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Abstract Genome-wide association studies have expan-

ded our understanding of the relationship between the

human genome and disease. However, because of current

technical limitations, it is still challenging to clearly

resolve diploid sequences, that is, two copies for each

chromosome. One copy of each chromosome is inherited

from each parent and the genomic function is determined

by the interplay between the alleles represented as geno-

types in the diploid sequences. Thus, to understand the

nature of genetic variation in biological processes,

including disease, it is necessary to determine the complete

genomic sequence of each haplotype. Although there are

experimental approaches for haplotype sequencing that

physically separate the chromosomes, these methods are

expensive and laborious and require special equipment.

Here, we review the computational approaches that can be

used to determine the haplotype phase. Since 1990, many

researchers have tried to reconstruct the haplotype phase

using a variety of computational methods, and some

researches have been successfully help to determine the

haplotype phase. In this review, we investigate how the

computational haplotype determination methods have been

developed, and we present the remaining problems

affecting the determination of the haplotype of single

individual using next-generation sequencing methods.

Keywords Haplotype determination � Next-generation
sequencing � Computational genomics

Introduction

The study of DNA sequence variations is one of the main

research topics in genetics. Among the diverse variations,

single nucleotide polymorphisms (SNPs) frequently occurs

in the human genome (Sachidanandam et al. 2001), and

their association with disease has been widely investigated.

Recently, with the development of high-throughput data

generation technologies, it has become possible to carry out

genome-wide association studies (GWASs) in the human

genome using a huge number of SNPs (Mardis 2008; Feero

et al. 2010). In particular, next-generation sequencing

(NGS) technologies have helped to identify sequence

variations and their characteristics, leading to numerous

studies of the associations between SNPs and phenotype,

including obesity, diabetes, heart attack and other diseases

(Hirschhorn and Daly 2005). Some studies successfully

identified associations but, in many cases, GWAS did not

have sufficient power and SNP presence did not guarantee

a change in the phenotype (Galvan et al. 2010).

In these circumstances, haplotype analysis has been

highlighted because it may be more advantageous than

traditional genotype analysis in the identification of the

presence of genomic sites that affect disease susceptibility

(Consortium et al. 2005; Morris and Kaplan 2002). The

human genome is diploid and the two copies of each
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chromosome have largely identical sequences, except for

the X and Y chromosomes. Usually, the human genome is

considered to as homozygous because the same alleles are

found at each specific locus. However, there are some

variations between the pairs in a small portion of the

genome, and if there are different alleles at the same

positions of the homologous chromosomes, they are

referred to as heterozygous alleles. Generally, SNP detec-

tion merely reveals if there is a variation at a specific

position and it is not determined which of the two chro-

mosome copies contains this variation. Thus, ideally, it

needs to list the SNPs belonging in each chromosome copy.

Haplotype can be represented as a combination of

heterozygous alleles at multiple loci, that is, the sequential

combination of the SNPs in a single copy among pairs of

chromosomes. The haplotype information can not only

identify associations, but can also help in the study of gene

function, cis-regulatory roles for gene expression, linkage

and inheritance analysis, and evolutionary selection anal-

ysis (Bansal et al. 2011; Browning and Browning 2011;

Tewhey et al. 2011). Therefore, determination of the hap-

lotype, usually referred as phasing, is important for the full

characterization of a single individual genome. Some

techniques have been developed to determine haplotypes

through molecular experiments, such as the microfluidic

whole genome haplotyping approach (Ma et al. 2010; Fan

et al. 2011). This method detects the haplotype information

by separating the individual chromosomes physically at the

cell division process. However, despite its high cost, it is

difficult to obtain accurate results (Browning and Browning

2011).

Computational methods are an alternative approach that

can reduce the cost of haplotype determination. Here, we

review the computational methods that can be used to

determine the haplotype phase. Most of the haplotype

determination problems can be included in the NP-hard

problem, especially when there are some errors (Lancia

et al. 2001; Lippert et al. 2002; Cilibrasi et al. 2005).

Therefore, many computational approaches have been

proposed. There are two computational ways to identify

haplotypes: haplotype inference and haplotype assembly.

Haplotype inference has been traditionally used in com-

putational genetics areas. It attempts to identify the hap-

lotypes of the samples based on sharing information within

the samples from genotype information in the population.

Although the same nucleotides are assigned to both chro-

mosomal copies in homozygous alleles, there is only one

copy of each nucleotide in heterozygous alleles. If there are

m heterozygous sites on the genome, there are 2m possible

haplotypes when we partition it into two groups. This

means that direct phasing of the genotype information is

computationally expensive. In particular, the haplotype

inference methods are much more difficult in the case of

samples with rare variants.

Haplotype assembly aims to determine the haplotype of

a single individual by directly using sequence reads or

fragments originating from one chromosome, meaning that

the method assembles sequence fragments or reads from

identical chromosomal copies. Previously, DNA microar-

ray analysis has produced genotype information for a set of

individuals, so the haplotype has usually been determined

by haplotype inference algorithms. However, with the

development of high-throughput sequencing technologies,

the haplotype assembly methods have become more pre-

cise. Generally, sequence reads are mapped to a reference

genome, and the origin of the reads cannot be determined.

But because each sequence read is derived from a single

copy, it is possible to determine the phase information

using two or more variants. The initial version of the

haplotype assembly method aims to obtain a pair of hap-

lotypes by connecting overlapping fragments with mini-

mum errors. The haplotype assembly methods provide

good results in error-free cases, but there are many limi-

tations to its practical use with real datasets. In the current

review, we investigate the haplotype determination

approaches, explaining the advantages and disadvantages

of each method. We also summarize the recent direction

and implication of the haplotype determination approaches

for the sequencing reads of single individuals.

The structure of this paper is as follows: First, we briefly

review the previous haplotype inference methods. The next

section defines the single individual haplotyping problem.

Then, we review the previous computational haplotype

assembly algorithms used at the population level and the

recent studies of the single individual haplotyping with

various sequencing techniques. The final section discusses

the remaining limitations and proposes a future direction.

Traditional haplotype inference algorithms

Before reviewing the haplotype determination methods for

single individuals, the traditional haplotype inference

algorithms will be introduced. Computational methods for

haplotype inference have been studied since 1990 as the

microarray technologies have been developed. Because

most sequence variation detection methods provide geno-

type information, the traditional haplotype inference

approaches mainly aim to infer the haplotype from the

genotypes in the population (Niu 2004; Weale 2004; Salem

et al. 2005; Marchini et al. 2006). The haplotype inference

methods determine the haplotype under the assumption that

genetically closely located loci are linked and that some

common haplotypes occupy most of the genetic variations
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in the population. Table 1 summarizes the previous hap-

lotype inference approaches.

Clark’s algorithm was the first computational method

for haplotype phasing (Clark 1990). It uses a set of rules to

resolve the haplotypes underlying the genotype informa-

tion. This method starts from a fragment with the clearest

information, that is, at one heterozygous site. By starting

from the known haplotype, the algorithm searches through

the remaining unresolved genotypes and attempts to derive

the haplotype from the genotypes by checking if the

resolved haplotype can be constructed from a combination

of the ambiguous sites of the genotypes. Once the haplo-

type is inferred from the ambiguous genotypes, it is added

to the known haplotype set. The algorithm infers the hap-

lotype by performing the procedures iteratively. The

method is easy to use and can be intuitively understood.

However, although it performs well with small sets, the

performance can be diminished, if the SNPs are not densely

connected. Moreover, if there are no initial unambiguous

genotypes, the method does not work.

Expectation–Maximization (EM) algorithm is some-

times used to overcome the limitations of Clark’s algorithm

(Excoffier and Slatkin 1995; Hawley and Kidd 1995). EM-

based methods can infer the haplotype phase by assigning

the alleles to a haplotype with high probability using the

initially estimated frequency values. For the haplotype

inference problem, the E-step computes the expected val-

ues of the haplotype frequency based on the data and the

M-step maximizes the likelihood of the frequency obtained

at the E-step. By iterating the E-step and M-step, it can find

a possible haplotype for each genotype combination.

However, the standard EM-based method does not handle

the assumptions regarding genetic recombination and

mutations. Also, these can be trapped into local maxima

and the results are sensitive to the initial estimation of

parameters such as allele frequencies. Moreover, the stan-

dard EM-based methods struggle to handle a large number

of loci.

Subsequently, many algorithms were developed with

various approaches. PHASE (Stephens et al. 2001),

Haplotyper (Niu et al. 2002), and HaploBlock (Greenspan

and Geiger 2004) use Bayesian method. MACH (Li et al.

2010), fastPhase (Scheet and Stephens 2006), IMPUTE2

(Howie et al. 2009), and BEAGLE (Browning and

Browning 2007) were implemented based on the hidden

Markov model (HMM). These methods show better per-

formance than the previous parsimony or maximum like-

lihood approaches. PHASE was the first coalescent theory-

based method using the joint probability distribution of

haplotypes. Although it is difficult to carry out genome-

wide studies using this method because it is only available

for a limited number of SNP markers, fastPHASE and

BEAGLE made genome-wide studies possible by using a

haplotype cluster model, and IMPUTE2 and MACH pro-

vide results much faster than PHASE. Also, several

methods infer the haplotype using the tree structure (Li

Table 1 Haplotype inference

methods from genotypes in the

population

Approach Related work Year References

Rule-based approach Clark’s algorithm 1990 Clark (1990)

Expectation–maximization (EM) Excoffier and Slatkin 1995 Excoffier and Slatkin (1995)

HAPLO 1995 Hawley and Kidd (1995)

Tregouet et al. 2004 Tregouet et al. (2004)

Bayesian method PHASE 2001 Stephens et al. (2001)

Haplotyper 2002 Niu et al. (2002)

Arlequin 2003 Excoffier and Lischer (2010)

HaploBlock 2004 Greenspan and Geiger (2004)

DP-Haplotyper 2007 Xing et al. (2007)

Hidden markov model (HMM) fastPhase 2006 Scheet and Stephens (2006)

BEAGLE 2007 Browning and Browning (2007)

IMPUTE2 2009 Howie et al. (2009)

MACH 2010 Li et al. (2010)

HapSeq 2012 Zhi et al. (2012)

Tree HAP 2003 Halperin and Eskin (2004)

Li et al. 2005 Li et al. (2005)

PPHS 2012 Efros and Halperin (2012)

Others PL_EM 2002 Qin et al. (2002)

hap 2002 Lin et al. (2002)

hap2 2004 Lin et al. (2004)

Halldórsson et al. 2011 Halldórsson et al. (2011)
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et al. 2005), whereas Arlequin (Excoffier and Lischer 2010)

is made using Excoffier-Laval Balding algorithm. In this

method, the phase is updated based on a window of

neighboring loci and the window size is adaptively deter-

mined by the local level of linkage disequilibrium. Arle-

quin provides good local estimation of the phase in inter-

population analysis and searches for the shared haplotypes

between populations by comparing them in the inter-pop-

ulation analysis category. In addition, PL-EM was pro-

posed based on a partition-ligation strategy and the EM

algorithm (Qin et al. 2002). This method partitions the

whole haplotype into small segments and then constructs

the partial haplotypes and assembles the segments, using

Gibbs sampling or an EM-based approach.

These approaches to statistical inference of the haplo-

type were largely successful, but the results were some-

times incorrect (Geraci 2010; Browning and Browning

2011). For example, when a haplotype specifically exists in

a particular sample or there are rare or novel variants, the

haplotype cannot be correctly determined. Moreover, to

infer the correct haplotype, a relatively large number of

individual genotypes are required. In addition, it is difficult

to know if the haplotype is correctly inferred or not.

Definition of the haplotype determination
of a single individual

Haplotype determination was defined by Lancia et al.

(2001). Figure 1 shows an example of haplotype assembly.

The sequence fragments are aligned to the reference gen-

ome sequence. The sequence fragment can be a single

sequence read or concatenated sequence reads. If a paired-

end or mate-pair technique is applied, the fragment can be

a combination of two reads. Using this information, we can

call sequence variants and determine the homozygous

(homo) and heterozygous (hetero) sites in the genome.

Homozygous sites have identical alleles, whereas

heterozygous sites have different alleles. One genomic site

can usually produce three different genotypes, a homo

wildtype, a homo mutant type (homo SNP), and a hetero

form of the wildtype and mutant type (hetero SNP). It is

enough to consider only hetero SNPs for the haplotype

determination problem because the homo SNPs and the

other identical positions are exactly the same in both

chromosomes.

To determine the haplotype, we need to constitute the

fragment f, which is represented as a set of heterozygous

sites in a DNA fragment. The alphabet of the fragment is

presented as ‘‘1’’, ‘‘0’’, and ‘‘-’’. If a base in a specific site

is identical to the reference, the alphabet is 1. If there is a

sequence variant, then the alphabet is 0. If there is no the

matched form, the alphabet is presented as ‘-’. We can

then construct n 9 m fragment matrix M, where n is the

total number of heterozygous sites and m is the number of

fragments. From the fragment matrix M, haplotype deter-

mination algorithms try to detect a pair of haplotypes. As

an example in Fig. 1, we assumed that there are five SNPs

in the genome sequence. However, there were hetero SNPs

at positions 1, 2, and 3; and homo SNPs at positions 4 and

5. In this case, only three hetero SNPs were used.

Several notations were defined for the following sec-

tions: h is haplotype, and f is fragment. So, j-th fragments

are represented as fj and the k-th haplotype is hk. Then, fji
and hji are i-th hetero SNP sites at the fragment fj and

haplotype hj, respectively. The next section will review the

previous approaches to haplotype assembly.

Computational approaches for haplotype assembly

After the mid-2000s, many researchers tried to solve the

haplotype assembly problem by the taking advantage of

developments in sequencing technology (Geraci 2010).

The approaches can be categorized by their objective

function model or their computational approach. In this

paper, the previous methods are mainly categorized using

their objective functions: minimum error correction

(MEC), weighted minimum letter flip (WMLF), maximum

fragment cut (MFC), and others (Table 2).

Fig. 1 Haplotype determination problem. SNP sites that are different

from the reference sequence are indicated by (1) to (5). The positions

(1) to (3) are hetero SNPs and (4) to (5) are homo SNPs. f is a

fragment and h is a haplotype

4 Genes Genom (2016) 38:1–12
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Minimum error correction

MEC aims to minimize errors by comparing the predicted

haplotype and the input SNP matrix M. Figure 2 illustrates

an example of haplotype construction using a partition to

calculate the errors. The input SNP matrix M is partitioned

and two haplotypes are constructed from the fragments in

each partition. The objective is to minimize the sum of the

differences between the constructed haplotype and the

partitioned matrix.

Suppose that there are m fragments at M. The MEC

score is represented as follows:

MECðM;HÞ ¼
Xm

j¼1

X2

k¼1

DperFragðfj; hkÞ ð1Þ

The score is presented as the sum of the differences

between the j-th fragment fj and the k-th haplotype hk. The

differences DperFrag(fj, hk) is calculated by Eq. (2).

DperSNP(fji, hki) is 1 if the fragment fj and haplotype hk are

different at the i-th identical SNP site; otherwise, it is 0.

G(hk) is the k-th subset of the fragments when the frag-

ments are partitioned to k subsets. That is, F(fj, hk) is an

indicator function representing which partition includes the

fragment fj.

DperFrag fj; hk
� �

¼
Xn

i¼0

F fj; hk
� �

� DperSNP fji; hki
� �

ð2Þ

F fj; hk
� �

¼ 1 if fj 2 G hkð Þ
0 otherwise

�
ð3Þ

Table 2 Haplotype assembly

methods for single individuals
Model Approach Related work Year References

MECa Branch and bound algorithm Wang et al. 2005 Wang et al. (2005)

Lim et al. 2012 Lim et al. (2012)

Genetic algorithm Wang et al. 2005 Wang et al. (2005)

GA-MEC 2008 Wu et al. (2008)

GAHap 2012 Wang et al. (2012)

Satisfiability problem (SAT) He et al. 2010 He et al. (2010)

HapSat 2011 Mousavi et al. (2011)

xGenHapSat 2012 Mousavi (2012)

Probabilistic approach SHR 2008 Chen et al. (2008)

HASH 2008 Bansal et al. (2008)

HAPCUT 2008 Bansal and Bafna (2008)

ProbHap 2014 Kuleshov (2014)

Others 2D-MEC 2007 Wang et al. (2007)

Wu et al. 2009 Wu et al. (2009)

SSK 2012 Xu and Li (2012)

Deng et al. 2013 Deng et al. (2013)

HapAssembly 2013 Chen et al. (2013)

WMLFb Zhao et al. 2005 Zhao et al. (2005)

Kang et al. 2008 Kang et al. (2008)

Xie et al. 2008 Xie et al. (2008)

HapAssembler 2010 Kang et al. (2010)

Wu et al. 2013 Wu et al. (2013)

MFCc Graph RefHap 2010 Duitama et al. (2010)

Others Heuristic algorithm Levy et al. 2007 Levy et al. (2007)

SpeedHap 2007 Genovese et al. (2008)

Graph (spanning tree) HapCompass 2012 Aguiar and Istrail (2012)

Heuristic dynamic programming H-BOP 2012 Xie et al. (2012)

Mixture model MixSIH 2013 Matsumoto and Kiryu (2013)

Fuzzy conflict graphs FastHap 2014 Mazrouee and Wang (2014)

a MEC minimum error correction
b MLF weighted minimum letter flip
c MFC maximum fragment cut
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DperSNP fji; hki
� �

¼ 1 if fji 6¼ 0�0;hki 6¼ 0�0; and fji 6¼ hki
0 otherwise

�

ð4Þ

As an example in Fig. 2, three fragments, f1, f2, and f6
are included in h1 and other fragments in h2, then F(f1, h1)

is 1 and F(f1, h2) is 0. MEC model is the most popular way

to solve the haplotype determination problem and the goal

can be easily understood. Therefore, diverse computational

approaches have been applied based on MEC. The fol-

lowing subsections will explain the representative compu-

tational methods that use MEC as the objective function.

Based on the definition in the previous section, haplo-

type determination can be viewed as a way to find the

optimal path using a binary tree, because the problem can

be converted into choosing the side between haplotypes h1

and h2. Wang et al. (2005) tried to apply a so-called branch

and bound algorithm. Each node is a fragment in the tree

structure and the edge indicates the index of the haplotype

group. From the root node, that is the first fragment, the

algorithm adds a fragment and measures the MEC score.

Then if the calculated score is bigger than the previous

score, it would be divided. The branch and bound algo-

rithm can identify the exact optimal solution, but the time

complexity is exponentially increased by the number of

fragments. Therefore, its use in a large-scale datasets is

difficult. Lim et al. (2012) reduced the search space of the

branch and bound algorithm by identifying the initial upper

bound using a local search algorithm and solved the MEC

problem in practical terms. However, their method was

applied to insect species, so further improvement would be

necessary to allow it to be used in other species.

Genetic algorithms have been applied due to its reliable

performance in NP problems that require a great deal of

computational time. Wang et al. (2005) evaluated the

haplotype in each generation using a fitness function based

on MEC model. The genetic algorithm finds a solution

using the following fitness value in each generation:

fitness ¼ 1�MECðM;HÞ
m � n

ð5Þ

Similar to the conventional genetic algorithms, the ini-

tial population is randomly generated. In the evolutionary

process, the population is re-generated based on the pre-

vious individuals, using crossover and mutation operators.

The haplotypes in each generation are evaluated using

Eq. (5), and then the new individuals are generated. By

repeating the process, the optimal haplotype can be selec-

ted. GA-MEC is a variation of the genetic algorithm for the

determination of haplotypes (Wu et al. 2008). In GA-MEC,

the fragments are partitioned at each generation using a

method similar to k-means clustering. After a pair of

haplotypes is constructed randomly, each fragment is

compared to the two haplotypes. Then, the fragment is

classified to the group that has the minimal DperFrag (�)
value in Eq. (2). In this way, each fragment is assigned to

the two haplotype groups. Next, new haplotypes are con-

structed using the divided fragment information and the

fragment is re-classified by measuring the DperFrag (�) value
between the newly generated haplotype and the fragment.

By repeating the iterative process until the haplotype does

not change, the haplotype is determined. The fitness value

is also calculated by Eq. (5). GAHap is another similar

approach (Wang et al. 2012), but it uses Hamming distance

to calculate the difference between a haplotype and a

fragment, without encoding the SNP values to 0, 1, and

‘-’, as introduced in the previous section. Therefore, the

method has advantages in that it can handle data that

include tri- or tetra-allelic loci. Also, it does not remove

homozygous sites from the input matrix, so it reconstructs

the haplotype considering the case marked as a homozy-

gous locus by a sequence error in the original data. How-

ever, the GA-based approaches usually require

considerable time to identify the solution, so their appli-

cation to large datasets is difficult.

Another way to solve the haplotype determination using

a MEC model is to transform the problem into a satisfia-

bility (SAT) problem. He et al. (2010) proposed a partial

Max-SAT formulation for haplotype assembly. Mousavi

et al. (2011) suggested a HapSat model by converting the

haplotype determination problem to a Max-2-SAT prob-

lem, which is more general than the partial Max-SAT. This

Fig. 2 An example of haplotype determination using the MEC

model. M is a SNP fragment matrix, and H indicates the predicted

haplotypes

6 Genes Genom (2016) 38:1–12

123



approach can use the general Max-SAT solver and the

formation is more generalized, considering homozygous

alleles that can appear due to sequence errors. In addition,

it is formulated with fewer variables and clauses. The

logical equations are as follows:

C ¼ fg

F0
j ¼

0 if Fðfj; h1Þ ¼ 1

1 if Fðfj; h2Þ ¼ 1

�

if fji ¼ 0

C ¼ C [ fðF0
jm� h1iÞ; ð�F0

jm� h2iÞg
else if fji ¼ 1

C ¼ C [ fðF0
jmh1iÞ; ð�F0

jmh2iÞg

ð6Þ

Often, the datasets for haplotype determination such as

readmapping data and variant calling data are incomplete and

include several errors. Some studies tried to overcome this

limitation by using probabilistic models. Because the frag-

ments of the input SNP matrix are obtained from two hap-

lotypes, Chen et al. (2008) assumed that the fragments were

generated according to two parameters representing errors.

They designed a probabilistic function using the error

parameters for the haplotype. From the input fragment matrix

M, the fragments are divided into two sets and the most fre-

quent character in each SNP site is selected to determine the

haplotype sequence. Therefore, the two haplotypes can be

reconstructed with a possible high probability. HASH (Ban-

sal et al. 2008) and HAPCUT (Bansal and Bafna 2008) also

used probabilistic models based on graph structure. They

constructed a graph with the input matrix. The node is the

column of the matrix, which is itself each SNP. If there is a

fragment that includes the two sites, the two nodes are con-

nected by an edge. The weight of the edge is the difference

between the number of fragments matched to the haplotype

sites and the unmatched fragment. HASH uses a graph-cut

algorithm and constructs Markov chain, but HAPCUT opti-

mizes the MEC score by using a Max-Cut algorithm. In these

two methods, the distance to both haplotypes is calculated for

all fragments, and the fragments with the lowest distance are

selected. By calculating the overall MEC scores and using a

greedy algorithm, the best pair of haplotypes is determined by

using the best MEC score.

Clustering approaches have also been used. Wang et al.

(2007) suggested 2D-MEC model in which the difference

between two fragments is measured as shown in Eq. (7).

This method iteratively divides the fragments and gener-

ates haplotypes.

DperFragToFragðfj; hkÞ ¼
Xn

i¼0

DperSNPðfji; fkiÞ ð7Þ

Wu et al. (2009) clustered the m fragments to two groups

representing haplotypes by self-organizing map (SOM) and

Xu and Li (2012) used a semi-supervised k-means clus-

tering method.

In addition, one method uses dynamic programming to

determine the haplotype for a single individual (He et al.

2010). Basically short reads are represented as binary

strings and assigned to each pair of haplotypes to minimize

the conflicts with the reads. However, this approach uses the

optimal MEC for partial haplotypes and repeatedly extends

the partial haplotypes by one bit to obtain the full-length

haplotypes. The results showed that the method can be

applied to whole-genome sequencing datasets. However,

when there are many SNP sites, the dynamic programming

algorithm needs considerable computational time. To solve

this drawback, Deng et al. (2013) combined this dynamic

programming method with a heuristic approach. This

method first obtains a subset of the input matrix M by a

randomized sampling approach and carries out the dynamic

programming. Once it produces an initial solution from the

submatrix, it refines the haplotypes by comparing the initial

haplotype with all fragments. By repeating the initial

solution and refinement steps, the haplotype is determined.

HapAssembly converts the haplotype assembly problem

to an integer linear programming problem for optimization

(Chen et al. 2013). The input matrix M is decomposed into

small independent blocks and the integer linear program-

ming problem is formulated for each block. It can obtain

good results for single optimal solution problems.

Weighted minimum letter flip

The WMLF is a modification of the MEC model. Basically,

when the constructed haplotype is different from elements

of the input SNP matrix, a letter flip is performed. The total

error is measured by the number of letter flips so that the

SNP matrix is identical to the constructed haplotype. The

WMLF model additionally uses the m-by-n weight matrix

representing the confidence of each SNP. If all of the

elements on the weight matrix are 1, then the WMLF is

identical to the MEC model. The difference between the

fragments and haplotype in WMLF is shown in Eq. (9).

DWMLF SNPðfji; hkiÞ ¼
Wji if fji 6¼ 0�0; and fji 6¼ hki
0 otherwise

�

ð8Þ

WMLFðM;H;WÞ ¼
Xm

i¼1

DWMLF SNPðfji; hkiÞ ð9Þ

Equation (9) calculates the total distance which is the sum

of the differences between all of the fragments and the

haplotype.

The WMLF model has been used as an objective func-

tion for genetic algorithms (Kang et al. 2010) and heuristic

Genes Genom (2016) 38:1–12 7
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approaches (Xie et al. 2012). Moreover, there is also a

complete WMLF (CWMLF) model, which combines the

WMLF, minimum fragment removal (MFR), and minimum

SNP removal (MSR) (Zhao et al. 2005). MFR is a method

to remove the minimum number of vertices from the

fragment conflict graph so that the resulting graph is

bipartite, whereas MSR is a method to remove the mini-

mum number of vertices from the SNP conflict graph so

that no two vertices are adjacent. Zhao et al. (2005) showed

that the CWMLF model is effective for solving the hap-

lotype assembly problem by showing that the SNP errors

and fragment error rates are lower than those of the WMLF

model in their experimental datasets.

Maximum fragment cut

The MFC converts the haplotype determination problem to

a Max-Cut problem. The vertices in the graph structure are

the fragments fs and the edges are represented by the

similarity between two fragments. RefHap is the most

popular method that uses MFC (Duitama et al. 2010) and it

is one of the practically applicable methods at present. The

distance between two the fragments fj and fl is defined as

follows:

DMFC Frag fji; fli
� �

¼
1; if fji 6¼ 0�0;fli 6¼ 0�0; and fji 6¼ fli
�1; if fji 6¼ 0�0;fli 6¼ 0�0; and fji ¼ fli
0; otherwise

8
<

:

ð10Þ

The distance between two fragments is defined as the

sum of the SNP distance, DMFC_Frag. Note that Eq. (10) has

-1 even if these have the same value. In this approach, the

fragments are divided into two groups to minimize the sum

of the distances. For example, RefHap uses a graph

structure and each node represents a fragment in the graph.

When the fragments have different characters, the two

nodes are connected. The weights for the edges are deter-

mined by how many characters are not identical between

the two fragments. This method aims to divide the nodes

into two subsets with the smallest sum of distances.

Other objective functions

Several researchers have presented another possible ways

to determine single individual haplotypes. Levy et al.

(2007) and Genovese et al. (2008) proposed heuristic

methods for the haplotype determination using greedy

methods to construct the haplotype. Aguiar and Istrail

(2012) developed a haplotype determination method that

uses graph structure. In the model, the SNPs are nodes and

the sequence reads are edges. Using this method, the SNPs

and sequence reads are converted to spanning trees and

then the haplotype is assembled by solving the minimum

weighted edge removal optimization problem. Matsumoto

and Kiryu (2013) developed a variational Bayes expecta-

tion maximization (VBEM) algorithm that has two mixture

components representing each haplotype. The authors

defined the minimum connectivity score (MC score), which

is a quality score evaluating partially assembled haplotype

segments that are free from switch errors. By selecting

regions with high MC scores, the haplotypes can be

accurately assembled. Another approach is to combine the

previously defined objective functions. Xie et al (2012)

combined the two existing models, MEC and MFC,

showing that the model could efficiently solve the haplo-

type phasing problem. Mazrouee and Wang (2014) con-

structed a fuzzy conflict graph by defining the inter-

fragment distance. Fragment partition was performed using

the fuzzy conflict graph, similar to the previous MFC

method. The partition is then further refined with the MEC

model to achieve improved results.

Recent studies of single individual haplotyping
using NGS

Nowadays, with developments in sequencing technologies,

the aim of haplotype determination is to determine the

haplotype of the entire genome of a single individual.

Clark’s algorithm, which is the first computational haplo-

type phasing method developed, was applied to only two

genes, Adh and Est-6 of Drosophila melanogaster (Clark

1990). These genes contain 43 and 52 SNPs, respectively.

Even though some algorithms were developed for single

individual haplotyping, they were applied to a small

number of SNPs, around 100, by limiting the dataset

(Wang et al. 2005, 2007; Zhao et al. 2005; Kang et al.

2010). Successful results were obtained, but it is difficult to

confirm that these algorithms would work well in large-

scale datasets, such as the entire human genome.

To date, some complete real datasets have been gener-

ated for haplotype determination. Table 3 summarizes the

sequencing-based datasets produced for haplotype deter-

mination with computational approaches. Levy et al.

(2007) first constructed the haplotype of a single individual

from the sequencing datasets. They collected the sequence

fragments of Craig J. Venter (HuRef) that were generated

by the Sanger sequencing method and assembled the

fragments by using a greedy algorithm. The HuRef dataset

has been used to verify the performance of newly devel-

oped computational algorithms for some years. For

example, the HASH and HAPCUT methods were origi-

nally applied to the HuRef datasets (Bansal et al. 2008;

Bansal and Bafna 2008) to validate their proposed meth-

ods. He et al. (2010) also solved the haplotype

8 Genes Genom (2016) 38:1–12
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determination problem using the HuRef datasets and

dynamic programming for short sequence reads by con-

verting to Max-SAT problem for paired-end reads.

For single individual haplotyping, one of the biggest

problems with NGS data is the short length of the sequence

reads because these short reads do not include enough

variations. However, several experimental methods have

recently been developed to overcome the short length

problem. One of the recent representative methods is the

fosmid pool-based sequencing approaches. Kitzman et al.

(2011) and Suk et al. (2011) produced fosmid-based

sequencing datasets for a single individual and determined

the haplotype by using the previously developed HAPCUT

and RefHap methods, respectively. Duitama et al. (2011)

generated fosmid-based sequencing datasets for the

NA12878 CEU individual. In recent years, the sequencing

data for the HapMap sample NA12878 has often been used

for computation phasing experiments and for the evalua-

tion of haplotype phasing results.

Although fosmid-based sequencing can generate long-

phased contigs, a large amount of DNA for sequencing and

extensive library processing are needed. To overcome this

problem, Peters et al. (2012) developed long fragment read

(LFR) technology without cloning or physical separation of

chromosomes to determine the haplotype. The computa-

tional haplotyping methods are based on a graph structure.

They constructed a graph with nodes corresponding to the

hetero SNPs and with edges corresponding to the expected

distances within the hetero SNP pairs. The haplotype was

assembled by generating a minimum spanning tree from

the datasets. Kaper et al. (2013) also proposed a cost

effective method using conceptually similar dilution-am-

plification-based sequencing techniques. These methods

reduce the library preparation time but require ultra-deep

sequencing of the samples and partially unphased variants

can remain. Kuleshov et al. (2014) proposed a statistically

aided, long-read haplotyping (SLRH) method. They con-

structed haplotypes from relatively short DNA fragments

that are amplified by PCR to reduce the amplification bias.

The method involves two stages. In the first local assembly

step, the fragments are assembled into haplotype blocks by

connecting the fragments with overlapping hetero SNPs

using a dynamic programming algorithm. The local

assembly step is conceptually similar to the previous hap-

lotyping methods, such as RefHap (Duitama et al. 2010)

and HapCut (Bansal and Bafna 2008). Then, in the global

Table 3 Haplotype determination for human individuals using high-throughput sequencing datasets and computational approaches

Dataset Sequencing method Computational approaches Year Representative

references

HuRef Sanger sequencing Greedy algorithm Levy et al. (2007)

HASH Bansal et al. (2008)

HAPCUT Bansal and Bafna (2008)

He et al. (2010)

HapAssembly Chen et al. (2013)

2007 Levy et al.

(2007)

MaxPlank one Fosmid sequencing RefHap Duitama et al. (2010) 2011 Suk et al.

(2011)

HapMap sample NA20847 Fosmid sequencing HAPCUT Bansal and Bafna (2008) 2011 Kitzman et al.

(2011)

HapMap sample NA12878 Fosmid sequencing RefHap Duitama et al. (2010)

HapAssembly Chen et al. (2013)

MixSIH Matsumoto and Kiryu (2013)

H-BOP Xie et al. (2012)

2012 Duitama et al.

(2011)

HapMap sample NA19240, six libraries from

European HapMap pedigree 1463, and a single

library from personal genome project sample

NA20431

Dilution-based sequencing

with barcode adapters

Graph-based custom LRF
haplotype algorithm Peters et al.

(2012)

2012 Peters et al.

(2012)

HapMap sample NA18506, NA20847,

NA18507, HG01377, NA18506, and NA12878

Dilution-based sequencing

with barcode adapters

RefHAP Duitama et al. (2010) 2013 Kaper et al.

(2013)

NA20431 of the personal genome project

(designated PGP1)

BAC HAPCUT Bansal and Bafna (2008) 2013 Lo et al. (2013)

HapMap sample NA12878, NA12891, NA12892 Dilution-based sequencing

with barcode adapters

Prism Kuleshov et al. (2014) 2014 Kuleshov et al.

(2014)

Bold indicates a method that is used in the original paper presented in the last column
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assembly step the local blocks are formed into long hap-

lotype contigs based on the hidden Markov model, similar

to IMPUTE2 (Howie et al. 2009). This approach is able to

produce long haplotype contigs with a high likelihood

score and high confidence. In addition, Lo et al. (2013)

generated a sequencing results based on bacterial artificial

chromosomes (BACs). Their approach could reduce the

sequencing costs and generate longer fragments than fos-

mid-based sequencing and LFR techniques.

Conclusions and future directions

The haplotype information of the entire genomes of a

single individual helps to clarify our understanding of the

structure of the human genome and its individual-specific

function. Moreover, it will provide more accurate transla-

tional results and phenotype prediction (Tewhey et al.

2011; Browning and Browning 2011; Hoehe 2003; Glus-

man et al. 2014). Because it is still expensive to separate

the two copies of a chromosome using wet-lab experi-

mental methods, computational methods will play a prac-

tically important role in the single individual haplotyping

of the whole genome. The present paper reviewed the

haplotype determination problem and its computational

solution. The methods have been rapidly developed in

response to the production of a growing number of datasets

by NGS techniques. Many researchers have tried to solve

the haplotype determination problem for single individuals

using various computational approaches, including statis-

tical and heuristic methods, with several proper objective

functions.

These approaches achieved successful results, but it is

still a challenge to determine the complete haplotype of a

single individual on a genome-scale. One of the main

problems to be tackled is the short length of the sequencing

reads. Short reads do not include enough sequence varia-

tions in a single read, so it is difficult to determine the

complete haplotype. Recently, longer reads have been

made possible by developments in sequencing methods, for

example, fosmid-based sequencing methods (Kitzman

et al. 2011; Suk et al. 2011; Duitama et al. 2011). Fur-

thermore, nanopore DNA sequencing methods would also

be helpful (Clarke et al. 2009). However, these methods are

labor intensive and time-consuming, so a more effective

algorithm is necessary to determine haplotype from high-

throughput sequence reads. Kuleshov et al. (2014) pro-

posed a statistically aided, long-read haplotyping method to

determine single individual haplotypes by combining rel-

atively short reads and fosmid sequencing. However it is

still challenging to determine the haplotype from short

sequence reads. Moreover, in most cases, it is impossible to

fully reconstruct the haplotype, usually because of the

coverage problem. Another factor affecting the accuracy in

real problems is the error rate. Most recent haplotype

assembly algorithms provide effective results if the data-

sets have low error rates. However, in datasets with high

error rates, the accuracy is decreased. To overcome the

read length and error rate problems, a new algorithm

should be developed to uncover the relationships among

multiple fragments, even though the fragments do not

overlap. Recently, Chen et al. (2014) proposed a hyper-

graph-based haplotype assembly algorithm to capture the

higher-order relationships among the fragments. However,

it needs to be validated using recent real sequence datasets.

Moreover, use of family or trio information would help to

improve the accuracy of the haplotype determination

results (Aguiar and Istrail 2013; Roach et al. 2011).

Additionally, Yang et al. (2013) tried to overcome the

haplotype assembly problem by identifying most likely

haplotype segments based on a probabilistic model, by

combining the traditional haplotype inference methods.

They combined the information from a reference dataset

such as HapMap or the 1000 genome by using a likelihood

framework.

Finally, to improve efficiency and achieve a reasonable

computational time and memory capacity, parallel com-

puting approaches or the application of MapReduce

methods are required. Due to the computational chal-

lenges, parallel computing has been increasingly impor-

tant in the biological research area, especially in high-

performance sequencing (Taylor 2010). As mentioned

above, haplotype determination is a time-consuming pro-

cess that requires extensive computational power and

memory capacity. High performance computing would

overcome this limitation. The MapReduce frameworks

have been used for NGS analysis. For example, the

Genome analysis toolkit, one of the most popular NGS

analysis tools, was designed using the MapReduce

framework (McKenna et al. 2010). In addition, Cloud-

burst, a tool to map the sequence reads to a reference

genome, also uses a parallel read-mapping algorithm

based on MapReduce (Schatz 2009). Therefore, a new

algorithm needs to be developed for haplotype determi-

nation based on parallel computing. This new algorithm

would help more accurate and effective haplotypes to be

constructed and help to improve the biological under-

standing of the human genome.
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Halldórsson BV, Aguiar D, Istrail S (2011) Haplotype phasing by

multi-assembly of shared haplotypes: phase-dependent interac-

tions between rare variants. In: Pacific Symposium on Biocom-

puting, World Scientific, pp 88–99

Halperin E, Eskin E (2004) Haplotype reconstruction from genotype

data using imperfect phylogeny. Bioinformatics 20:1842–1849

Hawley M, Kidd K (1995) Haplo: a program using the EM algorithm

to estimate the frequencies of multi-site haplotypes. J Hered

86:409–411

He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E (2010) Optimal

algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics 26:i183–i190

Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for

common diseases and complex traits. Nat Rev Genet 6:95–108

Hoehe M (2003) Haplotypes and the systematic analysis of genetic

variation in genes and genomes. Pharmacogenomics 4:547–570

Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate

genotype imputation method for the next generation of genome-

wide association studies. PLoS Genet 5:e1000

Kang SH, Jeong IS, Choi MH, Lim HS (2008) Haplotype assembly

from weighted SNP fragments and related genotype information.

In: Chen J, Hopcroft JE (eds) Frontiers in Algorithmics.

Springer, Berlin, pp 45–54

Kang SH, Jeong IS, Cho HG, Lim HS (2010) Hapassembler: a web

server for haplotype assembly from SNP fragments using genetic

algorithm. Biochem Biophys Res Commun 397:340–344

Kaper F, Swamy S, Klotzle B, Munchel S, Cottrell J, Bibikova M,

Chuang HY, Kruglyak S, Ronaghi M, Eberle MA et al (2013)

Whole-genome haplotyping by dilution, amplification, and

sequencing. Proc Natl Acad Sci USA 110:5552–5557

Kitzman JO, MacKenzie AP, Adey A, Hiatt JB, Patwardhan RP,

Sudmant PH, Ng SB, Alkan C, Qiu R, Eichler EE et al (2011)

Haplotype-resolved genome sequencing of a gujarati indian

individual. Nat Biotechnol 29:59–63

Kuleshov V (2014) Probabilistic single-individual haplotyping.

Bioinformatics 30:i379–i385

Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z, Blauwkamp T,

Kertesz M, Snyder M (2014) Whole-genome haplotyping using

long reads and statistical methods. Nat Biotechnol 32:261–266

Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R (2001) SNPs

problems, complexity, and algorithms. In: Meyer auf der Heide

(ed.). Algorithms-ESA 2001, Springer, Heidelberg, pp 182–193

Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod

N, Huang J, Kirkness EF, Denisov G et al (2007) The diploid

genome sequence of an individual human. PLoS Biol 5:e254

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) Mach: using

sequence and genotype data to estimate haplotypes and unob-

served genotypes. Genet Epidemiol 34:816–834

Genes Genom (2016) 38:1–12 11

123



Li Z, Zhou W, Zhang XS, Chen L (2005) A parsimonious tree-grow

method for haplotype inference. Bioinformatics 21:3475–3481

Lim HS, Jeong IS, Kang SH (2012) Individual haplotype assembly of

apis mellifera (honeybee) using a practical branch and bound

algorithm. J Asia-Pac Entomol 15:375–381

Lin S, Cutler DJ, Zwick ME, Chakravarti A (2002) Haplotype

inference in random population samples. Am J Hum Genet

71:1129–1137

Lin S, Chakravarti A, Cutler DJ (2004) Haplotype and missing data

inference in nuclear families. Genome Res 14:1624–1632

Lippert R, Schwartz R, Lancia G, Istrail S (2002) Algorithmic

strategies for the single nucleotide polymorphism haplotype

assembly problem. Brief Bioinform 3:23–31

Lo C, Liu R, Lee J, Robasky K, Byrne S, Lucchesi C, Aach J, Church

G, Bafna V, Zhang K (2013) On the design of clone-based

haplotyping. Genome Biol 14:R100

Ma L, Xiao Y, Huang H, Wang Q, Rao W, Feng Y, Zhang K, Song Q

(2010) Direct determination of molecular haplotypes by chro-

mosome microdissection. Nat Methods 7:299

Marchini J, Cutler D, Patterson N, Stephens M, Eskin E, Halperin E,

Lin S, Qin ZS, Munro HM, Abecasis GR et al (2006) A

comparison of phasing algorithms for trios and unrelated

individuals. Am J Hum Genet 78:437–450

Mardis ER (2008) The impact of next-generation sequencing

technology on genetics. Trends Genet 24:133–141

Matsumoto H, Kiryu H (2013) Mixsih: a mixture model for single

individual haplotyping. BMC Genom 14(Suppl 2):S5

Mazrouee S, Wang W (2014) Fasthap: fast and accurate single

individual haplotype reconstruction using fuzzy conflict graphs.

Bioinformatics 30:i371–i378

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,

Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al

(2010) The genome analysis toolkit: a mapreduce framework for

analyzing next-generation DNA sequencing data. Genome Res

20:1297–1303

Morris RW, Kaplan NL (2002) On the advantage of haplotype

analysis in the presence of multiple disease susceptibility alleles.

Genet Epidemiol 23:221–233

Mousavi SR (2012) Improved haplotype assembly using xor geno-

types. J Theor Biol 298:122–130

Mousavi SR, Mirabolghasemi M, Bargesteh N, Talebi M (2011)

Effective haplotype assembly via maximum Boolean satisfiabil-

ity. Biochem Biophys Res Commun 404:593–598

Niu T (2004) Algorithms for inferring haplotypes. Genet Epidemiol

27:334–347

Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for

multiple linked single-nucleotide polymorphisms. Am J Hum

Genet 70:157–169

Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P, Alexeev A,

Jiang Y, Dahl F, Tang YT, Haas J et al (2012) Accurate whole-

genome sequencing and haplotyping from 10 to 20 human cells.

Nature 487:190–195

Qin ZS, Niu T, Liu JS (2002) Partition-ligation-expectation-maxi-

mization algorithm for haplotype inference with single-nu-

cleotide polymorphisms. Am J Hum Genet 71:1242

Roach JC, Glusman G, Hubley R, Montsaroff SZ, Holloway AK,

Mauldin DE, Srivastava D, Garg V, Pollard KS, Galas DJ et al

(2011) Chromosomal haplotypes by genetic phasing of human

families. Am J Hum Genet 89:382–397

Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD,

Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL et al

(2001)Amap of human genome sequence variation containing 1.42

million single nucleotide polymorphisms. Nature 409:928–933

Salem RM, Wessel J, Schork NJ (2005) A comprehensive literature

review of haplotyping software and methods for use with

unrelated individuals. Hum Genomics 2:39

Schatz MC (2009) Cloudburst: highly sensitive read mapping with

mapreduce. Bioinformatics 25:1363–1369

Scheet P, Stephens M (2006) A fast and flexible statistical model for

large-scale population genotype data: applications to inferring

missing genotypes and haplotypic phase. Am J Hum Genet

78:629–644

Stephens M, Smith NJ, Donnelly P (2001) A new statistical method

for haplotype reconstruction from population data. Am J Hum

Genet 68:978–989

Suk EK, McEwen GK, Duitama J, Nowick K, Schulz S, Palczewski S,

Schreiber S, Holloway DT, McLaughlin S, Peckham H et al

(2011) A comprehensively molecular haplotype-resolved gen-

ome of a European individual. Genome Res 21:1672–1685

Taylor RC (2010) An overview of the hadoop/mapreduce/hbase

framework and its current applications in bioinformatics. BMC

Bioinformatics 11(Suppl 12):S1

Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ (2011) The

importance of phase information for human genomics. Nat Rev

Genet 12:215–223

Tregouet D, Escolano S, Tiret L, Mallet A, Golmard J (2004) A new

algorithm for haplotype-based association analysis: the stochas-

tic-EM algorithm. Ann Hum Genet 68:165–177

Wang RS, Wu LY, Li ZP, Zhang XS (2005) Haplotype reconstruction

from SNP fragments by minimum error correction. Bioinfor-

matics 21:2456–2462

Wang TC, Taheri J, Zomaya AY (2012) Using genetic algorithm in

reconstructing single individual haplotype with minimum error

correction. J Biomed Inform 45:922–930

Wang Y, Feng E, Wang R (2007) A clustering algorithm based on

two distance functions for MEC model. Comput Biol Chem

31:148–150

Weale ME (2004) A survey of current software for haplotype phase

inference. Hum genomics 1:141–145

Wu J, Wang J, Chen J (2008) A genetic algorithm for single

individual SNP haplotype assembly. In: Young computer

scientists, 2008. ICYCS 2008. The 9th International Conference

for, IEEE, pp 1012–1017

Wu J, Wang J, Chen J (2013) A heuristic algorithm for haplotype

reconstruction from aligned weighted SNP fragments. Int J

Bioinform Res Appl 9:13–24

Wu LY, Li Z, Wang RS, Zhang XS, Chen L (2009) Self-organizing

map approaches for the haplotype assembly problem. Math

Comput Simulat 79:3026–3037

Xie M, Wang J, Chen J (2008) A model of higher accuracy for the

individual haplotyping problem based on weighted snp frag-

ments and genotype with errors. Bioinformatics 24:i105–i113

Xie M, Wang J, Jiang T (2012) A fast and accurate algorithm for

single individual haplotyping. BMC Syst Biol 6(Suppl 2):S8

Xing EP, Jordan MI, Sharan R (2007) Bayesian haplotype inference

via the Dirichlet process. J Comput Biol 14:267–284

Xu XS, Li YX (2012) Semi-supervised clustering algorithm for

haplotype assembly problem based on MEC model. Int J Data

Min Bioinform 6:429–446

Yang WY, Hormozdiari F, Wang Z, He D, Pasaniuc B, Eskin E

(2013) Leveraging reads that span multiple single nucleotide

polymorphisms for haplotype inference from sequencing data.

Bioinformatics 29:2245–2252

Zhao YY, Wu LY, Zhang JH, Wang RS, Zhang XS (2005) Haplotype

assembly from aligned weighted SNP fragments. Comput Biol

Chem 29:281–287

Zhi D, Wu J, Liu N, Zhang K (2012) Genotype calling from next-

generation sequencing data using haplotype information of

reads. Bioinformatics 28:938–946

12 Genes Genom (2016) 38:1–12

123


	Survey of computational haplotype determination methods for single individual
	Abstract
	Introduction
	Traditional haplotype inference algorithms
	Definition of the haplotype determination of a single individual
	Computational approaches for haplotype assembly
	Minimum error correction
	Weighted minimum letter flip
	Maximum fragment cut
	Other objective functions

	Recent studies of single individual haplotyping using NGS
	Conclusions and future directions
	Acknowledgments
	References


