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Abstract

Knowledge production within the interdisciplinary field of human–robot interaction (HRI) with social robots has accelerated,
despite the continued fragmentation of the research domain. Together, these features make it hard to remain at the forefront
of research or assess the collective evidence pertaining to specific areas, such as the role of emotions in HRI. This systematic
review of state-of-the-art research into humans’ recognition and responses to artificial emotions of social robots during
HRI encompasses the years 2000–2020. In accordance with a stimulus–organism–response framework, the review advances
robotic psychology by revealing current knowledge about (1) the generation of artificial robotic emotions (stimulus), (2)
human recognition of robotic artificial emotions (organism), and (3) human responses to robotic emotions (response), as well
as (4) other contingencies that affect emotions as moderators.
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Building our research on and relating it to existing knowl-

edge is the building block of all academic research activities,

regardless of discipline [227], p. 333.

1 Introduction

Due to demographic change and related skilled-worker
scarcity [25] and increased technological penetration of our
private and working lives [232], social robots and success fac-
tors of human–robot interaction (HRI) become increasingly
important. HRI and research on it represent a multidisci-
plinary field. It involves “the study of the humans, robots,
and the ways they influence each other” ([84], p. 257). HRI
research brings together various disciplines, such as robotics,
engineering, computer science, human–computer interac-
tion, cognitive science, and psychology [13]. Across these
domains, a growing body of research focuses on human inter-
actions with social robots. These robots “exist primarily to
interact with people” ([142], p. 322) or evoke social responses
from them [158]. Social robots appear in numerous roles,
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such as museum guides [226], receptionists [235,236,239],
educational tutors [114,127], household supporters [219],
and caretakers [56,114,148,252].

Due to their automated social presence, such robots make
humans “feel that they are in the company of another social
entity” ([277], p. 909). Social presence is often associ-
ated with a robot’s ability to express artificial emotions
and facilitate social relationships [126]. Emotional signals
have been shown as important factors in human–human rela-
tionsips [237], and emotions by robots increase humans’
perceptions of the transparency of the HRI. Furthermore,
these signals allow humans to interpret robotic behaviors
using well-known social cues, which they learned from prior
human–human interactions [75]. As social robots gain the
capacity to approximate humans more closely, their emo-
tional expressions increasingly facilitate social HRI [37,107,
204]. Accordingly, and thereby contributes to robotic psy-
chology. Robotic psychology is defined as interdisciplinary
field examines emotional, cognitive, social, and physical
human responses to human-robot interactions by also consid-
ering physical and social environments. This overview seeks
to synthesize research knowledge pertaining to emotions dur-
ing HRI with social robots.

As the popularity of social robots continues to rise
[124,215], research into their displayed emotions also has
accelerated; between 2000 and 2020, more than 1600 publi-
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Fig. 1 Publication rates of
studies that examine emotions
during HRI (source:
dimensions.ai)
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cations appeared in this area. The publication rate across the
two decades indicates continuous increases, as Fig. 1 shows.

Empirical studies of emotions during HRI mainly revolve
around three topics: (1) emotion expression by robots, (2)
human recognition of robotic emotions, and (3) human
responses to robotic artificial emotions. Some concep-
tual/overview articles, studies on emotion recognition during
HRI, and publications in related fields also can inform the
current literature synthesis. The complexity and fragmen-
tation in this research domain makes it challenging for
researchers to keep up with state-of-the-art findings. Further-
more, it is difficult to conceive the collectivity of evidence
available in a particular research area. Therefore, a litera-
ture review is both timely and necessary. This comprehensive
review aims to identify publications dealing with emotions
during HRI with social robots (for studies on manufacturing
robots, see [182,186,209]), following the process detailed in
Fig. 2.

As a starting point, this review relies on an electronic
search of digital libraries (Google Scholar, ScienceDi-
rect, and Dimensions) using keywords such as “human–
robot interaction / HRI AND emotion”, “robots AND
emotion”, and “social robots AND emotions”. Next, the
author conducted a manual search of proceedings pub-
lished in key journals and conferences (for a complete list
of reviewed conferences and journals see Web-Appendix
1 tiny.cc/IJSR20WebApp1). This initial scanning process
revealed more than 1600 publications; further screening iden-
tified many of these publications as patent reports, short
reports, or book chapters though. After excluding them from

further consideration, 473 articles remained for the review
(Fig. 2).

As Fig. 2 indicates, several other exclusion criteria apply
for the review process too. First, the focus of this review is
on emotions during HRI with social robots.

Second, in a broader sense, HRI involves a wide spectrum
of research topics, such as industrial robots, telepresence,
virtual reality, and wearables [9,36]. This review takes a
more narrow perspective by focusing on embodied HRI [56].
Accordingly, 24 studies on emotions exhibited during inter-
actions with non-humanoid or non-embodied agents, such
as virtual avatars and wearables, are excluded from further
consideration.

Third, to maintain focus on dyadic interactions between
typically developed humans and social robots, this review
excludes several studies. Specifically, studies in unique, par-
ticular settings, such as human–robot teams that depend
on other, dynamic effects (for an overview see [287]) are
excluded. Furthermore, HRIs that are specific to humans
experiencing health issues, in which the medical diagnostics
is pivotal to defining the HRI [269,270] are excluded. Web-
Appendix 2 (tiny.cc/IJSR20WebApp2) outlines the excluded
studies; these references may serve as further readings for
researchers with special interests in these excluded areas.

Fourth, this review requires original empirical publi-
cations that underwent a double-blind and peer-reviewed
process. Conceptual contributions and dissertations thus are
excluded. Because of their predominant emphasis on con-
ceptual approaches, studies of the ethical implications of
emotions during HRI are also excluded. After applying these
criteria, a total of 175 papers remain for the survey.
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Fig. 2 Flowchart of the literature screening process

This review also may facilitate theory development. In
particular, the insights from extant research indicate several
areas that demand more research, as manifested in calls for
conceptual and empirical models of emotions during HRI
with social robots. Accordingly, this review sought to address
five main research questions:

(1) What methods have been applied for robotic emotional
expression generation?

(2) How well can robotic artificial emotions be recognized
by humans?

(3) How do humans respond to artificial robotic emotions?
(4) How do contingencies affect the relationship between

robotic emotions and human responses during HRI?
(5) What remains to be learned regarding emotions during

HRI?

In accordance with the guidelines for systematic literature
reviews [15,261], the review effort involves explanations of
underlying theoretical perspectives, empirical design issues,
and major findings to establish a foundation of existing
research that can advance knowledge. By integrating both
perspectives and empirical findings, it identifies areas in
which research findings are disparate or exhibit interdisci-
plinary views.

To answer the research questions, Sect. 2 starts with a
description of the conceptual framework as an organizing
structure for this review. Section 3 presents the state of the art,
organized by application domains. Finally, Sect. 4 outlines
research directions for the field. The paper finishes with a
conclusion in Sect. 5.

2 Framework of the Overview

A detailed review of published articles reveals four main
streams of research on (1) emotional expressions by robots,
(2) the human recognition of artificial robotic emotions, (3)
human responses to robotic emotions, and (4) contingency
factors. These research streams provide the basis for the
review framework in Fig. 3.

To present extant research, this article organizes the dis-
cussions along a causal chain, which parallels the notions of
the stimulus–organism–response (S–O–R) paradigm [178].
According to this framework, certain features of the envi-
ronment (stimulus) affect people’s cognitive and emotional
states (organism), which in turn drives behavioral responses
(response) [66]. In parallel with the S–O–R paradigm for the
current analysis, the stimulus (HRI) is an independent vari-
able, and an organism is a mediator (human participants, their
cognitive or affective states, and their prior experiences). The
response (behaviors during the HRI) is the dependent vari-
able for this review (see also [267,289]).

This relationship is not automatic but rather tends to be
shaped by the context and people’s own experience. The sum-
mary in Fig. 3 displays the focal topic of emotions during HRI
with social robots.
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Fig. 3 Conceptual framework
of this review
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3 State of the Art

3.1 Research Stream 1: Robotic Expressions of
Artificial Emotions

The first research stream includes 71 reviewed studies and
relates to the stimulus, depicted in Fig. 3. Reviewing this
research attempts to answer the first research question: What

methods have been applied for robotic emotional expression

generation?

In a classical S–O–R paradigm, a stimulus can include
expressions of another person’s internal states [77]. For the
current framework, it entails expressions of artificial emo-
tions by a robot [72]. Emotions are perceived as strong
feelings by observers [80], so they offer important stim-
uli during both human–human interactions [259] and HRI
[39,144].

Disciplines. For their foundation, these studies rely on con-
tributions from robotics (e.g., [1,11,156]) and HRI [121,
122,169,225]. Further studies are rooted in human–computer
interaction (e.g., [3,4,21,99,140,173], engineering [171], and
philosophy [101].

Theoretical approaches. Some researchers (e.g., [167]) rely
on a multilevel process theory of emotion [160–162]. It holds
that people perceive emotions within a three-level hierarchi-
cal system, including a sensory level that generates primary
emotions, a schematic level that integrates perceptions and
responses in a memory system, and a conceptual level that
integrates prior experiences with predictions about the future.
This model provides valuable insights about the cognitive
processes during HRI.

Other researchers base their proposed classification stan-
dards for robotic emotion expressions on conceptual con-
siderations [51,87], the facial action coding system (FACS)
emotions [300], or a circumplex model of emotions [31,125].
The FACS includes six basic emotions—happiness, surprise,

anger, sadness, fear, and disgust—that arguably can be expe-
rienced by both humans and non-humans [74]. In contrast,
secondary emotions such as interest and curiosity are partic-
ular to humans [59]. Still other classifications rely on user
responses [139], emotion simulations [180,181], or emo-
tion animations [278]. This model suggests characterizing
robotic artificial emotional expressions according to valence
and arousal dimensions (for reviews, see [152,216]). Accord-
ingly, a basic premise of the circumplex model is that a
person’s affective states appear along the circumference of a
circle, on which the various dimensions can be classified by
their degrees of positive or negative affect.

Methods for generating artificial emotions. The applied
methods can be classified into two major categories: (1) static
and (2) dynamic.

Static approaches to robotic emotion generation create man-
ually coded, pose-to-pose robotic animations based on stable
system architectures of robotic emotions, using hand-crafted
categorizations of robotic emotions. Authors have proposed
robotic emotion architectures based on predefined scripts
[2,64], predefined emotional spaces [42,143], movements
of pneumatic actuators [106], or a fuzzy emotion system
[271,293].

Dynamic approaches can be either proactive or reactive.
Proactive emotion generation may be inspired by graphic
animation design, such as Disney’s 12 basic principles of ani-
mation [90], which can be applied to generate lifelike robotic
emotions too. The underlying notion of these principles is to
use “pose-to-pose animation, in which several keyframes are
defined and interbetweened to get the intermediate postures”
([175], p. 546). This creative design-oriented approach gen-
erates high-quality robotic animations because it is adapted to
the morphology of the robot. Furthermore, emotions might
stem from a combination of features, hand-crafting, a cre-
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ative design approach, and direct imitations of the human
body [175].

Reactive emotion generation instead relies on data, gener-
ated through the recognition of human emotions in general,
as might be gleaned from humans’ faces, head movements,
body motions/gestures, speech, touch, or brain feedback (for
overviews see [208,211]. Table 1 provides an overview of the
recognition areas).

Studies in this tradition mostly attempt a direct imitation
by tracking human emotional expressions, such as with com-
puter vision techniques, or special markers and sensors. The
key positions then can be mapped to the robot’s movement
space either with data-driven processing [290] or by defin-
ing some suitable transfer functions for the robot morphology
[176].

Summary of findings. Hand-coded robotic animations can
offer high quality [175]. However, these static approaches
are limited because “robot performance based on a static
emotional state cannot vividly display dynamic and complex
emotional transference” ([282], p. 160). Furthermore, the
limited set of emotions increases the likelihood of repetitive
behavior, which may appear inappropriate in HRI. Therefore,
research suggests that robotic emotion generation should be
based on dynamic algorithms that can recognize human emo-
tion. Yet despite its strengths, this approach is challenging
due to the differences in the movement possibilities between
humans and robots [175].

3.2 Research Stream 2: Human Recognition of
Artificial Robotic Emotions

The second research stream includes 43 reviewed studies and
relates to the organism depicted in Fig. 3. Reviewing this
research attempts to answer the second research question:
How well can robotic artificial emotions be recognized by

humans?

In the S–O–R paradigm, an organism refers to any “inter-
nal processes and structures intervening between stimuli
external to the person and the final actions, reactions, or
responses emitted” ( [12], p. 46). For this survey, the organ-
ism is represented by humans’ recognition of robotic artificial
emotions, expressed via face, body, or both. Details about
the reviewed studies in this stream can be found in Web-
Appendix 3 (tiny.cc/IJSR20WebApp3).

Geographical origins. Most of the studies that fall into
this stream focus on a single country (see for details Web-
Appendix 3) in Europe (e.g., Austria [265], France [40,
68,190], Germany [75,95,105,110,111,170,236], the Nether-
lands [98], Portugal [224], Switzerland [76], and the United
Kingdom [16,46,174]), Asia (e.g., China [141,223], India
[215,241], Japan [123,124,131,229,251,254,295], Korea

[187], and Taiwan [102]), or America (e.g., United States
[22,29,115,117,183,256] and Mexico [214]). Only four stud-
ies investigate humans’ recognition of robotic emotions
across multiple countries [19,55,82,215]. For example, [19]
find cultural differences in emotion recognition among par-
ticipants from the United States, Asia, and Europe, as do
[82] for Denmark, the United Kingdom, and Germany. Other
studies capture data from Germany, Hungary, India, the
Netherlands, Poland, Portugal, and the United Kingdom
[215] or Germany, Slovakia, and Spain [55], without explic-
itly examining cultural differences.

Disciplines. For their foundation, these studies rely on
contributions from robotics [20,40,55,82,187,214,223,224,
242], human–computer interaction [253,254,256,295], HRI
[29,75,105,110,123,170,183,215,229], and social robotics
[16,76,179,265]. One study is rooted in neuroscience [68].

Theoretical approaches. From a theoretical perspective,
most of the studies [17,22,29,40,68,70,86,95,174,183,214,
215,224,236] rely on the FACS model [72]. The circumplex
model of emotions (see Sect. 3.1) also has been applied in
several studies [18,29,55,111,117,229,251,265]. A closely
related approach is Plutchik’s wheel of emotions [205],
which has been applied in two studies [253] [254].

Examined emotions and modes of expression. Table 2 sum-
marizes the percentage recognition rates by which humans
can recognize the six basic emotions of the FACS model
[73,74]. The determination of the average percentage val-
ues is based on the detailed list of reported recogni-
tion rates across the reviewed studies in Web-Appendix 4
(tiny.cc/IJSR20WebApp4). Recognized emotions provide a
basis “for evaluating and judging events to assess their overall
value with respect to the creature (e.g., positive or negative,
desirable or undesirable, etc.)” ([31], p.273).

A closer look at the studies (see Table 2 and in detail
Web-Appendix 4) reveals that there is only little consistency
across the reviewed studies. Rather, they are heterogeneous
in several important respects:

– Manipulated emotions: Most existing studies select
manipulated emotions based on the FACS approach [71]
or the circumplex model [216]. Therefore, a large propor-
tion of these studies focuses on the emotions of happiness,
surprise, anger, fear, sadness, and disgust.

– Robotic agents: Robotic agents can be distinguished as
anthropomorphic (category a and b) or zoomorphic (cat-
egory c) robots (see Fig. 4). Due to their different degrees
of freedom in their bodies and/or faces, they exhibit dif-
ferent abilities to express emotions.

– Body parts for emotion expression: Consistent with
notions from social psychology [63], existing publica-
tions focus on facial or bodily emotion expressions, or
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Table 1 Studies on robotic emotion generation based on human emotions

Focus Reviewed studies

Robotic emotion expression during HRI based on humans emotion expression via

Face Ahmed et al. [3] Alonso-Martin et al. [4], Azuar et al. [11], Benamara et al. [21], Bera et al.
[23,24], Bryant [35], [47], Dandil and Özdemir [54], Deng et al. [60], Goulart et al. [96],
Greco et al. [99], Gunes et al. [101], Ilić, Žužić, and Brščić [121], Inthiam et al. [122],
Kim et al. [140], Le et al. [155], Lee and Kang [156], Li et al. [166], Liu et al. [169],
Lopez-Rincon [171], Maeda and Geshi [173], Nunes [194], Panya and Patel [199], Shi et
al. [225], Vithanawasam and Madhusanka [273], Wu et al. [280], Zhang and Xiao [296],
Zhang et al. [169,297,298]

Body Inthiam, Mowshowitz, and Hayashi [122], Nunes [194], Vithanawasam and Madhusanka
[273], Wang et al. [275]

Speech Alonso-Martin et al. [4], Anjum [8], Breazeal [29], Breazeal and Aryananda [30],
Chastagnol [45], Chen et al. [48], Devillers et al. [62], Erol et al. [78], Huang et al. [118],
Hyun et al. [120], Kim et al. [135], Kwon et al. [151], Le and Lee [154], Li et al. [166],
Park et al. [200], Park et al. [203], Park and Sim [201], Rázuri et al. [212], Song et al.
[228], Tahon et al. [245], Zhu and Ahmad [302]

Brain feedback Schaaff and Schultz [220], Su et al. [240], Tsuchiya et al. [266], Val-Calvo et al. [268]

Thermal imaging e.g., based on facial cutaneous temperature Abd et al. [1]

Biofeedback Kurono et al. [149], Rani and Sarkar [210], Sugaya [241], Yang et al. [288]

Multimodal information Bien et al. [26], Castillo et al. [41], Cid et al. [52], Keshari and Palaniswamy [134], Wu and
Zheng [281], Yu and Tapus [292]

Online audio-visual emotion recognition Kansizoglou et al. [132]

Table 2 Average human recognition rates of robotic emotional expressions and Mann–Whitney U test results

(I) Average rates of human recognition of robotic emotional expressions

Modes of robotics emotion expression Expressed basic emotions Average recognition per
expression mode (%)

(average recognition rates in %)

Happiness Surprise Anger Fear Sadness Disgust

(a) Facial expressions 71.24 57.14 63.49 38.89 68.09 53.72 58.76

(b) Body expressions 65.04 59.65 61.62 56.53 72.96 31.40 57.87

(a) Facial and body expressions 62.09 76.08 56.77 36.12 55.95 66.08 58.85

Average recognition rate for basic emotions 66.12 64.29 60.62 43.84 65.67 50.40 58.49

(II) Comparison of facial and body expressions; Mann–Whitney U test results

z-Score − .14 − .20 − .44 − .94 − .04 − .19

p-Value .89 .84 .66 .35 .97 .23

U-Value 182.0 83.5 136.0 47.5 110.5 8.0

Significance measured at .05; two-tailed test; Table results are based on the detailed information of Web-Appendix 4

both, as exhibited by robots during HRI. This hetero-
geneity may also result from the availability of different
robots (see Fig. 4).

– Context of HRI: Most of the studies have been conducted
in a laboratory setting or online (see Web-Appendix 4);
only two studies feature real-life settings, i.e., home set-
tings [98] or clinical settings [183].

– Scenario for the HRI: With regard to the type of HRI, the
studies differ in whether the interaction is face-to-face,
video-based, or based on images (see Web-Appendix 4).

An interesting question is whether differences in humans’
ability to recognize robotic emotions occur when emotions

are expressed by the robot’s face or body. Because most of
the studies only reported average recognition rates as per-
centages (see Table 2 and in detail Web Appendix 4), the
requirements for a t-test for independent samples are not met.
The test for potential differences for this review therefore
relies on a Mann–Whitney U test [189,217,303]. This test
indicates whether the central tendencies of two independent
samples (e.g., studies on human recognition of facial robotic
emotion expressions and studies on human recognition of
bodily robotic expressions) are different. Mathematically, the
Mann–Whitney U statistics can be defined as follows [189]:
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Zeno R50 robot
(Cameron et al. [38])

Travis robot
(Birnbaum et al.  [27])

SociRobot
(Ghazali et al. [91, 92])

Elenoide
(Stock et al. [233])

Fig. 4 Sampling of robotic avatars

Ux = nx ny +
nx (nx + 1)

2
) − Rx (1)

Uy = nx ny +
ny(ny + 1)

2
) − Ry (2)

where nx is the number of observations in the first group of
studies (e.g., studies of facial expression recognition); ny is
the number of observations in the second group of studies
(e.g., studies on bodily expression recognition).

Rx is the sum of the ranks assigned to the first group and
Ry is the sum of the ranks assigned to the second group. That
is, the Mann–Whitney U test is based on the idea of ranking
the data; the measured values themselves are not used in the
calculations, but instead are replaced by ranks, which inform
the actual test. Thus, calculations are based solely on the order
of the data (i.e., greater than, less than). Absolute distances
between the values are not considered. For example, both U
equations can be understood as the number of observations
in the experimental studies on HRI when all the scores from
one group are placed in ascending order.

Researchers suggest greater importance of facial relative
to bodily expressions during HRI [295]. Of the reviewed
studies in this stream, a large portion examines face-to-face
human–robot interaction [16,40,75,82,97,105,117,123,131,
170,187,214,223,224,229,242,251,254,256,265], whereas
other studies rely on images [20,29,55,61,68,76,82,110,117,
183,214,215,295] to express robotic emotions. With their
findings, they detail efficient methods to program robots’ arti-

ficial expressions, using both facial expressions and bodily
features. However, in the current review, no significant dif-
ferences arise in participants’ recognition rates of emotions,
expressed by a robot using either facial or bodily expressions
(see Table 2). The Mann–Whitney U test further shows that
the recognition rates during HRI with a physically embod-
ied robot are not higher than those in HRI with an image-
or video-based robot, which is consistent with some extant
findings [117].

Robot type. Robotic avatars can be categorized into three
groups (see Fig. 4): robotic faces, fully embodied robots,
and zoomorphic robots. Robotic faces (e.g., Flobi robot,
Melvin robot, EMYS robot, Golem-X robot, ERWIN robot,
android PKD, KISMET robot) have been used commonly
in studies of facial emotional expressions. Fully embodied
robots appear in studies of bodily emotional expressions
(e.g., KOBIAN, WE-4RII, Nao, Pepper, Elenoide). Among
zoomorphic robots, the Keepon, KAROTY, and Pepe robots
have been investigated.

Research setting. Most of the reviewed studies feature lab-
oratory settings [19,29,40,68,75,76,82,86,103,105,117,123,
131,170,183,187,190,214,223,224,229,242,251,253,256,265,
294,295]. Another set of studies is designed as online exper-
iments [19,55,82,110,117,214,215]. A study by De Graaf,
Allough, and van Dijk [97] involves qualitative interviews.
No studies use field settings.
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As participants, the majority of studies rely on adult stu-
dent samples [16,76,82,105,117,123,170,214,223,224,229,
242,251,254,256,265]; three feature adult non-student respon-
dents, specified either as household members [97], non-
clinicians/clinicians [183] or frontline employees [236].
Others include mixed samples of adult participants, obtained
through online channels [19,55,82,110,117,214]. Among
some notable exceptions, some studies used data gathered
from children as participants [17,29]. Canamero and Fred-
slund [40] compare the recognition capabilities of adults and
children and find that children recognize robotic emotions
better than adults. Several studies do not identify their partici-
pants clearly [22,53,68,70,75,95,131,174,188,215,242,295].

Summary of findings. These studies affirm that robots can be
programmed to express emotions, despite not actually having
them. The average values of the recognition rates for dif-
ferent emotions serve as indicators, though various robotic
agents require adequate programming and testing to establish
expressions of robotic emotions.

Despite the differences across robots, the revealed recog-
nition rates also offer some guidance regarding what robotic
emotional expressions are associated with what emotions.
In Table 2 the average recognition rates of most studies are
well above the threshold value of 15% recommended in early
HRI studies [29] for both facial expressions (58.76) and body
expressions (57.87) (see in detail Web-Appendix 4). Thus,
future HRI studies should strive for an emotion recognition
rate of at least 50% for both facial and bodily expression. Fur-
thermore, these examined emotions provide an initial basis
for creating standardized, posed emotional expressions that
accurately and reliably convey information. The validated
expressions in robotic research also are less likely to suf-
fer the problems that have been associated with emotional
expression stimuli developed without any standardized sys-
tem. Yet few studies provide data about any mean differences
in detection rates; instead, they report percentages. This lim-
its the capacity for tests of significant differences across
groups. Although the results provide initial indications, an
empirically validated “gold standard” for expressing robotic
emotions is not yet available.

3.3 Research Stream 3: Human Responses to
Artificial Robotic Emotions

The third research stream includes 61 reviewed studies and
relates to the response depicted in Fig. 3. Reviewing this
research attempts to answer the third research question: How

do humans respond to artificial robotic emotions? In the
S–O–R paradigm, the response is a person’s reaction to a
stimulus. Accordingly, research stream 3 includes studies of
human reactions to robotic emotions (see for details Web-
Appendix 5, tiny.cc/IJSR20WebApp5).

Geographical origins. The reviewed studies in this research
stream mostly take place in single countries, which span
most of the world, including Korea [136,138,202], Japan
[128–130,147,188,192,193,196,253,286], India [255], and
China [223,243,301] in Asia. France [5,6,43], the Nether-
lands [91,92,230,258,283,284], Finland [102], Germany
[195,233,264], Italy [17], Spain [89], Sweden [7], and the
United Kingdom [28,38,146,157,213,279] in Europe; as
well as the United States [27,49,50,93,115,119,142,145,153,
159,165,218,221], Canada [222], Israel [113,114], Australia
[231], New Zealand [33], and Brazil [262].

Only three studies include multiple countries [82,179]
[104]. These studies reveal insights on contingency factors
that may affect the strength of the effects of human responses
on HRI. One study includes both the United States and Japan
[179]. Robotic joy prompts similar ratings from humans in
both countries, but a robot that appears to represent another
culture is perceived as part of the outgroup. Another study
includes Australia and Japan [104]. Results show that Aus-
tralian participants perceived an android robot more positive
than Japanese participants. A comparative study of native
language speakers from Denmark, the UK, and Germany
found that different communities hold different expectations
regarding robotic emotional expressions [82].

Disciplines: Most of the studies have their origins in the
field of robotics [5,6,43,115,138,145,179,196,202,223,283,
284,301], human–computer interaction [38,93,111,128,129,
230], or HRI [27,49,50,91,92,113,114,136,146,157,159,165,
188,195,213,218,221,243,255,258,279]. Emotional reactions
to HRI also have attracted considerations of social interac-
tions, as detailed in research into behavioral robotics [28],
cognitive science [102], ergonomics [119], social robotics
[142,147,192], and psychology [253].

Theoretical approach. Social identity theory [179] and the
similarity attraction paradigm [5,6], as first introduced by
Tajfel and colleagues [246,247,249,250] provide frameworks
for examining whether humans perceive robots as part of
their social ingroup or social outgroup. The unified theory
of acceptance and the technology acceptance model (TAM)
[28,222,231], rooted in information systems research [57,58]
that deal with technology acceptance by humans, also have
been applied to HRI. In the TAM, perceived usefulness and
ease of use determine behavioral intentions to use a system,
which in turn predicts actual use [57].

In addition, cognitive appraisal theory [83] and the hierar-
chical model of cognitive appraisal, [198] provide a frame-
work for developing artificial agents that are capable of
exhibiting emotional responses [150]. Finally, the uncanny
valley paradigm [146,234,264], first introduced by Mori
[184,185,274], helps to predict humans’ emotional responses
to robots, according to their human-likeness (i.e., extent to
which they resemble humans [172]).
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Fig. 5 Input-process-output
model to summarize human
responses to emotions during
HRI

Robotic
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Examined relationships regarding emotions. Different vari-
ables represent robotic emotional actions, as emotion-related
input, and the human reactions to robotic emotions, or human
reactions during HRI. Several variables also have been stud-
ied as outcomes of robotic emotions on the one hand and
antecedents of human reactions to robotic emotions on the
other, which are referred to as emotion-related mediators.
The investigated variables can be organized into an input-
process-output model, depicted in Fig. 5.

With regard to emotion-related input, studies show that
robots’ characteristics, such as indications of their personal-
ity [5,6,202], empathy [43], or human-likeness [33,234,279],
affect emotions during HRI. For example, a robot’s personal
similarity with the human and human-likeness affect accep-
tance among humans.

Robotic emotion displays [7,28,89,93,115,146,159,179,
221,253,263,264] and emotional capabilities [286], such as
using non-verbal cues [102,147] or referring to humans by
name [128,218], also increase robot acceptance. Human
characteristics, such as their emotional intelligence [50,153]
and experience with robots [119], similarly can affect emo-
tions during HRI. Finally, social cues, including the length
[301] or mode of emotional expression [27,38,49,91,92,136,
213,255], help determine emotions during HRI.

The emotion-related mediators help explain how an
emotion-related input relates to the human response to a HRI
[133]; see Fig. 5. Only one study examines indirect effects
pertaining to emotions during HRI [230]. It shows that a
robot’s emotional valence indirectly affects user perceptions
through their emotional appraisals of the HRI.

Although not explicitly identified as investigations along
these lines, several studies shed relevant light on potential
emotion-related variables that likely mediate the input–

human reaction relationship. In examining both antecedents
and human responses to a set of constructs, they identify
what is referred to as emotion-related mediators in Fig. 5.
These potential mediators include a robot’s perceived social
nature [27,301], emotional responsiveness [27,49,113–115,
165,221,243], and pleasantness [38,115,138,223,230,283,
284].

Finally, among human responses to HRI, the stud-
ies examine affective, cognitive, and behavioral reactions
[191]. Affective responses include affect [91,111,145,192,
196,213], likability [102,243], empathy [136], interest in
the robot [129], uncanniness [146], emotional adaptation to
robotic emotions [157,195,283,284], and trust in the robot
[43,91].

Cognitive responses include the attention to the robot
[115], social agency judgements [92], overall perception of
the robot [255], perceived human-likeness [146], emotional
interpretation [159], emotional valence [230], and perceived
ingroup connections [179]. Some researchers [109,238]
leverage the TAM. From the TAM, only perceived useful-
ness has been included thus far as a dependent variable to
examine emotions during HRI [223,243]. The behavioral
responses include variables such as intensity of the inter-
action [5,6,93,114,202], positive reactions [258], avoidance
[142], altruistic behavior toward the robot [253], and human
performance [145,165,188,221].

Empirical design/sample. Most studies use laboratory exper-
iments [5,6,14,27,28,38,44,49,91–93,102,104,111,113,114,
129,130,135,137,142,145–147,157,159,165,188,190,192,195,
202,213,221,223,243,253,255,258,279,283,284,299,301] with
students [5,27,28,32,44,49,91,92,104,111,113,114,157,188,
193,221,223,253,255,283,284,301]. The participants are usu-
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ally adults, without further specification [14,102,129,130,
137,142,146,165,192,196,218,230,301], or else are chil-
dren [38,128,135,145,147,159,165,190,213,258,279]. Web-
Appendix 5 (tiny.cc/IJSR20WebApp5) provides further
details. The controlled simulation of HRI in laboratories may
reflect the continued legitimacy of a positivist paradigm in
mainstream robotics research, according to which findings
that are supposed to have a knowledge character should be
limited to the interpretation of “positive”, i.e., actual, sen-
sory, perceivable, and verifiable findings. Yet this research
tends to be limited in its generalizability.

Few studies include online experiments [50,119,179,230]
or data from online participants who represent various back-
grounds. Three experimental studies were conducted in a
real-life setting, gathering data from visitors [129,142] or
clients in elder care [130]. Most studies involved small sam-
ples of fewer than 50 respondents; only about 20% feature
50 respondents or more.

All reviewed studies rely on participants’ self-ratings,
which are useful to assess their characteristics. Gaug-
ing emotions or behaviors with self-ratings may create
a threat of common method variance [207], “attributable
to the measurement method rather than to the constructs
the measures represent” ([206], p. 879). It creates a false
internal consistency, suggesting an apparent correlation
among variables that actually is generated by their common
source.

In most cases, the studies focus on a single interaction

with a robot, reflecting an implicit assumption that humans’
emotional reactions remain identical and do not change over
time or through additional interactions with a robot [276]. In a
few longitudinal studies, the same user interacts with a robot
several times. For example, a six-month field experiment [93]
shows that HRI lasts longer with emotional robots (which
express happiness or sadness) than neutral robots. A field
study in a shopping mall over a period of 26 days [129]
reveals that participants who evaluate the robot positively
also express more interest in the interaction. A nine week
study determines that the degree of empathy humans offer in
response to emotional expressions does not differ from their
degree of empathy after verbal expressions [142].

Such longitudinal studies are more laborious and time-
consuming [88]. Furthermore, only recently has the technol-
ogy been robust enough to allow some degree of autonomy
when users interact with robots for extended periods. How-
ever, “longitudinal studies are extremely useful to investigate
changes in user behaviour and experiences over time” ([158],
p. 291).

Summary of findings. Emotions are particularly important
during HRI with social robots. During HRI, humans express
emotional, cognitive, and behavioral responses. In particular,
robotic emotion-related characteristics, emotional capabili-

ties, and displays of emotions matter for HRI. A robot that
expresses positive emotions is more accepted as technology
than one that does not.

3.4 Research Stream 4: Contingency Factors
Affecting Emotions During HRI

The fourth research stream includes 14 studies that relate to
the contingencies in which the interaction takes place (see
Fig. 3). The studies are a cutting quantity of the reviewed
studies in research stream 3 (see Sect. 3.3). Accordingly,
details about these studies can also be found in Web-
Appendix 5 (tiny.cc/IJSR20WebApp5).

Reviewing this research attempts to answer the fourth
research question: How do contingencies affect the rela-

tionship between robotic emotions and human responses

during HRI?. A contingency or moderator variable either
strengthens or weakens the relationship between two or more
variables [10,65]. By considering contingency factors, this
research stream goes beyond the classical S–O–R logic by
recognizing that the basic effects may not be equally strong in
every situation; rather, the presence and strength of the basic
effects may depend systematically on contingency factors.

Characteristics of the interacting parties. Five studies test
whether the human’s gender affects emotions during HRI
[7,38,50,136,188]. While several studies find differences
(e.g., [136]), others indicate that men prefer to interact with
a pleasant (cf. neutral) robot, but women indicate no such
preference differences [38]. Robot characteristics, including
emotional intelligence [50] and human-likeness [188], also
have been examined as moderators.

Characteristics of the interaction. Gaze cues during a game
with a robot increase participants’ perceptions of the social
desirability of a geminoid robot, which is designed to look
like a specific person, but not those of a less human-like robot,
such as Robovie [188]. Control over the robot during the HRI
also increases participants’ affect, expressed in response to
an android’s facial expression [192].

Duration of the interaction. Six studies note long-term effects
of emotions during HRI with a social robot [93,128,129,
142,147,218]. Relying on longitudinal data from adult par-
ticipants, these studies consistently reveal that social cues
and emotions, expressed by a social robot, trigger HRI over
time [93,128,129,142,218]. However, one study indicates
that children between 3 and 4 years of age lose interest in
the robot over time [147].

Environmental factors. External factors, such as cultural dif-
ferences [104,179] or task characteristics [234], have been
examined too (see Web-Appendix 5). The existing studies
clearly reveal cultural differences regarding human responses
to emotions during HRI. Furthermore, it could be shown that
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the task complexity matters for the trust in robots during HRI
[234].

Summary of findings. Environmental characteristics (e.g.,
culture of human participants) and characteristics of the
involved parties (humans or robots) matter. Furthermore,
control over the robot increases robot acceptance during HRI.
The studies further indicate that the duration of the interac-
tion matters for humans’ emotional responses to HRI. As
most extant research is cross-sectional in nature, their con-
clusions should be treated with caution.

4 Discussion

4.1 What DoWe Know?

Answering the first four research questions of this survey
attempted to provide insights on current empirical knowledge
on emotions during HRI (see Sect. 1). This review reveals
that the field is well researched, with many methodologically
sound empirical studies. The domain integrates findings per-
taining to robotics, HRI, and psychology, though the different
disciplines reveal some variations in their research focus. For
example, robotics research mainly seeks technical specifica-
tions to improve HRI, but researchers from the HRI, social
robotics, or psychology traditions are primarily interested in
human responses to interactions.

In terms of theoretical backgrounds, research in the lat-
ter domains appears more strongly theory driven, whereas
robotics research is more technology focused. Accordingly,
the specific theories used in prior research can be assigned
to three categories: (1) Classical concepts of human emo-
tions, such as FACS, the circumplex model of emotions, and
Plutchik’s wheel of emotions, (2) approaches to social inter-
action, such as social identity theory, the similarity attraction
paradigm, emotional contagion, or a social agency perspec-
tive, and (3) concepts related specifically to HRI, such as the
uncanny valley paradigm.

Classical human emotion concepts specifically address
expressions of basic human emotions, which can be trans-
ferred to robotic emotional expressions. The theories in the
other two categories are broader, in the sense that they explain
the underlying mechanisms that lead humans to respond
in a particular manner during human–human interactions.
Previous research suggests a fairly consistent pattern of
human responses. Robot acceptance depends strongly on the
robot’s exhibited characteristics (e.g., empathy, personality),
emotional displays, and emotional capabilities (e.g., compe-
tence), as well as the human’s prior experience with robots.

Studies typically analyze the direct links of these emotion-
related input variables with robot acceptance, without consid-
ering the possible indirect effects (e.g., through mediators).

This gap is surprising, because several process variables, such
as robotic perceived naturalness, emotional responsiveness,
and pleasantness, have been studied as antecedents or out-
comes in extant research.

Furthermore, the review provides clear evidence that mod-
erator variables are relevant for studying emotions and robot
acceptance. In other words, the strength of the links between
emotional input variables and robot acceptance is systemati-
cally influenced by other variables. However, research related
to such moderating effects is rather fragmented and more
research is needed.

4.2 What Remains to be Learned?

Despite considerable progress achieved by empirical research
on emotions during HRI, this review also reveals several lim-
itations of previous empirical research. This section therefore
relates to the fifth research question of this survey (see Sect.
1) that asks What remains to be learned regarding emotions

during HRI? and outlines seven suggestions for continued
empirical research on HRI and robotic psychology.

Suggestion 1: Gain a better understanding of the underlying

mechanisms for human responses to robotic emotions.

Clarifying underlying mechanisms that drive human
responses to robotic emotions would provide an answer to
an important “Why” question: Why do humans respond in
the way they do to artificial emotions? Is it because they
compare their expectations toward robots with the perceived
robotic emotions, experienced in the HRI, as suggested
in the expectation-disconfirmation paradigm [34,197,272]?
Is it because humans compare their emotions with those
expressed by robots [81]? Do they assign robots to their own
or another social group as indicated by social identity theory
[248]? Or do humans become infected with robotic emotions,
similar to the emotional contagion that takes place during
human–human interactions [108,112]?

Previous research offers a rich range of possible theoret-
ical approaches to make predictions about suitable robotic
emotions (e.g., FACS model [71], circumplex model of emo-
tions [216]) or human responses to robotic emotions (e.g.,
emotional contagion theory [108], social identity theory
[248], TAM [57]). However, still many studies fail to draw
explicitly on theoretical approaches to establish or justify
their hypotheses. Hypotheses development should be based
firmly in theories that have been well established with respect
for human–human interaction (e.g., [69,168]) or new theories
on HRI should be developed. Table 3 provides an overview
of potentially fruitful psychological theories that could be
applied (and extended), as well as some sample research
questions, to gain a deeper understanding of the theoretical
mechanisms at play during HRI (for an overview on robotics
psychology, see [234]).
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and Yasuda [148];  Niemalä, Arvola, and
Aaltonen [191]; Sabelli et al. [218]

not applicable

Fig. 6 Empirical design characteristics of extant research on HRI

Suggestion 2: Investigate contingency effects to a greater

extent.

The logic for examining contingency factors proposes
that there is not one best HRI design [260]. Rather, the
human-related outcomes of HRI depend on the culture (for
an overview see [79]), the setting (for an overview see [177]),
the scenario (for an overview see [285]), and the human par-
ticipants. Some empirical studies that focused on emotions
during HRI mention moderator variables (see Sect. 3.4), but
research in this area is still scarce. Conceptual articles distin-
guish several categories of potentially relevant contingency
factors [234], such as the interaction setting and its duration,
but no integrative, empirical analysis of situational variables
has been published. Researchers should pursue such a con-
tribution.

Suggestion 3: Define uniform standards for the experimental

investigation of emotions in HRI experiments.

Most of the studies in this review are based on experi-
mental investigations. They are relatively heterogeneous in
their experimental design, as is particularly evident in the
repetition frequencies, study period, sample, and form of
interaction (e.g., direct face-to-face versus indirect online or
via virtual reality), as Web-Appendices 3 and 5 reveal. This
heterogeneity is challenging in two respects. First, it makes it
difficult to compare the findings across studies. Second, the
quality of the findings is difficult to assess, particularly due
to the lack of design science research dedicated to investigat-
ing human reactions to HRI. The few available contributions

[116,285], deserve more attention; more work also is needed
in this field.

Suggestion 4: Compare different HRI scenarios with regard

to their effectiveness.

In terms of possible scenarios, the studies can be differ-
entiated according to whether HRI takes place directly or
indirectly (see Fig. 6):

– Media-supported HRI is mostly used in online studies or
face-to-face experiments in which images or videos of
robots are used.

– Direct HRI is mostly used in face-to-face experiments
where human participants interact with real robots or
parts of robots (e.g., head, upper body).

Although, no differences in emotion recognition rates
across different scenarios of HRI could be found in this sur-
vey, the varying degrees of immersion likely cause humans to
react differently to images or videos of robots than to a face-
to-face HRI in a real–world situation though. The lack of
differences between the scenarios in the Mann–Whitney test
also should be evaluated cautiously, due to the strong hetero-
geneity across the experimental studies considered. Despite
a few studies of these questions [285], no clear findings are
available.

Suggestion 5: Use real–world environments to test the effects

of emotions during HRI.
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Fig. 7 Cybernetic framework of
emotions during HRI
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Some recent studies of HRI take place in real–world set-
tings, such as homes [85,244], workplaces [188], elderly
care facilities [218], schools [128,147], shopping malls [129]
[130,191], or a university campus [142]. But most studies
continue to rely on laboratory settings (see Fig. 6). This set-
ting has the advantage of limiting external errors, due to the
controlled nature of the experiment. However, the external
validity of the results is limited, and they are difficult to
generalize to real–world settings. That is, the results may
be valid in an experimental setting but not in realistic set-
tings [100]. Levitt and List [163,164] explicitly note concerns
about extrapolating interpretations of data from lab experi-
ments to the world beyond. The lack of studies that move
beyond the laboratory also is surprising, because a real–life,
face-to-face HRI scenario is the most informative [285]. As
robots take on more roles in society and business, continued
research should examine emotions during HRI using real–
world, private environments and business settings, including
both customer–robot [236,238] and employee–robot interac-
tions [234].

Suggestion 6: Analyze longitudinal effects of emotions during

HRI.

Most studies rely on cross-sectional data, so their findings
stem from a single interaction, which could reflect humans’
sense of surprise when they met a robot for the first time.
The few existing longitudinal studies clearly indicate that the
duration and repetition of HRI matter for human emotional
responses. Additional research should examine longitudinal
effects of emotions, accounting for not only first impres-
sion effects but also the effects of emotions and potential
changes of HRI over time [158]. Understanding these long-
term effects of emotions during HRI with social robots is
important, because most real–world applications aim for
long-term uses of robots. Researchers thus might investigate

whether and how humans’ communication with the robot or
other humans change over time.

Another interesting question relates to potential respon-
sibility shifts over time, as famously exemplified by the
increased automation bias resulting from the use of navi-
gation systems in cars [94]. Extant research also indicates
that an automation bias can arise during HRI [257]. Contin-
ued research could examine whether a similar responsibility
shift occurs during long-term HRI and how this affects human
emotions.

Suggestion 7: Examine feedback loops during HRI to a

greater extent.

This review indicates that extant studies tend to ana-
lyze relationships between emotion-related input variables of
robot acceptance by humans according to simplistic, “one–
stage” models (see Fig. 5). Analyzing such simplistic models
provides only limited understanding of the driving forces
for HRI, because they cannot distinguish direct versus indi-
rect effects on robot acceptance. This limitation is critical,
because some categories of success factors (e.g., robotic
social cues) likely affect robot acceptance only indirectly,
rather than directly. A systematic analysis of such structures
is possible only if researchers use complex integrative mod-
els that support the simultaneous analysis of both direct and
indirect effects in a single model. Such integrative studies
also would be consistent with the logic of the S–O–R model
[267,289].

Furthermore, the logic of the S–O–R model should be
extended with potential feedback loops to consider the
dynamic robotic expression of emotion. For example, PSI
theory [67] addresses the interplay among motivational
stimuli, cognitive processes, and outcomes. An interactive
feedback model also would account for the robot’s sensitivity
to what the human is doing (such that robots need a sophis-
ticated system to recognize human emotions). A cybernetic
framework that can account for the dynamic and adaptive
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nature of emotions during HRI appears necessary (see Fig.
7, inspired by [291]).

5 Conclusion

Social robots are an increasingly pervasive reality in daily
lives, and they have prompted more than 1,600 studies in the
past two decades. However, the interdisciplinary, fragmented
state of research on emotions during HRI with social robots
makes it difficult for researchers to develop new insights and
ideas using extant studies. This review systematically con-
denses extant knowledge. In terms of human recognition of
robotic emotions, studies that examine the five primary emo-
tions suggested in the FACS model are identified. Although
such studies include different robots and emotional expres-
sion modes (facial, bodily, both), humans can recognize on
average about 50% of a robot’s emotions correctly; for some
high arousal emotions, such as happiness and anger, the aver-
age recognition rates are even higher. In terms of human
responses to robotic emotions during HRI, extant research
has made a lot of progress. Emotions inform the interac-
tion intensity and positive human responses to a robot. The
findings from this review suggest conceptual and method-
ological suggestions for further research. In turn, they hold
the promise to generate meaningful impacts and encourage
further empirical research in this field.
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