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Abstract—The escalating teletraffic growth imposed by the
proliferation of smartphones and tablet computers outstrips the
capacity increase of wireless communications networks. Further-
more, it results in substantially increased carbon dioxide emis-
sions. As a powerful countermeasure, in the case of full-rank
channel matrices, MIMO techniques are potentially capable of
linearly increasing the capacity or decreasing the transmit power
upon commensurately increasing the number of antennas. Hence,
the recent concept of large-scale MIMO (LS-MIMO) systems has
attracted substantial research attention and been regarded as
a promising technique for next-generation wireless communica-
tions networks. Therefore, this paper surveys the state of the art
of LS-MIMO systems. First, we discuss the measurement and
modeling of LS-MIMO channels. Then, some typical application
scenarios are classified and analyzed. Key techniques of both the
physical and network layers are also detailed. Finally, we conclude
with a range of challenges and future research topics.

Index Terms—Large-scale MIMO, 3-D MIMO, channel model-
ing, physical layer, networking.

2D Two-dimensional.

3D Three-dimensional.

3GPP 3rd Generation Partnership Project.

4G Fourth generation.
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ABS Almost blank subframe.

AEs Antenna elements.

AoAs Azimuth of arrivals.

AoD Azimuth of departure.
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AWGN Additive white Gaussian noise.
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BF Beamformer.

BI-GDFE Block-iterative generalized decision feedback

equalizer.

CBSM Correlation-based stochastic model.

CEP Constant envelope precoding.

CIRs Channel impulse responses.

CR Correlation rotation.

CRE Cell range extension.

CSI Channel state information.

CSIT CSI at the transmitter.

DASs Distributed antenna systems.

DDCM Double directional channel model.

DoF Degrees of freedom.

DPC Dirty paper coding.

DL Downlink.

DS Delay spread.

EE Energy efficiency.

eNB Evolved Node B.

EoD Elevation angle of departure.

EoA Elevation angle of arrival.

FD Frequency domain.

FDD Frequency division duplex.

FFR Fractional frequency reuse.

FIR Finite impulse response.

GBSM Geometry-based stochastic model.

HetNet Heterogeneous network.

HomoNet Homogeneous network.

ICI Inter cell interference.

ICIC Inter-cell interference coordination.

i.i.d. Independent identically distributed.

ISD Inter site distance.

IUI Inter-user interference.

LoS Line of sight.

LS-MIMO Large-scale MIMO.

MAC Media access control.

MAP Maximum posterior probability.

MAX-MIN Maximizing the minimum.

MeNB Macro-cell eNB.

MF Matched filter.

MIMO Multiple-input and multiple-output.

MIN-MAX Minimizing the maximum.

ML Maximum-likelihood.

MMSE Minimum mean square error.

MMSE-SIC MMSE based soft interference cancellation.

MRC Maximum ratio combining.

MRT Maximum ratio transmission.

MSE Mean square error.

MUEs Macro-cell UEs.

MU-MIMO Multi-user MIMO.
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NLoS Non line of sight.

OF Objective function.

PAs Power amplifiers.

PAPR Peak to average power ratio.

PBCH Physical broadcasting channel.

PDSCH Physical downlink shared channel.

PSM Parametric stochastic model.

QoS Quality of service.

R12 Release 12.

RF Radio-frequency.

RRU Remote radio unit.

RSRP Reference signal received power.

RTDD Reversed TDD.

RZF Regularized ZF.

SDM Spatial division multiplexing.

SDMA Spatial division multiple access.

SeNBs Small-cell eNBs.

SER Symbol error ratio.

SF Shadow fading.

SFR Soft frequency reuse.

SINR Signal-to-interference-plus-noise ratio.

SNR Signal-to-noise ratio.

SUEs Small-cell UEs.

TD Time-domain.

TDD Time division duplex.

TPC Transmit precoding.

TS Tabu search.

UEs User terminals.

UL Uplink.

VP Vector perturbation.

VRM Virtual ray model.

ZF Zero-forcing.

I. INTRODUCTION

W ITH the evolution of smart terminals and their applica-

tions, the need for multimedia services rapidly increases

recently. Thus, the capacity of wireless communications net-

works has to be increased in order to guarantee the Quality

of Service (QoS) requirements of mobile applications. Mean-

while, telecommunication manufactures and operators have

also foreseen that the load of wireless communications net-

works is increasing exponentially [1]. Therefore, it is necessary

to introduce new technologies to meet the demands of explosive

traffic for next-generation wireless communications networks.

Bandwidth Efficiency (BE) is usually one of the most impor-

tant metrics to select candidate technologies for next-generation

wireless communications systems. Meanwhile, with excessive

power consumption in wireless communications networks, both

carbon emissions and operator expenditure increase year by

year [2], [3]. As a result, Energy Efficiency (EE) has become

another significant metric for evaluating the performances of

wireless communications systems with some given BE con-

straints [4]–[6].

Multiple-Input and Multiple-Output (MIMO) technology has

attracted much attention in wireless communications, because

it offers significant increases in data throughput and link range

without an additional increase in bandwidth or transmit power.

In 1993 and 1994, a MIMO approach was proposed and the

corresponding patent was issued [7], where multiple transmit

antennas are co-located at one transmitter with the objective

of improving the attainable link throughput. Then, the first

laboratory prototype of spatial multiplexing was implemented

to demonstrate the practical feasibility of MIMO technology

[8]. Nowadays, MIMO has been accepted as one of key tech-

nologies in the Fourth Generation (4G) wireless communica-

tions systems. When an evolved Node B (eNB) equipped with

multiple antennas communicates with several User Terminals

(UEs) at the same time-frequency resources, it is referred to

as Multi-User MIMO (MU-MIMO). MU-MIMO is capable

of improving either the BE or the reliability by improving

either the multiplexing gains or diversity gains [9]. In order

to scale up these gains, the Large-Scale MIMO (LS-MIMO)

concept, which is also known as massive MIMO scheme often

also associated with the terminologies of large-scale antenna

systems, very large MIMO, very large multi-user-MIMO, full-

dimensional MIMO, hyper MIMO, etc, was proposed by

Marzetta in [10]. More explicitly, a LS-MIMO refers to the

system that uses hundreds of antennas to simultaneously serve

dozens of UEs. Both theoretical and measurement results indi-

cate that a LS-MIMO is capable of significantly improving the

BE, which simultaneously reducing the transmit power [11],

[12]. As a result, a LS-MIMO is regarded as a candidate tech-

nique for next-generation wireless communications systems

conceived for the sake of improving both their BE and EE.

As the down tilt of an Antenna Array (AA) is fixed, tradi-

tional MIMO technology can only adjust signal transmission in

the horizontal dimension. In order to exploit the vertical dimen-

sion of signal propagation, AAs, such as rectangular, spherical

and cylindrical AAs, were studied by the 3rd Generation Part-

nership Project (3GPP) [13]–[15]. MIMO with these arrays can

adjust both azimuth and elevation angles, and propagate signals

in Three-Dimensional (3D) space, thus termed 3D MIMO. To

further increase capacity, 3D MIMO deploys more antennas

to achieve larger multiplexing gains. Meanwhile, LS-MIMO

adopts rectangular, spherical or cylindrical AAs in practical

systems considering the space of AAs. Therefore, 3D MIMO

with massive antennas can be seen as a practical deployment

means of LS-MIMO, and both of them are investigated in this

paper.

LS-MIMO can improve BE since it can achieve large mul-

tiplexing gains when serving tens of UEs simultaneously [10],

[16]. The significant increase in EE is due to the fact that the use

of more antennas helps focus energy with an extremely narrow

beam on small regions where the UEs are located [17]. Apart

from these advantages, LS-MIMO can enhance transmission re-

liability owing to the excessive Degrees of Freedom (DoF) [18].

Inter-User Interference (IUI) can also be alleviated because

of the extreme narrow beam [11]. In an LS-MIMO system,

individual element failure of the AA is not detrimental to the

performance of the entire system [11]. Simple low-complexity

signal processing algorithms are capable of approximating the

performance achieved by optimal methods, such as Maximum-

Likelihood (ML) multiuser detection and Dirty Paper Coding

(DPC) [12]. The latency of the air interface can be reduced and
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TABLE I
CURRENT RESEARCH DIRECTIONS OF LS-MIMO

the protocols at the Media Access Control (MAC) layer can

be simplified because of the channel harden phenomenon and

sufficient capacity [19].

Certainly, the complexity of signal processing, including

Transmit Precoding (TPC), channel estimation and detection,

increases with the number of antennas. On the other hand, the

maximum number of orthogonal pilot sequences is limited by

the coherence interval and coherence bandwidth. Therefore,

the performance of LS-MIMO systems is constrained by pilot

contamination due to pilot reuse in multi-cell scenarios [10].

Moreover, compared to the Physical Downlink Shared Channel

(PDSCH) employing either precoding or beamforming, the

Signal-to-Interference-plus-Noise Ratio (SINR) of the Physi-

cal Broadcasting Channel (PBCH) is lower due to the omni-

directional signal transmission [20].

Currently, fundamental theoretical problems and several

physical layer techniques of LS-MIMO have been already

widely investigated. For example, the capacity and the realistic

performance of precoding and detection for LS-MIMO have

been analyzed from the viewpoint of information theory [12],

[21]. Additionally, the advantages and disadvantages, the po-

tential applications and limitations of LS-MIMO were gene-

rally given in [11]. However, the performance of LS-MIMO

is much more affected by practical factors, which are not

well summarized so far. Therefore, besides a comprehensive

investigation on the theoretical performance of LS-MIMO, this

paper pays more attention to the discussions of issues from the

system point of view, such as practical channel models under

different AAs, practical application scenarios for LS-MIMO,

networking techniques, and so on. According to the current

literature related to LS-MIMO, the major research directions

about LS-MIMO are listed in Table I, some of which have been

investigated in [11], [12] and [21] while others are not.

The remainder of this paper is organized as shown in Fig. 1.

The measurement and modeling of LS-MIMO channels are

discussed in Section II. Section III introduces main scenarios

and applications in wireless communications networks. The

theoretical and measured performances of LS-MIMO with dif-

ferent precoders and detectors are discussed for both single-cell

and multi-cell scenarios in consideration of perfect and imper-

fect Channel State Information (CSI) in Section IV. Section V

investigates related networking techniques, such as Inter-Cell

Interference Coordination (ICIC) and scheduling. Section VI

Fig. 1. Structure of this survey paper.

identifies challenges and research directions, and Section VII

concludes this paper.

II. CHANNEL MODEL OF LS-MIMO

Channel modeling is a fundamental problem in the sense

of evaluating the performance of the LS-MIMO system. In

this section, we first introduce several typical antenna config-

urations design for LS-MIMO. Then, the main properties of

LS-MIMO channels are characterized with the aid of measure-

ment results. Next, three types of channel models are presented,
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Fig. 2. Various antenna configurations.

which are suitable for either theoretical analysis or practical

evaluation.

A. Antenna Configurations

In a traditional passive AA, the Radio-Frequency (RF) circuit

is usually connected to its physical antennas through an RF

cable. In order to reduce the loss imposed by the RF cable and to

save the costs of installation and maintenance, a Remote Radio

Unit (RRU) in conjunction with a Baseband Unit (BBU) has

become a preferred configuration recently [22]. The baseband

digital signal generated by the BBU is sent to the RRUs through

an optical fiber. The RF circuit is placed as close as possible

to the physical AA. Furthermore, active AAs operating without

RF cables are now also commercially available, which enabling

engineers to carefully configure a LS AA [23]. In an active

AA, the RF circuit and the AA are integrated into a single

circuit board, which is an important milestone in the develop-

ment of AA.

Fig. 2 illustrates several typical LS AAs, namely the lin-

ear AA, spherical AA, cylindrical AA, rectangular AA, and

distributed AA [11]. The linear AA is an example of Two-

Dimensional (2D) AAs, whereas the spherical AA, cylindrical

AA and rectangular AAs belong to the family of 3D AAs.

Considering the space limitations at both the eNBs and UEs,

the spherical, cylindrical and rectangular AAs are more realistic

for practical systems. The distributed AA is mainly used either

inside buildings or for outdoor cooperation, and the linear

AA is mostly assumed in theoretical analysis and realistic

measurements.

Moreover, due to the associated aspects of aesthetics and

potential health issues, commercial deployments of LS AAs

have been partially opposed both by the public and by the

organizations. By integrating the AEs into the environment,

LS AAs can be rendered virtually invisible. An aesthetically

pleasing method is to deploy LS AA as part of the building’s

facade or signage in an irregular fashion [20], e.g. the black

AEs of a rectangular AA may assume the shape of the Chinese

character “Zhong,” as shown in Fig. 2. On the other hand, in

order to reduce the side lobes of the irregular AA, advanced

algorithms relying on subarrays [24], on orthogonal placement

[25], or on parasitic AAs [26] can be introduced for improving

the beamforming performance of these irregular AAs.

B. Channel Measurements

Realistic channel measurements have been carried out in

[27], [28] in an effort to identify the main characteristics of

LS-MIMO channels. As shown in Table II, different antenna

configurations may be considered under different scenarios at

a carrier frequency of 2.6 GHz. The outdoor measurements in

[27] focus mainly on the impact of the number of antennas

imposed on the small-scale fading characteristics. When a

linear AA is employed at the eNB, both the non-stationary

nature of the fading and the near-field AA effects have been

studied in order to capture the main properties of a realistic

channel model [27]. However, it requires further investigations

to ascertain whether these properties are valid for both spherical

as well as cylindrical and rectangular arrays.

The main results of these measurements may be summarized

as follows:

• Since different Antenna Elements (AEs) of the AA at

the eNB may encounter different multi-path clusters and

the AA is also often subjected to shadow fading, the

accurate modeling of LS-MIMO systems in practical non-

stationary propagation scenarios remains to a large extent

an open challenge [27];

• The Channel Impulse Responses (CIRs) experienced by

UEs become more de-correlated from each other in the

case of large AAs, because having more AEs allows one

to more accurately distinguish both their CIRs and their

angles of arrival [29], [30]. In other words, having more

AEs at the eNB is capable of achieving improved or-

thogonality amongst different UEs in comparison to their

traditional small-scale MIMO counterparts. It is particu-

larly important in Spatial Division Multiplexing (SDM)

or Spatial Division Multiple Access (SDMA) systems,

where the unique and user-specific CIRs are used for

distinguishing the UEs and the transmission streams; and

• The linear AA has the better angular resolution in azimuth

than the cylindrical array. However, the latter is capable

of achieving a beneficial resolution in both azimuth and

elevation, which may be more useful in high-rise urban

environments [28].

C. Channel Model

Typically, three types of channel models have been used for

evaluating the performance of wireless communications sys-

tems, namely the Correlation-Based Stochastic Model (CBSM),

the Parametric Stochastic Model (PSM) and the Geometry-

Based Stochastic Model (GBSM) [31], [32]. The complexity

of the CBSM is low so that it is mainly used for evaluating
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TABLE II
CHANNEL MEASUREMENTS

the theoretical performance of MIMO systems. However, it is

somewhat simplistic and hence inaccurate for a realistic MIMO

system. Therefore, it is not directly applicable to the modeling

of wireless channels, when encountering a spherical wavefront.

By contrast, the GBSM model is capable of accurately describ-

ing the realistic channel properties, and hence it is more suitable

for LS-MIMO channels, albeit with an increased computational

complexity. The complexity of the PSM tends to be higher than

that of the CBSM, while the accuracy of the PSM is lower

than that of the GBSM, which results in paucity of studies on

the PSM in LS-MIMO systems. Therefore, in this section, we

mainly consider the CBSM in the context of theoretical analysis

and the GBSM for realistic performance evaluation, but we

also aim for shedding some light on the PSMs designed for

LS-MIMOs.

1) CBSM: There are three kinds of simplified CBSMs, i.e.,

the non-dispersive independent identically distributed (i.i.d.)

Rayleigh fading model, the non-dispersive correlated channel

model, and the dispersive multi-path channel model, where

each tap is modeled as either a correlated or uncorrelated fading

process.

• Non-dispersive i.i.d. Rayleigh channel model: When

an i.i.d. Rayleigh fading channel is assumed for an

LS-MIMO system, no correlation exists between the

transmit and receive antennas. Hence, the elements of the

fast fading matrix are i.i.d. Gaussian variables;

• Non-dispersive correlated Rayleigh channel model: In

order to characterize the Doppler-induced received signal

correlation, the correlated channel model has been con-

sidered for characterizing the achievable performance of

LS-MIMO systems [16]. The fast fading matrix of the

correlated channel model is formed by the product of

the correlation matrix and the standard complex-valued

Gaussian matrix. The correlation matrix quantifies the

long-term correlation of the AEs at both the transmitter

and receiver, which can be acquired by measurements. By

contrast, the complex-valued Gaussian matrix describes

the i.i.d. Rayleigh fading channel; and

• Dispersive multi-path channel model: The dispersive

multi-path channel model of LS-MIMO systems can have

different distributions of the Azimuth of Arrivals (AoAs)

from different UEs [33]. In this model, each UE’s CIR is

constituted by multiple independent paths arriving from

different directions. Each independent path is charac-

terized by a path attenuation multiplied by the steering

vector of an AoA. When UEs are located at different

angular positions, they can be separated according to their

AoAs. Therefore, this model is useful in analyzing the

performances of the IUI or Inter Cell Interference (ICI)

schemes.

2) GBSM: According to the modeling of scattering propa-

gation environments, the GBSM can be classified into single-

ring [34], twin-ring [35] and elliptical models [36]. However,

depending on whether the elevation angle is considered or not,

the GBSM involved for an LS-MIMO system is mainly used

in the context of elliptical models and can be divided into 2D

and 3D channel models. When an AA is employed at the eNB,

the angle of elevation is fixed and the 2D channel model is

adequate for accurately evaluating the performance. However,

if a practical spherical, cylindrical or rectangular AA is adopted

at the eNB, the 3D channel model with an adjustable angle of

elevation has to be considered.

• 2D channel model: When adopting a linear AA, a non-

stationary spherical wavefront has been observed by

LS-MIMO channel measurements [27], [28]. Similarly,

a non-stationary wavefront has also been observed for a

linear 128-element AA in a semi-urban area [37]. How-

ever, due to the fact that the non-stationary spherical

wavefront critically affects both the receiver design and

its performance, it is important to model this property

of the LS-MIMO channel. So, the COST 2100 channel

model of [38] has been extended to include the effect of

the wavefront’s non-stationary [37];

When considering both the non-stationary wavefront

propagation phenomenon and the spherical nature of the

waveform, an elliptical GBSM is proposed for LS-MIMO

systems based on a linear AA in [39], [40]. Also, the birth-

death process of clusters appearing and disappearing is

discussed in [39] for the sake of characterizing its non-

stationary nature. The results in [39] show that the phases

of the linear AA responses are no longer linear, and the

AoAs impinging on the AA gradually shift, in agreement

with the measurement results in [27]; and

• 3D channel model: The model methodology and param-

eters of some existing models, such as the 3D channel

model of the WINNER+ project [41], depend primarily

on literatures, rather than on realistic measurements [42].

Thus, it needs further verification by realistic channel

measurements, including the elevation characteristics of
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Fig. 3. Procedures of 3D channel modeling.

the AA as well as the cross-correlation matrix of the

large-scale fading parameters. Therefore, the existing 3D

channel models cannot be directly applied in realistic

scenarios.

In the WINNER II, WINNER+ and COST273 pro-

jects, the procedures of modeling the 3D MIMO channel

have been proposed as detailed in Fig. 3 [43], [44]. The

main parameters of the 3D channel model consist of

the Shadow Fading (SF), the Delay Spread (DS), the

Ricean K-factor, the AoA, Azimuth of Departure (AoD),

the Elevation angle of Arrival (EoA) and the Elevation

angle of Departure (EoD). The EoA and EoD are of

particular interest during the modeling. Moreover, the

cross correlation matrix of the channel has been extended

from a 5-dimensional to a 7-dimensional matrix, and the

correlations between any two parameters have also been

characterized in detail.

In 3GPP Release 12 (R12) [44], there are three scenar-

ios at present, namely the urban micro cell associated with

a high UE density, the urban macro-cell having a high

UE density and the urban macro cell associated with one

high-rise AA per sector and the Inter Site Distance (ISD)

of 300 meter. The distribution of the related parameters

and the cross correlation matrix of the 3D channel model

associated with a rectangular AA have been measured,

and documented in [44]. According to the procedures of

modeling the 3D MIMO channel [44], realistic channel

coefficients can be generated for characterizing the above-

mentioned three scenarios. However, the non-stationary

nature of LS-MIMO channels has not been taken into

account in [28], [44]. Therefore, the properties and the

modeling of the 3D MIMO channel requires further study.

3) PSM: The PSM describes the signals impinging on the

receivers as a superposition of waves. A common form of these

models employs the structure of a tapped delay line, where each

tap reflects a specific propagation path. There are some PSMs

for traditional MIMO, such as the Double Directional Channel

Model (DDCM) of [45] and the Virtual Ray Model (VRM) of

[46], where different methods are used for modeling each tap

of the channel. But again, the PSMs are less well studied in the

context of LS-MIMOs since they are more complex in terms

of their theoretical analysis than the CBSMs. Nevertheless,

they constitute viable design alternatives, which are capable

of reducing the complexity of the GBSMs for LS-MIMOs.

Therefore, the development of the PSM for LS-MIMO systems

requires further research efforts, before it becomes a reality.

D. Summary of LS-MIMO Channels

The antenna configuration directly affects the characteristics

of an LS-MIMO channel. The linear AA gives rise both to

non-stationary channel characteristics and to near-field effects,

while the rectangular, spherical and cylindrical AAs are capable

of accurately directing the beam propagation in the 3D space.

Therefore, the choice of the configuration of an AA conceived

for particular scenarios requires further investigations.

Currently, the CBSMs are mainly used for analyzing the

theoretical performance of LS-MIMO systems attributed to its

simplicity. Measurements have also been conducted for validat-

ing the accuracy of this model. The non-stationary LS-MIMO

channel and the spherical wave propagation effects have been

regarded as the in-built properties of the linear AA. The channel

model reflecting both the non-stationary LS-MIMO propaga-

tion phenomenon and the spherical wave effect propagation

effects has been established for the linear AA, which relies on

a cluster-based model. Furthermore, an improved 3D channel

model has been specified by the 3GPP. However, characterizing

the non-stationary propagation for the spherical, cylindrical and

rectangular arrays requires further measurements. In conclu-

sion, how to accurately model the channel of LS-MIMOs still

remains an open problem to a large extent.

III. MAIN APPLICATION SCENARIOS

This section presents a set of application scenarios, which

capture the major dynamics that are of interest in LS-MIMO

systems. As an essential step of the study, the definition of

application scenarios may present a guide for developing key

techniques. As shown in Table III, all of these scenarios under

different network deployments can be roughly classified into

two types, i.e., Case 1 Homogeneous Network (HomoNet)

with only macro-cell deployment and Case 2 Heterogeneous

Network (HetNet) with both macro-cell and small cells. Next,

more details of these scenarios are discussed.

A. Case 1: Homogeneous Network Scenarios

1) Case 1A—Multi-Layer Sectorization: Upon increasing

the number of UEs and their carried tele-traffic in urban envi-

ronments, increased system capacity is required for supporting

customer requirements. Traditionally, sectorization techniques

are used for providing services to a growing population, which

simply divide a cell into multiple sectors, thus increasing net-

work capacity. The equipment costs can also be reduced by



ZHENG et al.: SURVEY OF LS-MIMO SYSTEMS 7

TABLE III
TYPICAL APPLICATION SCENARIOS

Fig. 4. Illustration of Case 1A: Multi-layer sectorization.

allowing a single eNB to serve either three 120◦ sectors or

six 60◦ sectors. However, although sectorization is capable of

improving the area BE, this benefit comes at the expense of

a potentially increased interference among sectors due to non-

ideal sector-antenna patterns. Therefore, more efficient tech-

niques are required to further increase the achievable network

capacity.

As illustrated in Fig. 4, accurate sectorization in LS-MIMO

systems can be achieved by high-selectivity angular beamform-

ing performed horizontally, which is capable of reducing the

interference among sectors. Moreover, the coverage of each

beam can be changed by adjusting the elevation angle of 3D

beamforming. By this way, a conventional fixed sector can be

further spitted into inner and outer sectors, each of which can be

served by a 3D Beamformer (BF) with the same horizontal but

different elevation angles. The same frequency radio resources

are reused by all the sectors, which is capable of significantly

increasing the number of UEs served and/or of improving the

network’s throughput.

2) Case 1B—Adaptive Beamforming: Fixed BFs are so

called because the weights that multiply the signals at each

element of the AA remain unchanged during operation. By con-

trast, the weights of an adaptive BF are continuously updated

based on the received signals in order to suppress spatial inter-

ference, e.g., as depicted in Fig. 5. This process may be carried

out in either the Time-Domain (TD) or Frequency Domain

(FD). Compared to the 2D adaptive BF, a 3D BF may have more

flexibility in reusing the radio resources in the spatial domain.

Fig. 5. Illustration of Case 1B: Adaptive beamforming.

Fig. 6. Illustration of Case 1C: Large-scale cooperation.

3) Case 1C—Large-scale cooperation: Most of the existing

contributions on LS-MIMOs show different benefits in a co-

located deployment scenario, where there is a large number of

antennas installed at a single cell site. However, such co-located

deployments impose challenges both on their hardware design

and on their field deployment. On the other hand, Distributed

Antenna Systems (DASs) associated with spatially separated

antennas have been conceived for improving the indoor cover-

age using a moderate number of antennas [47]. Recent studies

have shown that apart from its improved coverage, a DAS is

capable of significantly increasing the network’s BE, even in

the presence of ICI [48]. This motivates researchers to identify

specific scenarios as illustrated in Fig. 6, where the LS-MIMO

system associated with a distributed architecture outperforms

the one relying on a co-located deployment [49], [50].
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Fig. 7. Illustration of Case 2A: Wireless backhaul.

The advantage of distributed LS-MIMOs is plausible, be-

cause the signals arriving from the distributed antennas to each

UE are subject to independent random levels of large-scale

fading, thereby leading to potential capacity gains over their

co-located counterpart [51]. However, it may be a challenge

to achieve these gains by coordinating the intra-cell interfer-

ences, especially in scenarios having dozens or even hundreds

of RRUs in a cell. Although full cooperation constitutes an

efficient method of eliminating the intra-cell interference, it is

not practical due to its high reliance on full CSI sharing. To

strike an elegant trade-off between the performance attained

and the overhead imposed, efficient large-scale cooperation

schemes are of high importance under this scenario.

Moreover, distributed LS-MIMO and small cell deployments

may be viewed as being complementary rather than competi-

tive. For example, a cooperative cellular architecture composed

of a DAS and a femtocell–macrocell underlay system is pro-

posed in [51], which may be extended to operate in conjunction

with distributed LS-MIMOs.

B. Cases 2: HetNet Scenarios

1) Case 2A—Wireless Backhaul: The HetNet with dense

small cells has been regarded as a very promising design

architecture in terms of energy and area BE. It typically consists

of multiple types of radio access nodes, e.g., a Macro-cell

eNB (MeNB) and multiple Small-cell eNBs (SeNBs) such as

pico, femto and relay eNBs. All SeNBs need to be connected

to their donor MeNBs through a wired or wireless backhaul.

Generally, the wireless backhaul is preferred to instead of the

wired backhaul because of easy deployment. In this scenario,

an LS-MIMO is used at the MeNB, which has a high DoF so to

support multiple wireless backhauls in the HetNet [52].

As illustrated in Fig. 7, the same spectrum may be reused

among wireless backhauls, access of Macro-cell UEs (MUEs)

and Small-cell UEs (SUEs). In other words, SeNBs can be

viewed as a special kind of UEs communicating with the MeNB

via the wireless backhaul. Since the location of an eNB is

usually fixed, the channel of the wireless backhaul may be

quasi-static time varying. Therefore, the MeNB is capable of

eliminating the interference between the wireless backhaul and

MUEs through the use of precoding.

2) Case 2B—Hotspot Coverage: Statistics show that the

majority of tele-traffic originates from buildings, such as super-

Fig. 8. Illustration of Case 2B: Hotspot coverage.

markets, office buildings, gymnasiums and so on [1]. Therefore,

high quality indoor coverage of buildings is considered as one

of the key scenarios for the HetNet. Since the tele-traffic is

generated at different heights in buildings, traditional AAs with

a fixed Downlink (DL) tilt, which are mainly designed for UEs

roaming at the street level, are no longer suitable for this sce-

nario. A massive AA is capable of dynamically adjusting both

the azimuth and elevation angles of its beam. It can transmit the

beams directly to the UEs at different floors in a building, and

thus significantly improves system throughput [53]. However,

when the indoor coverage of the building is provided by the

MeNB with a massive AA, the adjustable range of the elevation

angles remains small compared to that of the SeNB, and the

angular resolution cannot meet the needs of UEs, as shown

in Fig. 8. As it is well known, the close distance between

SeNBs and SUEs results in reduced path losses. Therefore,

the SeNBs equipped with a massive AA are more appropriate

for in-building coverage, providing that deployment costs are

acceptable.

3) Case 2C—Dynamic Cell: Since the Reference Signal Re-

ceived Power (RSRP) gleaned from the MeNB is usually higher

than that from the SeNB in HetNets, more UEs are likely to be

connected to the MeNB, leading to a potential unbalanced traf-

fic distribution between the macrocell and small cells. The Cell

Range Extension (CRE) technique may be used for offloading

the traffic from the macro-cells to small cells [54]. However,

the UEs in the extended range, which are somehow forced to

access to the small cells, may experience low SINRs due to

the strong interference encountering from the MeNB. This may

cause the unreliable communications between them and SeNBs.

In order to solve this problem, the Almost Blank Subframe

(ABS) technique can be applied to reduce the interference

from the MeNB through time domain coordination [55]. In

other words, the QoS performances of SUEs in the extended

range is improved at the expense of multiplexing gains.

With the introduction of massive AAs into SeNBs, the down

tilt of the transmit signals is adjustable achieve a better received

signal quality at SUEs. As illustrated in Fig. 9, it is helpful in

adaptively expanding or shrinking the radius of small cells, i.e.,

Dynamic cell. Therefore, the UEs at the edge of the small cell
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Fig. 9. Illustration on Case 2C: Dynamic cell.

may opt for adaptively connecting to the SeNB according to

their received power level. It is appropriate for balancing the

traffic between the macro-cell and small cells in the extended

range [15], [53].

C. Conclusion of Application Scenarios

In this section, typical application scenarios are classified

into two types, i.e., homogeneous and heterogeneous networks

with LS-MIMO. The former is with only macro-cell deploy-

ment, which includes multi-layer sectorization, adaptive beam-

forming and large-scale cooperation. Multi-layer sectorization

is capable of increasing multiplexing gains through splitting the

sectors. Adaptive beamforming focuses the radiated energy in

the desired direction with the aid of an extremely narrow beam,

which is able to improve the desired SINR of the UE, whilst

simultaneously reducing the interference imposed on other

UEs. Compared to the conventional DAS technique, large-

scale cooperation, through scaling up the number of distributed

antennas that are coordinated, is capable of further enhancing

both coverage and achievable throughput.

There are three typical application scenarios in the case of

the HomoNet with LS-MIMO. Firstly, the employment of a

wireless backhaul by LS-MIMO between MeNB and SeNBs

is more flexible and of low cost compared to its wired backhaul

counterpart. Then, the SeNB with a massive AA is able to

adaptively adjust both the azimuth and elevation angles in an

effort to improve the coverage of indoor hotspots, e.g., in build-

ings. Moreover, the cell radius in HetNet is dynamically adjust-

able so as balance the load between MeNB and SeNBs by

changing the elevation angle.

Based upon the above discussions, LS-MIMO is expected

to be applied in numerous scenarios to improve achievable

capacity and throughput. However, extensive studies are still

needed in practical network deployment.

IV. PHYSICAL LAYER TECHNOLOGY

When an eNB equipped with N antennas serves K(≪ N)
single-antenna aided UEs in a single-cell environment, the

performance bound of LS-MIMO can be readily derived by

means of information theory. The attainable multiplexing gain

equals the number of receive antennas K, and the array gain is

proportional to the number of transmit antennas N [12]. How-

ever, in a practical system the realistically achievable sum rates

depend on the associated coding, modulation and precoding ar-

rangements. As LS-MIMO constitutes an emerging technology,

the physical layer techniques conceived for LS-MIMO systems

focus primarily on either TPC or on sophisticated detection

arrangements [12]. Therefore, the performance of diverse LS-

MIMO relying on different TPCs or detectors and operating

in both single-cell and multi-cell environments is discussed

in this section. Both the associated theoretical and measured

results indicate that the employment of simple linear TPC and

detectors achieves almost the same performance as that of high-

complexity non-linear TPC and detecters, at least in the single-

cell scenario. Pilot contamination is the primary performance

limiting factor of LS-MIMO, when linear channel estimation

algorithms are adopted in the multi-cell environment. Hence,

solutions capable of tackling pilot contamination are also dis-

cussed. Finally, a range of non-ideal factors degrading the

performance of LS-MIMO are addressed.

A. Performance of Precoders/Detectors in

Single-Cell Environments

1) Theoretical Performance: Employing the CBSM, includ-

ing both the i.i.d. Rayleigh channel model and correlated

Rayleigh channel model, the performance of different TPCs or

detectors designed for LS-MIMO has been widely analyzed in

single-cell environments [12], [17], [56], [57], etc.

(a) i.i.d. Rayleigh channel:

• Linear precoder/detector: When employing a linear de-

tector, the BE performance lower bounds of the Uplink

(UL) of LS-MIMO systems have been studied both with

perfect CSI and with the aid of realistically estimated

CSI [17]. A Maximum Ratio Combining (MRC) receiver

performs worse than its Zero-Forcing (ZF) and Minimum

Mean Square Error (MMSE) criterion based counterparts

in the high Signal-to-Noise Ratio (SNR) region [17].

However, when the SNR is low, the MRC detector out-

performs the ZF and MMSE detectors, since the IUI

imposed by the MRC detector falls below the noise level

[17]. Moreover, the radiated power of the UE can be

made inversely proportional to the number of AEs at the

eNB under the idealized conditions of having perfect CSI.

However, in the presence of realistically estimated CSI, it

is only inversely proportional to the square-root of the

number of AEs [17]. The relationship between the radi-

ated EE and BE has also been investigated. Upon increas-

ing the BE, the EE of MRC is initially better, but beyond

a crossover point it becomes worse than that of ZF [17].

Similar to [17], the BE and radiated EE recorded for

the DL of LS-MIMO systems are also evaluated by con-

sidering both the realistically estimated CSI and the CSI

overhead imposed by the pilots [56]. The lower bounds of

BE and the optimal number of UEs supported are studied

for both the Maximum Ratio Transmission (MRT) based

TPC as well as for ZF TPC. Based on the lower bound,

the radiated EE as a function of the BE is quantified [56],

which is found to be a monotonically decreasing function

of the BE for both detectors. Upon increasing the BE, the

EE of MRT is initially better than that of ZF, and then
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the opposite trend holds. In the high-EE regime, the total

computational complexity of the MRT TPC may be higher

than that of the ZF TPC, since its optimal number of UEs

is higher. However, it may still be preferable to ZF, since

MRT TPCs can be realized with the aid of a de-centralized

architecture [58].

• Non-linear precoder: Apart from the above-mentioned

linear TPCs, non-linear TPCs, such as the DPC [59],

the Vector Perturbation (VP) [60] and the lattice-aided

TPC methods [61] are also investigated and compared to

linear precoders for transmission over the i.i.d. Rayleigh

channel [12]. The performance of the ZF TPC is shown to

approach that of the DPC TPC, when the number of AEs

increases. Similarly, diverse non-linear detectors, such as

the MMSE based Soft Interference Cancellation (MMSE-

SIC) scheme [62], the Block-Iterative Generalized Deci-

sion Feedback Equalizer (BI-GDFE) [63], Tabu Search

(TS) [64] and the Maximum Posterior Probability (MAP)

algorithm are also evaluated in terms of the Bit Error Ratio

(BER) versus complexity [12].

Moreover, the so-called per-antenna Constant Envelope

Precoding (CEP) technique implemented with the aid of

a sub-optimal algorithm is also invoked for the DL of LS-

MIMO systems in an attempt to improve the efficiency

of their Power Amplifiers (PAs) [65]. It is stated in [65]

that an eNB relying on CEP needs about 4 dB lower

transmit power than a conventional technique having a

high Peak to Average Power Ratio (PAPR), which is an

explicit benefit of using an efficient PA.

(b) Correlated Rayleigh channel: When considering

both a realistic Doppler-induced correlation and imperfect CSI,

the sum rates of the ZF and Regularized ZF (RZF) [66] TPCs

were studied in the DL of an LS-MIMO system in [67]. Since

the sum rate of ZF precoding first increases and then decreases

with the number of UEs, hence the optimal number of UEs is

obtained in [67]. Similarly, the optimal parameters of the RZF

TPC may be determined by finding the optimal sum rate. More-

over, the optimal power allocation scheme of both ZF and RZF

TPCs, as well as the optimal amount of feedback required

in Frequency Division Duplex (FDD)/Time Division Duplex

(TDD) systems are also determined in [67] for LS-MIMO

systems.

Both the ZF and Correlation Rotation (CR) aided TPC

techniques in [68] are evaluated in terms of both the BE and

the Symbol Error Ratio (SER), considering the effects of both

transmit correlation as well as mutual coupling [57], [68].

According to the approximate lower bounds and to the sim-

ulation results characterizing both TPCs, CR-aided precoding

outperforms ZF precoding. Upon increasing the number of

AEs within a given antenna dimension, the increased transmit

diversity achieved dominates the attainable performance, rather

than the reduction in spatial diversity imposed by shrinking the

spacing among the antennas.

2) Measurement Performances: All the above-mentioned

results are based on the use of theoretical channel models,

such as the i.i.d. Rayleigh and correlated channel models.

However, there exist some differences between the theoretical

channel models and their practical counterparts. Therefore, the

performances of different TPCs are also measured in practice.

• Effects of correlation [29], [30]: Both the theoretical and

realistic sum-rates versus the SNRs of the DPC, RZF and

MRT precoders are measured, when the eNB employs a

112-element AA in an outdoor scenario [30]. The theoret-

ical performance bound can be derived, despite significant

differences between the i.i.d. Rayleigh channel model and

the realistic channel. The correlation amongst the CIRs of

the different UEs decreases upon increasing the number

of AEs employed at the eNB, because larger AAs are

capable of resolving smaller AoA and CIR differences

amongst their channels. Furthermore, when encountering

different channel correlations amongst the UE channels,

the measured and theoretical sum-rates of the DPC, ZF

and RZF TPCs are compared in conjunction with an

eNB equipped with a 128-antenna indoor cylindrical array

operated in residential areas [29]. Upon increasing the

number of antennas at the eNB, the channel correlation

decreases, and the measured sum-rates approach their

theoretical limits. When the eNB employs 20 antennas,

about 98% of the sum-rate of the ideal DPC scheme is

achieved for a pair of single-antenna aided UEs by the ZF

or RZF TPCs [29].

• Effects of the propagation environment [28]: Consid-

ering realistic environments, both a 128-antenna cylin-

drical and a linear array are employed at the eNB [28].

Then, their realistic sum-rates are compared for both DPC

and ZF TPC to the theoretical sum-rates in the i.i.d.

Rayleigh channel [28]. Even for the worst combination

of the cylindrical array and a dense population supported

in a Line of Sight (LoS) environment, ZF precoding is

capable of achieving about 55% of the DPC scheme’s

sum-rate in the i.i.d. Rayleigh channel, when the number

of antennas exceeded 40. By contrast, in a Non Line of

Sight (NLoS) environment, despite encountering a dense

user population, both cylindrical and linear arrays relying

on ZF TPC are capable of attaining about 80–90% of the

sum-rate of the DPC scheme. Regardless of the propa-

gation environment, most of the theoretical sum-rate of

LS-MIMO is achievable by linear precoding, if the eNB

employs a sufficiently high number of antennas [28].

• Real time operation [58]: To implement real-time MRT

based TPC, de-centralized MRT precoding weights can

be locally calculated at each antenna [58]. A prototype

using a 64-antenna rectangular array is employed in [58]

for simultaneously serving 15 UEs. The sum-rate of de-

centralized MRT precoding is similar to that of traditional

MRT precoding. Adopting 64 antennas was shown to

achieve 6.7-fold sum-rate gains, while consuming only

1/64 of the transmit power compared to a single an-

tenna [58].

3) Simulation Results: The quantitative results of several

linear precoders are illustrated in Fig. 10. Unless otherwise

specified, the default simulation configurations in this survey

are as follows: a) The number of transmit antennas is 128;
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Fig. 10. BE of a single UE with perfect CSI in single cell case. (a) BE versus the number of antennas. (b) BE versus the number of UEs.

TABLE IV
PRECODING AND DETECTION PERFORMANCE OF LS-MIMO IN SINGLE-CELL

b) Equal power allocation is applied to 10 UEs; c) The system

bandwidth is 20 MHz; d) The large-scale fading of signal

propagation is modeled as PL[dB] = 128 + 37 log10 d, where

d is the distance between the eNB and the given UE in kilo-

meters, the log-normal shadow fading is also considered with

the standard variance of 8 dB, and the i.i.d. Rayleigh channel

is assumed for the small-scale fading; e) The transmit power

at the eNB is 14 dBm and the noise power spectral density is

−174 dBm/Hz; f) In the single-cell scenario, apart from the in-

ner circle associated with a radius of 10 meter, the UEs are uni-

formly distributed in hexagonal cells, whose ISD is 500 meter.

As there is no performance difference between the CR

precoder and the ZF precoder for transmission over the i.i.d.

Rayleigh channel, only one of them has to be discussed, say the

ZF precoder. As shown in Fig. 10(a), the BE per UE is improved

upon increasing the number of antennas at the eNB. However,

the gains of the different precoders are not the same for different

numbers of antennas. On the other hand, when multiplexing

a large number of UEs in the system equipped with a given

number of antennas, say 128, the average array gain of each UE

is reduced, which impairs the BE in Fig. 10(b). However, the

total BE of all UEs is increased as a benefit of the multiplexing

gains.

The properties of a variety of LS-MIMO precoders and

detectors operating in single-cell environments are summarized

in Table IV. Generally, the precoders or detectors associated

with a higher complexity offer an improved BE performance.

Deploying more number of antennas at the eNB is capable

of improving both the BE and EE. The performance of linear

precoders or detectors is capable of approximating those of the

high-complexity non-linear precoders or detectors. Precoders

operating in realistic channels are capable of achieving a BE

close to that estimated for idealized theoretical channel models.

Assuming ideal CSI or estimated CSI, the transmit power of

each antenna can be made inversely proportional to the number

of AEs or to the square-root of the number of AEs deployed at

the eNB, respectively.

B. Performance of Precoders/Detectors in

Multi-Cell Environments

1) Pilot Contamination in Multi-Cell Scenarios [10], [16],

[69],[70]: This section discussestheperformance of LS-MIMO

in non-cooperative multi-cell multi-user systems. Fig. 11 il-

lustrates the UL and DL interference encountered in such a

multi-cell system. The affordable number of orthogonal pilots
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Fig. 11. Illustration of pilot contamination.

used for channel estimation is limited, because increasing the

number and variety of pilots is only possible through enlarging

the length of the pilot sequences, which ultimately increases

the transmission overhead and/or the bandwidth. In practice

the number of pilots may only be sufficient for supporting a

limited number of UEs roaming in a single cell, which results

in inevitable pilot reuse for the UEs in adjacent cells. As shown

in Fig. 11, employing the TDD mode, when the UEs of different

cells send the same pilot sequence to their donor eNBs on

the UL, each eNB has to rely on an interference-contaminated

UL received signal, which inevitably contaminates the resultant

channel estimate. Firstly, the interference-contaminated UL

CSI is used for detecting the UL data. On the other hand, the

DL channels may be assumed to be identical to the UL ones in

the case of TDD-based reciprocity, provided that the bandwidth

remains sufficiently narrow to encounter the non-frequency-

selective propagation. Therefore, the UL CIR can be used by

the DL transmit precoder. The precoded DL signals impinge

on both the desired UEs and the UEs in other cells. Therefore,

both the UL and DL sum rates are constrained by the adjacent

cells interference imposed by pilot reuse. This phenomenon is

known as pilot contamination and has been widely recognized

as the main performance constraint of LS-MIMOs, as outlined

below in more detail.

• i.i.d. Rayleigh channel: Assuming that the i.i.d. Rayleigh

channel can be ideally estimated at the eNB, the perfor-

mance of the ZF detector is analyzed in a UL LS-MIMO

system in the multi-cell scenario [69]. Both the exact

closed-form and lower bound of the UL BE indicate that

the system is interference-limited at high SNRs. Hence,

boosting the transmit power at the UEs cannot further

improve the attainable performance. The effects of in-

terference and noise can be reduced by employing more

antennas at the eNB. However, in the presence of realisti-

cally estimated CSI, the received SINRs of both the MRT

precoder and of the MRC detector demonstrate that the ef-

fects of the Additive White Gaussian Noise (AWGN) and

IUI disappear, and that the only remaining constraint is im-

posed by pilot contamination [10]. Moreover, the results

in [10], [69] demonstrate that the required radiated energy

per bit is reduced upon increasing the number of AEs.

• Correlated Rayleigh channel: Under the correlated

channel model, the approximate sum rate is studied in

[16], where the MRT/RZF precoder is employed for the

DL or MRC/MMSE detection is adopted for the UL [16].

The BE attained depends mainly on the effective SNR as

well as the DoF, which is defined as the ratio of the rank

of the correlation matrix to the number of UEs. Similar

conclusions in [16] can be found in [10], i.e., when the

number of antennas tends to infinity, both the thermal

noise and the IUI can be averaged out. Hence, pilot con-

tamination remains the main constraint of LS-MIMOs,

and the radiated power can be kept low. Moreover, the

number of antennas required for different TPCs or detec-

tors has to be deduced on the basis of aiming for a given

percentage of the BE attained with the aid of an infinite

number of antennas. The RZF/MMSE precoder/reciever

is capable of achieving the same BE using a re-

duced number of antennas compared to the MRT/MRC

schemes.

• Dispersive multi-path channel: The performances of

both the MRC and ZF detectors are studied in the UL of

a LS-MIMO system in a multi-cell environment, where a

dispersive multi-path channel model is assumed [70]. The

lower performance bounds derived in [70] demonstrate

that pilot contamination remains the dominant perfor-

mance limiting factor for the LS-MIMO with a realistic

finite-dimensional channel model. The ZF receiver per-

forms better than the MRC receiver in terms of the achiev-

able sum-rate, when pilot contamination is not severe,

and vice versa. A rich scattering propagation environment

may benefit the ZF detector. However, the MRC detector

performs better than ZF in poor scattering propagation

environments. If the AoAs of the UEs roaming in the

specific cell that uses the same pilots are not identical,

pilot contamination can be completely eliminated with the

aid of Bayesian channel estimation [33]. In other words,

if the covariances of the desired signal and interference

span different subspaces, pilot contamination can be elim-

inated, provided that there are an unlimited number of

antennas.

In order to explicitly show the effects of pilot contamination

imposed on the different precoders in the multi-cell scenario,

the BE per UE under the i.i.d. Rayleigh channel is depicted

in Fig. 12. The default simulation configurations are the same

as those of the single-cell scenario, except that the number

of cells is 7. It can be seen that the performance trends of

all precoders involved in the multi-cell scenario are similar to

those in the single-cell scenario. However, the BE performances

are degraded due to the pilot contamination compared to those

seen in Fig. 10. Moreover, the CEP is more sensitive to pilot

contamination in contrast to the other precoders.

2) Remedies of Pilot Contamination: As discussed before,

when realistic imperfect CSI is acquired at the eNB, the pilot

contamination caused by pilot reuse in multi-cell scenarios

imposes the ultimate limitation on the attainable performance

of LS-MIMO. This subsection studies the main techniques

of eliminating or at least alleviating pilot contamination. As
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Fig. 12. BE of single UE for transmission over an i.i.d. Rayleigh channel in multi-cell scenario. (a) BE versus the number of antennas. (b) BE versus the number
of UEs.

TABLE V
SCHEMES FOR ALLEVIATING OR ELIMINATING PILOT CONTAMINATION

concluded in Table V, the main counter-measures can be clas-

sified as follows.

• Pilot design: When the classic Matched Filter (MF) is

invoked for estimating the UL channel through the use of

UL pilots in the i.i.d. Rayleigh channel, a specific pilot

design criterion, aiming to minimize the inner product

of the pilots for different cells is proposed in [71] for

mitigating pilot contamination. Based on this criterion,

Chu-sequence-based pilots are designed, which makes the

pilots for the UEs in the same cell orthogonal, and reuses

the same pilots in the neighboring cells after suboptimal

phase shifts. Therefore, the accuracy of the estimated

channels can be substantially improved and pilot contam-

ination can be beneficially mitigated.

• Pilot allocation: When the eNB employs an MMSE

channel estimator in the i.i.d. Rayleigh channel, pilot

contamination is proved to also be the dominant constraint

of BE even with the assistance of multi-cell MMSE TPC

[72]. However, if we allow the UEs benefitting from low

ICI to reuse the same pilots, pilot contamination may

be mitigated and substantial BE improvements can be

achieved [72].

In [33], [73], a Bayesian channel estimator is first

developed for the UL channel in the multi-cell scenario.

Fig. 13. Time-shifted frame structure with three groups [74].

Then, it is shown that pilot contamination is commensu-

rately reduced, when using more antennas at the eNB,

provided that the covariances of the desired signal and

interference span different subspaces. Furthermore, a pilot

allocation scheme is proposed for suppressing the pilot

contamination by carefully shaping the covariance in

order to satisfy this condition.

• Frame structure: A time-shifted frame structure is de-

signed in [74] for mitigating pilot contamination based

on MF-assisted channel estimation. In this scheme, all

the cells are divided into different groups, which transmit

their UL pilots in different time slots. When a specific

group transmits its UL pilots, the other groups transmit

their DL data. An example of the frame structure of

three groups is depicted in Fig. 13. The theoretical proof
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TABLE VI
NON-IDEAL FACTORS LIMITING THE LS-MIMO PERFORMANCE

provided in [74] shows that the ICI imposed by the

different groups is gradually mitigated upon employing

more antennas at the eNB. In order to efficiently suppress

the ICI arriving from the inner group, optimum power

allocation may be employed according to the specific

received SINRs on both the UL and DL [74], [75].

• Channel estimation: Taking advantage of the asymp-

totic orthogonality of different UE channels in the i.i.d.

Rayleigh channel, an eigenvalue-decomposition-based

approach is proposed in [76] to improve the channel

estimation accuracy. Hence, the fast fading channel coef-

ficients may be estimated with the aid of joint estimation

of the channels and data by blind techniques, whilst

mitigating pilot contamination [11], [77].

• Precoding scheme: A pilot contamination mitigating pre-

coding scheme is designed in [78] for communicating

over an i.i.d. Rayleigh channel. This two-stage precoding

scheme consists of an outer multi-cell TPC arrangement

based on the knowledge of large-scale fading features, and

conventional inner linear TPC based on the estimated fast

fading coefficients. The essential idea behind this scheme

is that the eNBs linearly combine their signals intended

for all the UEs by reusing the same pilots. The combined

symbols are then transmitted with the aid of traditional

precoding. As a result, the ICI can be completely elimi-

nated, as shown by the theoretical derivations in [78].

A further optimization problem is formulated in [79]

to mitigate pilot contamination. The objective function

used is constituted by the Mean Square Error (MSE) of

the received signals of the UEs in the same cell, plus the

mean-square interference power imposed on the UEs in

other cells. Then, the optimal closed-form expression of

precoder for this MMSE-based multi-cell precoding op-

timization problem is derived analytically. The proposed

precoding scheme is capable of simultaneously reducing

both the intra-cell and inter-cell interferences. It is imple-

mented at each eNB without information exchange among

eNBs, which has the benefit of lower overhead than the

joint-multi-cell precoding in [78].

C. Non-Ideal Factors Limiting the Performance of LS-MIMO

In a realistic scenario, two main types of non-ideal factors

limit the attainable performance of the LS-MIMO system,

namely the imperfect CSI and practical hardware implemen-

tation, which are listed in Table VI. Naturally, realistic channel

estimation is carried out at the DL receiver and its UL signaling

delay results in imperfect CSI at the transmitter, whereas non-

ideal hardware is attributed mainly to the deleterious effects of

mutual coupling, non-linear amplification, I/Q-imbalance and

phase noise, which are the widely known imperfections of

practical transceivers.

1) Imperfect CSI:

• Imperfect channel estimation: Since in practice both

the precoder and the detector have to rely on realistically

estimated CSI, accurate channel estimation is vital for the

performance of the LS-MIMO system. Under the TDD

mode, due to pilot reuse in multi-cell scenarios, the CSI

obtained by linear channel estimators, such as the MMSE

and MF estimators, is contaminated by interference [16],

[78]. In order to eliminate or mitigate the pilot over-

head, blind channel estimation is considered in [76].

Under the FDD mode, the feedback from UEs to eNBs

may become overwhelming for practical systems, which

can be mitigated by compressive sensing [84]. However,

channel estimation for LS-MIMO, such as a 100 × 10
element system remains a challenging problem, since the

complexity of estimating or recovering 1,000 channels is

excessive. Therefore, non-coherent MIMO also has to be

studied.

• Channel ageing: Adopting an autoregressive model for

assessing the predictability of a realistic channel, the

effect of channel ageing was investigated for LS-MIMO

system in [80]. Channel ageing results in a mismatch

between the current channel to be encountered by the next

transmission and the channel detected at the DL receiver,

quantized and sent back for precoding. In order to mitigate

the effects of channel ageing on the sum rate of LS-

MIMO, an optimal causal linear Finite Impulse Response

(FIR) Wiener channel predictor is employed in [80] and

as a benefit, its sum rate is substantially improved.

In a practical scenario having an imperfect CSI can be char-

acterized for example by the correlation coefficient between the

estimated CSI and the perfect CSI. At the time of writing, there

are two main methods of modeling the correlation coefficient,

namely the Gaussian model [85] and the Clarke model [86].

They describe the correlation coefficient as the function of

Doppler frequency shift and channel delay in the form of either

an exponential function or the zeroth-order Bessel function,

respectively. When the correlation coefficient calculated by the

Gaussian model is 0.9, the quantitative performances of the

different linear precoders are shown in Fig. 14. As expected,

the BE is reduced due to the inaccurate CSI compared to that

seen in Fig. 10. Therefore, advanced techniques are required for

mitigating the effects of imperfect CSI.
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Fig. 14. BE of single UE with imperfect CSI in single cell scenario. (a) BE versus the number of antennas. (b) BE versus the number of UEs.

2) Non-Ideal Hardware:

• Mutual coupling: Upon increasing the number of an-

tennas at the eNB, either the spacing between the AEs

is reduced, or alternatively, if the spacing is fixed, then

the total AA dimension is increased. Having a reduced

AE spacing leads to increased mutual coupling, which

impairs the performance of LS-MIMO. In order to miti-

gate the effects of mutual coupling, sophisticated radio-

frequency matching techniques have to be employed

between the AA and the radio-frequency chain. In [81], the

optimal matching network is designed for circular arrays,

which substantially improves attainable system capacity.

• Phase noise: The phase noise is caused mainly by the up-

conversion stage used at the transmitter and by the down-

conversion circuit of the receiver. When considering the

UL of an LS-MIMO system, the phase noise of the UE

transmitter is independent of the phase noise of all other

non-cooperative UEs. By contrast, the phase noise of

different antennas at the eNB is dependent on whether a

single-oscillator centralized eNB or a distinct-oscillator

based distributed eNB is considered. When adopting

MRC detection, the lower bounds of the sum-rate found

for both type of solutions suggest that the achievable array

gain is proportional to the square-root of the number of

antennas [82]. Due to the progressive phase noise drift

at the oscillators, there exists a fundamental trade-off

between the time interval used for data transmission and

the sum-rate. This trade-off offers an insight into the

impact of transmission parameters.

• Additive distortion of the baseband: The amplifier non-

linearity, the I/Q imbalance and phase noise, as well as the

additive distortion terms encountered at the transceivers

of both the eNB and UEs were introduced into the system

model in [83]. Both the channel estimation accuracy and

the sum rate of UEs are predominantly limited by the

distortion encountered by the UEs, not by the eNBs. Both

the impact of the distortion imposed on the eNB and pilot

contamination were mitigated by deploying more number

of antennas in [83]. Moreover, the attainable EE can be

improved by employing more number of transmit anten-

nas, while simultaneously reducing the radiated power.

Therefore, the performance degradation imposed by low-

cost AEs can be mitigated by increasing the number of

transmit antennas.

D. Summary of Physical Layer Issues

In this section, we mainly discussed the performance of

diverse TPCs and detectors for LS-MIMO systems. In the

single-cell scenario, low-complexity linear precoders and de-

tectors may perform similarly to other complex precoders and

detectors in terms of their sum-rate [12], [17]. The beneficial

combination of TPCs and detectors lead to the achievement

of a performance close to their theoretical performance under

realistic channel conditions. Both the attainable BE and EE can

be improved by employing more number of antennas at the

eNB. When near-perfect CSI can be acquired through channel

estimation with high accuracy, the radiated power can be made

inversely proportional to the number of transmit antennas at the

eNB [17], but only inversely proportional to the square-root

of the number of antennas in the presence of realistically es-

timated CSI. In the multi-cell scenario, upon employing linear

channel estimation with moderate complexity, pilot contami-

nation becomes a major obstacle to improve the BE, which

is due to the limited number of available pilots. Hence, di-

verse counter-measures have been conceived for mitigating

pilot contamination [71]–[79], such as specially conceived pilot

design [71], power allocation [75] and pilot-decontamination

precoding [78]. Finally, the performance of practical LS-MIMO

systems is affected by numerous non-ideal factors [78]–[83],

including imperfect CSI [78], [80] and non-ideal hardware

[81]–[83]. As one of major research issues, the design of

non-coherent blind detection or semi-blind assisted LS-MIMO

systems has to be explored, which is capable of dispensing

much less channel estimation information.
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V. NETWORKING TECHNOLOGY

While the underlying physical layer techniques lay the foun-

dation of LS-MIMO systems, networking techniques also play

a vital role in practical systems, making them operate more ef-

ficiently, reliably and securely. Since the studies on LS-MIMO

systems started not too long ago, the research of their upper

layers is still in its infancy. Due to their crucial impact on

the attainable performance of LS-MIMO systems, networking

techniques have gradually attracted considerable interest in

both academia and industry.

The effective exploitation of radio resources is one of the

main goals to be achieved by networking techniques. Towards

this end, several performance indicators are considered, such as

the aforementioned BE and EE. Always serving UEs which are

experiencing the best channel conditions is surely capable of

improving the system’s BE. However, this may result in unfair

resource allocation, potentially disadvantaging those UEs that

suffer from poor channel conditions, such as the UEs located

at cell edges. Therefore, apart from BE and EE, the networking

techniques usually take into account fairness in order to guaran-

tee a certain level of minimum performance for all UEs. In the

remainder of this section, we only focus our attention on two

networking techniques, i.e., ICIC and radio resource schedul-

ing, which are two most important issues in wireless networks.

A. Inter-Cell Interference Coordination

Cellular communication systems suffer from ICI at the cell

boundaries, especially when all the channels are fully reused in

adjacent cells. As a result, interference mitigation and coordina-

tion techniques are needed for alleviating ICI so as to well sup-

port frequency reuse. Here, we focus only on static or semi-static

ICIC approaches for LS-MIMO systems in different network

deployments. Since dynamic ICIC can be regarded as some kind

of multi-cell scheduling schemes, it is left to be discussed later.

1) Homogeneous Networks: ICIC techniques, such as Frac-

tional Frequency Reuse (FFR) [87] and Soft Frequency Reuse

(SFR) [88], have been widely investigated in the context of

efficient radio resource management in multi-cell environments

in an attempt to coordinate co-channel interference, resulting in

improved cell-edge coverage, cell edge data rates and area BE.

A large-scale AA provides additional spatial DoF. Therefore,

ICIC for LS-MIMO systems is able to exploit the spatial DoF

for mitigating ICI by nulling certain spatial direction to the

neighboring cell [89].

In an LS-MIMO system, each eNB is equipped with a huge

number of antennas, serving its scheduled UEs with beam-

forming, while trading off its excess DoF against coordinating

the interference to other cells within a cluster. Compared with

network MIMO, LS-MIMO is preferred to because of its low

costs of deploying an excessive number of antennas at the

cell site [90]. Under the assumption of the same number of

DoF per UE and same amount of channel estimation overhead,

LS-MIMO with spatial interference coordination outperforms

network MIMO [91].

The 3D MIMO system, one of LS-MIMO systems, has the

capability to dynamically adapt the shape of the vertical beam-

forming pattern to the UEs at different locations. In other words,

the UEs at the cell center and cell edge are covered by different

vertical beamforming patterns with specific downtilt such that

the received signal power for each UE is maximized. Then,

cell sectorization in the 3D MIMO system can be carried out

not only along the horizontal but also the vertical axis, which

results in increased system throughput [92]. However, the ICI

problem becomes more complicated with much more sectors

per cell. Therefore, it is not straightforward whether the overall

BE performance as well as the cell edge UE can be improved.

The preliminary study in [93] shows that dynamic vertical beam

pattern adaptation can provide BE performance gains even with

either simplified or suboptimum approaches. Meanwhile, there

exists some work on coordinated vertical beamforming with

well-known ICIC schemes applied in LTE such as FFR [94].

In the literature, there is a lack of comprehensive studies on this

issue to date.

2) Heterogeneous Networks: The HetNet is an attractive

means of increasing achievable network capacity and of en-

hancing the coverage area and/or QoE. In a HetNet, small cells

as a tier are capable of providing hotspot capacity enhance-

ments, whereas macro cells as another tier are responsible for

large area coverage in support of high mobility UEs. However,

the MeNBs and SeNBs may interfere with each other, if they

use the same time-frequency resources without careful coor-

dination. Fortunately, when the MeNBs, or even the SeNBs,

are equipped with a large-scale AA, the AA can provide an

additional spatial DoF for multiplexing the data of several UEs

onto the same time-frequency resource. Furthermore, it can

concentrate the radiated energy precisely on the intended UEs,

thereby reducing both the intra- and inter-tier interference. LS-

MIMO systems are also capable of supporting cooperation in

an implicit way between the different tiers in the HetNet for the

sake of improving the overall system performance.

To satisfy ever increasing data rate demands, a two-tier TDD-

based HetNet is introduced in [95], where the macro-cell tier

served by the MeNBs equipped with a large-scale AA is over-

laid with the small cell tier of single-antenna SeNBs. Making

use of explicit benefits of channel reciprocity under the TDD

mode, the MeNBs estimate the UL interference covariance

matrix characterizing the interference from the overlay small

cells, which can be used for DL ZF based TPC to reduce the

interference to the SUEs. The MeNBs with LS-MIMO can

significantly improve the BE of small cells at the expense of

a moderate loss of the macro cell performance. Additionally,

the SeNBs can also be equipped with multiple antennas if

needed [96].

Recently, the so-called Reversed TDD (RTDD) protocol has

been proposed for the HetNet [97]. In the RTDD protocol as

shown in Fig. 15, the sequence of the UL and DL transmission

periods in one of the tiers is reversed to the other. For example,

in Slot 1, while the MeNB transmits the signals to MUEs in

the DL, the SeNB received the signals from SUEs in the UL,

and vice versa. In the traditional TDD protocol, the MeNBs

and SUEs interfere with each other, and so do the SeNBs and

MUEs. The channels between the eNBs and UEs potentially

fluctuate rapidly thanks to UE mobility. Therefore, less interfer-

ence samples are available for approximating the time-averaged
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Fig. 15. Illustration of an example with either TDD or RTDD [97].

interference covariance, and hence the resultant estimation er-

rors may degrade the attainable system performance. However,

the interference scenario in the HetNet is different if the RTDD

protocol is applied, where the MeNB and SeNB interfere with

each other, and so do the MUEs and SUEs. Since both the

MeNB and SeNB are fixed in location, the interference between

them are quasi-static. Hence, the estimated covariance of the

channels between them is not sensitive to instantaneous channel

variation. Moreover, a massive AA can be deployed at the

MeNB and even at the SeNBs so that the interference between

the eNBs can be nearly eliminated by narrow beamforming.

Meanwhile, the interference between UEs is usually not very

serious in most cases because of the low transmission power

of UEs. As a result, the RTDD protocol is more suitable for

the HetNet with LS-MIMO, since it readily lends itself to

cooperative interference cancellation.

B. Scheduling

Based on the status of queue, channel quality, QoS require-

ments and so on, the eNB schedules limited radio resources

across the time, frequency and spatial domains among the UEs.

Different design objectives, e.g., the affordable complexity,

overhead, BE, and fairness, are targeted by a variety of schedul-

ing schemes [98]. Usually a good trade-off among all these

goals is strived for practical wireless communication systems.

Given a large number of UEs and a limited number of anten-

nas, the problem of sum capacity scaling with UE selection has

been widely investigated [99], [100]. In particular, opportunistic

beamforming yields significant gains by exploiting the inde-

pendence of the UEs’ channel fluctuation, which may be con-

ducive to achieving multiple UE diversity. Moreover, in order to

evaluate the gains of scheduling, the mutual information of the

LS-MIMO system may be modeled as a normal distribution

under the assumption of i.i.d. Rayleigh fading channels [19].

It turns out that the variance of the channel coefficients grows

slowly or even decreases with the number of transmit antennas,

but increases with the number of UEs. This conclusion implies

that carefully designed robust scheduling schemes would re-

duce the CSI-feedback rate required.

The more UE-specific and eNB-specific channel information

is obtained by the scheduler, the more efficient the system

can be. Nonetheless, with increased amount of required infor-

mation, the overhead and computational complexity for chan-

nel information may become prohibitive. Due to the channel

hardening phenomenon1 of LS-MIMO systems, the scheduling

mechanisms relying on full CSI, including large-scale and

small-scale prorogation characteristics, are not cost-efficient,

because no significant performance gains can be achieved

compared to those requiring only partial CSI including the path

loss and shadow fading. So, more attention has been paid to

scheduling schemes with partial CSI instead of full CSI in LS-

MIMO systems, both of which are presented for comparison in

this section.

1) Full CSI-Based Scheduling: In order to achieve the opti-

mal network performance, the scheduler has to acquire the full

and accurate knowledge of all the channels. This knowledge can

be exploited to minimize the total power consumption, while

satisfying the QoS and power constraints at the eNBs in the

HetNet with LS-MIMO [99]. Toward this end, a spatial soft-

cell approach can be taken, where each UE is dynamically

assigned to access the optimal nodes, i.e., LS-MIMO MeNB,

conventional SeNB or both. If the system assigns a UE to an

MeNB and an SeNB at the same time, multiple transmitters

serve the UE through joint non-coherent multi-flow beamform-

ing. Also, the total EE can be further improved by applying a

low-complexity efficient algorithm, which exploits the hidden

convexity in this problem. However, the scheduler has to know

the full instantaneous CSI of all the UEs, which incurs both

potentially overwhelming estimation overheads and excessive

computational complexity due to the large number of AEs and

UEs in a practical system. The costs of the scheduling scheme

based on full CSI are likely to outweigh the gains.

2) Partial CSI-Based Scheduling: Fortunately, scheduling

schemes with partial CSI in LS-MIMO systems are capable

of reducing implementation complexity and overhead with an

acceptable performance loss.

• Single-cell scheduling: Under the single-cell scenarios,

resource allocation for energy-efficient OFDMA systems

with a large number of AEs was studied in [101]. Taking

into account the associated circuit power dissipation, the

imperfect CSI at the Transmitter (CSIT) and QoS require-

ments, the resources are assigned with the objective of

maximizing EE. The considered parameters include the

subcarrier allocation, power allocation, antenna allocation

and available data rates. It is demonstrated that even

though the use of a large number of transmit antennas

reduces the multipath-induced fluctuation of each chan-

nel, the system performance can still benefit from the

different path losses and shadow fading conditions of

different UEs. Furthermore, the scheduling scheme can

be updated periodically, because the path loss and shadow

fading parameters vary slowly, depending on UE mobility.

1Channel hardening phenomenon is the phenomenon in which the variance
of the mutual information (capacity) grows very slowly relative to its mean or
even shrinks as the number of antennas grows.
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The reduced-complexity probabilistic scheduling algo-

rithms have been proposed in [100], [102], [103], where

the number of AEs is quite large. Firstly, different UEs are

clustered into groups based on their channel covariance

matrices. Then, the UEs in each group are pre-selected

randomly based on the group-specific probabilities de-

rived from the whole system. Only the pre-selected UEs

are required to transmit their training signals or CSI

feedback, leading to markedly reduced overheads and

complexity. Moreover, different measures have been con-

ceived both for UE grouping and for scheduling in a FDD

based LS-MIMO system based on two-stage precoding,

namely on inter-group precoding and intra-group precod-

ing, which are capable of reducing the channel estimation

overhead while guaranteeing fairness to the UEs [104].

• Multi-cell scheduling: Unlike the single-cell scenario,

both inter-cell and intra-cell interferences have to be taken

into account under the multi-cell scenario. Although fully

multi-cell scheduling schemes, like the coordinated joint

processing in network MIMO, can achieve large perfor-

mance gains, they are not practical due to prohibitive costs.

That is, not only the full CSI but also data streams in-

tended for different mobile users at different cells need to

be shared among the eNBs [105]. Instead, another feasible

solution is to improve the overall network performance by

allowing beamforming vectors from different eNBs to be

coordinated for the sake of implementation [106].

The main objective of applying coordinated beam-

forming in LS-MIMOs is to improve the overall system

performance, while reducing the coordination over-

head. There are two popular coordinated beamforming

schemes, namely the hierarchical [107] and the nested

structure [108], [109].

Explicitly, the BF relying on the hierarchical structure

[107] at each eNB consists of an inner precoder and an

outer precoder. The inner precoder supports the trans-

mission of data to the serving UEs by exploiting the

knowledge of the time-variant CSI. Meanwhile, the outer

precoder exploits the remaining spatial DoF for mitigating

the ICI by relying only on the knowledge of the average

CSI [107]. This structure requires only a modest amount

of backhaul overhead and pilots for CSI estimation. More-

over, only the knowledge of the channel’s spatial correla-

tion matrices is needed for the BF-weight optimization,

which is insensitive to the backhaul latency. By contrast,

in the BF associated with the nested structure, the optimal

strategy can be found recursively, where the BF weight

optimization Objective Function (OF) may be based on

the fairness in power usage subject to satisfying the target

SINR constraints [108], [110]. Another nested structure,

whose OF focuses on Maximizing the Minimum (MAX-

MIN) weighted SINR among UEs was proposed in [109],

[111]. Unlike the hierarchical structure of [107], the

optimal precoder of the nested structure [108], [109] is

found as the solution of a joint optimization problem,

which aims for striking a trade-off between providing

a high SINR for the intra-cell UEs and mitigating the

ICI. For instance, when this BF is applied in an LS-

MIMO system, all the eNBs are divided into two groups,

1) Selfish eNBs, whose UE SINRs are relative low; and

2) altruistic eNBs, whose UEs SINRs are relative high.

The altruistic group may be empty; or it may use zero-

forcing for eliminating the interference by imposing it on

the selfish group. If the optimal ZF beamforming scheme

is used in the altruistic group, each eNB in this group

has to transmit less power than that in the selfish group.

The precoder at each eNB uses the optimal BF parameters

along with its own instantaneous CSI. Additionally, only

the average CSI has to be exchanged among the eNBs.

On the other hand, different metrics can be used to

indicate different system performances. Thus, it is crucial

to choose an objective with an appropriate metric function

for the multi-cell scheduling schemes. There are several

kinds of objectives in terms of either efficiency or fair-

ness when multi-cell scheduling is applied in LS-MIMO

systems, e.g., a) Minimizing the Maximum (MIN-MAX)

the fairness in power consumption subject to certain

SINR constraints [108], [110]: It aims to maximize the

overall EE as a high priority by adjusting its coordinated

beamforming scheme. A efficient solution can be obtained

through Lagrange duality and random matrix theory;

b) MAX-MIN SINR subject to certain sum-rate con-

straints [109], [111]: It enforces the overall system

fairness by guaranteeing each UE’s promised SINR.

In the case of non-convex optimization problems, the

optimal scheme may be derived by using nonlinear

Perron–Frobenius theory; c) Maximizing the weighted

sum rate subject to some eNBs power consumption con-

straints: This objective can be viewed as a combination of

MAX-MIN fairness and maximum sum-rate. Moreover,

efficient schemes can be obtained through hidden convex-

ity and random matrix theory [107].

C. Conclusions on Networking Techniques

In this section, a wide range of networking techniques con-

ceived for LS-MIMO systems have been investigated, with an

emphasis on the associated ICIC and scheduling issues. Since

LS-MIMO systems have only been proposed recently, relevant

studies are not comprehensive in the literature. As for ICIC, the

beamforming for LS-MIMO systems, which helps eliminate the

ICI at the expense of computational, and 3D MIMO beamform-

ing, which can be used for cell splitting with low complexity,

have been discussed in the context of the HomoNet. The

R-TDD protocol, which is helpful for interference cancellation,

has also been studied in the context of the HetNet. In scheduling

schemes, existing algorithms have been classified according to

their requirements in terms of CSI and their different design

objectives. The primary objective of scheduling is to improve

the attainable system performance, while maintaining afford-

able implementation complexity and overhead.

VI. CHALLENGES AND OPEN ISSUES

The investigation of LS-MIMO has stimulated strong re-

search interest in both academia and industry alike. However,
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much more efforts are needed for practical applications of

LS-MIMO in the near future. Based on our discussions in the

preceding sections, the following challenges and open issues lie

ahead.

A. Design of AAs

Finding practical antenna configurations is an important is-

sue for LS-MIMO systems, because it affects not only the chan-

nel properties, but also their array gains, diversity gains and

multiplexing gains. Moreover, AAs may be constrained to a

limited physical size. Therefore, the employment of antennas

has to be carefully designed to enhance the attainable perfor-

mance given the physical area constraint.

B. Channel Models

Channel models have been established for characterizing

both 2D and 3D AAs. The elevation angle of 3D AAs has been

considered for three different scenarios in 3GPP. However, no

channel model has been considered for realistic systems relying

on spherical or cylindrical AAs. Hence, more measurements

have to be carried out for realistic AAs.

C. Green LS-MIMO

With increasing carbon emissions imposed by the excessive

power consumption of wireless communications networks, EE

has become a significant performance metric of evaluating

future wireless networks. However, the evaluation of EE in

LS-MIMO systems in the literature focuses primarily on the EE

in the single-cell environment. Furthermore, only the radiated

power of the PAs is considered, while ignoring the power

dissipation of signal processing circuit and the efficiency of

the PAs [17], [56]. Therefore, the realistic EE performance of

LS-MIMO systems needs to be analyzed by considering both

the radiated power and circuit power in multi-cell scenarios.

D. Performance Analysis of Large-Scale DASs

Centralized and distributed antenna deployments constitute

two important scenarios of LS-MIMO systems. The majority

of current work focuses on the family of centralized LS-MIMO

systems. As argued, large-scale DASs are capable of signifi-

cantly improving both the coverage quality and the capacity

of wireless communications networks. The coverage quality of

both indoor and outdoor environments should be evaluated in

the near-future in terms of the PDF of their SINRs. Stochastic

geometry has been widely used for the analysis of wireless net-

works, with an emphasis on the 2D plane. However, stochastic

geometry needs to be extended to the 3D space to analyze large-

scale DASs.

E. Control Channel of LS-MIMO Systems

When UEs are powered up, they first receive broadcast

information from control channels, which is the first essential

step for the UEs to connect to a wireless network. However,

the UEs are oblivious of the eNBs during the initial stage, and

the power level of the signal transmitted from the eNB is weak

compared to that of the PDSCH. This problem occurs not only

in the current systems, but also in LS-MIMO systems, since

the latter rely on high beam gains. Therefore, effective counter-

measures have to tackle this issue in LS-MIMO systems for

practical applications.

F. Complexity Versus Performance

An LS-MIMO system often entails considerably complex

signal processing. Hence, substantial efforts have been de-

voted to streamline and optimize both signal processing al-

gorithms and their implementations. However, low-complexity

algorithms generally decrease the performance of LS-MIMO.

For example, having more accurate CSI leads to improved

performance at the expense of increased processing complexity.

When low-complexity linear channel estimation is adopted, the

attainable performance is constrained by the pilot contamina-

tion phenomenon, especially in multi-cell scenarios. However,

pilot contamination can be overcome by using complex chan-

nel estimation algorithms [76], [77]. There exists a tradeoff

between the complexity of channel prediction as well as the

TPC design and the experienced channel, when the UEs move

around in a cell. Therefore, simple but efficient algorithms have

to be conceived for channel estimation, channel prediction, TPC

and detection.

G. Effects of Non-Ideal Hardware

LS-MIMO relies mainly on the law of large numbers to

average out noise, channel fading characteristics, etc. However,

in practice, low-cost imperfect components are employed to im-

plement the LS-MIMO system. Therefore, the imperfections of

non-ideal hardware, such as the non-linearities of the amplifier,

I/Q imbalance, A/D and D/A nonlinearities, should be taken

into account [82], [83] in practical LS-MIMO systems. Some

existing studies have been reported on evaluating the effects

of non-ideal hardware. However, more efforts are required

for designing efficient algorithms to mitigate these non-ideal

factors.

H. LS-MIMO in the mm-Wave Band

In the popular frequency bands below 2 GHz, the physical

size of a large-scale AA is excessive to be feasibly installed in

a UE, although it may be readily accommodated by the eNB. In

order to avoid this problem, LS-MIMO systems are likely to op-

erate in the millimeter (mm)-wave band [112]. For example, in

the 60 GHz band, the corresponding wavelength is only 0.5 cm,

hence a large-scale AA havingλ/2-spaced elements may accom-

modate as many as 40 AEs within a physical space of 10 cm.

However, the channel measurements indicate propagation

losses that are severe in the mm-wave band, hence the prop-

agation distance becomes very short, resulting in small cells

[113]. In order to attain both high data rates and a satisfactory

coverage, the ultra-dense deployment of small cells operating in

the mm-wave band is one of the potential solutions envisaged
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for next-generation wireless communications networks [114].

On the other hand, another challenge is to realize large-scale

AAs in the mm-wave band, because it is hard to design practical

phased AAs operating at 28 GHz. Nonetheless, a large-scale

AA prototype with up to 32 miniaturized antennas was reported

in [115].

Apart from the relevant physical layer techniques, the net-

work architecture of LS-MIMOs operating in the mm-wave

band has to be studied as well. A cellular architecture relying on

mm-wave frequencies has been proposed and evaluated, where

the MUEs communicating with the MeNB operate in the micro-

wave band and the SUEs use the mm-wave band [116].

Although much attention has been dedicated to the design of

LS-MIMO systems in the mm-wave band, there are still many

uncertain issues surrounding the practical mm-wave commu-

nication systems, such as their hardware design, interference

control and resource management.

I. New Application Scenarios

Since LS-MIMO is introduced to wireless networks, it has

been undergoing rapid changes. As a benefit of its large DoF,

the R-TDD scheme has been proposed for alleviating the in-

terference in HetNets. When eNBs are equipped with massive

AAs, a wireless backhaul can be established among the eNBs.

However, both R-TDD and wireless backhaul techniques are

not mature in practice to date, hence studies need to be carried

out. Moreover, when a relay node employs a large number of

antennas, the channel properties are different from those of a

regular relay equipped with a small number of antennas [117].

J. Duplex Mode

There are two basic duplex modes in wireless communica-

tions networks, namely TDD and FDD. Owing to a limited

number of orthogonal pilot sequences, TDD is assumed at

present in most existing work related to LS-MIMO. A full-

duplex system, where the UL and DL transmissions occur

simultaneously, is also a good choice. However, preliminary

studies on full-duplex systems use only three antennas. Extend-

ing the full-duplex research to LS-MIMO systems may be a

topic of interest in the near future.

VII. CONCLUSION

This paper provided a survey on the timely subject of

LS-MIMO, including channel modeling, application scenarios,

as well as physical layer and networking techniques.

A range of channel measurements and channel models were

presented, complemented by a variety of open research issues.

Then, a pair of practical application scenarios was discussed,

namely HomoNets and HetNets. More specifically, the cases

of multi-layer sectorization, adaptive beamforming and large-

scale cooperation aided HomoNets were studied, followed by

the discussion on wireless backhaul design, hotspot cover-

age and dynamic cell in HeteNets in the specific context of

LS-MIMO systems. The design of sophisticated TPCs and

detection schemes is vital for achieving the potential gains

promised by LS-MIMO systems. Therefore, both their ad-

vantages and disadvantages alongside countermeasures were

summarized for both the single-cell and realistic multi-cell

environments. Moreover, the effects of non-ideal hardware and

imperfect CSI have also been discussed, which have to be

further studied in the near future.

At the time of this writing, associated networking solutions

also attract more attention. The family of coordinated beam-

forming techniques relying on CSI exchange, low-complexity

cell splitting and R-TDD also constitute promising design

alternatives for ICIC. The channel hardening phenomenon of

LS-MIMO is helpful in terms of reducing the CSI overhead

and supporting the development of low-complexity scheduling

algorithms, albeit at the cost of limited scheduling gains. In a

nutshell, an exciting era for MIMO researchers has come!
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