17], “in cluster analysis a group of objects is
split up into a number of more or less homogeneous subgroups
on the basis of an often subjectively chosen measure of sim-
ilarity (i.e., chosen subjectively based on its ability to create
“interesting” clusters), such that the similarity between objects
within a subgroup is larger than the similarity between objects
belonging to different subgroups””1.

Clustering algorithms partition data into a certain number
of clusters (groups, subsets, or categories). There is no univer-
sally agreed upon definition [88]. Most researchers describe a
cluster by considering the internal homogeneity and the external
separation [111], [124], [150], i.e., patterns in the same cluster
should be similar to each other, while patterns in different clus-
ters should not. Both the similarity and the dissimilarity should
be examinable in a clear and meaningful way. Here, we give
some simple mathematical descriptions of several types of clus-
tering, based on the descriptions in [124].

Given a set of input patterns ,
where and each measure
is said to be a feature (attribute, dimension, or variable).

• (Hard) partitional clustering attempts to seek a -par-
tition of , such that

1) ;
2) ;
3) and .

1The preceding quote is taken verbatim from verbiage suggested by the
anonymous associate editor, a suggestion which we gratefully acknowledge.
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Fig. 1. Clustering procedure. The typical cluster analysis consists of four steps with a feedback pathway. These steps are closely related to each other and affect
the derived clusters.

•) Hierarchical clustering attempts to construct a

tree-like nested structure partition of

, such that

, and imply or for all

.

For hard partitional clustering, each pattern only belongs to

one cluster. However, a pattern may also be allowed to belong

to all clusters with a degree of membership, , which

represents the membership coefficient of the th object in the

th cluster and satisfies the following two constraints:

and

as introduced in fuzzy set theory [293]. This is known as fuzzy

clustering, reviewed in Section II-G.

Fig. 1 depicts the procedure of cluster analysis with four basic

steps.

1) Feature selection or extraction. As pointed out by Jain

et al. [151], [152] and Bishop [38], feature selection

choosesdistinguishingfeatures fromasetofcandidates,

while feature extraction utilizes some transformations

to generate useful and novel features from the original

ones. Both are very crucial to the effectiveness of clus-

tering applications. Elegant selection of features can

greatly decrease the workload and simplify the subse-

quentdesignprocess.Generally,idealfeaturesshouldbe

of use in distinguishing patterns belonging to different

clusters, immune to noise, easy to extract and interpret.

We elaborate the discussion on feature extraction in

Section II-L, in the context of data visualization and

dimensionality reduction. More information on feature

selection can be found in [38], [151], and [250].

2) Clustering algorithm design or selection. The step is

usually combined with the selection of a corresponding

proximity measure and the construction of a criterion

function. Patterns are grouped according to whether

they resemble each other. Obviously, the proximity

measure directly affects the formation of the resulting

clusters. Almost all clustering algorithms are explicitly

or implicitly connected to some definition of proximity

measure. Some algorithms even work directly on the

proximity matrix, as defined in Section II-A. Once

a proximity measure is chosen, the construction of a

clustering criterion function makes the partition of

clusters an optimization problem, which is well defined

mathematically, and has rich solutions in the literature.

Clusteringisubiquitous,andawealthofclusteringalgo-

rithmshasbeendevelopedto solvedifferentproblems in

specificfields.However, there isnoclusteringalgorithm

that can be universally used to solve all problems. “It has

been very difficult to develop a unified framework for

reasoning about it (clustering) at a technical level, and

profoundly diverse approaches to clustering” [166], as

proved through an impossibility theorem. Therefore, it

is important to carefully investigate the characteristics

of the problem at hand, in order to select or design an

appropriate clustering strategy.

3) Cluster validation. Given a data set, each clustering

algorithm can always generate a division, no matter

whether the structure exists or not. Moreover, different

approaches usually lead to different clusters; and even

for the same algorithm, parameter identification or

the presentation order of input patterns may affect the

final results. Therefore, effective evaluation standards

and criteria are important to provide the users with a

degree of confidence for the clustering results derived

from the used algorithms. These assessments should

be objective and have no preferences to any algorithm.

Also, they should be useful for answering questions

like how many clusters are hidden in the data, whether

the clusters obtained are meaningful or just an artifact

of the algorithms, or why we choose some algorithm

instead of another. Generally, there are three categories

of testing criteria: external indices, internal indices,

and relative indices. These are defined on three types

of clustering structures, known as partitional clus-

tering, hierarchical clustering, and individual clusters

[150]. Tests for the situation, where no clustering

structure exists in the data, are also considered [110],

but seldom used, since users are confident of the pres-

ence of clusters. External indices are based on some

prespecified structure, which is the reflection of prior

information on the data, and used as a standard to

validate the clustering solutions. Internal tests are not

dependent on external information (prior knowledge).

On the contrary, they examine the clustering structure

directly from the original data. Relative criteria place
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the emphasis on the comparison of different clustering

structures, in order to provide a reference, to decide

which one may best reveal the characteristics of the

objects. We will not survey the topic in depth and refer

interested readers to [74], [110], and [150]. However,

we will cover more details on how to determine the

number of clusters in Section II-M. Some more recent

discussion can be found in [22], [37], [121], [180],

and [181]. Approaches for fuzzy clustering validity

are reported in [71], [104], [123], and [220].

4) Results interpretation. The ultimate goal of clustering

is to provide users with meaningful insights from the

original data, so that they can effectively solve the

problems encountered. Experts in the relevant fields in-

terpret the data partition. Further analyzes, even exper-

iments, may be required to guarantee the reliability of

extracted knowledge.

Note that the flow chart also includes a feedback pathway.

Clusteranalysis isnotaone-shotprocess. Inmanycircumstances,

it needs a series of trials and repetitions. Moreover, there are no

universal and effective criteria to guide the selection of features

and clustering schemes. Validation criteria provide some insights

on the quality of clustering solutions. But even how to choose the

appropriate criterion is still a problem requiring more efforts.

Clustering has been applied in a wide variety of fields,

ranging from engineering (machine learning, artificial intelli-

gence, pattern recognition, mechanical engineering, electrical

engineering), computer sciences (web mining, spatial database

analysis, textual document collection, image segmentation),

life and medical sciences (genetics, biology, microbiology,

paleontology, psychiatry, clinic, pathology), to earth sciences

(geography. geology, remote sensing), social sciences (soci-

ology, psychology, archeology, education), and economics

(marketing, business) [88], [127]. Accordingly, clustering is

also known as numerical taxonomy, learning without a teacher

(or unsupervised learning), typological analysis and partition.

The diversity reflects the important position of clustering in

scientific research. On the other hand, it causes confusion, due

to the differing terminologies and goals. Clustering algorithms

developed to solve a particular problem, in a specialized field,

usually make assumptions in favor of the application of interest.

These biases inevitably affect performance in other problems

that do not satisfy these premises. For example, the -means

algorithm is based on the Euclidean measure and, hence, tends

to generate hyperspherical clusters. But if the real clusters are

in other geometric forms, -means may no longer be effective,

and we need to resort to other schemes. This situation also

holds true for mixture-model clustering, in which a model is fit

to data in advance.

Clustering has a long history, with lineage dating back to Aris-

totle [124]. General references on clustering techniques include

[14], [75], [77], [88], [111], [127], [150], [161], [259]. Important

survey papers on clustering techniques also exist in the literature.

Starting from a statistical pattern recognition viewpoint, Jain,

Murty,andFlynnreviewedtheclusteringalgorithmsandotherim-

portant issues related to cluster analysis [152], while Hansen and

Jaumard described the clustering problems under a mathematical

programming scheme [124]. Kolatch and He investigated appli-

cationsofclusteringalgorithmsforspatialdatabasesystems[171]

and information retrieval [133], respectively. Berkhin further ex-

panded the topic to the whole field of data mining [33]. Murtagh

reported the advances in hierarchical clustering algorithms [210]

andBaraldisurveyedseveralmodels for fuzzyandneuralnetwork

clustering [24]. Some more survey papers can also be found in

[25], [40], [74], [89], and [151]. In addition to the review papers,

comparative research on clustering algorithms is also significant.

Rauber, Paralic, and Pampalk presented empirical results for five

typical clustering algorithms [231]. Wei, Lee, and Hsu placed the

emphasison thecomparisonof fast algorithmsfor largedatabases

[280]. Scheunders compared several clustering techniques for

color image quantization, with emphasis on computational time

and thepossibilityofobtainingglobaloptima[239].Applications

and evaluations of different clustering algorithms for the analysis

of gene expression data from DNA microarray experiments were

described in [153], [192], [246], and [271]. Experimental evalua-

tionondocumentclusteringtechniques,basedonhierarchicaland

-means clustering algorithms, were summarized by Steinbach,

Karypis, and Kumar [261].

In contrast to the above, the purpose of this paper is to pro-

vide a comprehensive and systematic description of the influ-

ential and important clustering algorithms rooted in statistics,

computer science, and machine learning, with emphasis on new

advances in recent years.

The remainder of the paper is organized as follows. In Sec-

tion II, we review clustering algorithms, based on the natures

of generated clusters and techniques and theories behind them.

Furthermore, we discuss approaches for clustering sequential

data, large data sets, data visualization, and high-dimensional

data through dimension reduction. Two important issues on

cluster analysis, including proximity measure and how to

choose the number of clusters, are also summarized in the

section. This is the longest section of the paper, so, for conve-

nience, we give an outline of Section II in bullet form here:

II. Clustering Algorithms

• A. Distance and Similarity Measures
(See also Table I)

• B. Hierarchical
— Agglomerative

Single linkage, complete linkage, group average
linkage, median linkage, centroid linkage, Ward’s
method, balanced iterative reducing and clustering
using hierarchies (BIRCH), clustering using rep-
resentatives (CURE), robust clustering using links
(ROCK)

— Divisive
divisive analysis (DIANA), monothetic analysis
(MONA)

• C. Squared Error-Based (Vector Quantization)
— -means, iterative self-organizing data analysis

technique (ISODATA), genetic -means algorithm
(GKA), partitioning around medoids (PAM)

• D. pdf Estimation via Mixture Densities
— Gaussian mixture density decomposition (GMDD),

AutoClass
• E. Graph Theory-Based

— Chameleon, Delaunay triangulation graph (DTG),
highly connected subgraphs (HCS), clustering iden-
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TABLE I
SIMILARITY AND DISSIMILARITY MEASURE FOR QUANTITATIVE FEATURES

tification via connectivity kernels (CLICK), cluster
affinity search technique (CAST)

• F. Combinatorial Search Techniques-Based
— Genetically guided algorithm (GGA), TS clustering,

SA clustering
• G. Fuzzy

— Fuzzy -means (FCM), mountain method (MM), pos-
sibilistic -means clustering algorithm (PCM), fuzzy
-shells (FCS)

• H. Neural Networks-Based
— Learning vector quantization (LVQ), self-organizing

feature map (SOFM), ART, simplified ART (SART),
hyperellipsoidal clustering network (HEC), self-split-
ting competitive learning network (SPLL)

• I. Kernel-Based
— Kernel -means, support vector clustering (SVC)

• J. Sequential Data
— Sequence Similarity
— Indirect sequence clustering
— Statistical sequence clustering

• K. Large-Scale Data Sets (See also Table II)
— CLARA, CURE, CLARANS, BIRCH, DBSCAN,

DENCLUE, WaveCluster, FC, ART
• L. Data visualization and High-dimensional Data

— PCA, ICA, Projection pursuit, Isomap, LLE,
CLIQUE, OptiGrid, ORCLUS

• M. How Many Clusters?

Applications in two benchmark data sets, the traveling

salesman problem, and bioinformatics are illustrated in Sec-

tion III. We conclude the paper in Section IV.

II. CLUSTERING ALGORITHMS

Different starting points and criteria usually lead to different

taxonomies of clustering algorithms [33], [88], [124], [150],

[152], [171]. A rough but widely agreed frame is to classify

clustering techniques as hierarchical clustering and parti-

tional clustering, based on the properties of clusters generated

[88], [152]. Hierarchical clustering groups data objects with

a sequence of partitions, either from singleton clusters to a

cluster including all individuals or vice versa, while partitional

clustering directly divides data objects into some prespecified

number of clusters without the hierarchical structure. We

follow this frame in surveying the clustering algorithms in the

literature. Beginning with the discussion on proximity measure,

which is the basis for most clustering algorithms, we focus on

hierarchical clustering and classical partitional clustering algo-

rithms in Section II-B–D. Starting from part E, we introduce

and analyze clustering algorithms based on a wide variety of

theories and techniques, including graph theory, combinato-

rial search techniques, fuzzy set theory, neural networks, and

kernels techniques. Compared with graph theory and fuzzy set
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TABLE II
COMPUTATIONAL COMPLEXITY OF CLUSTERING ALGORITHMS

theory, which had already been widely used in cluster analysis

before the 1980s, the other techniques have been finding their

applications in clustering just in the recent decades. In spite of

the short history, much progress has been achieved. Note that

these techniques can be used for both hierarchical and parti-

tional clustering. Considering the more frequent requirement of

tackling sequential data sets, large-scale, and high-dimensional

data sets in many current applications, we review clustering

algorithms for them in the following three parts. We focus

particular attention on clustering algorithms applied in bioin-

formatics. We offer more detailed discussion on how to identify

appropriate number of clusters, which is particularly important

in cluster validity, in the last part of the section.

A. Distance and Similarity Measures

It is natural to ask what kind of standards we should use to

determine the closeness, or how to measure the distance (dis-

similarity) or similarity between a pair of objects, an object and

a cluster, or a pair of clusters. In the next section on hierarchical

clustering, we will illustrate linkage metrics for measuring prox-

imity between clusters. Usually, a prototype is used to represent

a cluster so that it can be further processed like other objects.

Here, we focus on reviewing measure approaches between in-

dividuals due to the previous consideration.

A data object is described by a set of features, usually repre-

sented as a multidimensional vector. The features can be quan-

titative or qualitative, continuous or binary, nominal or ordinal,

which determine the corresponding measure mechanisms.

A distance or dissimilarity function on a data set is defined

to satisfy the following conditions.

1) Symmetry. ;

2) Positivity. for all and .

If conditions

3) Triangle inequality.

for all and

and (4) Reflexivity. also

hold, it is called a metric.

Likewise, a similarity function is defined to satisfy the con-

ditions in the following.

1) Symmetry. ;

2) Positivity. , for all and .

If it also satisfies conditions

3)

for all and

and (4) , it is called a simi-

larity metric.

For a data set with input patterns, we can define an

symmetric matrix, called proximity matrix, whose th

element represents the similarity or dissimilarity measure for

the th and th patterns .

Typically, distance functions are used to measure continuous

features, while similarity measures are more important for qual-

itative variables. We summarize some typical measures for con-

tinuous features in Table I. The selection of different measures

is problem dependent. For binary features, a similarity measure

is commonly used (dissimilarity measures can be obtained by

simply using ). Suppose we use two binary sub-

scripts to count features in two objects. and represent

the number of simultaneous absence or presence of features in

two objects, and and count the features present only in

one object. Then two types of commonly used similarity mea-

sures for data points and are illustrated in the following.

•

simple matching coefficient

Rogers and Tanimoto measure.

Gower and Legendre measure

These measures compute the match between two objects

directly. Unmatched pairs are weighted based on their

contribution to the similarity.

•

Jaccard coefficient

Sokal and Sneath measure.

Gower and Legendre measure
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These measures focus on the co-occurrence features while

ignoring the effect of co-absence.

For nominal features that have more than two states, a simple

strategy needs to map them into new binary features [161], while

a more effective method utilizes the matching criterion

where

if and do not match

if and match

[88]. Ordinal features order multiple states according to some

standard and can be compared by using continuous dissimi-

larity measures discussed in [161]. Edit distance for alphabetic

sequences is discussed in Section II-J. More discussion on se-

quences and strings comparisons can be found in [120] and

[236].

Generally, for objects consisting of mixed variables, we can

map all these variables into the interval (0, 1) and use mea-

sures like the Euclidean metric. Alternatively, we can trans-

form them into binary variables and use binary similarity func-

tions. The drawback of these methods is the information loss.

A more powerful method was described by Gower in the form

of , where indicates the

similarity for the th feature and is a 0–1 coefficient based

on whether the measure of the two objects is missing [88], [112].

B. Hierarchical Clustering

Hierarchical clustering (HC) algorithms organize data into a

hierarchical structure according to the proximity matrix. The re-

sults of HC are usually depicted by a binary tree or dendrogram.

The root node of the dendrogram represents the whole data set

and each leaf node is regarded as a data object. The interme-

diate nodes, thus, describe the extent that the objects are prox-

imal to each other; and the height of the dendrogram usually

expresses the distance between each pair of objects or clusters,

or an object and a cluster. The ultimate clustering results can

be obtained by cutting the dendrogram at different levels. This

representation provides very informative descriptions and visu-

alization for the potential data clustering structures, especially

when real hierarchical relations exist in the data, like the data

from evolutionary research on different species of organizms.

HC algorithms are mainly classified as agglomerative methods

and divisive methods. Agglomerative clustering starts with

clusters and each of them includes exactly one object. A series

of merge operations are then followed out that finally lead all

objects to the same group. Divisive clustering proceeds in an

opposite way. In the beginning, the entire data set belongs to

a cluster and a procedure successively divides it until all clus-

ters are singleton clusters. For a cluster with objects, there

are possible two-subset divisions, which is very ex-

pensive in computation [88]. Therefore, divisive clustering is

not commonly used in practice. We focus on the agglomera-

tive clustering in the following discussion and some of divisive

clustering applications for binary data can be found in [88]. Two

divisive clustering algorithms, named MONA and DIANA, are

described in [161].

The general agglomerative clustering can be summarized by

the following procedure.

1) Start with singleton clusters. Calculate the prox-

imity matrix for the clusters.

2) Search the minimal distance

where is the distance function discussed be-

fore, in the proximity matrix, and combine cluster

and to form a new cluster.

3) Update the proximity matrix by computing the dis-

tances between the new cluster and the other clusters.

4) Repeat steps 2)–3) until all objects are in the same

cluster.

Based on the different definitions for distance between two

clusters, there are many agglomerative clustering algorithms.

The simplest and most popular methods include single linkage

[256] and complete linkage technique [258]. For the single

linkage method, the distance between two clusters is deter-

mined by the two closest objects in different clusters, so it

is also called nearest neighbor method. On the contrary, the

complete linkage method uses the farthest distance of a pair of

objects to define inter-cluster distance. Both the single linkage

and the complete linkage method can be generalized by the

recurrence formula proposed by Lance and Williams [178] as

where is the distance function and , and are

coefficients that take values dependent on the scheme used.

The formula describes the distance between a cluster and a

new cluster formed by the merge of two clusters and . Note

that when , and , the formula

becomes

which corresponds to the single linkage method. When

and , the formula is

which corresponds to the complete linkage method.

Several more complicated agglomerative clustering algo-

rithms, including group average linkage, median linkage,

centroid linkage, and Ward’s method, can also be constructed

by selecting appropriate coefficients in the formula. A detailed

table describing the coefficient values for different algorithms

is offered in [150] and [210]. Single linkage, complete linkage

and average linkage consider all points of a pair of clusters,

when calculating their inter-cluster distance, and are also called

graph methods. The others are called geometric methods since

they use geometric centers to represent clusters and determine

their distances. Remarks on important features and properties

of these methods are summarized in [88]. More inter-cluster
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distance measures, especially the mean-based ones, were intro-

duced by Yager, with further discussion on their possible effect

to control the hierarchical clustering process [289].

The common criticism for classical HC algorithms is that they

lack robustness and are, hence, sensitive to noise and outliers.

Once an object is assigned to a cluster, it will not be considered

again, which means that HC algorithms are not capable of cor-

recting possible previous misclassification. The computational

complexity for most of HC algorithms is at least and

this high cost limits their application in large-scale data sets.

Other disadvantages of HC include the tendency to form spher-

ical shapes and reversal phenomenon, in which the normal hier-

archical structure is distorted.

In recent years, with the requirement for handling large-scale

data sets in data mining and other fields, many new HC tech-

niques have appeared and greatly improved the clustering per-

formance. Typical examples include CURE [116], ROCK [117],

Chameleon [159], and BIRCH [295].

The main motivations of BIRCH lie in two aspects, the ability

to deal with large data sets and the robustness to outliers [295].

In order to achieve these goals, a new data structure, clustering

feature (CF) tree, is designed to store the summaries of the

original data. The CF tree is a height-balanced tree, with each

internal vertex composed of entries defined as child

, where is a representation of the cluster and

is defined as , where is the number of

data objects in the cluster, is the linear sum of the objects,

and SS is the squared sum of the objects, child is a pointer to the

th child node, and is a threshold parameter that determines

the maximum number of entries in the vertex, and each leaf

composed of entries in the form of , where

is the threshold parameter that controls the maximum number of

entries in the leaf.Moreover, the leavesmust followtherestriction

that the diameter

of each entry in the leaf is less than a threshold . The CF

tree structure captures the important clustering information of

the original data while reducing the required storage. Outliers

are eliminated from the summaries by identifying the objects

sparsely distributed in the feature space. After the CF tree is

built, an agglomerative HC is applied to the set of summaries to

perform global clustering. An additional step may be performed

to refine the clusters. BIRCH can achieve a computational

complexity of .

Noticing the restriction of centroid-based HC, which is

unable to identify arbitrary cluster shapes, Guha, Rastogi, and

Shim developed a HC algorithm, called CURE, to explore more

sophisticated cluster shapes [116]. The crucial feature of CURE

lies in the usage of a set of well-scattered points to represent

each cluster, which makes it possible to find rich cluster shapes

other than hyperspheres and avoids both the chaining effect

[88] of the minimum linkage method and the tendency to favor

clusters with similar sizes of centroid. These representative

points are further shrunk toward the cluster centroid according

to an adjustable parameter in order to weaken the effects of

outliers. CURE utilizes random sample (and partition) strategy

to reduce computational complexity. Guha et al. also proposed

another agglomerative HC algorithm, ROCK, to group data

with qualitative attributes [117]. They used a novel measure

“link” to describe the relation between a pair of objects and their

common neighbors. Like CURE, a random sample strategy is

used to handle large data sets. Chameleon is constructed from

graph theory and will be discussed in Section II-E.

Relative hierarchical clustering (RHC) is another exploration

that considers both the internal distance (distance between a

pair of clusters which may be merged to yield a new cluster)

and the external distance (distance from the two clusters to the

rest), and uses the ratio of them to decide the proximities [203].

Leung et al. showed an interesting hierarchical clustering based

on scale-space theory [180]. They interpreted clustering using

a blurring process, in which each datum is regarded as a light

point in an image, and a cluster is represented as a blob. Li

and Biswas extended agglomerative HC to deal with both nu-

meric and nominal data. The proposed algorithm, called simi-

larity-based agglomerative clustering (SBAC), employs a mixed

data measure scheme that pays extra attention to less common

matches of feature values [183]. Parallel techniques for HC are

discussed in [69] and [217], respectively.

C. Squared Error—Based Clustering (Vector Quantization)

In contrast to hierarchical clustering, which yields a succes-

sive level of clusters by iterative fusions or divisions, partitional

clustering assigns a set of objects into clusters with no hier-

archical structure. In principle, the optimal partition, based on

some specific criterion, can be found by enumerating all pos-

sibilities. But this brute force method is infeasible in practice,

due to the expensive computation [189]. Even for a small-scale

clustering problem (organizing 30 objects into 3 groups), the

number of possible partitions is . Therefore, heuristic

algorithms have been developed in order to seek approximate

solutions.

One of the important factors in partitional clustering is the

criterion function [124]. The sum of squared error function is

one of the most widely used criteria. Suppose we have a set of

objects , and we want to organize them

into subsets . The squared error criterion

then is defined as

where

a partition matrix;

if cluster

otherwise
with

cluster prototype or centroid (means) matrix;

sample mean for the th cluster;

number of objects in the th cluster.

Note the relation between the sum of squared error criterion

and the scatter matrices defined in multiclass discriminant anal-

ysis [75],
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where

total scatter matrix;

within-class scatter matrix;

between-class scatter matrix; and

mean vector for the whole data set.

It is not difficult to see that the criterion based on the trace

of is the same as the sum of squared error criterion. To

minimize the squared error criterion is equivalent to minimizing

the trace of or maximizing the trace of . We can obtain

a rich class of criterion functions based on the characteristics of

and [75].

The -means algorithm is the best-known squared

error-based clustering algorithm [94], [191].

1) Initialize a -partition randomly or based on some

prior knowledge. Calculate the cluster prototype ma-

trix .

2) Assign each object in the data set to the nearest cluster

, i.e.

if

for and

3) Recalculate the cluster prototype matrix based on the

current partition.

4) Repeat steps 2)–3) until there is no change for each

cluster.

The -means algorithm is very simple and can be easily

implemented in solving many practical problems. It can work

very well for compact and hyperspherical clusters. The time

complexity of -means is . Since and are usu-

ally much less than -means can be used to cluster large

data sets. Parallel techniques for -means are developed that

can largely accelerate the algorithm [262]. The drawbacks of

-means are also well studied, and as a result, many variants of

-means have appeared in order to overcome these obstacles.

We summarize some of the major disadvantages with the pro-

posed improvement in the following.

1) There is no efficient and universal method for iden-

tifying the initial partitions and the number of clus-

ters . The convergence centroids vary with different

initial points. A general strategy for the problem is

to run the algorithm many times with random initial

partitions. Peña, Lozano, and Larrañaga compared the

random method with other three classical initial parti-

tion methods by Forgy [94], Kaufman [161], and Mac-

Queen [191], based on the effectiveness, robustness,

and convergence speed criteria [227]. According to

their experimental results, the random and Kaufman’s
method work much better than the other two under the

first two criteria and by further considering the conver-

gence speed, they recommended Kaufman’s method.

Bradley and Fayyad presented a refinement algorithm

that first utilizes -means times to random sub-

sets from the original data [43]. The set formed from

the union of the solution (centroids of the clusters)

of the subsets is clustered times again, setting

each subset solution as the initial guess. The starting

points for the whole data are obtained by choosing the

solution with minimal sum of squared distances. Likas,

Vlassis, and Verbeek proposed a global -means algo-

rithm consisting of a series of -means clustering pro-

cedures with the number of clusters varying from 1 to

[186]. After finding the centroid for only one cluster

existing, at each , the previous

centroids are fixed and the new centroid is selected by

examining all data points. The authors claimed that the

algorithm is independent of the initial partitions and

provided accelerating strategies. But the problem on

computational complexity exists, due to the require-

ment for executing -means times for each value

of .

An interesting technique, called ISODATA, devel-

oped by Ball and Hall [21], deals with the estimation

of . ISODATA can dynamically adjust the number of

clusters by merging and splitting clusters according to

some predefined thresholds (in this sense, the problem

of identifying the initial number of clusters becomes

that of parameter (threshold) tweaking). The new is

used as the expected number of clusters for the next it-

eration.

2) The iteratively optimal procedure of -means cannot

guarantee convergence to a global optimum. The sto-

chastic optimal techniques, like simulated annealing

(SA) and genetic algorithms (also see part II.F), can

find the global optimum with the price of expensive

computation. Krishna and Murty designed new opera-

tors in their hybrid scheme, GKA, in order to achieve

global search and fast convergence [173]. The defined

biased mutation operator is based on the Euclidean

distance between an object and the centroids and aims

to avoid getting stuck in a local optimum. Another

operator, the -means operator (KMO), replaces the

computationally expensive crossover operators and

alleviates the complexities coming with them. An

adaptive learning rate strategy for the online mode

-means is illustrated in [63]. The learning rate is

exclusively dependent on the within-group variations

and can be adjusted without involving any user activi-

ties. The proposed enhanced LBG (ELBG) algorithm

adopts a roulette mechanism typical of genetic algo-

rithms to become near-optimal and therefore, is not

sensitive to initialization [222].

3) -means is sensitive to outliers and noise. Even if an

object is quite far away from the cluster centroid, it is

still forced into a cluster and, thus, distorts the cluster

shapes. ISODATA [21] and PAM [161] both consider

the effect of outliers in clustering procedures. ISO-

DATA gets rid of clusters with few objects. The split-

ting operation of ISODATA eliminates the possibility

of elongated clusters typical of -means. PAM utilizes

real data points (medoids) as the cluster prototypes and

avoids the effect of outliers. Based on the same con-

sideration, a -medoids algorithm is presented in [87]
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by searching the discrete 1-medians as the cluster cen-

troids.

4) The definition of “means” limits the application

only to numerical variables. The -medoids algo-

rithm mentioned previously is a natural choice, when

the computation of means is unavailable, since the

medoids do not need any computation and always exist

[161]. Huang [142] and Gupta et al. [118] defined dif-

ferent dissimilarity measures to extend -means

to categorical variables. For Huang’s method, the

clustering goal is to minimize the cost function

, where

and

with a set of -dimensional vectors

, where .

Each vector is known as a mode and is defined to

minimize the sum of distances . The

proposed -modes algorithm operates in a similar

way as -means.

Several recent advances on -means and other squared-error

based clustering algorithms with their applications can be found

in [125], [155], [222], [223], [264], and [277].

D. Mixture Densities-Based Clustering (pdf Estimation via

Mixture Densities)

In the probabilistic view, data objects are assumed to be gen-

erated according to several probability distributions. Data points

in different clusters were generated by different probability dis-

tributions. They can be derived from different types of density

functions (e.g., multivariate Gaussian or -distribution), or the

same families, but with different parameters. If the distributions

are known, finding the clusters of a given data set is equivalent

to estimating the parameters of several underlying models. Sup-

pose the prior probability (also known as mixing probability)

for cluster (here, is assumed to

be known and methods for estimating are discussed in Sec-

tion II-M) and the conditional probability density

(also known as component density), where is the unknown

parameter vector, are known. Then, the mixture probability den-

sity for the whole data set is expressed as

where , and . As long as

the parameter vector is decided, the posterior probability for

assigning a data point to a cluster can be easily calculated with

Bayes’s theorem. Here, the mixtures can be constructed with

any types of components, but more commonly, multivariate

Gaussian densities are used due to its complete theory and

analytical tractability [88], [297].

Maximum likelihood (ML) estimation is an important statis-

tical approach for parameter estimation [75] and it considers the

best estimate as the one that maximizes the probability of gen-

erating all the observations, which is given by the joint density

function

or, in a logarithm form

The best estimate can be achieved by solving the log-likelihood

equations .

Unfortunately, since the solutions of the likelihood equa-

tions cannot be obtained analytically in most circumstances

[90], [197], iteratively suboptimal approaches are required to

approximate the ML estimates. Among these methods, the

expectation-maximization (EM) algorithm is the most popular

[196]. EM regards the data set as incomplete and divides

each data point into two parts , where

represents the observable features and

is the missing data, where chooses value 1 or 0 according

to whether belongs to the component or not. Thus, the

complete data log-likelihood is

The standard EM algorithm generates a series of parameter

estimates , where represents the reaching of

the convergence criterion, through the following steps:

1) initialize and set ;

2) e-step: Compute the expectation of the complete data

log-likelihood

3) m-step: Select a new parameter estimate that maxi-

mizes the -function, ;

4) Increase ; repeat steps 2)–3) until the conver-

gence condition is satisfied.

The major disadvantages for EM algorithm are the sensitivity

to the selection of initial parameters, the effect of a singular co-

variance matrix, the possibility of convergence to a local op-

timum, and the slow convergence rate [96], [196]. Variants of

EM for addressing these problems are discussed in [90] and

[196].

A valuable theoretical note is the relation between the EM

algorithm and the -means algorithm. Celeux and Govaert

proved that classification EM (CEM) algorithm under a spher-

ical Gaussian mixture is equivalent to the -means algorithm

[58].
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Fraley and Raftery described a comprehensive mix-

ture-model based clustering scheme [96], which was im-

plemented as a software package, known as MCLUST [95]. In

this case, the component density is multivariate Gaussian, with

a mean vector and a covariance matrix as the parameters

to be estimated. The covariance matrix for each component can

further be parameterized by virtue of eigenvalue decomposi-

tion, represented as , where is a scalar, is

the orthogonal matrix of eigenvectors, and is the diagonal

matrix based on the eigenvalues of [96]. These three elements

determine the geometric properties of each component. After

the maximum number of clusters and the candidate models are

specified, an agglomerative hierarchical clustering was used to

ignite the EM algorithm by forming an initial partition, which

includes at most the maximum number of clusters, for each

model. The optimal clustering result is achieved by checking

the Bayesian information criterion (BIC) value discussed in

Section II-M. GMDD is also based on multivariate Gaussian

densities and is designed as a recursive algorithm that sequen-

tially estimates each component [297]. GMDD views data

points that are not generated from a distribution as noise and

utilizes an enhanced model-fitting estimator to construct each

component from the contaminated model. AutoClass considers

more families of probability distributions (e.g., Poisson and

Bernoulli) for different data types [59]. A Bayesian approach is

used in AutoClass to find out the optimal partition of the given

data based on the prior probabilities. Its parallel realization is

described in [228]. Other important algorithms and programs

include Multimix [147], EM based mixture program (EMMIX)

[198], and Snob [278].

E. Graph Theory-Based Clustering

The concepts and properties of graph theory [126] make it

very convenient to describe clustering problems by means of

graphs. Nodes of a weighted graph correspond to data

points in the pattern space and edges reflect the proximities

between each pair of data points. If the dissimilarity matrix is

defined as

if

otherwise

where is a threshold value, the graph is simplified to an

unweighted threshold graph. Both the single linkage HC and

the complete linkage HC can be described on the basis of

the threshold graph. Single linkage clustering is equivalent to

seeking maximally connected subgraphs (components) while

complete linkage clustering corresponds to finding maximally

complete subgraphs (cliques) [150]. Jain and Dubes illustrated

and discussed more applications of graph theory (e.g., Hubert’s
algorithm and Johnson’s algorithm) for hierarchical clustering

in [150]. Chameleon [159] is a newly developed agglomerative

HC algorithm based on the -nearest-neighbor graph, in which

an edge is eliminated if both vertices are not within the

closest points related to each other. At the first step, Chameleon

divides the connectivity graph into a set of subclusters with the

minimal edge cut. Each subgraph should contain enough nodes

in order for effective similarity computation. By combining

both the relative interconnectivity and relative closeness, which

make Chameleon flexible enough to explore the characteristics

of potential clusters, Chameleon merges these small subsets

and, thus, comes up with the ultimate clustering solutions.

Here, the relative interconnectivity (or closeness) is obtained

by normalizing the sum of weights (or average weight) of the

edges connecting the two clusters over the internal connectivity

(or closeness) of the clusters. DTG is another important graph

representation for HC analysis. Cherng and Lo constructed a

hypergraph (each edge is allowed to connect more than two

vertices) from the DTG and used a two-phase algorithm that is

similar to Chameleon to find clusters [61]. Another DTG-based

application, known as AMOEBA algorithm, is presented in

[86].

Graph theory can also be used for nonhierarchical clusters.

Zahn’s clustering algorithm seeks connected components as

clusters by detecting and discarding inconsistent edges in the

minimum spanning tree [150]. Hartuv and Shamir treated clus-

ters as HCS, where “highly connected” means the connectivity

(the minimum number of edges needed to disconnect a graph)

of the subgraph is at least half as great as the number of the

vertices [128]. A minimum cut (mincut) procedure, which

aims to separate a graph with a minimum number of edges, is

used to find these HCSs recursively. Another algorithm, called

CLICK, is based on the calculation of the minimum weight

cut to form clusters [247]. Here, the graph is weighted and the

edge weights are assigned a new interpretation, by combining

probability and graph theory. The edge weight between node

and is defined as shown in

belong to the same cluster

does not belong to the same cluster

where represents the similarity between the two nodes.

CLICK further assumes that the similarity values within clus-

ters and between clusters follow Gaussian distributions with

different means and variances, respectively. Therefore, the

previous equation can be rewritten by using Bayes’ theorem as

where is the prior probability that two objects belong to

the same cluster and are the means and

variances for between-cluster similarities and within-clusters

similarities, respectively. These parameters can be estimated

either from prior knowledge, or by using parameter estimation

methods [75]. CLICK recursively checks the current subgraph,

and generates a kernel list, which consists of the components

satisfying some criterion function. Subgraphs that include only

one node are regarded as singletons, and are separated for

further manipulation. Using the kernels as the basic clusters,

CLICK carries out a series of singleton adoptions and cluster

merge to generate the resulting clusters. Additional heuristics

are provided to accelerate the algorithm performance.

Similarly, CAST considers a probabilistic model in designing

a graph theory-based clustering algorithm [29]. Clusters are

modeled as corrupted clique graphs, which, in ideal conditions,

are regarded as a set of disjoint cliques. The effect of noise

is incorporated by adding or removing edges from the ideal
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model, with a probability . Proofs were given for recovering

the uncorrupted graph with a high probability. CAST is the

heuristic implementation of the original theoretical version.

CAST creates clusters sequentially, and each cluster begins

with a random and unassigned data point. The relation between

a data point and a cluster being built is determined by the

affinity, defined as , and the affinity threshold

parameter . When , it means that the data point is

highly related to the cluster and vice versa. CAST alternately

adds high affinity data points or deletes low affinity data points

from the cluster until no more changes occur.

F. Combinatorial Search Techniques-Based Clustering

The basic object of search techniques is to find the global

or approximate global optimum for combinatorial optimization

problems, which usually have NP-hard complexity and need to

search an exponentially large solution space. Clustering can be

regarded as a category of optimization problems. Given a set of

data points , clustering algorithms aim

to organize them into subsets that optimize

some criterion function. The possible partition for points into

clusters is given by the formula [189]

As shown before, even for small and , the computa-

tional complexity is extremely expensive, not to mention the

large-scale clustering problems frequently encountered in recent

decades. Simple local search techniques, like hill-climbing al-

gorithms, are utilized to find the partitions, but they are easily

stuck in local minima and therefore cannot guarantee optimality.

More complex search methods (e.g., evolutionary algorithms

(EAs) [93], SA [165], and Tabu search (TS) [108] are known as

stochastic optimization methods, while deterministic annealing

(DA) [139], [234] is the most typical deterministic search tech-

nique) can explore the solution space more flexibly and effi-

ciently.

Inspired by the natural evolution process, evolutionary com-

putation, which consists of genetic algorithms (GAs), evolution

strategies (ESs), evolutionary programming (EP), and genetic

programming (GP), optimizes a population of structure by using

a set of evolutionary operators [93]. An optimization function,

called the fitness function, is the standard for evaluating the opti-

mizing degree of the population, in which each individual has its

corresponding fitness. Selection, recombination, and mutation

are the most widely used evolutionary operators. The selection

operator ensures the continuity of the population by favoring the

best individuals in the next generation. The recombination and

mutation operators support the diversity of the population by ex-

erting perturbations on the individuals. Among many EAs, GAs

[140] are the most popular approaches applied in cluster anal-

ysis. In GAs, each individual is usually encoded as a binary bit

string, called a chromosome. After an initial population is gener-

ated according to some heuristic rules or just randomly, a series

of operations, including selection, crossover and mutation, are

iteratively applied to the population until the stop condition is

satisfied.

Hall, Özyurt, and Bezdek proposed a GGA that can be re-

garded as a general scheme for center-based (hard or fuzzy)

clustering problems [122]. Fitness functions are reformulated

from the standard sum of squared error criterion function in

order to adapt the change of the construction of the optimiza-

tion problem (only the prototype matrix is needed)

for hard clustering

for fuzzy clustering

where , is the distance between

the th cluster and the th data object, and is the fuzzification

parameter.

GGA proceeds with the following steps.

1) Choose appropriate parameters for the algorithm. Ini-

tialize the population randomly with individuals,

each of which represents a prototype matrix and

is encoded as gray codes. Calculate the fitness value for

each individual.

2) Use selection (tournament selection) operator to

choose parental members for reproduction.

3) Use crossover (two-point crossover) and mutation (bit-

wise mutation) operator to generate offspring from the

individuals chosen in step 2).

4) Determine the next generation by keeping the individ-

uals with the highest fitness.

5) Repeat steps 2)–4) until the termination condition is

satisfied.

Other GAs-based clustering applications have appeared

based on a similar framework. They are different in the

meaning of an individual in the population, encoding methods,

fitness function definition, and evolutionary operators [67],

[195], [273]. The algorithm CLUSTERING in [273] includes

a heuristic scheme for estimating the appropriate number of

clusters in the data. It also uses a nearest-neighbor algorithm

to divide data into small subsets, before GAs-based clustering,

in order to reduce the computational complexity. GAs are very

useful for improving the performance of -means algorithms.

Babu and Murty used GAs to find good initial partitions [15].

Krishna and Murty combined GA with -means and devel-

oped GKA algorithm that can find the global optimum [173].

As indicated in Section II-C, the algorithm ELBG uses the

roulette mechanism to address the problems due to the bad

initialization [222]. It is worthwhile to note that ELBG are

equivalent to another algorithm, fully automatic clustering

system (FACS) [223], in terms of quantization level detection.

The difference lies in the input parameters employed (ELBG

adopts the number of quantization levels, while FACS uses

the desired distortion error). Except the previous applications,

GAs can also be used for hierarchical clustering. Lozano and

Larrañag discussed the properties of ultrametric distance [127]

and reformulated the hierarchical clustering as an optimization
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problem that tries to find the closest ultrametic distance for a

given dissimilarity with Euclidean norm [190]. They suggested

an order-based GA to solve the problem. Clustering algorithms

based on ESs and EP are described and analyzed in [16] and

[106], respectively.

TS is a combinatory search technique that uses the tabu list to

guide the search process consisting of a sequence of moves. The

tabu list stores part or all of previously selected moves according

to the specified size. These moves are forbidden in the current

search and are called tabu. In the TS clustering algorithm devel-

oped by Al-Sultan [9], a set of candidate solutions are generated

from the current solution with some strategy. Each candidate so-

lution represents the allocations of data objects in clusters.

The candidate with the optimal cost function is selected as the

current solution and appended to the tabu list, if it is not already

in the tabu list or meets the aspiration criterion, which can over-

rule the tabu restriction. Otherwise, the remaining candidates

are evaluated in the order of their cost function values, until all

these conditions are satisfied. When all the candidates are tabu, a

new set of candidate solutions are created followed by the same

search process. The search process proceeds until the maximum

number of iterations is reached. Sung and Jin’s method includes

more elaborate search processes with the packing and releasing

procedures [266]. They also used a secondary tabu list to keep

the search from trapping into the potential cycles. A fuzzy ver-

sion of TS clustering can be found in [72].

SA is also a sequential and global search technique and is mo-

tivated by the annealing process in metallurgy [165]. SA allows

the search process to accept a worse solution with a certain prob-

ability. The probability is controlled by a parameter, known as

temperature and is usually expressed as , where

is the change of the energy (cost function). The tempera-

ture goes through an annealing schedule from initial high to

ultimate low values, which means that SA attempts to explore

solution space more completely at high temperatures while fa-

vors the solutions that lead to lower energy at low temperatures.

SA-based clustering was reported in [47] and [245]. The former

illustrated an application of SA clustering to evaluate different

clustering criteria and the latter investigated the effects of input

parameters to the clustering performance.

Hybrid approaches that combine these search techniques are

also proposed. A tabu list is used in a GA clustering algorithm to

preserve the variety of the population and avoid repeating com-

putation [243]. An application of SA for improving TS was re-

ported in [64]. The algorithm further reduces the possible moves

to local optima.

The main drawback that plagues the search techniques-based

clustering algorithms is the parameter selection. More often

than not, search techniques introduce more parameters than

other methods (like -means). There are no theoretic guide-

lines to select the appropriate and effective parameters. Hall

et al. provided some methods for setting parameters in their

GAs-based clustering framework [122], but most of these

criteria are still obtained empirically. The same situation exists

for TS and SA clustering [9], [245]. Another problem is the

computational complexity paid for the convergence to global

optima. High computational requirement limits their applica-

tions in large-scale data sets.

G. Fuzzy Clustering

Except for GGA, the clustering techniques we have discussed

so far are referred to as hard or crisp clustering, which means

that each object is assigned to only one cluster. For fuzzy clus-

tering, this restriction is relaxed, and the object can belong to all

of the clusters with a certain degree of membership [293]. This

is particularly useful when the boundaries among the clusters

are not well separated and ambiguous. Moreover, the member-

ships may help us discover more sophisticated relations between

a given object and the disclosed clusters.

FCM is one of the most popular fuzzy clustering algorithms

[141]. FCM can be regarded as a generalization of ISODATA

[76] and was realized by Bezdek [35]. FCM attempts to find a

partition ( fuzzy clusters) for a set of data points

while minimizing the cost function

where

is the fuzzy partition matrix and

is the membership coefficient of the

th object in the th cluster;

is the cluster prototype (mean or center)

matrix;

is the fuzzification parameter and usually

is set to 2 [129];

is the distance measure between and

.

We summarize the standard FCM as follows, in which the

Euclidean or norm distance function is used.

1) Select appropriate values for , and a small positive

number . Initialize the prototype matrix randomly.

Set step variable .

2) Calculate (at ) or update (at ) the member-

ship matrix by

for and

3) Update the prototype matrix by

for

4) Repeat steps 2)–3) until .

Numerous FCM variants and other fuzzy clustering algo-

rithms have appeared as a result of the intensive investigation

on the distance measure functions, the effect of weighting

exponent on fuzziness control, the optimization approaches for

fuzzy partition, and improvements of the drawbacks of FCM

[84], [141].

Like its hard counterpart, FCM also suffers from the presence

of noise and outliers and the difficulty to identify the initial par-

titions. Yager and Filev proposed a MM in order to estimate the
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centers of clusters [290]. Candidate centers consist of a set of

vertices that are formed by building a grid on the pattern space.

The mountain function for a vertex is defined as

where is the distance between the th data object and

the th node, and is a positive constant. Therefore, the closer

a data object is to a vertex, the more the data object contributes

to the mountain function. The vertex with the maximum

value of mountain function is selected as the first center.

A procedure, called mountain destruction, is performed to get

rid of the effects of the selected center. This is achieved by sub-

tracting the mountain function value for each of the rest ver-

tices with an amount dependent on the current maximum moun-

tain function value and the distance between the vertex and the

center. The process iterates until the ratio between the current

maximum and is below some threshold. The connection

of MM with several other fuzzy clustering algorithms was fur-

ther discussed in [71]. Gath and Geva described an initialization

strategy of unsupervised tracking of cluster prototypes in their

2-layer clustering scheme, in which FCM and fuzzy ML esti-

mation are effectively combined [102].

Kersten suggested that city block distance (or norm) could

improve the robustness of FCM to outliers [163]. Furthermore,

Hathaway, Bezdek, and Hu extended FCM to a more universal

case by using Minkowski distance (or norm, ) and

seminorm for the models that operate either di-

rectly on the data objects or indirectly on the dissimilarity mea-

sures [130]. According to their empirical results, the object data

based models, with and norm, are recommended. They

also pointed out the possible improvement of models for other

norm with the price of more complicated optimization oper-

ations. PCM is another approach for dealing with outliers [175].

Under this model, the memberships are interpreted by a possi-

bilistic view, i.e., “the compatibilities of the points with the class

prototypes” [175]. The effect of noise and outliers is abated with

the consideration of typicality. In this case, the first condition for

the membership coefficient described in Section I is relaxed to

. Accordingly, the cost function is reformu-

lated as

where are some positive constants. The additional term

tends to give credits to memberships with large values. A

modified version in order to find appropriate clusters is pro-

posed in [294]. Davé and Krishnapuram further elaborated

the discussion on fuzzy clustering robustness and indicated its

connection with robust statistics [71]. Relations among some

widely used fuzzy clustering algorithms were discussed and

their similarities to some robust statistical methods were also

reviewed. They reached a unified framework as the conclusion

for the previous discussion and proposed generic algorithms

for robust clustering.

The standard FCM alternates the calculation of the member-

ship and prototype matrix, which causes a computational burden

for large-scale data sets. Kolen and Hutcheson accelerated the

computation by combining updates of the two matrices [172].

Hung and Yang proposed a method to reduce computational

time by identifying more accurate cluster centers [146]. FCM

variants were also developed to deal with other data types, such

as symbolic data [81] and data with missing values [129].

A family of fuzzy -shells algorithms has also appeared to de-

tect different types of cluster shapes, especially contours (lines,

circles, ellipses, rings, rectangles, hyperbolas) in a two-dimen-

sional data space. They use the “shells” (curved surfaces [70])

as the cluster prototypes instead of points or surfaces in tra-

ditional fuzzy clustering algorithms. In the case of FCS [36],

[70], the proposed cluster prototype is represented as a -di-

mensional hyperspherical shell ( for circles),

where is the center, and is the radius. A dis-

tance function is defined as to

measure the distance from a data object to the prototype .

Similarly, other cluster shapes can be achieved by defining ap-

propriate prototypes and corresponding distance functions, ex-

ample including fuzzy -spherical shells (FCSS) [176], fuzzy

-rings (FCR) [193], fuzzy -quadratic shells (FCQS) [174], and

fuzzy -rectangular shells (FCRS) [137]. See [141] for further

details.

Fuzzy set theories can also be used to create hierarchical

cluster structure. Geva proposed a hierarchical unsupervised

fuzzy clustering (HUFC) algorithm [104], which can effec-

tively explore data structure at different levels like HC, while

establishing the connections between each object and cluster in

the hierarchy with the memberships. This design makes HUFC

overcome one of the major disadvantages of HC, i.e., HC

cannot reassign an object once it is designated into a cluster.

Fuzzy clustering is also closely related to neural networks [24],

and we will see more discussions in the following section.

H. Neural Networks-Based Clustering

Neural networks-based clustering has been dominated by

SOFMs and adaptive resonance theory (ART), both of which

are reviewed here, followed by a brief discussion of other

approaches.

In competitive neural networks, active neurons reinforce

their neighborhood within certain regions, while suppressing

the activities of other neurons (so-called on-center/off-surround

competition). Typical examples include LVQ and SOFM [168],

[169]. Intrinsically, LVQ performs supervised learning, and is

not categorized as a clustering algorithm [169], [221]. But its

learning properties provide an insight to describe the potential

data structure using the prototype vectors in the competitive

layer. By pointing out the limitations of LVQ, including sen-

sitivity to initiation and lack of a definite clustering object,

Pal, Bezdek, and Tsao proposed a general LVQ algorithm

for clustering, known as GLVQ [221] (also see [157] for its

improved version GLVQ-F). They constructed the clustering

problem as an optimization process based on minimizing a

loss function, which is defined on the locally weighted error

between the input pattern and the winning prototype. They also

showed the relations between LVQ and the online -means
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algorithm. Soft LVQ algorithms, e.g., fuzzy algorithms for

LVQ (FALVQ), were discussed in [156].

The objective of SOFM is to represent high-dimensional

input patterns with prototype vectors that can be visualized in

a usually two-dimensional lattice structure [168], [169]. Each

unit in the lattice is called a neuron, and adjacent neurons are

connected to each other, which gives the clear topology of

how the network fits itself to the input space. Input patterns

are fully connected to all neurons via adaptable weights, and

during the training process, neighboring input patterns are

projected into the lattice, corresponding to adjacent neurons. In

this sense, some authors prefer to think of SOFM as a method

to displaying latent data structure in a visual way rather than a

clustering approach [221]. Basic SOFM training goes through

the following steps.

1) Define the topology of the SOFM; Initialize the proto-

type vectors randomly.

2) Present an input pattern to the network; Choose

the winning node that is closest to , i.e.,

.

3) Update prototype vectors

where is the neighborhood function that is often

defined as

where is the monotonically decreasing learning

rate, represents the position of corresponding neuron,

and is the monotonically decreasing kernel width

function, or

if node belongs to the neighborhood

of the winning node

otherwise

4) Repeat steps 2)–3) until no change of neuron position

that is more than a small positive number is observed.

While SOFM enjoy the merits of input space density ap-

proximation and independence of the order of input patterns, a

number of user-dependent parameters cause problems when ap-

plied in real practice. Like the -means algorithm, SOFM need

to predefine the size of the lattice, i.e., the number of clusters,

which is unknown for most circumstances. Additionally, trained

SOFM may be suffering from input space density misrepresen-

tation [132], where areas of low pattern density may be over-rep-

resented and areas of high density under-represented. Kohonen

reviewed a variety of variants of SOFM in [169], which improve

drawbacks of basic SOFM and broaden its applications. SOFM

can also be integrated with other clustering approaches (e.g.,

-means algorithm or HC) to provide more effective and faster

clustering. [263] and [276] illustrate two such hybrid systems.

ART was developed by Carpenter and Grossberg, as a so-

lution to the plasticity and stability dilemma [51], [53], [113].

ART can learn arbitrary input patterns in a stable, fast, and

self-organizing way, thus, overcoming the effect of learning in-

stability that plagues many other competitive networks. ART is

not, as is popularly imagined, a neural network architecture. It

is a learning theory, that resonance in neural circuits can trigger

fast learning. As such, it subsumes a large family of current

and future neural networks architectures, with many variants.

ART1 is the first member, which only deals with binary input

patterns [51], although it can be extended to arbitrary input

patterns by a variety of coding mechanisms. ART2 extends

the applications to analog input patterns [52] and ART3 intro-

duces a new mechanism originating from elaborate biological

processes to achieve more efficient parallel search in hierar-

chical structures [54]. By incorporating two ART modules,

which receive input patterns ART and corresponding labels

ART , respectively, with an inter-ART module, the resulting

ARTMAP system can be used for supervised classifications

[56]. The match tracking strategy ensures the consistency of

category prediction between two ART modules by dynamically

adjusting the vigilance parameter of ART . Also see fuzzy

ARTMAP in [55]. A similar idea, omitting the inter-ART

module, is known as LAPART [134].

The basic ART1 architecture consists of two-layer nodes, the

feature representation field and the category representation

field . They are connected by adaptive weights, bottom-up

weight matrix and top-down weight matrix . The pro-

totypes of clusters are stored in layer . After it is activated

according to the winner-takes-all competition, an expectation

is reflected in layer , and compared with the input pattern.

The orienting subsystem with the specified vigilance parameter

determines whether the expectation and the

input are closely matched, and therefore controls the generation

of new clusters. It is clear that the larger is, the more clusters

are generated. Once weight adaptation occurs, both bottom-up

and top-down weights are updated simultaneously. This is called

resonance, from which the name comes. The ART1 algorithm

can be described as follows.

1) Initialize weight matrices and as

, where are sorted in a descending order and sat-

isfies for and any

binary input pattern , and ;

2) For a new pattern , calculate the input from layer

to layer as

if is an uncommitted node

first activated

if is a committed node

where represents the logic AND operation.

3) Activate layer by choosing node with the winner-

takes-all rule .

4) Compare the expectation from layer with the input

pattern. If , go to step 5a), other-

wise go to step 5b).
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5)

a) Update the corresponding weights for the active

node as new old

old and new old .;

b) Send a reset signal to disable the current active node

by the orienting subsystem and return to step 3).

6) Present another input pattern, return to step 2) until all

patterns are processed.

Note the relation between ART network and other clustering

algorithms described in traditional and statistical language.

Moore used several clustering algorithms to explain the clus-

tering behaviors of ART1 and therefore induced and proved a

number of important properties of ART1, notably its equiva-

lence to varying -means clustering [204]. She also showed

how to adapt these algorithms under the ART1 framework. In

[284] and [285], the ease with which ART may be used for

hierarchical clustering is also discussed.

Fuzzy ART (FA) benefits the incorporation of fuzzy set theory

and ART [57]. FA maintains similar operations to ART1 and

uses the fuzzy set operators to replace the binary operators, so

that it can work for all real data sets. FA exhibits many desirable

characteristics such as fast and stable learning and atypical pat-

tern detection. Huang et al. investigated and revealed more prop-

erties of FA classified as template, access, reset, and the number

of learning epochs [143]. The criticisms for FA are mostly fo-

cused on its inefficiency in dealing with noise and the defi-

ciency of hyperrectangular representation for clusters in many

circumstances [23], [24], [281]. Williamson described Gaussian

ART (GA) to overcome these shortcomings [281], in which each

cluster is modeled with Gaussian distribution and represented as

a hyperellipsoid geometrically. GA does not inherit the offline

fast learning property of FA, as indicated by Anagnostopoulos et

al. [13], who proposed different ART architectures: hypersphere

ART (HA) [12] for hyperspherical clusters and ellipsoid ART

(EA) [13] for hyperellipsoidal clusters, to explore a more effi-

cient representation of clusters, while keeping important prop-

erties of FA. Baraldi and Alpaydin proposed SART following

their general ART clustering networks frame, which is described

through a feedforward architecture combined with a match com-

parison mechanism [23]. As specific examples, they illustrated

symmetric fuzzy ART (SFART) and fully self-organizing SART

(FOSART) networks. These networks outperform ART1 and FA

according to their empirical studies [23].

In addition to these, many other neural network architectures

are developed for clustering. Most of these architectures uti-

lize prototype vectors to represent clusters, e.g., cluster detec-

tion and labeling network (CDL) [82], HEC [194], and SPLL

[296]. HEC uses a two-layer network architecture to estimate

the regularized Mahalanobis distance, which is equated to the

Euclidean distance in a transformed whitened space. CDL is

also a two-layer network with an inverse squared Euclidean

metric. CDL requires the match between the input patterns and

the prototypes above a threshold, which is dynamically adjusted.

SPLL emphasizes initiation independent and adaptive genera-

tion of clusters. It begins with a random prototype in the input

space and iteratively chooses and divides prototypes until no fur-

ther split is available. The divisibility of a prototype is based on

the consideration that each prototype represents only one natural

Fig. 2. ART1 architecture. Two layers are included in the attentional
subsystem, connected via bottom-up and top-down adaptive weights. Their
interactions are controlled by the orienting subsystem through a vigilance
parameter.

cluster, instead of the combinations of several clusters. Simpson

employed hyperbox fuzzy sets to characterize clusters [100],

[249]. Each hyperbox is delineated by a min and max point, and

data points build their relations with the hyperbox through the

membership function. The learning process experiences a se-

ries of expansion and contraction operations, until all clusters

are stable.

I. Kernel-Based Clustering

Kernel-based learning algorithms [209], [240], [274] are

based on Cover’s theorem. By nonlinearly transforming a set

of complex and nonlinearly separable patterns into a higher-di-

mensional feature space, we can obtain the possibility to

separate these patterns linearly [132]. The difficulty of curse

of dimensionality can be overcome by the kernel trick, arising

from Mercer’s theorem [132]. By designing and calculating

an inner-product kernel, we can avoid the time-consuming,

sometimes even infeasible process to explicitly describe the

nonlinear mapping and compute the corresponding points in

the transformed space.

In [241], Schölkopf, Smola, and Müller depicted a kernel-

-means algorithm in the online mode. Suppose we have a set of

patterns and a nonlinear map

. Here, represents a feature space with arbitrarily high di-

mensionality. The object of the algorithm is to find centers so

that we can minimize the distance between the mapped patterns

and their closest center

where is the center for the th cluster and lies in a span of

, and is the inner-

product kernel.

Define the cluster assignment variable

if belongs to cluster

otherwise.
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Then the kernel- -means algorithm can be formulated as the

following.

1) Initialize the centers with the first , ob-

servation patterns;

2) Take a new pattern and calculate as

shown in the equation at the bottom of the page.

3) Update the mean vector whose corresponding

is 1

where .

4) Adapt the coefficients for each as

for

for

5) Repeat steps 2)–4) until convergence is achieved.

Two variants of kernel- -means were introduced in [66],

motivated by SOFM and ART networks. These variants con-

sider effects of neighborhood relations, while adjusting the

cluster assignment variables, and use a vigilance parameter to

control the process of producing mean vectors. The authors also

illustrated the application of these approaches in case based

reasoning systems.

An alternative kernel-based clustering approach is in [107].

The problem was formulated to determine an optimal partition

to minimize the trace of within-group scatter matrix in the

feature space

where

,

and is the total number of patterns in the th cluster.

Note that the kernel function utilized in this case is the radial

basis function (RBF) and can be interpreted as a mea-

sure of the denseness for the th cluster.

Ben-Hur et al. presented a new clustering algorithm, SVC,

in order to find a set of contours used as the cluster bound-

aries in the original data space [31], [32]. These contours can

be formed by mapping back the smallest enclosing sphere in

the transformed feature space. RBF is chosen in this algorithm,

and, by adjusting the width parameter of RBF, SVC can form ei-

ther agglomerative or divisive hierarchical clusters. When some

points are allowed to lie outside the hypersphere, SVC can deal

with outliers effectively. An extension, called multiple spheres

support vector clustering, was proposed in [62], which combines

the concept of fuzzy membership.

Kernel-based clustering algorithms have many advantages.

1) It is more possible to obtain a linearly separable hyper-

plane in the high-dimensional, or even infinite feature

space.

2) They can form arbitrary clustering shapes other than

hyperellipsoid and hypersphere.

3) Kernel-based clustering algorithms, like SVC, have the

capability of dealing with noise and outliers.

4) For SVC, there is no requirement for prior knowledge

to determine the system topological structure. In [107],

the kernel matrix can provide the means to estimate the

number of clusters.

Meanwhile, there are also some problems requiring further

consideration and investigation. Like many other algorithms,

how to determine the appropriate parameters, for example, the

width of Gaussian kernel, is not trivial. The problem of compu-

tational complexity may become serious for large data sets.

The process of constructing the sum-of-squared clustering

algorithm [107] and -means algorithm [241] presents a good

example to reformulate more powerful nonlinear versions

for many existing linear algorithms, provided that the scalar

product can be obtained. Theoretically, it is important to investi-

gate whether these nonlinear variants can keep some useful and

essential properties of the original algorithms and how Mercer

kernels contribute to the improvement of the algorithms. The

effect of different types of kernel functions, which are rich in

the literature, is also an interesting topic for further exploration.

J. Clustering Sequential Data

Sequential data are sequences with variable length and many

other distinct characteristics, e.g., dynamic behaviors, time

constraints, and large volume [120], [265]. Sequential data can

be generated from: DNA sequencing, speech processing, text

mining, medical diagnosis, stock market, customer transactions,

web data mining, and robot sensor analysis, to name a few [78],

[265]. In recent decades, sequential data grew explosively. For

example, in genetics, the recent statistics released on October

15, 2004 (Release 144.0) shows that there are 43 194 602

655 bases from 38 941 263 sequences in GenBank database

[103] and release 45.0 of SWISSPROT on October 25, 2004

contains 59 631 787 amino acids in 163 235 sequence entries

[267]. Cluster analysis explores potential patterns hidden in the

large number of sequential data in the context of unsupervised

learning and therefore provides a crucial way to meet the cur-

rent challenges. Generally, strategies for sequential clustering

mostly fall into three categories.

if

otherwise
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1) Sequence Similarity: The first scheme is based on the

measure of the distance (or similarity) between each pair of se-

quences. Then, proximity-based clustering algorithms, either hi-

erarchical or partitional, can group sequences. Since many se-

quential data are expressed in an alphabetic form, like DNA

or protein sequences, conventional measure methods are inap-

propriate. If a sequence comparison is regarded as a process of

transforming a given sequence to another with a series of substi-

tution, insertion, and deletion operations, the distance between

the two sequences can be defined by virtue of the minimum

number of required operations. A common analysis processes is

alignment, illustrated in Fig. 3. The defined distance is known

as edit distance or Levenshtein distance [120], [236]. These edit

operations are weighted (punished or rewarded) according to

some prior domain knowledge and the distance herein is equiva-

lent to the minimum cost to complete the transformation. In this

sense, the similarity or distance between two sequences can be

reformulated as an optimal alignment problem, which fits well

in the framework of dynamic programming.

Given two sequences, and

, the basic dynamic program-

ming-based sequence alignment algorithm, also known as

the Needleman-Wunsch algorithm, can be depicted by the

following recursive equation [78], [212]:

where is defined as the best alignment score be-

tween sequence segment of and

of , and , or

represent the cost for aligning to , aligning to

a gap (denoted as ), or aligning to a gap, respectively. The

computational results for each position at and are recorded

in an array with a pointer that stores current optimal operations

and provides an effective path in backtracking the alignment.

The Needleman-Wunsch algorithm considers the comparison

of the whole length of two sequences and therefore performs

a global optimal alignment. However, it is also important to

find local similarity among sequences in many circumstances.

The Smith-Waterman algorithm achieves that by allowing the

beginning of a new alignment during the recursive computa-

tion, and the stop of an alignment anywhere in the dynamic

programming matrix [78], [251]. This change is summarized

in the following:

For both the global and local alignment algorithms, the com-

putation complexity is , which is very expensive, es-

pecially for a clustering problem that requires an all-against-all

pairwise comparison. A wealth of speed-up methods has been

developed to improve the situation [78], [120]. We will see

more discussion in Section III-E in the context of biological

sequences analysis. Other examples include applications for

speech recognition [236] and navigation pattern mining [131].

Fig. 3. Illustration of a sequence alignment. Series of edit operations
is performed to change the sequence CLUSTERING into the sequence
CLASSIFICATION.

2) Indirect Sequence Clustering: The second approach

employs an indirect strategy, which begins with the extraction

of a set of features from the sequences. All the sequences

are then mapped into the transformed feature space, where

classical vector space-based clustering algorithms can be

used to form clusters. Obviously, feature extraction becomes

the essential factor that decides the effectiveness of these

algorithms. Guralnik and Karypis discussed the potential de-

pendency between two sequential patterns and suggested both

the global and the local approaches to prune the initial feature

sets in order to better represent sequences in the new feature

space [119]. Morzy et al. utilized the sequential patterns as

the basic element in the agglomerative hierarchical clustering

and defined a co-occurrence measure, as the standard of fusion

of smaller clusters [207]. These methods greatly reduce the

computational complexities and can be applied to large-scale

sequence databases. However, the process of feature selection

inevitably causes the loss of some information in the original

sequences and needs extra attention.

3) Statistical Sequence Clustering: Typically, the first two

approaches are used to deal with sequential data composed of

alphabets, while the third paradigm, which aims to construct

statistical models to describe the dynamics of each group of se-

quences, can be applied to numerical or categorical sequences.

The most important method is hidden Markov models (HMMs)

[214], [219], [253], which first gained its popularity in the appli-

cation of speech recognition [229]. A discrete HMM describes

an unobservable stochastic process consisting of a set of states,

each of which is related to another stochastic process that emits

observable symbols. Therefore, the HMM is completely speci-

fied by the following.

1) A finite set with states.

2) A discrete set with observa-

tion symbols.

3) A state transition distribution , where

th state at time th state at time

4) A symbol emission distribution , where

at th state at

5) An initial state distribution , where

th state at

After an initial state is selected according to the initial dis-

tribution , a symbol is emitted with emission distribution .

The next state is decided by the state transition distribution

and it also generates a symbol based on . The process repeats

until reaching the last state. Note that the procedure generates
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a sequence of symbol observations instead of states, which is

where the name “hidden” comes from. HMMs are well founded

theoretically [229]. Dynamic programming and EM algorithm

are developed to solve the three basic problems of HMMs as the

following.

1) Likelihood (forward or backward algorithm). Com-

pute the probability of an observation sequence given

a model.

2) State interpretation (Vertbi algorithm). Find an op-

timal state sequence by optimizing some criterion

function given the observation sequence and the

model.

3) Parameter estimation (Baum–Welch algorithm). De-

sign suitable model parameters to maximize the prob-

ability of observation sequence under the model.

The equivalence between an HMM and a recurrent

back-propagation network was elucidated in [148], and a

universal framework was constructed to describe both the

computational and the structural properties of the HMM and

the neural network.

Smyth proposed an HMM-based clustering model, which,

similar to the theories introduced in mixture densities-based

clustering, assumes that each cluster is generated based on some

probability distribution [253]. Here, HMMs are used rather than

the common Gaussian or -distribution. In addition to the form

of finite mixture densities, the mixture model can also be de-

scribed by means of an HMM with the transition matrix

where is the transition distribution for the th

cluster. The initial distribution of the HMM is determined based

on the prior probability for each cluster. The basic learning

process starts with a parameter initialization scheme to form

a rough partition with the log-likelihood of each sequence

serving as the distance measure. The partition is further re-

fined by training the overall HMM over all sequences with

the classical EM algorithm. A Monte-Carlo cross validation

method was used to estimate the possible number of clusters.

An application with a modified HMM model that considers

the effect of context for clustering facial display sequences is

illustrated in [138]. Oates et al. addressed the initial problem by

pregrouping the sequences with the agglomerative hierarchical

clustering, which operates on the proximity matrix determined

by the dynamic time warping (DTW) technique [214]. The area

formed between one original sequence and a new sequence,

generated by warping the time dimension of another original

sequence, reflects the similarity of the two sequences. Li and

Biswas suggested several objective criterion functions based

on posterior probability and information theory for structural

selection of HMMs and cluster validity [182]. More recent

advances on HMMs and other related topics are reviewed in

[30].

Other model-based sequence clustering includes mixtures of

first-order Markov chain [255] and a linear model like autore-

gressive moving average (ARMA) model [286]. Usually, they

are combined with EM for parameter estimation [286]. Smyth

[255] and Cadez et al. [50] further generalize a universal prob-

abilistic framework to model mixed data measurement, which

includes both conventional static multivariate vectors and dy-

namic sequence data.

The paradigm models clusters directly from original data

without additional process that may cause information loss.

They provide more intuitive ways to capture the dynamics

of data and more flexible means to deal with variable length

sequences. However, determining the number of model com-

ponents remains a complicated and uncertain process [214],

[253]. Also, the model selected is required to have sufficient

complexity, in order to interpret the characteristics of data.

K. Clustering Large-Scale Data Sets

Scalability becomes more and more important for clustering

algorithms with the increasing complexity of data, mainly man-

ifesting in two aspects: enormous data volume and high dimen-

sionality. Examples, illustrated in the sequential clustering sec-

tion, are just some of the many applications that require this ca-

pability. With the further advances of database and Internet tech-

nologies, clustering algorithms will face more severe challenges

in handling the rapid growth of data. We summarize the com-

putational complexity of some typical and classical clustering

algorithms in Table II with several newly proposed approaches

specifically designed to deal with large-scale data sets. Several

points can be generalized through the table.

1) Obviously, classical hierarchical clustering algo-

rithms, including single-linkage, complete linkage,

average linkage, centroid linkage and median linkage,

are not appropriate for large-scale data sets due to the

quadratic computational complexities in both execu-

tion time and store space.

2) -means algorithm has a time complexity of

and space complexity of . Since is usu-

ally much larger than both and , the complexity be-

comes near linear to the number of samples in the data

sets. -means algorithm is effective in clustering large-

scale data sets, and efforts have been made in order to

overcome its disadvantages [142], [218].

3) Many novel algorithms have been developed to cluster

large-scale data sets, especially in the context of data

mining [44], [45], [85], [135], [213], [248]. Many of

them can scale the computational complexity linearly

to the input size and demonstrate the possibility of han-

dling very large data sets.

a) Random sampling approach, e.g., CLARA clus-

tering large applications (CLARA) [161] and CURE

[116]. The key point lies that the appropriate sample

sizes can effectively maintain the important geomet-

rical properties of clusters. Furthermore, Chernoff

boundscanprovideestimation for the lowerboundof

the minimum sample size, given the low probability

that points in each cluster are missed in the sample

set [116]. CLARA represents each cluster with a

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 25, 2009 at 14:01 from IEEE Xplore.  Restrictions apply.



XU AND WUNSCH II: SURVEY OF CLUSTERING ALGORITHMS 663

medoid while CURE chooses a set of well-scattered

and center-shrunk points.

b) Randomized search approach, e.g., clustering

large applications based on randomized search

(CLARANS) [213]. CLARANS sees the clustering

as a search process in a graph, in which each node

corresponds to a set of medoids. It begins with an

arbitrary node as the current node and examines a set

of neighbors, defined as the node consisting of only

one different data object, to seek a better solution,

i.e., any neighbor, with a lower cost, becomes the

current node. If the maximum number of neighbors,

specified by the user, has been reached, the current

node is accepted as a winning node. This process

iterates several times as specified by users. Though

CLARANS achieves better performance than algo-

rithms like CLARA, the total computational time is

still quadratic, which makes CLARANS not quite

effective in very large data sets.

c) Condensation-based approach, e.g., BIRCH [295].

BIRCH generates and stores the compact sum-

maries of the original data in a CF tree, as discussed

in Section II-B. This new data structure efficiently

captures the clustering information and largely

reduces the computational burden. BIRCH was

generalized into a broader framework in [101] with

two algorithms realization, named as BUBBLE and

BUBBLE-FM.

d) Density-based approach, e.g., density based spatial

clustering of applications with noise (DBSCAN)

[85] and density-based clustering (DENCLUE)

[135]. DBSCAN requires that the density in a

neighborhood for an object should be high enough

if it belongs to a cluster. DBSCAN creates a new

cluster from a data object by absorbing all objects in

its neighborhood. The neighborhood needs to sat-

isfy a user-specified density threshold. DBSCAN

uses a -tree structure for more efficient queries.

DENCLUE seeks clusters with local maxima of

the overall density function, which reflects the

comprehensive influence of data objects to their

neighborhoods in the corresponding data space.

e) Grid-based approach, e.g., WaveCluster [248] and

fractal clustering (FC) [26]. WaveCluster assigns

dataobjects toasetofunitsdividedintheoriginalfea-

ture space, and employs wavelet transforms on these

units, to map objects into the frequency domain. The

key idea is that clusters can be easily distinguished in

the transformed space. FC combines the concepts of

both incremental clustering and fractal dimension.

Data objects are incrementally added to the clusters,

specified through an initial process, and represented

as cells in a grid, with the condition that the fractal

dimension of cluster needs to keep relatively stable.

4) Most algorithms listed previously lack the capability of

dealing with data with high dimensionality. Their per-

formances degenerate with the increase of dimension-

ality. Some algorithms, like FC and DENCLUE, have

shown some successful applications in such cases, but

these are still far from completely effective.

In addition to the aforementioned approaches, several other

techniquesalsoplaysignificantrolesinclusteringlarge-scaledata

sets. Parallel algorithms can more effectively use computational

resources,andgreatly improveoverallperformance in thecontext

ofboth time andspace complexity [69], [217], [262]. Incremental

clustering techniques do not require the storage of the entire data

set, and can handle it in a one-pattern-at-a-time way. If the pat-

tern displays enough closeness to a cluster according to some

predefined criteria, it is assigned to the cluster. Otherwise, a new

cluster is created to represent the object. A typical example is

the ART family [51]–[53] discussed in Section II-H. Most incre-

mental clustering algorithms are dependent on the order of the

input patterns [51], [204]. Bradley, Fayyad, and Reina proposed

a scalable clustering framework, considering seven relevant im-

portant characteristics in dealing with large databases [44]. Ap-

plications of the framework were illustrated for the -means al-

gorithm and EM mixture models [44], [45].

L. Exploratory Data Visualization and High-Dimensional

Data Analysis Through Dimensionality Reduction

For most of the algorithms summarized in Table II, although

they can deal with large-scale data, they are not sufficient for

analyzing high-dimensional data. The term, “curse of dimen-

sionality,” which was first used by Bellman to indicate the ex-

ponential growth of complexity in the case of multivariate func-

tion estimation under a high dimensionality situation [28], is

generally used to describe the problems accompanying high di-

mensional spaces [34], [132]. It is theoretically proved that the

distance between the nearest points is no different from that

of other points when the dimensionality of the space is high

enough [34]. Therefore, clustering algorithms that are based on

the distance measure may no longer be effective in a high dimen-

sional space. Fortunately, in practice, many high-dimensional

data usually have an intrinsic dimensionality that is much lower

than the original dimension [60]. Dimension reduction is impor-

tant in cluster analysis, which not only makes the high-dimen-

sional data addressable and reduces the computational cost, but

provides users with a clearer picture and visual examination of

the data of interest. However, dimensionality reduction methods

inevitably cause some loss of information, and may damage the

interpretability of the results, even distort the real clusters.

One natural strategy for dimensionality reduction is to

extract important components from original data, which can

contribute to the division of clusters. Principle component

analysis (PCA) or Karhunen-Loéve transformation is one of

the typical approaches, which is concerned with constructing

a linear combination of a set of vectors that can best describe

the variance of data. Given the input pattern matrix

, the linear mapping

projects into a low-dimensional

subspace, where is the resulting matrix and is the

projection matrix whose columns are the eigenvectors

that correspond to the largest eigenvalues of the co-

variance matrix , calculated from the whole data set (hence,

the column vectors of are orthonormal). PCA estimates the

matrix while minimizing the sum of squares of the error
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of approximating the input vectors. In this sense, PCA can

be realized through a three-layer neural network, called an

auto-associative multilayer perceptron, with linear activation

functions [19], [215]. In order to extract more complicated

nonlinear data structure, nonlinear PCA was developed and one

of the typical examples is kernel PCA. As methods discussed

in Section II-I, kernel PCA first maps the input patterns into a

feature space. The similar steps are then applied to solve the

eigenvalue problem with the new covariance matrix in the fea-

ture space. In another way, extra hidden layers with nonlinear

activation functions can be added into the auto-associative

network for this purpose [38], [75].

PCA is appropriate for Gaussian distributions since it relies on

second-order relationships in the covariance matrix, Other linear

transforms, like independent component analysis (ICA) and pro-

jection pursuit, which use higher order statistical information,

are more suited for non-Gaussian distributions [60], [151]. The

basic goal of ICA is to find the components that are most statis-

tically independent from each other [149], [154]. In the context

of blind source separation, ICA aims to separate the independent

source signals from the mixed observation signal. This problem

can be formulated in several different ways [149], and one of

the simplest form (without considering noise) is represented as

, where is the -dimensional observable vector,

is the -dimensional source vector assumed to be statistically

independent, and is a nonsingular mixing matrix. ICA

can also be realized by virtueof multilayer perceptrons, and [158]

illustrates one of such examples. The proposed ICA network

includes whitening, separation, and basis vectors estimation

layers, with corresponding learning algorithms. The authors

also indicated its connection to the auto-associative multilayer

perceptron. Projection pursuit is another statistical technique for

seeking low-dimensional projection structures for multivariate

data [97], [144]. Generally, projection pursuit regards the normal

distribution as the least interesting projections and optimizes

some certain indices that measure the degree of nonnormality

[97]. PCA can be considered as a special example of projection

pursuit, as indicated in [60]. More discussions on the relations

among PCA, ICA, projection pursuit, and other relevant tech-

niques are offered in [149] and [158].

Different from PCA, ICA, and projection pursuit, Multidi-

mensional scaling (MDS) is a nonlinear projection technique

[75], [292]. The basic idea of MDS lies in fitting original mul-

tivariate data into a low-dimensional structure while aiming to

maintain the proximity information. The distortion is measured

through some criterion functions, e.g., in the sense of sum

of squared error between the real distance and the projection

distance. The isometric feature mapping (Isomap) algorithm

is another nonlinear technique, based on MDS [270]. Isomap

estimates the geodesic distance between a pair of points, which

is the shortest path between the points on a manifold, by virtue

of the measured input-space distances, e.g., the Euclidean

distance usually used. This extends the capability of MDS to

explore more complex nonlinear structures in the data. Locally

linear embedding (LLE) algorithm addresses the nonlinear

dimensionality reduction problem from a different starting

point [235]. LLE emphasizes the local linearity of the manifold

and assumes that the local relations in the original data space

( -dimensional) are also preserved in the projected low-di-

mensional space ( -dimensional). This is represented through

a weight matrix, describing how each point is related to the

reconstruction of another data point. Therefore, the procedure

for dimensional reduction can be constructed as the problem

that finding -dimensional vectors so that the criterion

function is minimized. Another inter-

esting nonlinear dimensionality reduction approach, known as

Laplace eigenmap algorithm, is presented in [27].

As discussed in Section II-H, SOFM also provide good visu-

alization for high-dimensional input patterns [168]. SOFM map

input patterns into a one or usually two dimensional lattice struc-

ture, consisting of nodes associated with different clusters. An

application for clustering of a large set of documental data is

illustrated in [170], in which 6 840 568 patent abstracts were

projected onto a SOFM with 1 002 240 nodes.

Subspace-based clustering addresses the challenge by ex-

ploring the relations of data objects under different combina-

tions of features. clustering in quest (CLIQUE) [3] employs a

bottom-up scheme to seek dense rectangular cells in all sub-

spaces with high density of points. Clusters are generated as the

connected components in a graph whose vertices stand for the

dense units. The resulting minimal description of the clusters is

obtained through the merge of these rectangles. OptiGrid [136] is

designed to obtain an optimal grid-partitioning. This is achieved

by constructing the best cutting hyperplanes through a set of

projections. The time complexity for OptiGrid is in the interval

of and . ORCLUS (arbitrarily ORiented

projected CLUster generation) [2] defines a generalized pro-

jected cluster as a densely distributed subset of data objects in

a subspace, along with a subset of vectors that represent the

subspace. The dimensionality of the subspace is prespecified by

users as an input parameter, and several strategies are proposed

in guidance of its selection. The algorithm begins with a set

of randomly selected seeds with the full dimensionality.

This dimensionality and the number of clusters are decayed

according to some factors at each iteration, until the number

of clusters reaches the predefined values. Each repetition con-

sists of three basic operations, known as assignment, vector

finding, and merge. ORCLUS has the overall time complexity of

and space complexity of .

Obviously, the scalability to large data sets relies on the number

of initial seeds . A generalized subspace clustering model,

pCluster was proposed in [279]. These pClusters are formed

by a depth-first clustering algorithm. Several other interesting

applications, including a Clindex (CLustering for INDEXing)

scheme and wavelet transform, are shown in [184] and [211],

respectively.

M. How Many Clusters?

The clustering process partitions data into an appropriate

number of subsets. Although for some applications, users can

determine the number of clusters, , in terms of their expertise,

under more circumstances, the value of is unknown and

needs to be estimated exclusively from the data themselves.

Many clustering algorithms ask to be provided as an input

parameter, and it is obvious that the quality of resulting clusters

is largely dependent on the estimation of . A division with
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too many clusters complicates the result, therefore, makes it

hard to interpret and analyze, while a division with too few

clusters causes the loss of information and misleads the final

decision. Dubes called the problem of determining the number

of clusters “the fundamental problem of cluster validity” [74].

A large number of attempts have been made to estimate the

appropriate and some of representative examples are illus-

trated in the following.

1) Visualization of the data set. For the data points that

can be effectively projected onto a two-dimensional

Euclidean space, which are commonly depicted with

a histogram or scatterplot, direct observations can pro-

vide good insight on the value of . However, the com-

plexity of most real data sets restricts the effectiveness

of the strategy only to a small scope of applications.

2) Construction of certain indices (or stopping rules).

These indices usually emphasize the compactness of

intra-cluster and isolation of inter-cluster and consider

the comprehensive effects of several factors, including

the defined squared error, the geometric or statistical

properties of the data, the number of patterns, the dis-

similarity (or similarity), and the number of clusters.

Milligan and Cooper compared and ranked 30 indices

according to their performance over a series of artifi-

cial data sets [202]. Among these indices, the Caliñski

and Harabasz index [74] achieve the best performance

and can be represented as

CH

where is the total number of patterns and

and are the trace of the between and within

class scatter matrix, respectively. The that maxi-

mizes the value of CH is selected as the optimal.

It is worth noting that these indices may be data de-

pendent. The good performance of an index for cer-

tain data does not guarantee the same behavior with

different data. As pointed out by Everitt, Landau, and

Leese, “it is advisable not to depend on a single rule

for selecting the number of groups, but to synthesize

the results of several techniques” [88].

3) Optimization of some criterion functions under prob-

abilistic mixture-model framework. In a statistical

framework, finding the correct number of clusters

(components) , is equivalent to fitting a model with

observed data and optimizing some criterion [197].

Usually, the EM algorithm is used to estimate the

model parameters for a given , which goes through

a predefined range of values. The value of that

maximizes (or minimizes) the defined criterion is

regarded as optimal. Smyth presented a Monte-Carlo

cross-validation method, which randomly divides data

into training and test sets times according to a cer-

tain fraction ( works well from the empirical

results) [252]. The is selected either directly based

on the criterion function or some posterior probabili-

ties calculated.

A large number of criteria, which combine concepts

from information theory, have been proposed in the

literature. Typical examples include,

• Akaike’s information criterion (AIC) [4], [282]

AIC

where is the total number of patterns, is the

number of parameters for each cluster, is the total

number of parameters estimated, and is the max-

imum log-likelihood. is selected with the minimum

value of AIC .

• Bayesian inference criterion (BIC) [226], [242]

BIC

is selected with the maximum value of BIC .

More criteria, such as minimum description length

(MDL) [114], [233], minimum message length (MML)

[114], [216], cross validation-based information crite-

rion (CVIC) [254] and covariance inflation criterion

(CIC) [272], with their characteristics, are summarized

in [197]. Like the previous discussion for validation

index, there is no criterion that is superior to others in

general case. The selection of different criteria is still

dependent on the data at hand.

4) Other heuristic approaches based on a variety of tech-

niques and theories. Girolami performed eigenvalue

decomposition on the kernel matrix in the high-dimen-

sional feature space and used the dominant compo-

nents in the decomposition summation as an indication

of the possible existence of clusters [107]. Kothari

and Pitts described a scale-based method, in which the

distance from a cluster centroid to other clusters in

its neighborhood is considered (added as a regulariza-

tion term in the original squared error criterion, Sec-

tion II-C) [160]. The neighborhood of clusters work as

a scale parameter and the that is persistent in the

largest interval of the neighborhood parameter is re-

garded as the optimal.

Besides the previous methods, constructive clustering algo-

rithms can adaptively and dynamically adjust the number of

clusters rather than use a prespecified and fixed number. ART

networks generate a new cluster, only when the match between

the input pattern and the expectation is below some prespecified

confidence value [51]. A functionally similar mechanism is

used in the CDL network [82]. The robust competitive clus-

tering algorithm (RCA) describes a competitive agglomeration

process that progresses in stages, and clusters that lose in the

competition are discarded, and absorbed into other clusters [98].

This process is generalized in [42], which attains the number

of clusters by balancing the effect between the complexity

and the fidelity. Another learning scheme, SPLL iteratively

divides cluster prototypes from a single prototype until no

more prototypes satisfy the split criterion [296]. Several other

constructive clustering algorithms, including the FACS and

plastic neural gas, can be accessed in [223] and [232], re-

spectively. Obviously, the problem of determining the number
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of clusters is converted into a parameter selection problem,

and the resulting number of clusters is largely dependent on

parameter tweaking.

III. APPLICATIONS

We illustrate applications of clustering techniques in three as-

pects. The first is for two classical benchmark data sets that are

widely used in pattern recognition and machine learning. Then,

we show an application of clustering for the traveling salesman

problem. The last topic is on bioinformatics. We deal with clas-

sical benchmarks in Sections III-A and III-B and the traveling

salesman problem in Section III-C. A more extensive discussion

of bioinformatics is in Sections III-D and III-E.

A. Benchmark Data Sets—IRIS

The iris data set [92] is one of the most popular data

sets to examine the performance of novel methods in pat-

tern recognition and machine learning. It can be down-

loaded from the UCI Machine Learning Repository at

http://www.ics.uci.edu/~mlearn/MLRepository.html. There are

three categories in the data set (i.e., iris setosa, iris versicolor

and iris virginical), each having 50 patterns with four features

[i.e., sepal length (SL), sepal width (SW), petal length (PL),

and petal width (PW)]. Iris setosa can be linearly separated

from iris versicolor and iris virginical, while iris versicolor and

iris virginical are not linearly separable (see Fig. 4(a), in which

only three features are used). Fig. 4(b) depicts the clustering

result with a standard -means algorithm. It is clear to see that

-means can correctly differentiate iris setosa from the other

two iris plants. But for iris versicolor and virginical, there exist

16 misclassifications. This result is similar to those (around

15 errors) obtained from other classical clustering algorithms

[221]. Table III summarizes some of the clustering results

reported in the literature. From the table, we can see that many

newly developed approaches can greatly improve the clustering

performance on iris data set (around 5 misclassifications); some

even can achieve 100% accuracy. Therefore, the data can be

well classified with appropriate methods.

B. Benchmark Data Sets—MUSHROOM

Unlike the iris data set, all of the features of the mushroom

data set, which can also be accessible at the UCI Machine

Learning Repository, are nominal rather than numerical. These

23 species of gilled mushrooms are categorized as either edible

or poisonous. The total number of instances is 8 124 with 4

208 being edible and 3 916 poisonous. The 22 features are

summarized in Table IV with corresponding possible values.

Table V illustrates some experimental results in the literature.

As indicated in [117] and [277], traditional clustering strategies,

like -means and hierarchical clustering, work poorly on the

data set. The accuracy for -means is just around 69% [277]

and the clusters formed by classical HC are mixed with nearly

similar proportion of both edible and poisonous objects [117].

The results reported in the newly developed algorithms, which

are specifically used for tackling categorical or mixture data,

greatly improve the situation [117], [183]. The algorithm ROCK

Fig. 4. (a) Iris data sets. There are three iris categories, each having 50 samples
with 4 features. Here, only three features are used: PL, PW, and SL. (b)K-means
clustering result with 16 classification errors observed.

TABLE III
SOME CLUSTERING RESULTS FOR THE IRIS DATA SET

divides objects into 21 clusters with most of them (except one)

consisting of only one category, which increases the accuracy

almost to 99%. The algorithm SBAC works on a subset of

200 randomly selected objects, 100 for each category and the

general results show the correct partition of 3 clusters (two for

edible mushrooms, one for poisonous ones). In both studies, the
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TABLE IV
FEATURES FOR THE MUSHROOM DATA SET

constitution of each feature for generated clusters is also illus-

trated and it is observed that some features, like cap-shape and

ring-type, represent themselves identically for both categories

and, thus, suggest poor performance of traditional approaches.

Meanwhile, feature odor shows good discrimination for the

different types of mushrooms. Usually, value almond, anise,

or none indicates the edibility of mushrooms, while value

pungent, foul, or fishy means the high possibility of presence

of poisonous contents in the mushrooms.

C. Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most

studied examples in an important class of problems known as

NP-complete problems. Given a complete undirected graph

, where is a set of vertices and is a set of

edges each relating two vertices with an associated nonnegative

integer cost, the most general form of the TSP is equivalent

to finding any Hamiltonian cycle, which is a tour over that

begins and ends at the same vertex and visits other vertices

exactly once. The more common form of the problem is the

TABLE V
SOME CLUSTERING RESULTS FOR THE MUSHROOM DATA SET

optimization problem of trying to find the shortest Hamiltonian

cycle, and in particular, the most common is the Euclidean

version, where the vertices and edges all lie in the plane.

Mulder and Wunsch applied a divide-and-conquer clustering

technique, with ART networks, to scale the problem to a mil-

lion cities [208]. The divide and conquer paradigm gives the

flexibility to hierarchically break large problems into arbitrarily

small clusters depending on what tradeoff between accuracy

and speed is desired. In addition, the subproblems provide an

excellent opportunity to take advantage of parallel systems

for further optimization. As the first stage of the algorithm,

the ART network is used to sort the cities into clusters. The

vigilance parameter is used to set a maximum distance from the

current pattern. A vigilance parameter between 0 and 1 is used

as a percentage of the global space to determine the vigilance

distance. Values were chosen based on the desired number and

size of individual clusters. The clusters were then each passed to

a version of the Lin-Kernighan (LK) algorithm [187]. The last

step combines the subtours back into one complete tour. Tours

with good quality for city levels up to 1 000 000 were obtained

within 25 minutes on a 2 GHz AMD Athlon MP processor with

512 M of DDR RAM. Fig. 5 shows the visualizing results for 1

000, 10 000, and 1 000 000 cities, respectively.

It is worthwhile to emphasize the relation between the TSP

and very large-scale integrated (VLSI) circuit clustering, which

partitions a sophisticated system into smaller and simpler sub-

circuits to facilitate the circuit design. The object of the par-

titions is to minimize the number of connections among the

components. One strategy for solving the problem is based on

geometric representations, either linear or multidimensional [8].

Alpert and Kahng considered a solution to the problem as the

“inverse” of the divide-and-conquer TSP method and used a

linear tour of the modules to form the subcircuit partitions [7].

They adopted the spacefilling curve heuristic for the TSP to con-

struct the tour so that connected modules are still close in the

generated tour. A dynamic programming method was used to

generate the resulting partitions. More detailed discussion on

VLSI circuit clustering can be found in the survey by Alpert

and Kahng [7].
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Fig. 5. Clustering divide-and-conquer TSP resulting tours for (a) 1 k, (b) 10 k,
(c) 1 M cities. The clustered LK algorithm achieves a significant speedup and
shows good scalability.

D. Bioinformatics—Gene Expression Data

Recently, advances in genome sequencing projects and DNA

microarray technologies have been achieved. The first draft of

the human genome sequence project was completed in 2001,

several years earlier than expected [65], [275]. The genomic se-

quence data for other organizms (e.g., Drosophila melanogaster

and Escherichia coli) are also abundant. DNA microarray tech-

nologies provide an effective and efficient way to measure gene

expression levels of thousands of genes simultaneously under

different conditions and tissues, which makes it possible to in-

vestigate gene activities from the angle of the whole genome

[79], [188]. With sequences and gene expression data in hand,

to investigate the functions of genes and identify their roles in

the genetic process become increasingly important. Analyzes

under traditional laboratory techniques are time-consuming and

expensive. They fall far behind the explosively increasing gen-

eration of new data. Among the large number of computational

methods used to accelerate the exploration of life science, clus-

tering can reveal the hidden structures of biological data, and is

particularly useful for helping biologists investigate and under-

stand the activities of uncharacterized genes and proteins and

further, the systematic architecture of the whole genetic net-

work. We demonstrate the applications of clustering algorithms

in bioinformatics from two aspects. The first part is based on

the analysis of gene expression data generated from DNA mi-

croarray technologies. The second part describes clustering pro-

cesses that directly work on linear DNA or protein sequences.

The assumption is that functionally similar genes or proteins

usually share similar patterns or primary sequence structures.

DNA microarray technologies generate many gene ex-

pression profiles. Currently, there are two major microarray

technologies based on the nature of the attached DNA: cDNA

with length varying from several hundred to thousand bases,

or oligonucleotides containing 20–30 bases. For cDNA tech-

nologies, a DNA microarray consists of a solid substrate to

which a large amount of cDNA clones are attached according

to a certain order [79]. Fluorescently labeled cDNA, obtained

from RNA samples of interest through the process of reverse

transcription, is hybridized with the array. A reference sample

with a different fluorescent label is also needed for comparison.

Image analysis techniques are then used to measure the fluores-

cence of each dye, and the ratio reflects relative levels of gene

expression. For a high-density oligonucleotide microarray,

oligonucleotides are fixed on a chip through photolithography

or solid-phase DNA synthesis [188]. In this case, absolute

gene expression levels are obtained. After the normalization

of the fluorescence intensities, the gene expression profiles

are represented as a matrix , where is the ex-

pression level of the th gene in the th condition, tissue, or

experimental stage. Gene expression data analysis consists of a

three-level framework based on the complexity, ranging from

the investigation of single gene activities to the inference of the

entire genetic network [20]. The intermediate level explores

the relations and interactions between genes under different

conditions, and attracts more attention currently. Generally,

cluster analysis of gene expression data is composed of two

aspects: clustering genes [80], [206], [260], [268], [283], [288]

or clustering tissues or experiments [5], [109], [238].

Results of gene clustering may suggest that genes in the same

group have similar functions, or they share the same transcrip-

tional regulation mechanism. Cluster analysis, for grouping

functionally similar genes, gradually became popular after

the successful application of the average linkage hierarchical

clustering algorithm for the expression data of budding yeast

Saccharomyces cerevisiae and reaction of human fibroblasts to

serum by Eisen et al. [80]. They used the Pearson correlation

coefficient to measure the similarity between two genes, and

provided a very informative visualization of the clustering re-

sults. Their results demonstrate that functionally similar genes

tend to reside in the same clusters formed by their expression

pattern, even under a relatively small set of conditions. Herwig

et al. developed a variant of -means algorithm to cluster a set

of 2 029 human cDNA clones and adopted mutual information

as the similarity measure [230]. Tomayo et al. [268] made

use of SOFM to cluster gene expression data and its applica-

tion in hematopoietic differentiation provided new insight for

further research. Graph theories based clustering algorithms,

like CAST [29] and CLICK [247], showed very promising

performances in tackling different types of gene expression

data. Since many genes usually display more than one function,

fuzzy clustering may be more effective in exposing these rela-

tions [73]. Gene expression data is also important to elucidate

the genetic regulation mechanism in a cell. By examining

the corresponding DNA sequences in the control regions of a

cluster of co-expressed genes, we may identify potential short

and consensus sequence patterns, known as motifs, and further

investigate their interaction with transcriptional binding factors,
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leading to different gene activities. Spellman et al. clustered

800 genes according to their expression during the yeast cell

cycle [260]. Analyzes of 8 major gene clusters unravel the

connection between co-expression and co-regulation. Tavazoie

et al. partitioned 3 000 genes into 30 clusters with the -means

algorithm [269]. For each cluster, 600 base pairs upstream

sequences of the genes were searched for potential motifs. 18

motifs were found from 12 clusters in their experiments and 7

of them can be verified according to previous empirical results

in the literature. A more comprehensive investigation can be

found in [206].

As to another application, clustering tissues or experiments

are valuable in identifying samples that are in the different dis-

ease states, discovering, or predicting different cancer types, and

evaluating the effects of novel drugs and therapies [5], [109],

[238]. Golub et al. described the restriction of traditional cancer

classification methods, which are mostly dependent on mor-

phological appearance of tumors, and divided cancer classifi-

cation into two challenges: class discovery and class predic-

tion. They utilized SOFM to discriminate two types of human

acute leukemias: acute myeloid leukemia (AML) and acute lym-

phoblastic leukemia (ALL) [109]. According to their results,

two subsets of ALL, with different origin of lineage, can be

well separated. Alon et al. performed a two-way clustering for

both tissues and genes and revealed the potential relations, rep-

resented as visualizing patterns, among them [6]. Alizadeh et

al. demonstrated the effectiveness of molecular classification of

cancers by their gene expression profiles and successfully dis-

tinguished two molecularly distinct subtypes of diffuse large

B-cell lymphoma, which cause high percentage failure in clin-

ical treatment [5]. Furthermore, Scherf et al. constructed a gene

expression database to study the relationship between genes and

drugs for 60 human cancer cell lines, which provides an im-

portant criterion for therapy selection and drug discovery [238].

Other applications of clustering algorithms for tissue classifi-

cation include: mixtures of multivariate Gaussian distributions

[105], ellipsoidal ART [287], and graph theory-based methods

[29], [247]. In most of these applications, important genes that

are tightly related to the tumor types are identified according to

their expression differentiation under different cancerous cate-

gories, which are in accord with our prior recognition of roles

of these genes, to a large extent [5], [109]. For example, Alon et

al. found that 5 of 20 statistically significant genes were muscle

genes, and the corresponding muscle indices provided an expla-

nation for false classifications [6].

Fig. 7 illustrates an application of hierarchical clustering

and SOFM for gene expression data. This data set is on the

diagnostic research of small round blue-cell tumors (SRBCT’s)

of childhood and consists of 83 samples from four categories,

known as Burkitt lymphomas (BL), the Ewing family of tumors

(EWS), neuroblastoma (NB), and rhabdomyosarcoma (RMS),

and 5 non-SRBCT samples [164]. Gene expression levels of

6 567 genes were measured using cDNA microarray for each

sample, 2 308 of which passed the filter and were kept for fur-

ther analyzes. These genes are further ranked according to the

scores calculated by some criterion functions [109]. Generally,

these criterion functions attempt to seek a subset of genes that

contribute most to the discrimination of different cancer types.

This can be regarded as a feature selection process. However,

problems like how many genes are really required, and whether

these genes selected are really biologically meaningful, are

still not answered satisfactorily. Hierarchical clustering was

performed by the program CLUSTER and the results were

visualized by the program TreeView, developed by Eisen in

Stanford University. Fig. 7(a) and (b) depicts the clustering

results for both the top 100 genes, selected by the Fisher

scores, and the samples. Graphic visualization is achieved by

associating each data point with a certain color according to the

corresponding scale. Some clustering patterns are clearly dis-

played in the image. Fig. 7(c) depicts a 5-by-5 SOFM topology

for all genes, with each cluster represented by the centroid

(mean) for each feature (sample). 25 clusters are generated

and the number of genes in each cluster is also indicated.

The software package GeneCluster, developed by Whitehead

Institute/MIT Center for Genome Research (WICGR), was

used in this analysis.

Although clustering techniques have already achieved many

impressive results in the analysis of gene expression data, there

are still many problems that remain open. Gene expression data

sets usually are characterized as

1) small set samples with high-dimensional features;

2) high redundancy;

3) inherent noise;

4) sparsity of the data.

Most of the published data sets include usually less than 20

samples for each tumor type, but with as many as thousands of

gene measures [80], [109], [238], [268]. This is partly caused

by the lag of experimental condition (e.g., sample collection), in

contrast to the rapid advancement of microarray and sequencing

technologies. In order to evaluate existing algorithms more

reasonably and develop more effective new approaches, more

data with enough samples or more conditional observations are

needed. But from the trend of gene chip technologies, which

also follows Moore’s law for semiconductor chips [205], the

current status will still exist for a long time. This problem is

more serious in the application of gene expression data for

cancer research, in which clustering algorithms are required to

be capable of effectively finding potential patterns under a large

number of irrelevant factors, as a result of the introduction of

too many genes. At the same time, feature selection, which is

also called informative gene selection in the context, also plays

a very important role. Without any doubt, clustering algorithms

should be feasible in both time and space complexity. Due to

the nature of the manufacture process of the microarray chip,

noise can be inevitably introduced into the expression data

during different stages. Accordingly, clustering algorithms

should have noise and outlier detection mechanisms in order to

remove their effects. Furthermore, different algorithms usually

form different clusters for the same data set, which is a general

problem in cluster analysis. How to evaluate the quality of the

generated clusters of genes, and how to choose appropriate

algorithms for a specified application, are particularly crucial

for gene expression data research, because sometimes, even

biologists cannot identify the real patterns from the artifacts of

the clustering algorithms, due to the limitations of biological
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Fig. 6. Basic procedure of cDNA microarray technology [68]. Fluorescently labeled cDNAs, obtained from target and reference samples through reverse
transcription, are hybridized with the microarray, which is comprised of a large amount of cDNA clones. Image analysis measures the ratio of the two dyes.
Computational methods, e.g., hierarchical clustering, further disclose the relations among genes and corresponding conditions.

Fig. 7. Hierarchical and SOFM clustering of SRBCT’s gene expression data set. (a) Hierarchical clustering result for the 100 selected genes under 83 tissue
samples. The gene expression matrix is visualized through a color scale. (b) Hierarchical clustering result for the 83 tissue samples. Here, the dimension is 100 as
100 genes are selected like in (a). (c) SOFM clustering result for the 2308 genes. A 5� 5 SOFM is used and 25 clusters are formed. Each cluster is represented by
the average values.
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knowledge. Some recent results can be accessed in [29], [247],

and [291].

E. Bioinformatics—DNA or Protein Sequences Clustering

DNA (deoxyribonucleic acid) is the hereditary material ex-

isting in all living cells. A DNA molecule is a double helix con-

sisting of two strands, each of which is a linear sequence com-

posed of four different nucleotides—adenine, guanine, thymine,

and cytosine, abbreviated as the letters A, G, T, and C, respec-

tively. Each letter in a DNA sequence is also called a base.

Proteins determine most of cells’ structures, functions, prop-

erties, and regulatory mechanisms. The primary structure of a

protein is also a linear and alphabetic chain with the difference

that each unit represents an amino acid, which has twenty types

in total. Proteins are encoded by certain segments of DNA se-

quences through a two-stage process (transcription and trans-

lation). These segments are known as genes or coding regions.

Investigation of the relations between DNA and proteins, as well

as their own functions and properties, is one of the important re-

search directions in both genetics and bioinformatics.

The similarity between newly sequenced genes or proteins

and annotated genes or proteins usually offers a cue to identify

their functions. Searching corresponding databases for a new

DNA or protein sequence has already become routine in genetic

research. In contrast to sequence comparison and search, cluster

analysis provides a more effective means to discover compli-

cated relations among DNA and protein sequences. We summa-

rize the following clustering applications for DNA and protein

sequences:

1) function recognition of uncharacterized genes or pro-

teins [119];

2) structure identification of large-scale DNA or protein

databases [237], [257];

3) redundancy decrease of large-scale DNA or protein

databases [185];

4) domain identification [83], [115];

5) expressed sequence tag (EST) clustering [49], [200].

As described in Section II-J, classical dynamic programming

algorithms for global and local sequence alignment are too in-

tensive in computational complexity. This becomes worse be-

cause of the existence of a large volume of nucleic acids and

amino acids in the current DNA or protein databases, e.g., bac-

teria genomes are from 0.5 to 10 Mbp, fungi genomes range

from 10 to 50 Mbp, while the human genome is around 3 310

Mbp [18] (Mbp means million base pairs). Thus, conventional

dynamic programming algorithms are computationally infea-

sible. In practice, sequence comparison or proximity measure

is achieved via some heuristics. Well-known examples include

BLAST and FASTA with many variants [10], [11], [224]. The

key idea of these methods is to identify regions that may have

potentially high matches, with a list of prespecified high-scoring

words, at an early stage. Therefore, further search only needs to

focus on these regions with expensive but accurate algorithms.

Recognizing the benefit coming from the separation of word

matching and sequence alignment to computational burden re-

duction, Miller, Gurd, and Brass described three algorithms fo-

cusing on specific problems [199]. The implementation of the

scheme for large database vs. database comparison exhibits an

apparent improvement in computation time. Kent and Zahler de-

signed a three-pass algorithm, called wobble aware bulk aligner

(WABA) [162], for aligning large-scale genomic sequences of

different species, which employs a seven-state pairwise hidden

Markov model [78] for more effective alignments. In [201],

Miller summarized the current research status of genomic se-

quence comparison and suggested valuable directions for fur-

ther research efforts.

Many clustering techniques have been applied to organize

DNA or protein sequence data. Some directly operate on a

proximity measure; some are based on feature extraction,

while others are constructed on statistical models. Somervuo

and Kohonen illustrated an application of SOFM to cluster

protein sequences in SWISSPROT database [257]. FASTA

was used to calculate the sequence similarity. The resulting

two-dimensional SOFM provides a visualized representation

of the relations within the entire sequence database. Based

on the similarity measure of gapped BLAST, Sasson et al.

utilized an agglomerative hierarchical clustering paradigm to

cluster all protein sequences in SWISSPROT [237]. The effects

of four merging rules, different from the interpretation of

cluster centers, on the resulting protein clusters were examined.

The advantages as well as the potential risk of the concept,

transitivity, were also elucidated in the paper. According to

the transitivity relation, two sequences that do not show high

sequence similarity by virtue of direct comparison, may be

homologous (having a common ancestor) if there exists an

intermediate sequence similar to both of them. This makes it

possible to detect remote homologues that can not be observed

by similarity comparison. However, unrelated sequences may

be clustered together due to the effects of these intermediate

sequences [237]. Bolten et al. addressed the problem with the

construction a directed graph, in which each protein sequence

corresponds to a vertex and edges are weighted based on the

alignment score between two sequences and self alignment

score of each sequence [41]. Clusters were formed through

the search of strongly connected components (SCCs), each of

which is a maximal subset of vertices and for each pair of ver-

tices and in the subset, there exist two directed paths from

to and vice versa. A minimum normalized cut algorithm for

detecting protein families and a minimum spanning tree (MST)

application for seeking domain information were presented in

[1] and [115], respectively. In contrast with the aforementioned

proximity-based methods, Guralnik and Karypis transformed

protein or DNA sequences into a new feature space, based

on the detected subpatterns working as the sequence features,

and clustered with the -means algorithm [119]. The method

is immune from all-against-all expensive sequence compar-

ison and suitable for analyzing large-scale databases. Krogh

demonstrated the power of hidden Markov models (HMMs)

in biological sequences modeling and clustering of protein

families [177]. Fig. 8 depicts a typical structure of HMM, in

which match states (abbreviated with letter M), insert states (I)

and delete states (D) are represented as rectangles, diamonds,

and circles, respectively [78], [177]. These states correspond

to substitution, insertion, and deletion in edit operations. For

convenience, a begin state and an end state are added to the
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Fig. 8. HMM architecture [177]. There are three different states, match (M),
insert (I), and delete (D), corresponding to substitution, insertion, and deletion
operation, respectively. A begin (B) and end (E) state are also introduced to
represent the start and end of the process. This process goes through a series of
states according to the transition probability, and emits either 4-letter nucleotide
or 20-letter amino acid alphabet based on the emission probability.

model, denoted by letter B and E. Letters, either from the 4-letter

nucleotide alphabet or from 20-letter amino acid alphabet,

are generated from match and insert states according to some

emission probability distributions. Delete states do not produce

any symbols, and are used to skip the match states. HMMs are

required inorder to describe clusters,or families (subfamilies),

which are regarded as a mixture model and proceeded with

an EM learning algorithm similar to single HMM case. An

example for clustering subfamilies of 628 globins shows the

encouraging results. Further discussion can be found in [78]

and [145].

IV. CONCLUSION

As an important tool for data exploration, cluster analysis

examines unlabeled data, by either constructing a hierarchical

structure, or forming a set of groups according to a prespecified

number. This process includes a series of steps, ranging from

preprocessing and algorithm development, to solution validity

and evaluation. Each of them is tightly related to each other

and exerts great challenges to the scientific disciplines. Here, we

place the focus on the clustering algorithms and review a wide

variety of approaches appearing in the literature. These algo-

rithms evolve from different research communities, aim to solve

different problems, and have their own pros and cons. Though

we have already seen many examples of successful applications

of cluster analysis, there still remain many open problems due

to the existence of many inherent uncertain factors. These prob-

lems have already attracted and will continue to attract intensive

efforts from broad disciplines. We summarize and conclude the

survey with listing some important issues and research trends

for cluster algorithms.

1) There is no clustering algorithm that can be univer-

sally used to solve all problems. Usually, algorithms

are designed with certain assumptions and favor some

type of biases. In this sense, it is not accurate to say

“best” in the context of clustering algorithms, although

some comparisons are possible. These comparisons are

mostly based on some specific applications, under cer-

tain conditions, and the results may become quite dif-

ferent if the conditions change.

2) New technology has generated more complex and

challenging tasks, requiring more powerful clustering

algorithms. The following properties are important to

the efficiency and effectiveness of a novel algorithm.

I) generate arbitrary shapes of clusters rather than be

confined to some particular shape;

II) handle large volume of data as well as high-dimen-

sional features with acceptable time and storage

complexities;

III) detect and remove possible outliers and noise;

IV) decrease the reliance of algorithms on users-de-

pendent parameters;

V) have the capability of dealing with newly occur-

ring data without relearning from the scratch;

VI) be immune to the effects of order of input patterns;

VII) provide some insight for the number of potential

clusters without prior knowledge;

VIII) show good data visualization and provide users

with results that can simplify further analysis;

IX) be capable of handling both numerical and nom-

inal data or be easily adaptable to some other data

type.

Of course, some more detailed requirements for spe-

cific applications will affect these properties.

3) At the preprocessing and post-processing phase, fea-

ture selection/extraction (as well as standardization

and normalization) and cluster validation are as impor-

tant as the clustering algorithms. Choosing appropriate

and meaningful features can greatly reduce the burden

of subsequent designs and result evaluations reflect

the degree of confidence to which we can rely on the

generated clusters. Unfortunately, both processes lack

universal guidance. Ultimately, the tradeoff among

different criteria and methods is still dependent on the

applications themselves.
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