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Abstract We survey information theoretic approaches to
solve a variety of visual quality assessment (QA) problems.
These approaches are generally built on natural scene statis-
tical models and lead to practical automatic QA algorithms
delivering excellent performance in terms of correlation with
human judgments of quality. We study all three categories of
image QA models: full reference (FR), reduced reference
(RR) and no reference (NR) image QA, as well as FR video
QA and information weighting strategies for FR image and
video QA. We demonstrate the application of information
theory in each of these problems. Each of these problems
presents its own challenges in the design of information the-
oretic QA indices leading to different algorithms under dif-
ferent scenarios. In the algorithms, we survey, FR image and
video QA algorithms are based on mutual information or con-
ditional Kolmogorov complexities; RR image QA algorithms
either use relative entropy or entropic differences, while the
NR QA algorithm applies Rényi entropy, and the weighting
strategies rely on mutual information. We also discuss vari-
ous open research questions, particularly in the realm of NR
image QA and all classes of video QA.
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1 Introduction

The advent of the internet and mobile telephony has led to an
explosion of highly visual applications and services. These
applications currently range from such basic Internet services
as video streaming, video conferencing and video on demand
to sophisticated computational photography capabilities on
mobile handsets and tablets. In all of these applications, the
human is the ultimate consumer of the visual content and
being able to assess and act upon the quality of experience
of the human can help provide better services. Visual qual-
ity assessment (QA) concerns the design of automatic algo-
rithms that can predict the quality of a visual signal, such
as a still image, video or three-dimensional presentation, in
a manner that agrees well with human judgments of quality.
The quality index output by a QA algorithm can then be used
to achieve a better perceptually optimized design, or to guide
suitable control actions, such as rate control, to enhance the
user’s visual experience.

Over the years, various researchers have attempted to
develop algorithms for visual QA. Although many of the
earlier algorithms were statistical, they were not necessarily
model based or information theoretic and measured empiri-
cal statistics between the reference and distorted visual sig-
nals. The mean squared error was computed in a transformed
domain in [1], while the idea of a Bayesian ideal observer
was used to evaluate the probability of perceiving a distortion
at a given pixel location in [2]. A comprehensive survey of
various distance measures between the images in the pixel
domain is contained in [3]. Figures of merit for different tar-
geted image processing applications such as classification
and estimation are presented in [4–6]. None of these algo-
rithms have been tested comprehensively against subjective
quality predictions, and their applicability for a wide range
of distortions is unknown.
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There exist two broad classes of methods that success-
fully solve the problem of visual QA. One class of methods
is a human visual system (HVS)-based paradigm, where the
degree of perceived distortion is predicted after processing
the reference and distorted signals. The processing resembles
the filtering and processing that occurs along the early human
visual pathways. For example, multiscale multiorientation
transforms, divisive normalization or adaptive gain control,
motion tuning, Minkowski pooling [7,8], and so on are all
related to models of human visual processing of visual stim-
uli. Complementary to HVS methods, are natural scene sta-
tistics (NSS)-based methods, whereby measured deviations
of certain statistics of a distorted signal from the expected sta-
tistics under an NSS model are exploited to measure quality.
The hypothesis beneath this paradigm is that the deviations
from the NSS are relevant for QA in that they capture a loss
of visual “naturalness.” While these two paradigms are com-
plementary to each other, in many ways, they are also dual,
and NSS-based methods can be viewed as “matching” HVS
models and vice-versa.

Recent information theoretic approaches to visual QA
come under the class of NSS model–based methods and
attempt to quantify the distances between reference and dis-
torted signals using information theoretic quantities. Many
algorithms that are based on this approach attempt to quan-
tify the amount of loss of visual information that occurs in
the distorted visual signal with respect to a presumably dis-
tortionless reference. The idea motivating the design of these
algorithms is that natural images1 occupy a very small sub-
space of all possible images that could be represented by
matrices of numbers. In this regard, measuring an informa-
tion theoretic distance from a distorted image to the space of
natural images could correlate strongly with a loss of natu-
ralness, that, in turn affects subjective impressions of visual
quality. Of course, algorithms developed using such prin-
ciples need to have demonstrable perceptual relevance and
to generate quality indices that correlate well with human
judgment of quality. This makes the problem of designing
information theoretic visual QA algorithms a challenging
problem.

Here, we broadly overview information theoretic
approaches to a subset of problems in QA, including full ref-
erence (FR), reduced reference (RR) and no reference (NR)
still image QA, video QA and information weighting meth-
ods in image and video QA. While information theoretic
quantities can be directly used to predict quality of the dis-
torted image in local patches [9,10], they may also be indi-
rectly used to weight quality evaluations at different locations
in “quality maps” [11].

1 We use the term “natural images” as it is ordinarily used by vision
scientists, meaning images (or videos, or 3D) taken by ordinary optical
cameras sensitive to visible light.

The classification of QA models into three different cate-
gories depending on the availability of reference information
(FR, RR and NR QA) has important practical implications.
The constraint of the problem (with the constraint being the
amount of reference information that can be made available)
implies that only certain information theoretic quantities can
be computed under the constraints. For example, it is not
possible to compute the mutual information between a ref-
erence signal and a corresponding distorted signal in NR
QA, since such a computation requires the joint distribu-
tion, which cannot be obtained when the reference is not
available. Thus, every problem requires its own adaptation
of what information theoretic quantities can be computed and
are perceptually relevant and meaningful for QA.

Information theoretic FR image QA (IQA) indices [9,10,
12] that have been developed to date generally use measures
of the mutual information between reference and distorted
images to quantify losses of visual information arising from
distortion. While different approaches yield different statis-
tical models and algorithms, in many of these algorithms,
local mutual information computations form the core of the
analysis. Recently, there has also been work on using the
notion of conditional Kolmogorov complexity to obtain FR
IQA algorithms [13]. Note that both mutual information and
conditional Kolmogorov complexity require full knowledge
of both reference and distorted images.

If only partial reference information is available, as under
RR IQA models, one possible solution is to parametrize the
reference distribution, then compute a measure of dissimilar-
ity (such as Kullback–Liebler (KL) divergence) [14] between
the empirical distribution of the distorted image and of the
parametrized reference image. It is possible to evaluate the
divergence using just the parameters of the reference distri-
bution and the available distorted image. Improved versions
of this model can be found in [15]. The other solution is to
compute the local information in the reference and send the
weighted sum of this information from the reference [16].
Sending weighted sums from the reference leads to a reduc-
tion in the amount of reference information sent, albeit at the
cost of reduced performance of the algorithm. The model in
[17] leads to an NR IQA algorithm that measures the amount
of randomness in the orientations (anisotropy) through Rényi
entropy calculations.

The underlying information theoretic distortion measures
in FR video QA (VQA) algorithms are similar to those in
IQA, with the difference being that VQA algorithms operate
on spatio-temporal data [18,19]. Although there exist other
ideas such as motion tuning [19,20] that can improve per-
formance, these ideas concern the selection of suitable infor-
mation for QA and do not fundamentally measure any other
distances. The role played by different information measures
under different constraints on the problem (with regard to the
availability of reference information) is still an open research
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question that can only be answered after good RR and NR
VQA algorithms have been developed.

We also discuss information theoretic weighting strate-
gies for image and video QA [11,21]. Weighting strategies
are typically employed during the spatial pooling of local
quality scores at different spatial locations in an image or a
frame of a video. The relative importance of different loca-
tions can be assigned based on the amount of associated infor-
mation. While we discuss only spatial weighting strategies
here, the question of whether temporal weighting based on
information theoretic principles is perceptually relevant is an
interesting future research direction.

The rest of the paper is organized as follows. In Sect. 2,
we survey information theoretic IQA algorithms including
the statistical models underlying these algorithms. Section 3
covers information theoretic VQA algorithms. In Sect. 4, we
describe information weighting strategies for both IQA and
VQA and conclude the paper in Sect. 5.

2 Image quality assessment

We begin with an in-depth study of IQA models that use
information theoretic measures to assess image quality. We
explain the underlying statistical models used in the IQA
models; then, we describe FR, RR and NR IQA algorithms
that naturally arise from these models. In FR IQA, both a ref-
erence and a distorted image are available for quality compu-
tation, while in NR IQA no reference information is available.
RR IQA is a class of QA algorithms where partial reference
information can be made available. The design of RR IQA
algorithms concerns the questions of how much and what
reference information needs to be made available.

2.1 Statistical models

The use of information theory in image quality assess-
ment necessitates good statistical models which can be used
to compute relevant information theoretic quantities such
as entropy, relative entropy and mutual information. We
overview two popularly used natural scene statistical mod-
els that have resulted in a plethora of IQA algorithms under
various constraints on the availability of reference infor-
mation. The wavelet coefficients of natural images tend to
have heavy-tailed distributions and are modeled well by both
Gaussian scale mixture models as well as by generalized
Gaussian distribution models. It is noteworthy that both these
models have been successfully used in other image process-
ing applications such as denoising, restoration, compression,
retrieval, and so on. In general, while it may not be clear
whether one model is better than another, the choice of the
model depends on the target application and on reliable esti-
mation of the parameters of the corresponding distributions.

2.1.1 Gaussian scale mixture (GSM) models

Gaussian scale mixtures are an effective model of the
wavelet coefficients of natural images [22]. In particular,
we model the wavelet coefficients in a given subband of a
multiscale multiorientation decomposition of an image. The
wavelet coefficients in the subband are partitioned into non-
overlapping blocks, and each block of coefficients is modeled
as a Gaussian scale mixture vector. Let C̄ denote a block of
wavelet coefficients. Then, C̄ is distributed as

C̄ = SŪ , (1)

where S and Ū are independent and Ū ∼ N (0, KU ). We
refer to S as the premultiplier random variable, which mod-
ulates the covariance matrix KU for every block. In order to
simplify the estimation and computation of quality indices,
it is often assumed that different blocks in the subband are
independent and that the Gaussian vector Ū is independently
and identically distributed for all the blocks. S is a spatially
varying continuous random variable that helps better model
local variances in the wavelet coefficients.

2.1.2 Generalized Gaussian distribution

A given subband in the wavelet decomposition of an image
can also be modeled as obeying a generalized Gaussian dis-
tribution. Unlike the Gaussian scale mixture model, this is
a global model that assigns a single distribution to every
wavelet coefficient in the given subband. Let C denote a
wavelet coefficient. The probability density function of a gen-
eralized Gaussian distribution with mean zero, shape para-
meter ν and scale parameter σ is given by

f (c; ν, σ ) = ν

2σ�(1/ν)
e−|c/σ |ν , (2)

where �(·) is the gamma function defined as �(z) =∫ ∞
0 t z−1e−t dt for all z ≥ 0.

Next, we survey and explain various full reference,
reduced reference and no reference IQA algorithms that are
based on information theoretic approaches. These algorithms
employ either of the two statistical models discussed above.

2.2 Full reference IQA

Information theoretic full reference IQ indices can be
designed either based on the empirical joint histograms
between reference and distorted images or based on a model
of the joint distribution between the reference and distorted
images. The second method involves estimating the model
parameters given both the reference and distorted image,
from which the quality index is computed as the amount of
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information shared between the pristine and distorted images.
A key aspect of information theoretic full reference IQA algo-
rithms is the use of the joint distribution between the refer-
ence and distorted signals on account of the availability of
the reference. As we shall discuss later, in the case of reduced
reference and no reference models, this is not possible and
we resort to other ways of computing information theoretic
measures.

The work in [12] is an example of the first of the above par-
adigms, where empirical joint distributions of reference and
distorted images are used to compute mutual information. In
[12], the empirical mutual information is calculated between
the reference and distorted after each image has been band
pass filtered and then thresholded using the contrast sensi-
tivity function. The quality index is expressed as weighted
combinations of the ratio of mutual information between the
reference and the distorted to the mutual information of the
reference with itself in each subband. The weights are chosen
corresponding to the ratio of the energy in a given subband
to the total amount of energy in the image.

In [9], the Information Fidelity Criterion (IFC) is devel-
oped as the amount of information shared between the ref-
erence and distorted wavelet coefficients. In particular, the
conditional mutual information between local reference and
distorted image wavelet coefficients is calculated, where the
conditioning is on the premultiplier of the GSM model being
its local maximum likelihood estimate. Further, the refer-
ence and the distorted images are related by a linear model
involving a scaling/attenuation parameter with independent
additive white Gaussian noise. The performance (in terms
of correlation with human perception) of this index against
human subjectivity is as good as other successful full refer-
ence quality indices such as the structural similarity index
[23].

There is also related work on IQA algorithms based on
the idea of measuring the similarity between two images
using Kolmogorov complexity [13]. The normalized infor-
mation density (NID) is a distance measure between two
objects motivated by the conditional Kolmogorov complexity
of one object relative to another related object [24]. This dis-
tance measure is applicable in multiple scenarios including
retrieval, registration and so on. The Kolmogorov complexity
of a sequence/object is defined as the length of the shortest
program that is required to output the given sequence/object.
Let K (x |y) denote the conditional Kolmogorov complexity
of x relative to y, where x and y are two related objects.
K (x |y) is the length of the shortest program required to out-
put x from y. The authors of [13] define a new quantity known
as the normalized conditional compression distance (NCCD)
between two objects by using the idea of a conditional image
compressor CT . Let {Ti }n

i=1 denote a set of transformations
of the image to convert it to another image. These transfor-
mations could include contrast/luminance changes, Fourier

spectrum power scaling and affine transforms such as rota-
tion and translation and so on. Let C p

i denote the compressor
of the parameters used in transformation Ti . The conditional
image compressor CT is defined as

CT (x |y) = min
i

{C(y − Ti (x)) + C p
i (p(Ti , x)) + log2 N },

where C denotes a practical image compressor (such as a
lossless image compressor) and p(Ti , x) denotes the vector
of all parameters used in the transformation Ti (x). Then, the
NCCD is defined as

NCCD(x, y) = max{CT (x |y), CT (y|x)}
max{C(x), C(y)} .

While there are a few examples where NCCD gives a bet-
ter evaluation of the quality of the image when compared to
the structural similarity index (SSIM) [23], as compared to
human judgments, NCCD appears to be particularly useful
for evaluating the quality of non-natural or synthetic images.
Many of the most successful IQA algorithms exploit the reg-
ularity of natural scene statistics and could potentially fail
to successfully evaluate the quality of non-natural images,
where the notion of NCCD could be useful.

We now discuss in detail, one of the most successful full
reference IQA algorithms based on computing the amount
of visual information shared between wavelet coefficients of
the reference and distorted images.

2.2.1 Visual information fidelity

Before describing the visual information fidelity (VIF) index
[10], we describe the source, distortion and QA models used
in the design of the index. Let C̄mkr and C̄mkd denote vectors
of wavelet coefficients of length N in Block m and Sub-
band k of the wavelet decomposition of the reference and
distorted images, respectively, where m ∈ {1, 2, . . . , Mk}
and k ∈ {1, 2, . . . , K }. The reference vector is modeled as
a GSM vector in (1), and represented as C̄mkr = SmkŪmk ,
where Ūmk ∼ N (0, KUk ). Note that all of the Gaussian vec-
tors corresponding to different non-overlapping blocks in the
subband are assumed independent and identically distrib-
uted with the same covariance matrix KUk for every block
of wavelet coefficients in a subband. The vector of wavelet
coefficients in the distorted image is modeled using a linear
channel model between a block of wavelet coefficients in the
reference and distorted signals. More specifically,

C̄mkd = gmkC̄mkr + Z̄mk, (3)

where Z̄mk is distributed as Z̄mk ∼ N (0, σ 2
Z IN×N ) and is

independent of C̄mkr , while gmk ∈ R. Despite the use of
a simplistic channel model of the processes that transform
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Fig. 1 QA Model for VIF Index

the reference signal into the distorted one, this still deliv-
ers very good performance of the VIF QA indices. Further,
the noise vectors are assumed independent across different
blocks in every subband. In order to model imperfect recep-
tion of the signals by the perceptual apparatus, the refer-
ence and distorted coefficients are passed through an additive
white Gaussian noise channel corresponding to neural noise.
In particular, the noisy wavelet coefficients can be expressed
as

C̄ ′
mkr = C̄mkr + Wmkr C̄ ′

mkd = C̄mkd + Wmkd , (4)

where W̄mkr ∼N (0, σ 2
W IN×N ) and W̄mkd ∼N (0, σ 2

W IN×N ).
The distortion channel and neural noise model are depicted
in Fig. 1.

Let smk denote the maximum likelihood estimate of Smk

given the observed wavelet coefficients in the subband. Then,
the Visual Information Fidelity (VIF) index is given by

VIF =
∑K

k=1
∑Mk

m=1 I (Cmkr ; C ′
mkd |Smk = smk)

∑K
k=1

∑Mk
m=1 I (Cmkr ; C ′

mkr |Smk = smk)
. (5)

It is worth mentioning the perceptual relevance of various
aspects of the VIF index, especially those that are obtained
as a result of adopting the information theoretic approach in
its design. For a more detailed description of these aspects,
we refer the reader to [9,10]. Note that the mutual infor-
mation is computed between conditional random variables,
where the conditioning is on the realization of the premul-
tiplier random variable. Conditioning on the premultiplier
random variable corresponds to divisive normalization mod-
els in the early stages of human visual processing. One of
the objectives of both divisive normalization as well as con-
ditioning on premultipliers is to reduce correlations between
neighboring wavelet coefficients. Further, mutual informa-
tion expressions under the GSM model (when conditioned on
the premultiplier) are evaluated as the logarithm of one plus
the “local signal to noise ratio.” The application of this loga-
rithm has parallels with findings in vision literature, wherein
the ability to perceive differences in distortions decreases

with the severity of the distortion [25]. The application of
log(1+SNR) implies that the function saturates below to 0 for
small SNR. This property enables the algorithm to respond
with reduced sensitivity to differences in distortions for small
values of SNR.

The VIF index is one of the best performing quality indices
on the LIVE Image Quality Assessment Database [26], with
its performance similar to that of the multiscale (MS) struc-
tural similarity index (SSIM) [27]. It is shown in [28] that
under the GSM model for natural images, there exists a
monotonic relation between the mutual information terms
in the VIF index and the structure term in the MS-SSIM
index. This explains the observation that both these qual-
ity indices exhibit similar performances although developed
independently of each other.

2.3 Reduced reference IQA

The problem of reduced reference IQA is more constrained
than the FR IQA problem, since only partial information
about the reference is available for quality computation. The
design of RR IQA algorithms involves the question of how
much and what information needs to be supplied from the
reference in order to be able to evaluate the quality of the
distorted image. Further restricting ourselves to solutions
based on information theoretic approaches raises the specific
question of what information theoretic measures can actually
be computed in such scenarios. As mentioned earlier, the
availability of the reference enables the computation of the
joint distribution and consequently the mutual information
between the reference and the distorted signals. This is not
possible in the case of reduced reference. Current techniques
either compute the relative entropy between the probability
distributions of the reference and the distorted [14,15] or the
differences of the entropies of the reference and distorted
[16]. We discuss each of these techniques in greater detail in
the following.

2.3.1 KL divergence based methods

The algorithms in [14,15] are based on computing the KL
divergence between the distributions of the wavelet coeffi-
cients in a subband of the reference and the distorted images.
In [14], the generalized Gaussian distribution is used to
model wavelet coefficients in a subband of the reference
image. The parameters of the generalized Gaussian distri-
bution along with the KL divergence between the fitted gen-
eralized Gaussian distribution and the empirical distribution
of the wavelet coefficients in a subband of the reference are
transmitted. The quality index involves computing the KL
divergence between the empirical distribution of the distorted
image and the reference distribution parametrized using the
generalized Gaussian distribution.
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Let k ∈ {1, 2, . . . , K } denote the subband of the wavelet
decomposition. Let pk(c) denote the generalized Gaussian
distribution used to fit the wavelet coefficients in subband k of
the reference image using parameters (νk, σk), and let qk(c)
denote the empirical distribution. The information sent from
the reference includes {(νk, σk)}K

k=1 and {d(pk ||qk)}K
k=1,

where d(p||q) denotes the KL divergence between the dis-
tributions p(c) and q(c). The KL divergence between p(c)
and q(c) is

d(p||q) =
∫

p(c) log
p(c)

q(c)
.

Now, let the empirical distribution of the wavelet coef-
ficients of the distorted image in subband k be rk(c). We
calculate the distance

d̂(qk ||rk) = d(pk ||rk) − d(pk ||qk).

The resulting quality index is calculated as [14]

D = log2

(

1 + 1

D0

K∑

k=1

|d̂(qk ||rk)|
)

,

where D0 is a constant scaling factor.
The algorithm just mentioned is global and does not

account for the distortion of local structures in an image.
An improved version of this algorithm can be found in [15],
where a divisive normalization transform step is introduced
prior to fitting distributions and computing KL divergences.
This leads to an improvement in the performance of the algo-
rithm since the concept of divisive normalization has paral-
lels with the signal processing that happens in the human
visual pathways and achieves further decorrelation in neigh-
boring wavelet coefficients (neural responses tuned to dif-
ferent spatial locations and frequencies) [8]. Interestingly, in
this work, the divisive normalization transform (DNT) is per-
formed by using a Gaussian scale mixture model of blocks of
wavelet coefficients, where the block includes neighboring
coefficients in the same subband and those in neighboring
orientations and scales. The maximum likelihood estimate
of the premultiplier in the GSM model in (1) is used to divi-
sively normalize the wavelet coefficients. The normalized
coefficients are modeled globally using a Gaussian distribu-
tion per subband. As in the previous example, the parameters
of the Gaussian distribution are sent along with the error in
fitting a Gaussian distribution to the normalized coefficients.
A distance is calculated between the empirical distributions
of the DNT wavelet coefficients of the distorted image and
the reference image, using the KL divergence between the
parametrized reference distribution and the distorted image
and the error in fitting the Gaussian distribution to the DNT
coefficients of the reference image. In addition to the KL
divergence, the absolute values of the differences between

Fig. 2 QA Model for RRED Indices

the standard deviations, kurtosis and skewness of the distrib-
utions of the normalized coefficients are also calculated. We
refer the reader to [15] for further details on this algorithm.

2.3.2 RRED indices

The second approach to computing information theoretic
measures in reduced reference scenarios is to compute visual
information differences between the reference and distorted
images. This can be done by computing entropic differences
between the wavelet coefficients of the reference and dis-
torted images. The framework used in [10] to compute mutual
information between the reference and the distorted signals
is adapted in this algorithm to compute entropic differences.
Let C̄mkr denote a block of wavelet coefficients in subband
k, with k ∈ {1, 2, . . . , K } and m ∈ {1, 2, . . . , Mk}, where
Mk denotes the total number of blocks in subband k after
partitioning the subband of wavelet coefficients into non-
overlapping blocks. Unlike [10], where a linear additive noisy
model was used to represent the joint distribution between
the wavelet coefficients of the reference and the distorted
images, here, both the reference and the distorted images are
fitted with GSM models as in (1).

The quality index essentially involves computing the dif-
ferences of scaled conditional entropies of the neural noisy
reference and distorted wavelet coefficients. Let C̄ ′

mkr and
C̄ ′

mkd denote neural noisy wavelet coefficients of the ref-
erence and distorted images, respectively. These are repre-
sented as

C̄ ′
mkr = C̄mkr + W̄mkr C̄ ′

mkd = C̄mkd + W̄mkd ,

and pictorially depicted in Fig. 2.
The RRED index in subband k using Mk scalars from the

reference is given by

RREDMk
k = 1

Mk

Mk∑

m=1

|γmkr h(C ′
mkr |Smkr = smkr )

−γmkd h(C ′
mkd |Smkd = smkd)|,
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where smkr and smkd are maximum likelihood estimates of
Smkr and Smkd , respectively, and γmkr = log2(1 + s2

mkr ) and
γmkd = log2(1 + s2

mkd). For further details on the estimation
of the parameters of the distributions leading to computation
of the RRED indices, the reader is referred to [16]. The RRED
index in subband k using a single scalar from the reference
is given by

RRED1
k = 1

Mk

∣
∣
∣
∣

Mk∑

m=1

γmkr h(C ′
mkr |Smkr = smkr )

−γmkd h(C ′
mkd |Smkd = smkd)

∣
∣
∣
∣.

The authors of [16] develop a family of algorithms that
systematically utilize differing amounts of side information
required from the reference for quality computation. Depend-
ing on the application, the user could pick a desired algorithm
from this family.

2.4 No reference IQA

No reference IQA is a challenging perceptual research
problem that concerns the estimation of the quality of a dis-
torted image without using any information from the corre-
sponding reference image. Over the years, researchers have
developed training-based methods (motivated by machine
learning applications) to learn the way humans predict qual-
ity, leading to algorithms that can automatically predict the
quality of the distorted image in a manner that agrees well
with human subjective judgments of quality. While algo-
rithms in this class were first developed only for specific types
of distortions, recently, there has been significant progress
on designing algorithms for arbitrary distortions and that can
predict quality in a manner that correlates quite well with sub-
jective judgments of quality [29–32]. Although these meth-
ods are successful, they rely on the availability of distorted
images during the training phase. In particular, these algo-
rithms can predict the quality of a distorted image in a man-
ner that agrees well with human perception, provided that the
algorithm has already been trained on images (different from
the test image) corrupted by the distortion types assumed to
afflict the given image being assessed.

The features used in the machine learning paradigm for
quality assessment are statistical and exploit the regularity
of natural scene statistics. The use of information theoretic
features is one avenue for designing information theoretic
blind IQA algorithms, building on the machine learning par-
adigm. On the other hand, [17] designs a blind IQA algorithm
based on measuring the amount of anisotropy (or the amount
of randomness in the orientation of local structures) through
the Rényi entropy. While the performance of this algorithm is
not particularly impressive [31], we briefly review it since it

represents a concrete instance of using information theoretic
approaches to design a truly blind IQA algorithm.

The algorithm attempts to compute randomness in local
image orientation by computing the Rényi entropy. Consider
a pseudo-Wigner distribution of the distorted image. The
pseudo-Wigner distribution is a spatial–spatial frequency
representation of the image that is complementary to the
use of wavelets in signal processing. Let P(n, k) denote the
pseudo-Wigner distribution at spatial index n and spatial fre-
quency index k. Note that according to this representation,
the spatial indices of the image are represented as a single
dimensional array of indices. Since the pseudo-Wigner dis-
tributions are not necessarily normalized, we define

Q(n, k) = 1

Cn
P(n, k)P∗(n, k),

where P∗(n, k) is the complex conjugate of P(n, k) and Cn

is chosen such that such that

∑

k

Q(n, k) = 1.

Next, treat Q(n, k) as a probability distribution that sums to
1 over k and define the Rényi entropy of order α as

Rα(n) = 1

1 − α
log2

(
∑

k

Qα(n, k)

)

.

The Rényi entropy associated with spatial index n is com-
puted along different orientations using the pseudo-Wigner
distributions along different orientations. For further details
on how the pseudo-Wigner distributions may be computed
for different directions, the reader is referred to [17]. Let
θ ∈ {1, 2, . . . , �} denote the orientation indexes along which
the pseudo-Wigner distributions are evaluated. Define the
average Rényi entropy in orientation θ as

R̄(θ) = 1

N

N∑

n=1

Rθ
3 (n),

where Rθ
3 (n) denotes the Rényi entropy of order 3 in orien-

tation θ at location index n. The quality index is defined as
the standard deviation of the Rényi entropy along different
directions. Letting the mean

μ = 1

�

�∑

θ=1

R̄3(θ),

the quality index is then given by
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σ =
√√
√
√ 1

�

�∑

θ=1

(
R̄3(θ) − μ

)2
.

The design of information theoretic blind QA indices is in its
early stages and clearly more research is needed in this direc-
tion. The purely blind approach in [17] relies on the changes
in the statistics of local structures (through anisotropy) in
the distorted image alone to estimate quality. This method is
particularly interesting since it does not require a database of
pristine images for quality prediction. It would be interesting
to find out deviations of what other notions of local structures
in the distorted images can help estimate the quality. The
choice of the information theoretic quantity used in such an
analysis (for example, Rényi entropy in case of anisotropy)
would depend on the choice of features being analyzed. The
work in [33] concerning the information theoretic analysis
of interscale and intrascale dependencies between wavelet
coefficients of images appears to be particularly relevant in
this context.

3 Video quality assessment

We now discuss two video quality assessment (VQA) algo-
rithms [18,19] that are based on information theoretic prin-
ciples. They represent early examples of how algorithms
may be designed using information theoretic principles. Both
of the algorithms are FR VQA algorithms and extend the
framework used in VIF [10] to videos in two different ways.
While [18] is based on modeling spatio-temporal blocks of
the spatio-temporal derivatives of the frames, [19] models a
three-dimensional block of spatio-temporal Gabor decompo-
sition coefficients as GSM vectors. Further details on these
algorithms are presented in the following.

The algorithm in [18] closely resembles the algorithm in
[10] with the difference being in the definition of the cor-
responding blocks in the videos between which the mutual
information is calculated. In particular, the mutual informa-
tion between the spatio-temporal blocks of spatio-temporal
derivatives are calculated using GSM models in (1) for the
block of derivatives. Further, the derivatives are obtained
along all the 3 dimensions in spatio-temporal space in
the YUV color domain leading to 9 subbands. Let k ∈
{1, 2, . . . , K } index the subbands and m ∈ {1, 2, . . . , M}
index all the spatio-temporal non-overlapping blocks in the
video. Let C̄mkr and C̄mkd denote blocks of the spatio-
temporal derivatives in subband k and block m in the ref-
erence and distorted videos, respectively. These are related
by a linear model as in (3). Further, we consider the neural
noisy versions of Cmkr and Cmkd , denoted by C ′

mkr and
C ′

mkd , respectively, following (4). The video VIF index is
then defined in the same manner as in (5).

By contrast, the method explained in [19] builds on the
information fidelity criterion (IFC) introduced in [9] for
images, to design information theoretic VQA algorithms. A
given video is decomposed using K spatio-temporal Gabor
filters, and blocks of Gabor coefficients surrounding a given
point in the spatio-temporal space are modeled as GSM vec-
tors. Let C̄mkr and C̄mkd denote blocks of Gabor coefficients
with m ∈ {1, 2, . . . , M} indexing all the spatio-temporal
blocks in the video and k ∈ {1, 2, . . . , K } indexing the Gabor
filters used in the decomposition. At every point in the spatio-
temporal space, the mutual information is only calculated
between blocks corresponding to a subset of the filters used to
obtain the Gabor filter responses. Let K(m) ⊂ {1, 2, . . . , K }
denote the subset of filters chosen based on the optical flow
vectors at these points as follows. Only those filters are cho-
sen that have a significant overlap with the local orienta-
tion plane containing the frequency spectrum as estimated
by using the optical flow vectors. For further details on deter-
mining this plane and other details on measuring the overlap,
we refer the reader to [19]. The quality index is then com-
puted as

V − IFC =
∑M

m=1
∑

k∈K(m) I (C̄mkr ; C̄mkd |Smkr = smkr )
∑M

m=1 |K(m)| .

While both these algorithms perform quite well on the
VQEG dataset [34], the performance of [18] on the LIVE
Video Quality Assessment Database [35] is not among the
best. The MOVIE index [20], which is a more general version
of these algorithms, is currently the best performing index
on the LIVE Video Quality Assessment Database. Certain
aspects of the MOVIE index are essentially equivalent to both
[18] and [19] owing to the relation between mean squared
error and IFC/VIF described in [28].

4 Information content weighting in image and video
quality assessment

A key ingredient of perceptual visual QA algorithms is the
method of pooling of local quality scores obtained at local-
ized regions/blocks of the image to obtain global predic-
tions of quality. In particular, many successful FR visual
QA algorithms employ perceptually relevant pooling strate-
gies, where pooling refers to the aggregation of local quality
scores into a single number as a measure of the quality of the
visual signal. While IQA only concerns spatial pooling of
scores, VQA needs to resolve questions of both spatial and
temporal pooling of quality scores, making it a more chal-
lenging problem. In the literature, multiple ways of dealing
with pooling have been explored. The methods in [36] and
[20] are statistical methods of pooling quality scores. While
the former deals with percentile methods, the latter adopts the
notion of coefficient of variation. In this section, we survey
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information theoretic approaches to pooling quality scores.
The premise of this approach is to weight the quality eval-
uations at locations containing rich information more than
the other locations. We present one IQA [11] and one VQA
algorithm [21] to illustrate how local quality evaluations may
be pooled using information theoretic quantities.

4.1 Information weighting for IQA

In [11], the local quality scores between corresponding
blocks at a given scale and position are weighted using the
total amount of perceptual information content in both the
reference and the distorted images. Let C̄mkr and C̄mkd denote
blocks of transform coefficients in Block m ∈ {1, 2, . . . , Mk}
and Subband k ∈ {1, 2, . . . , K } of reference and distorted
images respectively. The number of subbands chosen needs
to match the number of those in the QA algorithm that is
weighted. If the underlying QA algorithm is not obtained
by using K subbands, then the information weights thus
obtained must be appropriately related to the underlying QA
algorithm. For further details on this issue, the reader may
refer to [11]. C̄ ′

mkr and C̄ ′
mkd denote neural noisy versions of

C̄mkr and C̄mkd , respectively, where

C̄ ′
mkr = C̄mkr + W̄mkr C̄ ′

mkd = C̄ ′
mkd + W̄mkd ,

with W̄mkr ∼ N (0, σ 2
W I) and W̄mkd ∼ N (0, σ 2

W I). Further,
C̄mkr and C̄mkd are modeled as GSM vectors as in (1).

The total amount of perceptual information content in the
reference and the distorted images is expressed as

γmk = I (C̄mkr ; C̄ ′
mkr |Smkr = smkr )

+I (C̄mkd; C̄ ′
mkd |Smkr = smkr )

−I (C̄ ′
mkr ; C̄ ′

mkd |Smkr = smkr ). (6)

Using these weights, any IQA algorithm that yields local
quality scores at different locations (blocks) can be weighted.
Suppose Qmk represents a local quality score corresponding
to Block m and Subband k. Then, the weighted quality score
is given by

Q =
∑K

k=1
∑Mk

m=1 γmk Qmk
∑K

k=1
∑Mk

m=1 γmk

. (7)

The authors of [11] show that this information theoretic
weighting strategy can be used to improve the performance of
many existing IQA algorithms. In particular, the application
of information content weighting to peak signal to noise ratio
(PSNR) and SSIM improves their performance on multiple
image quality assessment databases as shown in [11].

The VIF index [10] can also be cast in the context of
information content weighting strategies as follows [11]. By
analyzing the VIF index, (5) may be interpreted according to
(7) as

VIF =
∑K

k=1
∑Mk

m=1 γmkVIFmk
∑K

k=1
∑Mk

m=1 γmk

,

where

VIFmk = I (C̄mkr ; C̄ ′
mkd |Smkr = smkr )

I (C̄mkr ; C̄ ′
mkr |Smkr = smkr )

γmk = I (C̄mkr ; C̄ ′
mkr |Smkr = smkr ). (8)

This implies that in the VIF index, local quality evaluations
obtained as VIFmk are weighted according to γmk . However,
observe that γmk used in (8) is different from the γmk defined
in general in (6) for information content weighting in QA
algorithms.

4.2 Information weighting for VQA

We discuss another information theoretically motivated
weighting strategy for the problem of VQA [21]. The algo-
rithm is obtained by weighting the local structural similarity
index (SSIM) values [23] according to the amount of per-
ceived motion information at that location. The assumption
underlying the algorithm is that quality evaluations at loca-
tions with high motion information need to be weighted more
since they have a larger impact on the quality of the video.
Note that this paradigm only concerns spatial weighting of
quality scores. A simple averaging over all the frames is used
for temporal pooling.

There are three notions of motion associated with the
algorithm. While global motion v̄g refers to the background
motion, v̄a refers to the absolute motion at a given location.
The relative motion is defined as v̄r = v̄a − v̄g . As in [21],
we use the notation v = ‖v̄‖. Note that we refer to optical
flow vectors by motion here, although there could be other
notions of motion such as frame differences, for example.
Based on observations in [37], a power law distribution is
assumed for the prior on relative motion and is given by

p(vr ) = τ

vα
r

,

where α and τ are constants. Note that this is not a valid
probability distribution and can only be used away from vr =
0. The amount of information associated with the relative
motion at a given location can be quantified as

I = − log p(vr ) = − log τ + α log vr .

Further, the perceived global motion v′
g is modeled as a log

normal distribution [37] and is related to the global motion
vg by

p(v′
g|vg) = 1√

2πv′
gσ

e
−(log v′

g−log vg )2

2σ2 ,
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where the width parameter σ parametrizes the deviation of
v′

g from vg . σ is modeled as

σ = λ

cγ
,

where λ and γ are positive constants and c is the local con-
trast. Consequently, different locations have different devi-
ations from the global motion. The amount of perceptual
uncertainty is expressed as the entropy of the likelihood func-
tion p(v′

g|vg) and is given by

U = −
∞∫

−∞
p(v′

g|vg) log p(v′
g|vg)dv′

g

= 1

2
+ 1

2
log(2πσ 2) + log vg

= log vg − γ log c + δ,

where δ = 1
2 + 1

2 log(2π)+log λ is a constant. The weighting
at a given spatio-temporal location is given by

w = I − U = (α log vr + β) − (log vg − γ log c + δ).

Finally, suppose q(x, y, t) is the quality evaluation at a given
spatio-temporal index in the video. Then, the weighted VQA
index is given by

Q =
∑

t
∑

x
∑

y w(x, y, t)q(x, y, t)
∑

t
∑

x
∑

y w(x, y, t)
.

Indeed, it is verified in [35] that the performance of
weighting the SSIM index based on perceptual uncertainty of
motion does improve its performance over the algorithm that
does not perform such a weighting. Although such an algo-
rithm does not perform as well as the best performing QA
indices on the LIVE Video Quality Assessment Database,
the results indicate that information theoretic weighting of
spatial QA indices using motion information can be useful
in video QA.

5 Conclusion

Information theoretic methods have found an important role
in image and video quality assessment. We have summa-
rized key contributions in the design of information the-
oretic methods for FR, RR and NR IQA. Although these
algorithms are often motivated by a natural scene statistics
paradigm, we showed how some aspects of their design are
dual with respect to IQA algorithms based on perceptual
approaches. Further, these algorithms achieve state of the art
performances within the class of FR and RR IQA algorithms.

We also looked at extensions of information theoretic FR
IQA algorithms to VQA. Finally, we surveyed information
weighting approaches for any QA algorithm toward design-
ing methods for pooling the local quality evaluations into a
single QA score. Pooling based on the amount of inherent
information at different locations is a principled, yet percep-
tually relevant strategy and helps improve the performance
of both image and video QA algorithms.

There are multiple open research problems for future
directions. As we mentioned earlier, the use of information
theoretic features in learning/training-based methods for NR
image/video QA is a possible direction. The other direction is
to extend the methods in [17] and attempt purely information
theoretic NR QA model design based on the measurement
of local structures. However, in such an approach, the key
research question is in figuring out what data needs to be
analyzed information theoretically rather than the question
of what information theoretic quantities to use. There is con-
siderable scope for improvement in the design of information
theoretic VQA models that could better analyze temporal
video information. While both [18] and [19] look at spatio-
temporal data, it might be interesting to consider the spa-
tial and temporal data independently in view of the accepted
model of independent processing of these in the visual cortex
[20]. Based on the work in [28], which shows the equiv-
alence of some of the information theoretic QA indices to
other successful image QA indices under some assumptions,
it might be possible to adapt some of the key ideas in suc-
cessful visual QA indices into information theoretic–based
approaches. Overall, we hope that we have been able to
deliver a meaningful sample of how information theoretic
methods are playing an important role in the creation of visual
QA algorithms exhibiting excellent performance. However,
there remain many open research problems. For example, the
use of information theoretic methods is still nascent in NR
IQA and in all classes of VQA, and the level of success of
these methods can probably be significantly improved.
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