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Abstract 
 
Removing noise from the original signal is still a 
challenging problem for researchers. There have been 
several published algorithms and each approach has 
its assumptions, advantages, and limitations. This 
paper presents a review of some significant work in the 
area of image denoising. After a brief introduction, 
some popular approaches are classified into different 
groups and an overview of various algorithms and 
analysis is provided. Insights and potential future 
trends in the area of denoising are also discussed. 
 
 

1. Introduction 
 

Digital images play an important role both in daily life 
applications such as satellite television, magnetic 
resonance imaging, computer tomography as well as in 
areas of research and technology such as 
geographical information systems and astronomy. Data 
sets collected by image sensors are generally 
contaminated by noise. Imperfect instruments, 
problems with the data acquisition process, and 
interfering natural phenomena can all degrade the data 
of interest. Furthermore, noise can be introduced by 
transmission errors and compression. Thus, denoising 
is often a necessary and the first step to be taken 
before the images data is analyzed. It is necessary to 
apply an efficient denoising technique to compensate 
for such data corruption.  
 
Image denoising still remains a challenge for 
researchers because noise removal introduces 
artifacts and causes blurring of the images. This paper  
 

describes different methodologies for noise reduction 
(or denoising) giving an insight as to which algorithm  
should be used to find the most reliable estimate of the 
original image data given its degraded version.  
 
Noise modeling in images is greatly affected by 
capturing instruments, data transmission media, image 
quantization and discrete sources of radiation. Different 
algorithms are used depending on the noise model. 
Most of the natural images are assumed to have 
additive random noise which is modeled as a 
Gaussian. Speckle noise [1] is observed in ultrasound 
images whereas Rician noise [2] affects MRI images. 
The scope of the paper is to focus on noise removal 
techniques for natural images.  
 
 

2. Evolution of Image Denoising Research 
 

Image Denoising has remained a fundamental problem 
in the field of image processing. Wavelets give a 
superior performance in image denoising due to 
properties such as sparsity and multiresolution 
structure. With Wavelet Transform gaining popularity in 
the last two decades various algorithms for denoising 
in wavelet domain were introduced. The focus was 
shifted from the Spatial and Fourier domain to the 
Wavelet transform domain. Ever since Donoho’s 
Wavelet based thresholding approach was published in 
1995, there was a surge in the denoising papers being 
published. Although Donoho’s concept was not 
revolutionary, his methods did not require tracking or 
correlation of the wavelet maxima and minima across 
the different scales as proposed by Mallat [3]. Thus, 
there was a renewed interest in wavelet based 
denoising techniques since Donoho [4] demonstrated a 
simple approach to a difficult problem. Researchers 



published different ways to compute the parameters for 
the thresholding of wavelet coefficients. Data adaptive 
thresholds [6] were introduced to achieve optimum 
value of threshold. Later efforts found that substantial 
improvements in perceptual quality could be obtained 
by translation invariant methods based on thresholding 
of an Undecimated Wavelet Transform [7]. These 
thresholding techniques were applied to the non-
orthogonal wavelet coefficients to reduce artifacts. 
Multiwavelets were also used to achieve similar 
results. Probabilistic models using the statistical 
properties of the wavelet coefficient seemed to 
outperform the thresholding techniques and gained 
ground. Recently, much effort has been devoted to 
Bayesian denoising in Wavelet domain. Hidden Markov 
Models and Gaussian Scale Mixtures have also 
become popular and more research continues to be 
published. Tree Structures ordering the wavelet 
coefficients based on their magnitude, scale and 
spatial location have been researched. Data adaptive 
transforms such as Independent Component Analysis 
(ICA) have been explored for sparse shrinkage. The 
trend continues to focus on using different statistical 
models to model the statistical properties of the 
wavelet coefficients and its neighbors. Future trend will 
be towards finding more accurate probabilistic models 
for the distribution of non-orthogonal wavelet 
coefficients. 
 
 

3. Classification of Denoising Algorithms 
 

As shown in Figure 1, there are two basic approaches 
to image denoising, spatial filtering methods and 
transform domain filtering methods. 
 
3.1 Spatial Filtering 
 
A traditional way to remove noise from image data is to 
employ spatial filters. Spatial filters can be further 
classified into non-linear and linear filters.  
 
I. Non-Linear Filters 
With non-linear filters, the noise is removed without 
any attempts to explicitly identify it. Spatial filters 
employ a low pass filtering on groups of pixels with the 
assumption that the noise occupies the higher region 
of frequency spectrum. Generally spatial filters remove 
noise to a reasonable extent but at the cost of blurring 
images which in turn makes the edges in pictures 
invisible. In recent years, a variety of nonlinear median-
type filters such as weighted median [8], rank 
conditioned rank selection [9], and relaxed median [10] 
have been developed to overcome this drawback. 
 
 
 

II. Linear Filters  
A mean filter is the optimal linear filter for Gaussian 
noise in the sense of mean square error. Linear filters 
too tend to blur sharp edges, destroy lines and other 
fine image details, and perform poorly in the presence 
of signal-dependent noise. The wiener filtering [11] 
method requires the information about the spectra of 
the noise and the original signal and it works well only 
if the underlying signal is smooth. Wiener method 
implements spatial smoothing and its model complexity 
control correspond to choosing the window size. To 
overcome the weakness of the Wiener filtering, 
Donoho and Johnstone proposed the wavelet based 
denoising scheme in [12, 13]. 
 
3.2 Transform Domain Filtering 
 
The transform domain filtering methods can be 
subdivided according to the choice of the basis 
functions. The basis functions can be further classified 
as data adaptive and non-adaptive. Non-adaptive 
transforms are discussed first since they are more 
popular. 
 
3.2.1 Spatial-Frequency Filtering 
 
Spatial-frequency filtering refers use of low pass filters 
using Fast Fourier Transform (FFT). In frequency 
smoothing methods [11] the removal of the noise is 
achieved by designing a frequency domain filter and 
adapting a cut-off frequency when the noise 
components are decorrelated from the useful signal in 
the frequency domain. These methods are time 
consuming and depend on the cut-off frequency and 
the filter function behavior. Furthermore, they may 
produce artificial frequencies in the processed image. 
 
3.2.2 Wavelet domain 
 
Filtering operations in the wavelet domain can be 
subdivided into linear and nonlinear methods.  
 
I. Linear Filters 
Linear filters such as Wiener filter in the wavelet 
domain yield optimal results when the signal corruption 
can be modeled as a Gaussian process and the 
accuracy criterion is the mean square error (MSE) [14, 
15].  However, designing a filter based on this 
assumption frequently results in a filtered image that is 
more visually displeasing than the original noisy signal, 
even though the filtering operation successfully 
reduces the MSE. In [16] a wavelet-domain spatially-
adaptive FIR Wiener filtering for image denoising is 
proposed where wiener filtering is performed only 
within each scale and intrascale filtering is not allowed. 
 
 



 
 
 
 

 
 
 
 

  
 
 
 
 
 
 

 
 
 
 
 

Figure 1 – Classification of Image Denoising Methods 
 
 
 
 

 
 
 
 



II. Non-Linear Threshold Filtering 
The most investigated domain in denoising using 
Wavelet Transform is the non-linear coefficient 
thresholding based methods. The procedure exploits 
sparsity property of the wavelet transform and the fact 
that the Wavelet Transform maps white noise in the 
signal domain to white noise in the transform domain. 
Thus, while signal energy becomes more concentrated 
into fewer coefficients in the transform domain, noise 
energy does not. It is this important principle that 
enables the separation of signal from noise.  
 
The procedure in which small coefficients are removed 
while others are left untouched is called Hard 
Thresholding [5]. But the method generates spurious 
blips, better known as artifacts, in the images as a 
result of unsuccessful attempts of removing moderately 
large noise coefficients. To overcome the demerits of 
hard thresholding, wavelet transform using soft 
thresholding was also introduced in [5]. In this scheme, 
coefficients above the threshold are shrunk by the 
absolute value of the threshold itself. Similar to soft 
thresholding, other techniques of applying thresholds 
are semi-soft thresholding and Garrote thresholding 
[6]. Most of the wavelet shrinkage literature is based on 
methods for choosing the optimal threshold which can 
be adaptive or non-adaptive to the image. 
 
a. Non-Adaptive thresholds 
VISUShrink [12] is non-adaptive universal threshold, 
which depends only on number of data points. It has 
asymptotic equivalence suggesting best performance 
in terms of MSE when the number of pixels reaches 
infinity. VISUShrink is known to yield overly smoothed 
images because its threshold choice can be 
unwarrantedly large due to its dependence on the 
number of pixels in the image. 
 
b. Adaptive Thresholds 
SUREShrink [12] uses a hybrid of the universal 
threshold and the SURE [Stein’s Unbiased Risk 
Estimator] threshold and performs better than 
VISUShrink. BayesShrink [17, 18] minimizes the 
Bayes’ Risk Estimator function assuming Generalized 
Gaussian prior and thus yielding data adaptive 
threshold. BayesShrink outperforms SUREShrink most 
of the times. Cross Validation [19] replaces wavelet 
coefficient with the weighted average of neighborhood 
coefficients to minimize generalized cross validation 
(GCV) function providing optimum threshold for every 
coefficient.  
 
The assumption that one can distinguish noise from 
the signal solely based on coefficient magnitudes is 
violated when noise levels are higher than signal 
magnitudes. Under this high noise circumstance, the 
spatial configuration of neighboring wavelet coefficients 

can play an important role in noise-signal 
classifications. Signals tend to form meaningful 
features (e.g. straight lines, curves), while noisy 
coefficients often scatter randomly. 
 
III. Non-orthogonal Wavelet Transforms 
Undecimated Wavelet Transform (UDWT) has also 
been used for decomposing the signal to provide 
visually better solution. Since UDWT is shift invariant it 
avoids visual artifacts such as pseudo-Gibbs 
phenomenon. Though the improvement in results is 
much higher, use of UDWT adds a large overhead of 
computations thus making it less feasible. In [20] 
normal hard/soft thresholding was extended to Shift 
Invariant Discrete Wavelet Transform. In [21] Shift 
Invariant Wavelet Packet Decomposition (SIWPD) is 
exploited to obtain number of basis functions. Then 
using Minimum Description Length principle the Best 
Basis Function was found out which yielded smallest 
code length required for description of the given data. 
Then, thresholding was applied to denoise the data.  
In addition to UDWT, use of Multiwavelets is explored 
which further enhances the performance but further 
increases the computation complexity. The 
Multiwavelets are obtained by applying more than one 
mother function (scaling function) to given dataset. 
Multiwavelets possess properties such as short 
support, symmetry, and the most importantly higher 
order of vanishing moments. This combination of shift 
invariance & Multiwavelets is implemented in [22] 
which give superior results for the Lena image in 
context of MSE. 
 
IV. Wavelet Coefficient Model 
This approach focuses on exploiting the multiresolution 
properties of Wavelet Transform. This technique 
identifies close correlation of signal at different 
resolutions by observing the signal across multiple 
resolutions. This method produces excellent output but 
is computationally much more complex and expensive. 
The modeling of the wavelet coefficients can either be 
deterministic or statistical.  
 
a. Deterministic 
The Deterministic method of modeling involves 
creating tree structure of wavelet coefficients with 
every level in the tree representing each scale of 
transformation and nodes representing the wavelet 
coefficients. This approach is adopted in [23]. The 
optimal tree approximation displays a hierarchical 
interpretation of wavelet decomposition. Wavelet 
coefficients of singularities have large wavelet 
coefficients that persist along the branches of tree. 
Thus if a wavelet coefficient has strong presence at 
particular node then in case of it being signal, its 
presence should be more pronounced at its parent 
nodes. If it is noisy coefficient, for instance spurious 



blip, then such consistent presence will be missing. Lu 
et al. [24], tracked wavelet local maxima in scale-
space, by using a tree structure. Other denoising 
method based on wavelet coefficient trees is proposed 
by Donoho [25]. 
 
b. Statistical Modeling of Wavelet Coefficients 
This approach focuses on some more interesting and 
appealing properties of the Wavelet Transform such as 
multiscale correlation between the wavelet coefficients, 
local correlation between neighborhood coefficients 
etc. This approach has an inherent goal of perfecting 
the exact modeling of image data with use of Wavelet 
Transform. A good review of statistical properties of 
wavelet coefficients can be found in [26] and [27]. The 
following two techniques exploit the statistical 
properties of the wavelet coefficients based on a 
probabilistic model. 
 
i. Marginal Probabilistic Model 
A number of researchers have developed 
homogeneous local probability models for images in 
the wavelet domain. Specifically, the marginal 
distributions of wavelet coefficients are highly kurtotic, 
and usually have a marked peak at zero and heavy 
tails. The Gaussian mixture model (GMM) [28] and the 
generalized Gaussian distribution (GGD) [29] are 
commonly used to model the wavelet coefficients 
distribution. Although GGD is more accurate, GMM is 
simpler to use. In [30], authors proposed a 
methodology in which the wavelet coefficients are 
assumed to be conditionally independent zero-mean 
Gaussian random variables, with variances modeled 
as identically distributed, highly correlated random 
variables. An approximate Maximum A Posteriori 
(MAP) Probability rule is used to estimate marginal 
prior distribution of wavelet coefficient variances. All 
these methods mentioned above require a noise 
estimate, which may be difficult to obtain in practical 
applications. Simoncelli and Adelson [33] used a two-
parameter generalized Laplacian distribution for the 
wavelet coefficients of the image, which is estimated 
from the noisy observations.  Chang et al. [34] 
proposed the use of adaptive wavelet thresholding for 
image denoising, by modeling the wavelet coefficients 
as a generalized Gaussian random variable, whose 
parameters are estimated locally (i.e., within a given 
neighborhood). 
 
ii. Joint Probabilistic Model 
Hidden Markov Models (HMM) [35] models are efficient 
in capturing inter-scale dependencies, whereas 
Random Markov Field [36] models are more efficient to 
capture intrascale correlations. The complexity of local 
structures is not well described by Random Markov 
Gaussian densities whereas Hidden Markov Models 
can be used to capture higher order statistics. The 

correlation between coefficients at same scale but 
residing in a close neighborhood are modeled by 
Hidden Markov Chain Model where as the correlation 
between coefficients across the chain is modeled by 
Hidden Markov Trees. Once the correlation is captured 
by HMM, Expectation Maximization is used to estimate 
the required parameters and from those, denoised 
signal is estimated from noisy observation using well-
known MAP estimator. In [31], a model is described in 
which each neighborhood of wavelet coefficients is 
described as a Gaussian scale mixture (GSM) which is 
a product of a Gaussian random vector, and an 
independent hidden random scalar multiplier. Strela et 
al. [32] described the joint densities of clusters of 
wavelet coefficients as a Gaussian scale mixture, and 
developed a maximum likelihood solution for 
estimating relevant wavelet coefficients from the noisy 
observations. Another approach that uses a Markov 
random field model for wavelet coefficients was 
proposed by Jansen and Bulthel [37]. A disadvantage 
of HMT is the computational burden of the training 
stage. In order to overcome this computational 
problem, a simplified HMT, named as uHMT [27], was 
proposed. 
 
 
3.2.3 Data-Adaptive Transforms 
 
Recently a new method called Independent 
Component Analysis (ICA) has gained wide spread 
attention. The ICA method was successfully 
implemented in [38, 39] in denoising Non-Gaussian 
data. One exceptional merit of using ICA is it’s 
assumption of signal to be Non-Gaussian which helps 
to denoise images with Non-Gaussian as well as 
Gaussian distribution. Drawbacks of ICA based 
methods as compared to wavelet based methods are 
the computational cost because it uses a sliding 
window and it requires sample of noise free data or at 
least two image frames of the same scene. In some 
applications, it might be difficult to obtain the noise free 
training data. 
 
 

4. Discussion 
 
Performance of denoising algorithms is measured 
using quantitative performance measures such as 
peak signal-to-noise ratio (PSNR), signal-to-noise ratio 
(SNR) as well as in terms of visual quality of the 
images. Many of the current techniques assume the 
noise model to be Gaussian. In reality, this assumption 
may not always hold true due to the varied nature and 
sources of noise. An ideal denoising procedure 
requires a priori knowledge of the noise, whereas a 
practical procedure may not have the required 
information about the variance of the noise or the noise 



model. Thus, most of the algorithms assume known 
variance of the noise and the noise model to compare 
the performance with different algorithms. Gaussian 
Noise with different variance values is added in the 
natural images to test the performance of the 
algorithm. Not all researchers use high value of 
variance to test the performance of the algorithm when 
the noise is comparable to the signal strength. 
  
Use of FFT in filtering has been restricted due to its 
limitations in providing sparse representation of data. 
Wavelet Transform is the best suited for performance 
because of its properties like sparsity, multiresolution 
and multiscale nature. In addition to performance, 
issues of computational complexity must also be 
considered. Thresholding techniques used with the 
Discrete Wavelet Transform are the simplest to 
implement. Non-orthogonal wavelets such as UDWT 
and Multiwavelets improve the performance at the 
expense of a large overhead in their computation. 
HMM based methods seem to be promising but are 
complex. 
 
When using Wavelet Transform, Nason [40] 
emphasized that issue such as choice of primary 
resolution (the scale level at which to begin 
thresholding) and choice of analyzing wavelet also 
have a large influence on the success of the shrinkage 
procedure. When comparing algorithms, it is very 
important that researchers do not omit these 
comparison details. Several papers did not specify the 
wavelet used neither the level of decomposition of the 
wavelet transform was mentioned.  
 
It is expected that the future research will focus on 
building robust statistical models of non-orthogonal 
wavelet coefficients based on their intra scale and inter 
scale correlations. Such models can be effectively 
used for image denoising and compression. 
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