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ABSTRACT 

Papers and reports published up to the middle of 1968 

in the open literature are classified by subject and type 

of approach.  They are analyzed, discussed and commented 

upon«  General trends, relations between studies, agreements 

and contradictions are mentioned. 
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INTRODUCTION 

Until modern times the oceans were of interest to man only as a 

source of food and as a medium that linked and separated the 

continents.  The catching of fish, the transport of goods from 

one harbour to another, and the sea battles between warring 

nations, all these took place at the surface.  Therefore little 

interest was shown in the ocean below the surface. 

Recent times have seen the development of submarines, giving the 

war at sea one more dimension, and the increasing need of food 

for a growing world population, which makes more efficient fishing 

necessary. 

Connected with this development is a diversity of technical 

systems that operate with underwater sound waves and are used for 

detecting an enemy  (active and passive sonar), distinguishing 

friend from foe (IFF systems), tracing schools of fish, or measuring 

depth  (fathometry)• 

There is at least one thing all these systems have in common: they 

can be considered as communication systems, since each one has a 

transmitter and a receiver, between which information is conveyed. 

The medium that is used in these communication systems to carry the 

information from transmitter to receiver, i.e. the ocean, is 

certainly not perfect. 

In the first place there is the phenomenon of a sound velocity 

changing with depth, that causes the formation of sound channels, 

caustics, shadow zones, etc. 

Next there is the so-called volume reverberation, introduced by 

inhomogeneities in the medium (e.g. fluctuations in temperature, 

salinity, pressure, and small particles of biological nature), that 

influences the signals all along their propagation path and 

disturbs them in a random fashion. 

Moreover, in many situations there is not only a direct path 

between transmitter and receiver, but also connection via the 

boundaries, especially at longer distances. 



The signals that arrive at the receiver via these different paths 

may interfere or may be separated in time, depending on the 

geometry and the signal duration.  If they interfere then one will 

probably try to build into the receiver a means of separating them. 

In the second case it is likely that the direct arrival will be 

given priority, as it carries the least disturbed information. 

Then the receiver will have to suppress the superfluous boundary- 

reflected signals, because their presence makes the system 

temporarily unusable for direct reception. 

It is a?so possible to imagine a situation in which communication 

between transmitter and receiver can only take place via the 

bottom, or via the surface.  This occurs when the receiver is 

positioned in the shadow zone of the transmitter. 

From the above it can be concluded that it is essential for the 

designer of underwater communication systems to know how the 

propagation of sound is affected by the medium and its boundaries. 

A study of this effect can be split into three parts: 

a) The volume. 

b) The surface. 

c) The bottom. 

In this report we shall only be concerned with the surface effect. 

As a first step in the study of "Reflection and Scattering of Sound 

Waves at the Sea Surface" it seems reasonable to investigate what 

work has been done in this field up to the present.  The present 

literature survey is the result of this investigation. 



1.   GENERAL REMARKS 

1.1  Definitions and Limitation of the Material 

The problem of the diffraction of waves at uneven surfaces has 

received increasing attention in the past fifteen years; "this 

is due to the growing application of acoustic waves and radio waves in the 

centimetre band" (Ref. 45» p. l)° 

Often diffraction is subdivided into "reflection" and "scattering", 

but these terms are not always distinguished clearly in the 

literature.  In this work we shall call "reflection" that part of 

the diffracted field that travels in the specular direction 

(often named "specular reflection").  Waves in all other directions 

will be called "scattered waves" or simply "scattering". Scattering 

back towards the transmitter (backscattering) is also called 

"reverberati on". 

Mathematically the problem is "marvelously complex" (Ref. 76, p. 1293). 

It consists in solving a wave equation for which certain boundary 

conditions have to be satisfied, whereas the shape of the boundary 

can be extremely complicated.  For this reason a general and exact 

treatment of the problem has not —so far— been published. 

Nevertheless, a large number of publications in the open literature 

are devoted to the subject.  But they only cover a part of the 

problem: all of them are restricted to a special case, and are based 

on certain assumptions — sometimes rather arbitrary — that make 

simplifications possible but at the same time cast doubt on their 

validity.  Moreover they all deal with monochromatic waves. 

The material can be limited if we consider the type of wave and the 

type of boundary.  Both sound waves and electromagnetic waves 

(e.m. waves) give rise to the same type of mathematics, when 

reflection and scattering at uneven surfaces is studied.  In fact, 

the mathematical formulation for sound waves can be considered as a 

simplified version of the one for- e.m. waves, because for sound 

waves the vector equations are reduced to scalar equations.  This 

is caused by the fact thai sound waves do not possess th? polarization 

that is inherent in e.m. waves. 



Next, two types of boundary can be distinguished in practice, with 

some idealization: 

a. The free, elastic boundary (e.g. the sea surface) on 

which the wave potential vanishes (homogeneous Dirichlet condition), 

i.e. the so called "pressure release" or "perfectly conducting" 

surface. 

b. The rigid boundary (e.g. the rocky ocean floor) on 

which the first derivative of the wave potential becomes zero. 

Except for the book by Beckmann and Spizzichino (Ref. 2), we shall 

only refer here to publications that deal with sound waves and 

perfectly reflecting, free boundaries; we do not, however, attempt 

to give a complete bibliography. 

1.2  Sound Pressure and Velocity Potential 

The terms "sound pressure" and "velocity potential" need some 

attention, as the way they are used in the literature may cause 

confusion. 

The sound waves we are interested in are pressure waves: they can 

be described as a pressure field  p  that varies with time and 

position.  Closely related to the field  p  is the wave velocity 

potential field  u , as 

*>  « p J>u_, (Eq. 1) 
St 

where  p  is the mean density of the medium, 
o 

For monochromatic waves we have 

u = |u| e'
iU,t (Eq. 2) 

so that Equation 1 reduces to 

p « iWp u. (Eq. 3) 
o 



■Ä^ri:;-«^^ 

It is this relation, only valid for monochromatic waves, that makes 

u  and  p  interchangeable in the wave equation, in the boundary 

conditions, in the Helmholtz integral, and in all relations derived 

from them. 
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2o   CLASSIFICATION OF THE LITERATURE 

The diversity of special cases makes a classification of the 

existing literature rather difficult.  However, an evaluation of 

the most pertinent material can be attempted by classifying each 

reference according to whether or not it treats of certain 

aspects of the subject.  Such a classification is attempted in 

Table 1," It is reviewed in Chapters 3 & 4 and conclusions are 

drawn in Chapter 5» 

The division of the subject into different aspects is discussed 

in the remainder of the present chapter.  The numbers and letters 

in Table 1 correspond to these divisions. 

A.   TYPE OF INCIDENT WAVE 

A.1  Plane Waves 

Directions appear instead of vectors, and all surface points are 

equally distant from the source.  Considerable simplifications 

an be obtained, at the cost of loss of generality. 

A.2  Spherical Waves 

The source is of finite dimensions (in the limiting case a point 

source) at a finite distance from the boundary.  This case is 

more realistic and more complicated. 

B.   TYPE OF SOURCE 

B.1  Source with Directivity 

Radiation takes place only inside a limited space angle, which 

restricts the active scattering area. 

B.2  Omnidirectional Source 

In experimental work this type of (point) source is usually 

obtained with explosives.  In theoretical studies the active surface 

region becomes infinitely large, causing mathematical difficulties. 

"pp. 20-22 H 



C. DIMENSION OF THE MODEL 

This criterion has only meaning for theoretical work. 

C.1  Two-Dimensional Model 

In many cases the analysis is limited to the "plane problem" 

(Ref. 45, p. l).  This means that the boundary is considered 

to be a function of only one space variable, so that the 

"surface" can be represented by a curve  z = Q   (x).  It is 

obvious that such models lack general validity: they are to 

be considered as a first step to gain insight. 

C.2  Three-Dimensional Model 

Especially in the case of point sources and point receivers 

it is highly desirable to represent the boundary by a function 
z = C (x> y)•  Tn principle the three-dimensional model can 

be obtained from the two-dimensional one, at the cost of more 

complicated expressions. 

D. TYPE OF MODEL 

The models used in the literature can all be characterized as 

"physical" models, with one exception: the "quasi-phenomeno- 

logical" approach of Middleton (Refe. 59 > 60),  In the physical 

models the inhomogeneity of the boundary is present in the 

formulation of the problem from the beginning, i.e. a solution of 

the wave equation is sought that satisfies certain boundary 

conditions.  The phenomenological type assumes an ideal boundary 

and ideal wave propagation, and introduces the irregularities 

independently of the boundary as point scatterers with certain 

statistical propertiest  It is there that the difficulty of the 

method lies, for these properties are not easy to obtain.  We 

shall therefore give most attention tc the physical models. 

An excellent survey of the models used up to 1958 has been given 

by Lysanov (Ref. 4 5).  Although his paper deals only with 

periodically uneven surfaces, it has a wider importance, because 

many models can be applied to both periodically and statistically 

uneven surfaces.  He described six methods of attacking the plane 

12 



problem, both for free and rigid boundaries, discussed their 

validity regions, and gave an extensive list of references from 

both Soviet and Western authors.  The existence of a rather 

large number of theoretical models is due to the fact that the 

boundary conditions are difficult to incorporate in an exact way. 

This difficulty is caused by the complexity of the boundary. 

Some more or less arbitrary assumption has to be made in order to 

obtain a tractable approach.  As for the assumption made, there 

are essentially two possibilities: 

a. The diffracted field is assumed to have a certain 

structure (e.g. it is expandable in a series of plane waves: 

Rayleigh Method), after which the parameters are calculated via 

the boundary condition. 

b. An assumption about the boundary condition is made, 

after which the field is calculated, mostly via the Helmholtz 

Integral (Ref. 1). 

More or less parallel to this division runs the division into plane 

wave and spherical wave models.  But this distinction is rather 

artificial, since it is possible to use a plane wave model, which 

only deals with directions, for the case of point sources and 

receivers, Mby selecting the set of appropriate directions" ^K~f. 11, p. 5), 

The plane wave models use the methods D.l to D.5.  The spherical 

wave models all start with the well known Helmholtz Integral 

(Ref. l) and then use either method D.6 or D.7 to approximate 

the first derivative of the field at the boundary needed to 

evaluate the integral. 

D.1  The Method of Small Perturbations 

The boundary conditions on z = £ (x) are tr<*nsferrec? to z - 0 

by means of a series expansion in £. The results are identical 

to those of D.3, when applied to periodic surfaces* 

From: Lysanov (Ref. 45). 
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D.2  Brekhovskikhf s Method 

This approach is meant for relatively smooth surfaces that can 

be considered to be "locally flat".  The amplitude of the 

irregularities may be large. 

D.3  Rayleigh's Method 

In this method the assumption is made that the scattered field 

can be represented everywhere by an infinite series of undamped 

plane waves. 

The model was developed for a periodic boundary (see Section 3-2,1), 

but Marsh has generalized it for random surfaces (see Section 3.2.2). 
» 

The validity of the basic assumption has been questioned by many 

authors (see Section 3.2.3), leading to improved versions of the 

Rayleigh method (e.g. D.4> D.5). 

D.4  Variational Method 

This method, developed by Meecham (Ref. 57)> is an improvement of 

the Rayleigh approach.  It calculates more accurately than 

Rayleigh the first N  coefficients of the series, by an error- 

minimizing procedure. 

D.5 Uretsky's Method 

Being one of Rayleigh1s critics, Uretsky has developed a modified 

version of the Rayleigh method, in which the wave equation is 

converted into an integral equation via a Green's function 

(Refs. 76, 77). 

(See Section 3*2.4 for a summary of the method.) 

D.6 Kirchhoff's Approximation 

This method is also called "method of physical optics" (Ref. 2, p. 6) 

It is assumed that at the boundary the first derivative is equal 

for th? incident wave and for the diffracted wave.  This Kirchhoff 

approximation is somewhat arbitrary, as has been pointed out by 

From: Lysanov (Ref. 45). 
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Mintzer (Ref. 61), and is therefore also encountered in a modified 

form (Ref. 38).  But in all cases the assumptions made leave the 

approximation open to discussion. 

D.7  Integral Equation Method 

The first derivative of the reflected field at the boundary is 

estimated via a Fourier integral, which is obtained assuming a 

receiver at the boundary.  The method is therefore also called 

Fourier Transform Method: it is introduced by Meecham (Ref. 58) 

and described independently by Lysanov in his dissertation 

(see Ref. 45, p. 4). 

D.8  Other Models 

A model based on a different philosophy was prepared bj' Middleton 

(Refs. 59, 60). Instead of the classical or "physical" approach 

(as used in D.l - D.7), he used a '^uasi-phenomenological" 

approach in which the surface roughness is introduced as a 

andom distribution of point scatterers on a perfectly flat 

boundary. (See Section 3.4 for details.)  Still other models that 

do not fit in the foregoing scheme can be found in Beckt.ann's 

book (Ref. 2).  Some of them are non-Kirchhoff methods. 

E.   TYPE OF SURFACE 

Three types of boundaries can be distinguished, ranging from a 

poor approximation of the true ocean surface to a more realistic 

one: 

fc.1  Periodic Surfaces with Deterministic Profile 

This type of boundary can be described exactly without invoking 

probability theory.  A rigorous treatment of the problem is 

possible, mostly involving the (Rayleigh) expansion of the 

reflected field into an infinite set of plane waves. 

15 



E.2  Periodic Surfaces with Random Profile 

For this type, probability theory is needed.  The spatial 

correlation function of the surface elevation is periodic. 

E.3  Random Surfaces 

In this case the surface elevation and the slopes are considered 

to be stationary Gaussian processes.  This is done primarily 

because only then can the analysis be continued up to a level 

where some conclusions can be drawn*  Fortunately measurements 

at sea of elevation and slope have shown that the assumption of 

a "Gaussian sea" is satisfactory in most cases (Refs. 4, 24). 

F.   TIME 

F.1  Time-Independent Surfaces 

The larger part of the papers assume  for simplicity a surface 

that does not depend on time. 

F.2  Time-Variant Surfaces 

More realistic is a surface of the type  z = Q   (x, y; t).  Then 

phenomena like Doppler-effect and frequency smear can be studied. 

G.   RELATIVE ROUGHNESS 

Only in papers ., a very theoretical character is there no 

statement about the relative size of the irregularities with 

respect to the wave length of the incident radiation*  In others 

a "roughness parameter" appears, very often formulated via the 

Rayleigh criterion of roughness*  This roughness parameter ^ *• 

proportional to the ratio h/X,  where h is the surface amplitude 

or the standard deviation of the surface elevation and  X the 

wavelength of the incident radiation*  Then one or both of the 

following possibilities are considered: 

16 



G„1  Rough Boundaries 

If the correlation between the elevation of neighbouring surface 

points is low, the surface is relatively very rough.  Shadowing 

can occur at lower grazing angles.  Scattering is diffuse. 

6*2  Smooth Boundaries 

Surfaces with good correlation are relatively smooth.  Specular 

reflection is dominant. 

H.   THE SUB-SURFACE LAYER 

Since the sea surface is the interface between air and water, 

both "elements" can mingle to a certain extent under favourable 

wind conditions.  In this case the sub-surface layer contains 

a large number of small air bubbles that can produce a kind of 

volume scattering.  In many cases the effect of this on surface 

scattering can be neglected; in certain cases, however (high 

wind speed9 small grr.zing angles), the volume effect can 

screen, the surface effect. 

H.1  Ideal Layer 

It is assumed that only the boundary causes the scattering and 

reflection and that the ocean itself is ideal everywhere. 

H.2  Inhomogeneous Layer 

In theoretical work this type is discussed by Lysanov (Refs. 40, 47). 

Many experimenters assume its existence in their explanation of 

data.  The presence of air bubbles below the surface up to a certain 

depth, or a layer in which the sound velocity increases linearly 

with depth, is assumed. 

17 
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I.   THEORY AND EXPERIMENT 

1,1  Theoretical Studies 

The papers in this group are of a purely theoretical character, 

i.e. without experimental verification of the results obtained. 

1.2 Experimental Work 

In this grou ; the results of experiments, mostly carried out at 

sea, are presented, 

1.3 Comparison 

Several papers start with a theoretical model, which is followed 

by a comparison with own data or with data from other publications, 

Experimenters may also "borrow" a theoretical model for comparison, 

J.   MAIN SUBJECT OF THE PUBLICATION 

Almost all publications assume the characteristics of the surface 

to be known, i.e. they describe the surface with a deterministic 

and periodic function, or presuppose the statistical properties of 

the boundary.  These publications deal with the following subjects 

and quantities. 

J,1  Rigorous Solution of the Wave Equation 

In papers of a very theoretical character Rayleigh's expansion of 

the fiel", diffracted at a periodic surface or at a random 

boundary (Marsh - Ref. 48) into an infinite series of plane waves, 

is adopted, with or without  modification (Uretsky - Refs. 70, 77 1 

and Meecham - Ref. 57) for the surface "valleys"; the amplitudes 

of the waves are calculated.  In the case of a random surface this 

is done via Wiener's Generalized Harmonic Analysis. 

J.2  Amplitudes of the Diffracted Field; Reflection Coefficients 

Some model studies have been performed ;o check the above rigorous 

solutions for periodically uneven surfaces.  Refl cted and 

scattered amplitudes of order zero ( m  specular reflection) to 
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m (m = -1, -2, -3 •••)  have been measured (backseattering). 

Sometimes the results are normalized to obtain reflection 

coefficients.  Measurements at sea have also yielded a reflection 

coefficient (Refs. 42, 67). 

J*3  Second Order Statistical Moments of the Diffracted Field 

In this category the following subjects are encountered: 

a) Reflected and scattered intensity. 

b) Power reflection coefficient. 

c) Scattering strength (forward, backward). 

d) Scattering cross section. 

e) Amplitude and phase fluctuations. 

f) Spatial correlation of field amplitudes. 

This is the largest group, containing both theoretical and 

experimental results.  In many cases the dependency on grazing 

angle, frequency, or wind speed is investigated. 

J.4  "Doppler" and other Frequency Effects 

A small number of papers recognize the fact that the surface is 

time-variant.  Then "Doppler effect" and "frequency smear" are 

studied. 

J.5 Geometrical Shadowing 

A special group of articles is devoted to the shadowing of 

surface "valleys" by neighbouring "peaks", which can occur at 

high frequencies and small grazing ingles. 

J.6 The Inverse Problem 

This is the caso when the parameters that characterize the surface 

?.re inferred from the properties of the diffracted field. 

J.7  Sea Surface Wave Spectrum 

The theory of a surface wave spectrum is discussed in papers of more 

recent date.  This theory provides an estimate of the surface cor- 

relation function that is more realistic than the arbitrarily chosen 

functions in earlier work. 
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|Ref. 
no. 

Author(s) A B C D E F G H I J 

I 39 
Horton, C.W. et al. 2 1 2 6 3 J 1 2 1 3 3 \ 

J 40 Kur'yanov, B.F. 1 2 1,6 3 1 2 1 1 3 
41 La Casce, E.O. et al. 1,2 1 1 2,3,6 1 1 1,2 1 3 2 

42 Liebermann, L.N. 2 1 8 3 2 2 2 j 
43 Liebermann, L.N. 2 4,6 

44 Lippmann, B.A. 1 3 1 

45 Lysanov, Yu.P. 1 1 1,2,3 
7,8 

1 
3 

1,2 

46 Lysanov, Yu.P. 1 2 3 1 1 2 1 

47 Lysanov, Yu.P. 1 1 3 1 1 2 2 1,2 
48 Marsh, H.W. 1 1 3 3 1 1 1,3 

49 Marsh, H.W. et al. 1 2 3 3 2 2 1 3,7 
50 Marsh, H.W. 1 1 2 3 3 2 2 1 3 
51 Marsh, H.W. 2 3 3 2 2 1 3 3,7 
52 Marsh, H.W. 1 3 1 

53 Marsh, H.W. 1 1 1 3 3 2 1 4 

54 Marsh, H.W. et al. 3,6 
8 

3 24 
7 

55 Martin, J.J. 2 2 3 3,7 
56 Medwin, H. 2 1 2 6 3 2 1,2 1 3 3,0 j 

57 Meecham, W.C. 1 1 4 1 I 1 2 1 1 2,3 
58 Meecham, W.C. 1,2 2 1 7 1,21 1 2 1 3 2^3 

59 Middleton, D. 1,2 1*2 2 8 1,2 
3 

2 V l 2,3 
4,5 

60 Middleton, D. 1,2 V 2 8 1,2 
3 

2 1,2 1 2,3 
45 

61 Mintzer, D. 2 1 2 6 1 2 1 1 l 
62 Murphy, S.R. et al. 1 1 as 1 1 1 1.2 

63 Parker, J.G. 1 2 3 1 1 2 i 3 
]        l 
2 

64 Parker, J.G. 1 2 3 1 1 2 1 3 2 

65 Parkins, B.E. 1 .2 6 3 2 2 1 3 3 
4,7 

j 66 Patterson, R.B. 1 8 3 1 1 i 3 
67 Pollak, M.J. 2 1 2 2  ! 

68 Proud, J.M. et al. 1 1 4 1 1 2 1 3 2 

69 Proud, J.M. et al. 2 1 1 6 3 1 1,2 1 3 4* 
70 

i 

Richter, R.M. 2 2 2 1 3 
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no. 

Author(s) A B C D E F G H I J 

71 Rojas, R.R. 3 2 1 4 
72 Schulkin, M, et al. 2 1,2 3 3,7 
73 Shaw, L. 1 1 1 5 
74 Smirnov, G.E. et al. 2 1 2 1,3 1,2 1 2 3 
75 Smith, B.G. 1 1 3 5 
76 Uretsky, J.L. 1 1 5 1 1 1,2 1 3 2 

77 Uretsky, J.L. 1 1 5 1 1 1,2 1 1 1 
78 Urick, R.J0 2 1 2 2 3 
79 Urick, R.J. et al. 2 1 2 2 3 
80 Wagner, R.J. 1 1 3 5 

22 



3.   COMMENTS ON THE LITERATURE 

3.1  Introduction 

The phenomenon of scattering and reflection of sound waves at the 

sea surface, generally speaking, takes place simultaneously in 

three domains; 

a. Time 
*™~"~""""* 

i 

The ocean surface is continuously in movement, due to winds and 

currents.  A realistic description of this surface and its 

reflection properties is therefore impossible without involving 

the time variable.  Most promising seems the Neumann-Pierson model 

of ocean waves, based on a surface whose elevation and slopes can 

be considered as stationary Gaussian processes.  This subject is 

discussed in greater detail in Section 4»8. 

b. Frequency 

The scattering and reflection properties of the surface are not 

only a function of time, but also of the signal frequency.  For 

very high frequencies a behaviour similar to "geometrical optics" 

is likely: shadowing of "valleys" by "peaks" may occu* (see 

Section 4*6), whereas for low frequencies the waves will be 

diffracted and reach all surface points. 

c. Space 

The diffracted field depends strongly on the relative position of 

source and receiver with respect to the boundary.  The shadowing 

mentioned in (b) will become increasingly important when the 

grazing angle approaches  0.  Volume-scattering due to an 

inhomogeneous sub-surface layer can also take place then. 

A general statistical description of the diffracted field, complete 

up to second order statistical moments, therefore requires both 

a realistic surface model that takes into account the possibility 

of shadowing and sub-surface scattering, and observation of the 

field at two separately located receivers, at two frequencies, 

and at two instants of time.  Only then one can obtain knowledge       i 
'% 
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about the following subjects: 

Impulse response of the surface 

Frequency spreading of signals due to the Doppler effect 

(Coherence limits) 

Curvature of the wave fronts. 

Our first and general conclusion may therefore be that most of the 

papers analysed give a very incomplete description of the scattering 

and reflection of sound waves by the ocean surface, as they deal — 

roughly speaking — only with the following features. 

a. Time-Independent Surfaces 

The sinusoidal boundary is often encountered (Refs. 13, 31, 3G, 37» 

64, 76), and the saw-tooth also occurs (Ref. 68). Both of them are 

very rough approximations of the true sea boundary. 

The random surfaces are based on the assumption of a stationary 

Gaussian process, mainly for computational reasons.  Analysis of the 

sea surface has shown that this assumption is not far from the truth 

(Refs. 4, 24).  The spatial correlation function of the surface, 

however, is often arbitrarily chosen, e.g. exponential or Gaussian, 

again with the eycuse that it makes continuation of the calculations 

possible.  In more recent publications the Neumann-Pierson model of 

ocean wave spectra is receiving increasing attention (Refs. 49, 51, 

55, 65, 72). 

An intermediate position is taken by the random periodic surfaces 

(Refs. 21, 29, 30, 33). 

b. Monochromatic Waves 

Sometimes, in experimental work, a pulsed-CW source is used (Refs. 17, 

28, 32, 34, 39, 56, 67, 68, 69), or even explosives (Refs. 9, 10, 18, 

19, 20, 51, 70), but then the analysis is done via narrow-band 

filters, reducing it to the monochromatic case again. 

c. One Receiver 

Exceptions are found in the Russian literature (Refs. 33, 34)» 

(See Section 4-2) 
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d. No Shadowing 

This subject is treated separately (Refs. 14, 16, 73, 75, 80)• 

(See Section 4•ö) 

e. Ideal Sub-Surface Layer 

In experimental work the presence of such a layer is sometimes 

hypothesized (Refs. 10, 19, 23, 78, 79).  Russian authors have 

investigated its influence in some theoretical work (Refs. 29, 46, 47) < 

(See Section 4*4) 

There is one important exception to this general conclusions the quasi - 

phenomenological approach of Middleton (Refs. 59, 60).  A very short 

description of this approach can be found in Section 3.4» 

3.2  The Rayleigh Method and Related Solutions of the Wave Equation 

with Boundary Condition 

At the end of the 19th century Lord Rayleigh studied the scattering 

of sound waves at periodically corrugated surfaces (Ref. 6).  His 

method can be considered as the first attempt to solve the wave 

equation in combination with a boundary condition.  It is an intuitive 

approach that has been used by many investigators, oic n with 

modifications, up to the present day.  The Rayleigh method is 

described in Section 3.2.1. 

The periodicity of the boundary prompted Rayleigh to expand the 

reflected field into a set of undamped plane waves.  His assumption 

that this expansion is valid up to the boundary (which he made to use 

the boundary condition) has been questioned by many authors. 

"However, ...... no rigorous proof of the invalidity of Rayleigh's method has 

ever been published" (Ref. 77, p. 402). 

Although Rayleigh*s method was originally suggested by periodicity of 

the boundary, it has been extended by Marsh to random surfaces. 

Details of this generalization can be found in Section 3.2.2. 
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3.2.1.  Rayleigh»s Method for a Sinusoidal Surface 

A simple and straightforward description of the Rayleigh method for 

a periodic boundary is given by Beckmann (Ref. 2, Chapter 4), from 

which the following is a summary. 

A plane monochromatic sound wave with wavelength \  is incident on 

an infinitely long periodic boundary with angle of incidence 0.  In 

its most simple form such a boundary can be described by: 

z = £ (x) = £ (x + A)     (-» < x < • ), (Eq. 4) 

where  A  is the period of the surface corrugation.  Because of the 

periodicity of the surface the diffracted field is assumed to 

propagate in certain discrete modes, making angles  9  with the 

vertical that are given by the grating formula: 

4-    -4- 
sin 0m = sin 0 + m \/ A   (m = 0, - 1, - 2, ...), 

or in terms of the wave numbers k  and K 

sin 0m = sin 0 + m K/k. (Eq. 5) 

We remark that for  m = 0  the reflection is "specular". 

According to Eq. 5j  9  can only assume discrete values when \ 

and  A are held constant.  These are the directions of scattering. 

They have the property that in these directions the waves scattered 

from individual periods reinforce each other because their phase 

difference is an integral number of periods. 

For a sinusoidal surface, namely for 

Q   (x) = h cos (Kx)        (-• < x < m) (Eq. 6) 

Rayleigh calculated the amplitudes A   (ms0, -1, -2»...)  of 

the scattered waves via the boundary condition p = 0, where p is 

the total pressure field.  His procedure for obtaining a solution of 
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the wave equation, i.e. the coefficients  A , is based on two 

assumptions g 

a.  That the total field can be written as an  infinite «urn 

of plane waves: 

p(x,z) =exp ik(x sin 0 - z cos 0) + \  A  exp ik(x sin 0 +z cos 0 ) 

m=~» 

(Eq. 7) 

(the first term on the right hand side being the incident wave). 

b.  That this equation holds everywhere above and on the 

boundary.  This assumption is not at all obvious and has been 

seriously criticized. (See Section 3>2.3) 

With his two assumptions Rayleigh found that for a point (x,z) 

at the boundary 

m 

exp -ik£(x) cos 0 \- - \  A  . exp imKx + ik£(x) cos 0 I«      (Eq. 8) 

m==-ap 

"Both sides of this equation are now expanded in a Fourier series with respect 

to x (which will in general result in a double series on the right side) and 

the resulting Fourier coefficients are equated. This results in an infinite set 

of linear equations, each of which contains the unknown coefficient A . By 
m 

progressive solution (or successive approximation) the coefficients    A      are tnen 

approximated"   (Ref.   2,   p.   43).     Formulae  for  the  first  coefficients 

can  be  found  in Table  2. 

The total  number  of  possible modes  as  predicted  by  Eq.   5  is  limited 

by  the  condition      Isin   0   I   i   1.     We  call   this  maximum    M.     For 1    m' 
m > M  the condition is violated.  Then  cos 0   becomes imaginary m 
and we have (See Eq. 8)  waves propagating along the surface 

(Rayleigh surface waves) that decay exponentially with depth. 
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The propagation in discrete modes described here is valid for 

"surfaces" tlhat extend from -« to +».  It is interesting to note 

what happens when the periodic surface is of finite length.  Then 

the diffracted field — instead of being cancelled completely 

because of destructive interference between the directions given by 

the grating formula (Eq. 5)— decreases gradually and then increases 

again, when the observer is moved from the direction  9   to  0 ,„. m      m +1 

In this way the so-called "lobes" are formed.  Their width increases 

as the surface becomes shorter. 

For several combinations of  0,  A and kh,  Beckmann (Ref. 2) 

gives figures that illustrate this formation of lobes (Fig. 1 and 2). 

They show that with decreasing value of kh  the "roughness" becomes 

smaller so that fewer and fewer sidelobes appear and the lobe with 

m = 0  (specular reflection) becomes more and more pronounced.  With 

constant kh anu A the reflection becomes more specular as  0 

increases.  Both facts agree with a definition of roughness of the 

form 

X = Ckh cos 0 . (Eq. 9) 

Other authors (Refs. 8, 12) considered an infinitely long 

periodical boundary, i.e. they studied the set of amplitudes 

A , A+1, A.2>«.A. . Abubakar (Ref. 8) arrxved at some interesting 

conclusions: 

a. If kh « 1,  the non-specularly reflected waves are 

small, irrespective of  A»  Specular reflection is then dominant. 

b. If A « X>  surface waves can occur.  Part of the incident 

energy is then trapped in the "valleys", at the expense of the 

undamped scattered waves.  These can become completely negligible, so 

that, if  A is small enough, only specular reflection  (m m 0) 

remains.  This agrees with Beckmann (Ref. 2, p. 36). 

3.2.2  The Marsh-Rayleigh Method for a Random Surface 

The method of Lord Rayleigh for a sinusoidal boundary has been 

generalized by Marsh for the case of a random surface (Ref. 43). 
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He published his  generalization   "in an heuristic form,  in order to avoid 

presenting the exceedingly heavy analysis required for a rigorous treatment" 

(p.   330).     This  omission  of  sufficient  comments  on the basic  steps 

in his paper,   together with a   rather large number  of misprints, 

makes  his  article  somewhat  hard to follow. 

Marsh's  extension  of  the  Rayleigh method  is  obtained  via Wiener's 

concept  of   "Generalized  Harmonic Analysis"   (Refs.   5,   7).     It  produces 

an expression for the  correlation function of the  scattered  field at 

two points  in  space in a  horizontal  plane below the  rough  surface 

upon which  a  plane monochromatic  sound wave  is  incident,   but    "this 

solution is readily extended to include electromagnetic waves,  general elastic 

waves,  and non-planar, non-harmonic sources"    (p.   330  -  abstract). 

The   "exact"   solution for the problem of  wave  scattering by irregular 

surfaces  can  be  summarized as  follows. 

A monochromatic  plane wave   (direction  cosines     ft,   (9,   y)     is  incident 

on a   random pressure  relief boundary    S   z = s(x,y)   .     For the 

diffracted  field     p<(x, y,z)   a plane wave  representation is  sought  by 

writing 

Px(x,y,7)   =JJ exp[-ik(xx +  Uy  -   vz) ] dG(x,n)> (Eq.    10) 

where G(X?u) is the generalized spectrum of p«(x,y,z)  and 

X, li, V are the direction cosines of the diffracted wave (hence: 

X2 + |i? + v2 - 1.) •  The expansion (Eq. 10) is a straightforward 

generalization of the Rayleigh method for a periodic surface, in 

which p*(x9y9z)   was decomposed into an infinite series of plane 

waves (See Eq. 7)« 

Rayleigh's second assumption, that the expansion is valid up to the 

boundary, is also adopted by Marsh;  the criticisms of Rayleigh's 

approach apply therefore equally to Marsh (See Section 3.2.3). 
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With the boundary condition of zero total pressure and after 

normalization of variables:  kx =5,  ky = r|>  ks(x,y) - a£(§,r|) , 

a2 - k2hs,  h2 = <(s - <s>)2)  and  ((£ - <C>)2) == 1,  Marsh obtained 

+ c 

exp[-i(a? +  0n +  vaC)]+Jj exp[-i(\? + Jit]  -  V&C)]  dG(\,   u)   - 0 .  (Eq.   11) 

After  this  he  expanded     G(\,   JJ)   in  a  power  series  in  a: 

G(X,   uO   = V     a"1 Am  (X,   n) (Eq.    12) 
m=0 

and the coefficients A *are to be calculated.  Substitution of m 
Eq. 12 into Eq. 11 yields an infinite set of simultaneous linear 

equations for the determination of the  A  (\> |i)•  By clever 

manipulation of these equations Marsh found a simple-looking 

expression for the scattered field at a point not on the boundary. 

Choosing the coordinate system in such a way that the point of 

observation lies in the plane  z = 0  (this includesi      (£(x,y)) ^ 0, 

in contrast to most other theories)  he obtaineds 

p(?r n»   0) - - 
exp[-i(qg + 3n + yoQ) 

(Eq. 13) 
1 + X 

where X  is a complicated operator closely related to the basic 

expression in Wiener's work. 

Marsh, Schulkin and Kneale (Ref. 49) have worked out the method in 

more detail, assuming a so small that  G(\> jj)  can be represented 

satisfactorily with three terms of the series in Eq. 12.  The 

necessary condition for this approximation was not discussed.  They 

found that 
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dA0 = -6(x -a) S(u-p) dxdu 

dAa = 2iYF(Ce-
i(a? + ^) dXdu 

(Eq. 14) 

dAs = 2YF(C) * (Xce-^'-^JJdXdu 

where  F(•)  denotes the Fourier transform and # means convolution. 

Equations 10, 12 and 14 with  z = 0 gave an expression that approximates 

Eq. 13. 

The  correlation function 

*(S.   rt)  =  (p(5l,   nx,   0)  p*(?a  + 5.   na  + T},   0) > (Eq.   15) 

then followed easily: 

Y(5,   n)  = e"1(a5 + ^>   ri+4Y
2a2$(§,   n)   -4Yo2 

vF(X -  OU M - g) d\duj . 

(Eq.   16) 

In this formula     F(\,   u)     is  the  "power spectrum"  of     £(g,   n),     and 

$(?>   n)     the surface auto-correlation function:     F    and     $    are each 

other's Fourier transforms. 

The Fourier transform of     Y(?,   n),     called     /^M(X,   (j),     has an 

important physical meaning:     it  "is proportional to the intensity of waves 

proceeding parallel to the line with direction cosines     \,\J.   ... In general, 

Aw will consist of both a discrete and a continuous portion.    The discrete 
M 

portion, where   y\w     is singular, represents Diane scattered waves of finite 
M 

amplitude (such as the specularly reflected wave).    For such plane waves, the 

integral of    Aw    *n the immediate vicinity of its singularity is equal to the 

square wave amplitude" (Ref.   48,  p.   331). 
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Fourier transformation of Eq. 16 indeed gives two terms of different 

character; 

AM(X, u) - 0(a, ß) 6(X-a) 6(u-p) + T(X, u)      (Eq. 17) 

where  Q  is the specular part: 

+. 

n(a, ß) = 1 - 4ya2   F(£- a, m- ß) (1 -I2  -m8)* dldm,        (Eq. 18) 
V 

-00 

and     V    the  non-specular  part: 

r(\,   u)  = 4y2a2  F(x-a,   u-p). (Eq.   19) 

This last expression is comparable with Eckart1s formula for  a 

(see Eq. 47).  It shows a similar dependence on the wave spectrum  F, 

but differs in the proportionality factor. 

The specular term  Q  is used in Ref. 49 for the prediction of the 

surface loss per bounce, when a ray travels in an isothermal 

surface-bounded channel, whereas the non-specular scattering part  T\ 

also called "spectral reflection" (Ref. 49» p. 338), is considered 

in the backscattering studies (Refs. 50, 51).  A more detailed 

treatment of these and related subjects can be found in Refs. 11 and 

54.  Comparison of the Marsh theory with experimental data shows 

satisfactory agreement (Ref. 51). 

3.2.3  The Dispute about the Rayleigh Method 

Commenting upon Rayleigh's procedure for obtaining a solution for the 

wave equation in the presence of a sinusoidal boundary, Uretsky 

remarked that:  "The crucial and unjustified step in this procedure is the 

assumption that Eq. 7 describes the solution everywhere above the bounding 

surface"  (Ref. 77, p. 401).  Referring to a letter by Lippmann 

(Ref. 44) he made it seem plausible that the assumption breaks  down 

in the "valleys" between the "peaks", because there both upgoing and 

down-going waves should be expected.  For this reason he carefully 

developed a solution to the problem, based on Green's theorem. 

(See Section 3.2.4)»  Comparing his results with those of Rayleigh, 
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one  of his  conclusions  (based  on numerical  experimentation) 

is   " that the Rayleigh equations are useful when the undulations of the bounding 

surface are gentle (small hK)"   (Ref.   77*   p.   421). 

Meecham too  (Refs.   57»   58)   remarked that  the  validity  of  Rayleigh's 

second  assumption  is doubtful.     He developed  a   variational  method, 

for  the  case   of  a  periodic  surface  (Ref.   57) >   which  improves  the 

Rayleigh method  via  an  error-minimizing procedure  and  a  Fourier 

transform method  for boundaries  of  arbitrary  shape  (Ref.   58).     This 

latter method,   in which  an  approximation  of  the  first derivative 

of  the  pressure  at  the  boundary  is  obtained  via  a   receiver  at  this 

boundary,   is  found  to be   " preferable to previous methods,  notably those 

which can be classified as physical optics (such as Rayleigh's),   since the error 

in the transform method is of second order in the surface slope whereas the 

error in previous methods is of first order in the same quantity»    (Ref.   58, 

p.   370  -  abstract).     Applied  to  a  sinusoidal  boundary  the method 

produces  expressions  for the  amplitudes     A   . 

The  question of  the  validity  of  Rayleigh's  second assumption has 

been  attacked from another  side  by Heaps.     He  presented  "an 

investigation of the least possible value of the surface pressure consistent 

with the assumption that all the reflected radiation is in the form of undamped 

plane waves»    (Ref.   37,   p.   815) •     He  arrived at  the  conclusion,   after 

comparison of  his  results with  experimental  data   collected by 

La  Casce and Tamarkin from a  sinusoidal model  surface  (Ref.   41)? 

that if all the reflected energy has the form of undamped plane waves then the 

surface is necessarily sound absorbing and of pressure significantly different 

from zero.    Thus,  in the neighbourhood of a corrugated surface of zero Dressure 

it is necessary to take into account other forms of radiation and such forms 

play © significant part in satisfying the boundary condition"   (Ref.   37,   p.   8l8). 

As Marsh has  generalized the Rayleigh method  for  random surfaces,   he 

is arguing  "In Defense  of  Rayleigh's Scattering from Corrugated 

Surfaces"   (Ref.   52).     His  results  (for simplicity he takes a  sinusoidal 

surface)   have been  compared with those of Uretsky  (Refs.   76,   77) 

by Murphy and Lord.     They showed  "that Rayleigh's formulation is inadequate 

for the description of the scattered field"   (Ref.   62,   p.   1598  -  abstract). 



The experimental results of La Casce and Tamarkin (Ref. 41) are also 

used by Uretsky to check his theory.  Presenting curves for the 

reflection coefficients of order m = 0  and  -1  together with 

data points, he felt "that the general trend of agreement is encouraging" 

(Ref. 76, p, 1294). 

Also Barnard et al. concluded that the " theory forwarded by Uretsky 

provides a satisfactory prediction of scattered sound field from a pressure- 

release sinusoidal surface when the amplitude of the sinusoid is comparable to 

the wavelength of the incident radiation" (Ref. 13, p. 1169). 

Finally we remark that Beckmann (Ref. 2), surprisingly enough, does 

not touch upon the question of the validity of Rayleigh's assumptions. 

The results of the abovementioned papers lead us to the conclusion 

that the Rayleigh method is indeed incorrect in the way the 

boundary conditions are used, as it causes contradictions. 

Nevertheless, for smooth surfaces the method produces results that 

do not disagree more with experimental data then do other, more 

rigorous, solutions.  It is therefore useful to a limited extent. 

The method developed by Uretsky, on the other hand, is strict in a 

mathematical sense and therefore superior to the Rayleigh solution. 

It is expected to have a much wider validity, as the Rayleigh 

results can be considered as the first step of a series tnat 

converges towards the Uretsky results. 

3.2.4  Uretsky's Method for a Sinusoidal Surface 

Uretsky devoted two publications to his method:  a very short 

outline (Ref. 76), which is no more than an introduction, and a very 

thorough and detailed treatment (Ref. 77).  The latter contains a 

complete description of the method with the necessary mathematical 

proofs, as well as valuable comments upon the Rayleigh method and the 

Kirchhoff approximation.  Application can be found in a study by 

Barnard et al. (Ref. 13), who summarized the Uretsky approach, made 

numerical predictions, and compared these with experimental results 

from a pressure release cork surface in a model tank.  Satisfactory 

agreement was obtained. 
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The method starts in the same way as the Rayleigh method.  A plane 

monochromatic wave with direction cosines  X0(= sin 6)  and 

ji0(= cos 0)  is incident on a sinusoidal pressure release surface 

z = £(x) - h cos (Kx). (Eq. 20) 

Instead of assuming that the scattered field can be expanded into 

an infinite set of plane waves (as Rayleigh did), Uretsky proves 

that this is possible for observation points not too close to the 

boundary, i.e.: 

pt(x, z) = )     A  exp ik(x sin 0  +. z cos 0 ) ( z ;> h). 
m=-oo 

(Eq. 21) 

The difference from Rayleigh appears in the next step:  the 

expansion (Eq, 21) is not valid for  z < h,  because there the 

terms of Eq. 21 fail to be solutions of the wave equation. 

The Helmholtz formula (Ref. l), which expresses the scattered field 

pj^  as an integral over elementary sources induced on the boundary 

by the incident wave  p0,  is invoked to avoid Rayleigh
fs second 

assumption.  In terms of Green's functions  the Helmholtz integral 

can be written as 

Pl(*) - UTT)-1 J[Gk(?|?) vp(#») -pt*f) vGk(*|*')] dS(?»),   (Eq. 22) 

where  p is the total pressure at the boundary.  This quantity 

is zero on a free surface:  hence the second term between square 

A Green's function G^frlr') expresses the field at  r due to a 
unit point source at r« (monochromatic, wave number k). 
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brackets in Eq. 22 vanishes.  As for a two-dimensional case we have 

Gk(?|?')=inH0
(l) (k|?-?'|) (Eq. 23) 

the expression for the scattered field becomes: 

00 

Pl(^ = JJ dx' H« (k|r-r<|) vp(r'). (Eq. 24) 

"The crucial step in the present    formulation of the problem is to recognize 

that     vp(r')   admits a Fourier series representation»   (Ref.   76,   p.   1293); 

the proof  is given in Ref.   77»     Hence: 

«0 

(?')   = k^_       (i)"j  B.   exp[ik(\0 + j  K/k)x'] VP 
j = -C0 

00 

Skl       (i)"j  Bo   exp(ikXjxO. (E       25) 

J=-CD 

Putting this in Eq.   24  gives 

w — 

Pa(x,   z)   - 2L $       (i)"j  Bi    f   dx'   Ho(1)   (kl^-^'D   exP  (ikX.x»). 
4 j^ J i 

(Eq.   26) 

In order to find the scattered field  p,,  the boundary coefficients 

B.  have to be determined.  This can be done via the boundary 
«J 

condition of zero total pressure, which gives 

-Pi(x» C(x)) = P0(
x< C(x)) 5 exp^ik^X0x - u0h cos (Kx))j , 

(Eq. 27) 
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As in the Rayleigh method, the expansion 

00 

exp(ib cos Kx) a Y    in Jn(b) exp(inKx) (Eq. 28) 
n=-oo 

is used.  Writing the Hankel function as an integral 

H0(kR0) - in-2 f   dK    exp(iK . R0) (Eq. 29) 
J K2 - k2 

Uretsky obtained from Eqs. 26 and 2/ 

I   i"m Jm^hklJo^ exp(ikxmx) - 
m=-oo 

-III U)   Bj J dt   J «pfik^x) (Eq. 30) 
2TT
 j n t 

(t» - u- ) 

where ya  = 1 - \3       and X,  is defined in Zq.   25. 
■v I At 

Defining a matrix element M. .: 

._      p   J .  (hkt) J. n(hkt) 
M, . = -(2n)-lY (-1)" I dt ""3       l'n (Eq. 3D 

13
 n     -i <t« - u8J n' 

ikX x and equating in Eq, 30 the coefficients of e  m ,   gives an 

infinite set of algebraic equations for B.: 

j Ht.  *.  = (-1)* Jt(hkn0). (Eq. 32) 

3=-m 
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" The major complication of the problem (other than the usual difficulties 

associated with inverting infinite matrices)  is in the calculation of the 

matrix elements    M. ."   (Ref.    /6,   p.   1294).     But  the  evaluation  is 

possible,   although  the  result  is  somewhat  complicated: 

;, .  = Y(-l)n  [Rn, . (hk:u   )   -  i(2u   )~l   J,      (hk|j  ).   J      .(hkn   )] M 

n 

U+j   even), (Eq.   33) 

M^.  -  0 U+j   odd). 

The function  R} .      may be written in terms of the generalized 

hypergeometric function  3F4* 

Rt1(b;u) = b(2)  1_1 2 _Z1_^ i_ .      (Eq. 34) 
l(2n-^-j)s -1] [U-j)> -1] 

Inversion of Eq, 32 yields the boundary coefficients  B..  A relation 

between A  and B.  is then needed for the calculation of the 

scattered wave  pt  with Eq. 21,  The required relation is proved to 

be 

A  = (-i)m+1 (2n J"1 7 B. J  . (hkU ), ,-   -cx m  v ' v Hm'   L    J  m-j v  **m' (Eq, 35) 

Obviously the Uretsky method is far from simple.  But the results 

are obtained with a high degree of mathematical strictness and with 

a minimum of conditions on the validity.  In fact the only condition 

is that shadowing does not occur, i.e. 

tan 9 * hK. (Eq. 36) 
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It may be noted that only the surface height h appears explicitly 

in the formulae: the surface period K is still present, however, 

as it should be via u  and  X • ^m       m 

A generalization of the Uretsky method for random surfaces seems 

possible, Marsh having indicated the way to do it.  The result could 

be interesting (although probably rather complicated), as it would 

be applicable to the ocean surface without too restrictive conditions 

for the roughness. 

3.2.5  Comparison of Several Methods with Each Other and with 

Experimental Results 

It has been noted already that La Casce and Tamarkin have provided 

the theoreticians with experimental data that could serve as a check 

for their theories.  These data have been published, more than ten 

years ago,in a study on the reflection of underwater sound from a 

corrugated surface (Ref. 41).  They will be discussed later. 

In addition to their experimental work, the authors have summarized 

the theories of Rayleigh, Eckart (Ref. 26) and Brekhovskikh and 

compared them with their data.  Their formulae for the amplitude 

coefficients are reproduced in Table 2. 

Several authors have used the experimental results of Ref. 41 to 

check their own theories:  Meecham (Ref. 58) applied his Fourier- 

transform method to a sinusoidal boundary, Parker (Refs. 63. 64) 

extended the Rayleigh series of plane waves into an integral, 

Heaps derived from the Rayleigh method a recurrence relation for 

A  (Ref. 36) and (with the assumption that the reflected field m 
contains only undamped plane waves) obtained values for A  that 

minimize the mean square pressure at the boundary (Ref. 37), and, 

lastly, Uretsky (Ref. 76) avoided the mathematical defect inherent 

in Rayleigh's procedure with a careful and rigorous solution. 

All the methods developed for the scattering from sinusoidal 

boundaries, though very different in their final results, agree 
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TABLE  2 

AMPLITUDE COEFFICIENTS  FOR  A SINUSOIDAL  BOUNDARY  (Absolute Values) 

(From:   La  Casce  and Tamarkin  -  Ref.   41) 

Rayleigh 

A0  = J0(2  hkc)   +  |(C  - C_x)   hkJx (2hkc) 

AM1   = Jt (2  hkc) 

Eckart 

A0   = Jrt(2  hkc) *o       °o 

c +   cm 
Am = -7—    JmLC +   Cm>   hkJ 2c 

Brekhovshikh 

A0   = J0(2  hkc) 

(c +  cm)»  +   (s -  sm)* 

;   (c +  c  ) m nr 

Am -  - —    JJ (c +  c  )   hk 
m 2  c   (c +  c  ) "^ m J 

(c = cos 9, s = sin e> cm = cos 0m, sm * sin 9m) 
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in predicting that the main directions of scattering are given 

by the grating formula: 

sin 0  = sin Q + m K/k , (Eq. 37) 

where K  is the surface wave number and the other quantities 

are as defined in Fig, 3 

+-  x 

pIG. 3   DEFINITION OF ANCLES AND MODES POP THE SCATTERING OF PLANE WAVES FROM A 
SINUSOIHAL BOUNDARY.    THE SPECULAR DIRECTION OCCURS RDR m - 0. 

TABLE  3 

SURFACE PARAMETERS   (La  Casce  et  al.   -  Ref.   41) 

Surface K 
(cm"   ) 

h 
(cm) 

Kh 

1 6.64 0.32 2.12 

2 3.12 0.24 0.75 

3 3.08 0.15 0.46 
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La Casce and Tamarkin obtained their results with pressure release 

cork surfaces of approximately sinusoidal form, floating on top 

of the water in a tank.  Such a surface can be described with the 

formula 

£(x) = h cos (Kx). (Eq. 38) 

For a concrete situation values have to be assigned to the 

following parameters:  0, k, h, K and m, the scattering mode number 

(0, ± 1, , ..).  La Casce and Tamarkin have experimented with three 

surfaces, for which  h  and  K  are given in Table 3.  They 

measured the scattered amplitude  A  (m = 0, -1 and -2) for 

0=0°, 20°, 40° and 60° as a function of kh, thus providing a rich 

source of data for comparison. 

In order to facilitate the comparison of the available theories 

with each other and with experimental results, we have plotted in 

Figs. 4-9 some of the data of La Casce and Tamarkin together with 

theoretical curves.  The ones according to Rayleigh, Eckart and 

Brekhovskikh we have computed with the formulae of Table 2:  the 

other curves are copied from the original papers. 

The figures show the specularly reflected amplitude a^>d the first 

and second order backscattered amplitudes for  0-0° and 40°, as 

functions of kh, for the third experimental surface (hK = 0.46), 

as this is the most sinusoidal one and because most of the theories 

presented are based on the assumption of small surface slopes. 

Since the surface under study is not very rough, the Rayleigh 

prediction is not significantly worse than other curves.  The 

Uretsky curves, for which a small slope is not required, are 

satisfactory but do not appear superior to the others;  More 

interesting, therefore, is the application of Uretsky1s theory to 

rough surfaces. 

This has been done by Barnard et al. (Ref. 13) in their model 

studies. Their surface can be described with:  h = 1.5 cm, 

K = 1,4 cm"  and hence hK = 2.1.  The frequency of incident sound 

43 



0.5- 

EXPERIMENTAL   DATA: 

>   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 2C 

THEORETICAL  CURVES: 

RAYLEIGH 

ECKART/BREKHOVSKIKH ) 

PARKER, Ref. 64, Fig. 3 

HEAPS, Ref. 37, Tab. I 

URETSKY, Ref. 76, Fig. 1 

MEECHAM,Ref.58, Fig. 3 

jTab.2 

T 
2 

kh 

FIG. 4   THE SPECULARLY REFLECTED AMPLITUDE |A0I 
Surface roughness  hK = 0.46, normal incidence  6 = 0°. 
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0.5 H 

EXPERIMENTAL DATA: 

•   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 3C 

THEORETICAL  CURVES: 

RAYLEIGH 

ECKART/BREKHOVSKIKH J 

 PARKER, Ref. 63, Fig. 2d 

•<$>-        HEAPS,    Ref. 37, Tab.I 

     URETSKY.Ref. 76, Fig. 2 

Kab.2 

kh 

FIG. 5   THE SPECULARLY REFLECTED AMPLITUDE   lAJ 
Surface roughness hK = 0.46, onglo of incidence   9 = 40s. 
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1.0- 

0.5- 

EXPERIMENTAL   DATA: 

>   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 6C 

THEORETICAL  CURVES: 

  RAYLEIGH 

H—. ► ECKART Tab. 2 

  BREKHOVSKIKH 

-<•>- HEAPS,       Ref. 37, Tab. I 

  URETSKY,   Ref. 76, Fig.3 

  MEECHAM, Ref. 58, Fig.3 

V_./' *•• 

\ 
^\% 

I / v /••       X 

kh 

FIG. 6   THE FIRST-ORDER SCATTERED AMPLITUDE   I A.,| 

Surfoce roughneti hK * 0.46, normal incidence  8 = 0*. 
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0.5- 

EXPERIMENTAL   DATA: 

•   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 7C 

THEORETICAL  CURVES: 

RAYLEIGH 

ECKART 

 BREKHOVSKIKH 

HEAPS,       Ref. 37, Tab.I 

•    URETSKY,   Ref. 76, Fig.4 

Kh 

FIG 7   THE FIRST-ORDER SCATTERED AMPLITUDE   |A-i| 
Sorfoc* roughness hK s 0 46, ongl« of incidence  9 « 40*. 
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EXPERIMENTAL   DATA: 

>   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 8 A 

THEORETICAL CURVES: 

  RAYLEIGH, Ref. 6 

»     i     ' ECKART | 

  BREKHOVSKIKH    ( 

-<•>- HEAPS,      Ref. 37, Tab.I 

  MEECHAM, Ref. 58, Fig. 3 

FIG 8   THE SECOND-ORDER SCATTERED AMPLITUDE   IA-*| 
Surface roughness hK « 0.46, normal incident«   0 « 0*. 
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1.0- 

0.5- 

EXPERIMENTAL   DATA: 

•   LACASCE   AND TAMARKIN, 

Ref. 41, Fig. 8 B 

THEORETICAL CURVES: 

RAYLEIGH, Ref. 6 

ECKART ) 

     BREKHOVSKIKH    ) 

-<•>■        HEAPS,       Ref. 37, Tab.I 

FIG. 9   THE SECOND-ORDER SCATTERED AMPLITUDE    lA^I 
Surface roughness KK * 0.46, angle of incidence   6 s 40". 
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was 100 kHz (or k = 4.2 cm" , making hk = 6.3).  They measured the 

backscattering as a function of grazing angle with fixed angle of 

incidence.  A typical result is shown in Fig. 10. ,T The agreement between 

the calculated and experimental curves ... is, in general, excellent" (Ref. 13, 

p. 1168). 

3.3  The Kirchhoff Approximation and Variations 

When the scattered field at an observation point is expressed as an 

integral over elementary sources induced at the surface by the 

incident wave (this is the so-called Helmholtz integral - Ref. l), 

an assumption has to bj made for the first derivative of the 

scattered wave field at the free boundary.  For a random surface 

the exact value of this quantity is hard to obtain;  approximation 

then takes the place of exactness. 

The assumption most frequently met is the "Kirchhoff approximation": 

the required directional derivative is put equal to the first 

derivative of the incident wave, which is a known quantity. 

The leading publication in the group of papers that adopted the 

Kirchhoff approximation is the paper by Eckart (Ref. 26).  The 

interest of Eckart's work lies in the fact that he "obtained 

significant results with minimum mathematical complexity by relying on a highly 

developed physical insight into the problem " , as has been remarked by 

Horton and Muir (Ref. 38, p. 627). 

3.3.1   Eckart's Theory 

The basic ideas of Eckart's theory can be summarized as follows. 

A transmitter T  (monochromatic) and a receiver are placed above a 

reflecting surface  S z = C(x> y) •  The transmitter induces 

elementary sources at  S;  the scattered pressure field px(R) 

can be obtained from these sources via the Helmholtz integral: 

so 
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in which  r  is the distance from dS  to R,  and n is the unit 

normal to dS directed away from R.  For a pressure release surface 

one has the boundary condition 

Po + Pi= °  on s> (E<1* 40) 

where  p0  is the incident pressure wave.  The evaluation of the 

Helmholtz integral requires also the first directional derivative 

of p, .  As a second boundary condition Eckart assumed the validity 

of the Kirchhoff approximation, i.e.: 

dp,    3p0 
—- =     on S. (Eq. 41) 
ön     on 

Mintzer (Ref. 61) has critizised this assumption with good reasons: 
dpi 

when p.  is fixed on S the quantity  1 cannot be chosen 
an 

independently (Ref. 1).  He showed that the second assumption is 

at most a first approximation for smooth surfaces. 

Eckart assumed that T is a directional source and so far away 

from S that for all points of the insonified area the distance to 

T is the same.  A similar assumption is made for R.  Indicating 

the positions of T and R with the direction cosines (cu.» 0T, YT^ 

and  (0^, SR, vR),  putting Oj + OR * ft»  etc., and replacing 

— by .L.  (small surface slopes) he derived from Eq. 39; 
dn     dz 

ikr10+* 
4i7p1(R)   - ikY -  [Tax dy P  exp[-ik(ftx +  fy + YC>] (Eq.   42) 

rio -• 

where  ru  is the distance from R to 0,  the centre of the 

insonified area, and P  equals the incident pressure at 0. 

Equation 42 is the basic expression in Eckart's theory.  It is 

used as the starting point for special cases. 
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Although the Eckart theory can be used for non-random surface profiles 

(see Section 3.2.5), it is designed originally for a random surface 

£(x, y)  that can be considered as a stationary two-dimensional 

process, in which case second order moments of the scattered field are 

calculated« 

Two auxiliary functions play a role in the theory: 

*(?, TI) = (C(x, y) £(x + 5» 7 + r\)) (Eq. 43) 

and 

+• 

J(5» n) = 
nn ,• 

dx dy P(x, y)  P (x + 5, y + r\) . (Eq. 44) 

-co 

The function  $  is the autocovariance function of the surface 

relief and J  can be considered as the autocovariance function of 

the surface insonification. 

Putting  |(0, 0) E hs,  calling a  the effective correlation 

distance of  ((x, y) and L  the effective size of the insonified 

area, the basic conditions of Eckart's theory are 

h « \ «  a  « L. (Eq. 45) 

Eckart calculated the average scattered intensity  (I ),  for the s 
low frequency and the high frequency cases.  For the low  frequency 

case he found 

(Is> = J(0, 0) a (Eq. 46) 

with 

a - (kV/4n)3 F(ka, ks), (Eq. 47) 

the  function     F(KX,   Ky)     being  the  surface wave  spectrum.     He   refers 

to     a    as  " B dimensionless quantity that may be called the scattering 
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coefficient,  or more descriptively,  the scattsring cross section for unit solid 

angle per unit area of sea surface»   (Ref„   26,   p.   568).     Equation  47 

indicates  an  important  result:      "  the low-frequency scattering is 

determined by the surface spectrum,  and not by the height distribution " 

(Ref,   50,   p.   197). 

In the  high frequency  case  the  calculation  of     a     is  possible  only 

if  the  characteristic  function  of  the  two-dimensional   random variable 

W  =   [£(x,   y),   £(x',   y1)]     is  known.      The  hypothesis  of  a  Gaussian 

probability  density  yields  an  expression  for     a     that  is  independent 

of   frequency.      This  is  a  disappointing  result  for  the   "inverse 

problem"   (see  Section 4.7)   as  it  does  not  contain the  function     $ 

but  only  the  variances   of  the  surface  slopes. 

3.3.2       Variations   of  Eckart's  Theory 

Horton and Muir  (Ref.   38)   extended  the   low frequency  case by 

specifying     $(£>   Tl)   (or  F(KX,   Ky) ,      its  Fourier  transform)   for 

Isotropie  cases.     Among others  they  substituted an exponential  and 

a  Gaussian  shape  for     $.     They  found in  all   considered  cases  that, 

if     a »h,   "the scattered energy is highly directional and is concentrated 

about the direction of specular reflection"   (Ref.   38,   p.   632). 

A   companion paper  by Horton,   Mitchell  and Barnard  (Ref,   39)   deals 

with  experiments  on a   rough Gaussian  surface  in a  model  tank.     The 

authors used  the high  frequency  formula   for     a     of  Ref.   38   to 

check  their experimental  data.     The agreement was  not   very  satis- 

factory,   until   they   changed   the   second   boundary  condition  into: 

dp 
— *   -  0       on  S (Eq.   48) 
on 

being a compromise between Eq. 41 (valid for illuminated areas) and 

&Pi    dp0   =    (holding in the deep shadows).  The remarkable effect 
dn     on 
of this new boundary condition can be observed in Fig. 11. 
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Although Eckart discusses  only a  low  frequency and a  high  frequency 

case,   his theory is  also  valid in the  intermediate  range  of 

frequencies.     Proud,   Beyer and Tamarkin presented  "a solution valid 

for all wavelengths» (Ref. 69, p. 544) for a surface with Gaussian 

probability density (at least up to the second order), in which 

the Fourier integral  plays an important   part. 

There  is a  difference between their  procedure  and the  one  followed 

by Eckart,   which may be  important for practical  purposes  at  low 

frequencies.      " In the original Eckart theory,  the scattering was described 

in terms of a scattered intensity proportional to the square of the magnitude 

of the difference in pressure reflected from the rough surface and that reflected 

from a plane surface replacing the rough one.    This procedure dictates that one 

knows both the amplitude and phase of these pressures in an experimental 

determination of the scattered intensity ".      The procedure  adopted by 

Proud  et  al.   " leads to the experimentally simpler operation of forming the 

difference between plane and rough surface reflected intensity.    No consideration 

of phase is then necessary »   (Ref.   69,   p.   546). 

The  authors investigated the dependence  of  the  specular reflected 

intensity on the acoustic wave  number,   angle  of  incidence,   and 

surface roughness.     The  experimental  part of  their investigations 

took place  in  a model  tank with  surfaces that had approximately 

Gaussian  characteristics.     The  quantity    kh\     ranged  from 0.2 5  to 

2.CO in  the  first  case,   i.e.   from a  smooth  to a   rough  surface. 

The agreement between theory and experiment was good,   notwithstanding 

the  violation  of  the  condition  of  small  surface  slope. 

A comparison between theory and experiments at  sea has been made by 

Clay  (Ref.   22).     Using the data  of Brown and Ricard  (Ref.   17), 

— who placed a  pulsed-CW source  (168  Hz,   89 ms  long)   and a  receiver 

at a depth of   1000 yards,   varied their horizontal distance between 

1000 and   5500 yards«   and measured the  fluctuations of the  scattered 

field  —   he  found from numerical calculation  " a curve that had about 

the same dependence upon the source-receiver separation as the experimental data " 

(Ref.   22.   p.   1551).     Clay extended the Eckart  theory to an 

omnidirectional  source by subdivision of  the surface in rectangles 

for which  the  original   theory  could be applied. 
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3.4 The  Quasi-Phenomenological Approach  of Middleton 

In  contrast  to  the  most  widely  employed   "physical"   methods,   where 

the  irregularity   of  the  boundary  is  introduced  via   the  boundary 

condition  and where  the   solution  of  the  wave  equation  has  to 

satisfy  this   complex  boundary  condition,   the  quasi-phenomenological 

approach  of  Middleton   (Refs.   59»   60)   introduces  the  irregularities 

of  the  surface  independent   of  the  wave  equation  as  a   random 

distribution  of  point   scatterers,   each  with  its   own  impulse 

response  function and  directivity pattern.     This  makes  the  model 

very  flexible  from a   theoretical  point   of  view;     time-variation, 

frequency dependency  of  the  scattering,   broadband   signals,   complex 

geometry,   and directivity  of  transmitter  and  receiver,   subsurface 

scatterers   (and  also  bottom and  volume  scatterers)   are  easily 

incorporated  into  the model,   and  there  is  no  limitation  on  the 

degree  of  surface  roughness.     For  this   reason Middleton's  is  the 

most   complete theoretical method.      " The critical advantage of this 

approach are the elimination of impossibly complex boundary conditions,  the 

inclusion of the essential geometry of the overall system,  and the ability to 

handle general signals and aperture distributions.    The principal,  but not 

serious,  limitation appears to lie in the ultimately empirical nature of the 

impulse response function of the scatterers,  which must be quantified at some 

stage by experiments«   (Ref.   59,   P«   374)»     The  problem of  i.  w these 

experiments  should  be  performed  is  not discussed,   unfortunately. 

For  this  reason  the  practical   significance  of  this  elegant  theory 

seems  limited.     The most  promising application  for  our  purposes 

may be  found  in  computer  simulations  of   the  scattering phenomenon, 

via  a Monte  Carlo method.     On  the  other hand,   the  physical  models, 

although  very  limited  in  their  validity,   seem to  have  a  closer 

relation  to  erperimental  work. 

3.5 Experimental  Results 

3.5.1   The Amplitude of the Scattered Waves 

When a monochromatic sound wave (that is. of constant amplitude) is 

scattered from a wind driven surface, the amplitude ot a diffracted 

wave shows fluctuations in time due to the time-variation ot the 

reflecting boundary. 
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This effect has been measured by Liebermann (Ref« 42) and 

Pollak (Refo 67) at sea, and by D1Antonio and Hill (Ref. 2 5) with 

a model tank. 

Liebermann (Ref. 42) swept the frequency of his source from 2 7 to 

33 kHz in 20 milliseconds and observed the interference pattern 

between reflected and direct wave.  He defined a reflection 

coefficient  V  as 

A - A 
V - max   min (Eq. 49) 

A + A . max   mm 

where     A     v    and     A   .        are   the  first maximum and  the  first max min 
minimum  of  the   signal   envelope,   and  found  that: 

a) Surface  reflectivity  is  highly  frequency dependent. 

b) The median   value  of     V     is near to unity,   but 

for  approximately   10$   of  the  time     V >   1   because 

of  focusing by   the   surface  (p.   498   -  abstract). 

c) No  correlation  exists between  suface  wave  height 

and  reflection  coefficient   (p.   503). 

Pollak   (Ref.   67)   used  a  pulsed-CW  source  of   100 kHz  and  analyzed 

the  reflected  amplitude  statistically.     His  results  indicate  that 

the  probability  density  function  of  the  reflected  amplitude 

follows approximately a  Rayleigh  curve  (Fig.   12).     The  same  result 

has been  obtained  by D'Antonio and  Hill   (Ref.   25)   with  a  wind 

driven   surface  in  a  model   tank.     They   conclude   that   "(a) for CW 

transmission,  the envelope of the received signal has a bandwidth greater 

than the bandwidth of the surface amplitude;    (o) crosscorrelations observed 

between envelopes of amplitude-modulated transmission signals and envelopes 

of the received signals are low but finite;    and (c) tnere is no correlation 

between the surface amplitude and the envelope of the received signal " 

(p.   701   -  abstract). 
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3.5.2       The Intensity  of  the  Backscattered Waves   (Reverberation) 

»The importance of surface reverberation in the applications of underwater 

acoustics can hardly be ovsr-emphasized.    As a result,  measurements of the 

backscattering of sound from the region of the surface have occupied the 

attention of numerous observers.    These efforts have been of considerable value 

in attempting to formulate a description of the phenomenon which is adequate 

for the designer of underwater sonic devices and to reach an understanding 

of the fundamental mechanisms of scattering at the air-water boundary defining 

the surface"   (Ref.   28,   p.   104). 

A  completely flat  surface would  only produce  reflection  in the 

specular direction.     In  the  case  of a  rough boundary this  specular 

direction  (even if  it has  only  theoretical  meaning)   separates the 

backscattering from the  forward  scattering.     This  separation has 

been  treated more in detail  for the periodic boundary  (see 

Section  3.2.1  and Fig.   3). 

In experiments at  sea the  scattered  pressure  or intensity is  often 

recorded.     For  comparative  purposes a   logarithmic  quantity seems 

more  convenient.     Hence  in most  papers a definition of  surface 

backscattering strength  (in dB)   appeared.     And although these 

definitions differ  from one author to another  (sometimes attenuation 

and spreading loss are included  (Ref.   28),   sometimes a  simpler 

approach is followed (Refs.   78,   79))t   their true differences are 

small  enough to make comparison possible,   as is borne out by papers 

of a  comparative character (Refs.   28,   55*   70,   72). 

As an example of such a definition we mention the one presented by 

Urick  (Ref.   78)   for plane waves,   because of its simplicity.     He 

defined the bar« scattering strength,   which we shall  call     aB>     as 

?B -   10  log  (I   /I0) (Eq.   50) 

where I /I0  
H is the ratio of the scattered intensity from the unit «res, 

«assured at unit distance, to the intensity of the incident sound beam. 

Following naval practice, these distances are expressed in yards'1 (Re. . 78, 

p. 136). 
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Two types of sound sources are mets the directional transducer 

— mostly operated with pulsed CW (Refs, 17, 28, 32, 34, 39, 56, 67, 

68, 69) — and explosives (Refs. 9, 10, 18, 19, 20, $1, 70).  In 

the latter case the ''specular direction" has to be inferred from 

the geometry; the data processing is then carried out via narrow 

bandpass filters, making them an aggregate of simultaneous 

"monochromatic" sources. 

All experiments considered here concentrate on the measurement of 

aß as a function of one or more of the parameters cp» V and /. 

Typical results are shown in Figs. 13 and 14. 

The curves for  aß as a function of ^ prompted Urick to 

" divide the angular range from grazing to normal incidence into three regions, 

in each of which the dominant scattering process seems to be different" 

(Ref. 78, p. 140).  These regions are indicated in Fig. 13. 

In Region I the scattering by subsurface bubbles is predominant, 

at least when  / is of the order of 60 kHz:  "bubbles can be 

important at low grazing angles and high wind speeds, in the 60 kHz region, but 

definitely not at frequencies of a few kilocycles or below" (Ref. 51, p. 243). 

This scattering is not very  dependent on cp for rough surfaces, 

indicated by a more or less horizontal curve.  Increase of wind 

speed generates more air bubbles and hence increases  on.  Clay and 
D 

Medwin agree with this explanation  (Ref.   23,   p.   2134),   but 

Chapman and Harris doubt its  validity,   as they do not  observe  it 

at  30 knots.     They believe  "that  the scatterers were in a layer of 

biological origin*«(Ref.   19»   p.   1596)   because a diurnal variation was 

observed. 

" Turning next to Region III, near normal incidence, the slooe of the curves 

in this region and their behaviour with surface roughness suggests that sound 

is returned by reflection (rather than scattering), probably by small,  flat 

wave-facets oriented normal to the incident sound beam"   (Ref.   78.   p«   142). 

An  increase of     v    now decreases    a»    because at  the  rougher 

surface  less wave-facets have a  slope favourable for reflection. 
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In  Region II Urick  is  tempted   " to speculate that the slow rise of     Q 
B 

with angle in this region represents the effect of roughness scattering by 

surface irregularities that are much smaller than a wavelength " (Ref. 78, 

p. 145). 

Figure 15 illustrates Urick!s theory of regions.  "Except for the 

small angle region", Garrison et al. confirmed this hypothesis 

(Ref. 28, p. 111).  Richter (Ref. 70) reported a  aR  decreasing 

with  cp»  and Patterson (Ref. 66) derived a theoretical 

(phenomenological) model that produces curves similar to those 

of Fig. 13 in Regions II and III.  His curves do not show a constant 

behaviour in Region I, but this can be explained by the fact that 

Patterson only dealt with " 'facets' having random distributions of size 

and slope» (Ref. 66, p. 1150) and neglected bubbles. 

In Fig. 14»  GR  is shown as a function of frequency.  A propor- 

tionality of  cR  with  /  is indicated.  This i£ in keeping with 

the results of Chapman et al. (Refs. 19, 20) and Richter (Ref. 70) 

as is remarked by Brown et al. (Ref, 18, p. 3).  On the other hand, 

in Marsh's theory of backscattering there appears to be an inverse 

dependence of  aR  on frequency (Ref. 50, Figs. 11-1 and 11-2). 

Also worth mentioning is that the results of Chapman and Harris are 

in qualitative agreement with EckartJs theory: at relatively low 

frequencies  aR  decreases rapidly with decreasing  /  (see Eq. 47)» 

whereas  aR  is independent of  /  when  /  is relatively high 

(Ref. 1Q, p. 1594). 

An interesting study has been made by Schulkin and Shaffer (Ref. 72). 

They reviewed experimental results on backscattering in their 

relation to the Rayleigh criterion of surface roughness 

(h sin cp < X/8).  As most of the data are presented as a function 

of  v  rather than  h,  they employed the Neumann-Pierson surface 

wave spectrum for a fully risen sea in order to relate  h  and  v: 

5/2 
2h 2   H « 0,0026 v    . (Eq. 51) 
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where H is the mean trough-to-crest wave height (in feet) and 

v the wind speed (in knots).  Then putting 

aB - 10 log(/  H sin cp/C)
b, (Eq. 52) 

they  calculated  the  constants     C     and     k     for a  number  of  cases 

(Refs.   20,   28,   79),   plus  data  from  an NDRC   report!     by drawing  the 

best-fitting straight  line  through  the data.     As  a   result  they 

found  that     b,   the most  significant parameter,   varied between the 

values   1   and  2.     They concluded  that   "there is no theory to date to 

relate all the backscattering-strength data satisfactorily"   (Ref.   72,   p.   1703). 

The  differences  in the  results  of  backscattering measurements are 

not  only caused  by differences  in  technique  or  in  the  definition  of 

aB»     A  factor  of  great  importance,   which  has  not  always been 

recognized by  the  interpretation  of  data,   is  the   state   of  development 

of  the   sea   surface,   which  strongly  influences  the  scattering and 

reflection  properties  of  the  sea   surface9     More  details  can be  found 

in Section 4.8. 

An  operational  model   for  sea   surface   roughness and  acoustic 

reverberation,   in which  the  theory  of   ocean  wave   spectra   has  been 

applied  extensively,   has  been  presented  by Martin   (Ref.   55).     He 

distinguished  scattering and  reflection,   more  or  less  corresponding 

to Urick's  regions II  and  III,   and  combined  them  into  a   "total 

reverberation  coefficient".      "The model,  which has a physical basis over 

the whole range of incidence angles,   is uncertain in its application mainly in 

present knowledge of the statistics of surface elevation and of derivatives, 

yet correlates available experimental data about as well as other attempts. 

"There is apparently a physical basis for an upper limit of sea surface diffuse- 

scattering strength (as contrasted to reflection strength) at large wind 

speeds but in the absence of white-caps and foaming.    However, at high enough 

frequency (kilocycle per second range) and low enough wind sneed (5 kn or less), 

scattering strengths may be 10 d3 or more below this limit,  especially at 

small grazing angles.    As scattering strengths apnroach this limiting value 
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owing to increasing winJ speed,  there is a rapid (fourth power) increase with 

wind speed.    The frequency effect on scattering strengths is less pronounced 

than wind-speed effect,  there being at most only a moderate decrease (inverse f 

square root) with increasing frequency at low wind speeds.    Surface specular- 

reflection strengths appear to be greatly larger at near-normal incidence than 

diffuse-scattering strengths;     a maximum of reflection strength at moderate 

wind speed,  with limiting values at very low and very high wind speeds, 

appears clear,  but frequency dependence theoretically developed cannot yet be 

proved by experiment". This quotation from Martin's study (Ref. 55, 

pp. 706, 707) illustrates the complexity of the phenomenon of sea 

surface backscattering,   and the   role  of  the  various  parameters. 
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4,   COMMENTS ON SPECIAL SUBJECTS 

4.1 Introduction 

The subjects discussed in the previous chapter can be considered 

to be the main currents in the literature. 

There are, however, a number of studies that only touch these basic 

subjects in passing, or that concentrate on a very special aspect. 

These papers will now be considered. 

The last section in this chapter has an oceanographic, rather than an 

acoustical character, as all the others have, since it deals with 

the spectrum of the surface waves, and with their height and slopes. 

But these subjects play an important part in many paperss  the 

height and slopes because they characterize the surface roughness, 

the wave spectrum because it provides the most realistic way to 

obtain an expression for the correlation function of the surface 

irregularity. 

4.2 Amplitude and Phase Fluctuations 

" The reflection of an acoustic signal from an uneven, time-variant surface leads 

to variation in the signal form. For a monochromatic wave these variations 

appear as amplitude and phase fluctuations'1 (Ref. 21, p. 88). 

In previous sections we have seen that for relatively smooth 

surfaces the total scattered field p-,  can be separated into a 

specularly reflected wave p  and a diffusely scattered wave  p . 

Formulae for r,       and  p   can be obtained (for instance from Eq. 42), r        s 
by taking the first two terms of the power series expansion of 

e-ikyC#  xhe ratio p /p   is hence a known quantity. 
s  r 

Expressing the pressure  p  in amplitude and phase  (p = Ae1*)  and 

following Chernov's almost classical work (Ref. 3), amplitude and 

phase fluctuations can be defined as 

Ü = Re( llV 6* - Im(üf) (Eq. S3) 
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where it is supposed that  |p |«|p I.  This definition is employed 

by Gulin and Malyshev (Refs. 30, 31, 32, 33, 34) for the surface 

diffraction. 

An important role in these papers, and also in the work of 

Smirnov and Tonakanov (Ref. 74), is played by the Rayleigh roughness 

parameter \: 

X = 2kh sin ep (Eq. 54) 

(cf Eq. 9) . 

Gulin started with the Helmholtz integral in the theoretical part 

of his work (Refs. 30, 31* 33) and used both the Kirchhoff approximation 

(Refs, 30, 31) and the method of small perturbations (Ref. 33).  In 

the latter case the spatial correlation of the fluctuations was 

studied.  Comparison with experimental data has been made in 

Refs. 32, 34. 

Two different surface correlation functions appeared in the theory: 

fa(?) - h
s exp(-52/a2) cos (K§) (Eq. 55) 

and 

M?, l) = h* exp[-(53 + T1
a)/a3]; (Eq. 56) 

$x  is an approximation for a quasi-harmonic surface ("swell"), 

$2  for "sea".  Together with these functions the wave parameters 

D  and D are used: 
x       y 

D « ka3sin3y   ,  D - Jäl. (Eq. 57) 
*o y   Ro 

The transmitter and receiver are lying in the plane y =* 0, 

R0  is half the distance between them via the specular path. 
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Two regions of  D   are considereds  either much smaller than unity, 

or much larger.  The physical significance thereof is that  a, the 

effective surface correlation distance, is either much smaller 

(D  « l)  than the projection in X-direction of the diameter of the 

first Fresnel zone along the propagation path (i.e. ^XR^/sin cp) > 

or much larger  (D  » l). 

If  L , L   are the dimensions of the insonified surface area, and 
x'  y 

a», a,  the standard deviations of the fluctuations as defined in 
A   ijf 

Eq, 53j then the results for one receiver can be summarized as 

follows.  Similar conclusions are drawn in Ref. 74. 

a) The quasi-harmonic surface  $t  gives for D  « 1,  a a* 

and  a  that are approximately equal, and proportional with 

frequency for high frequencies (Ref. 30). 

b) The Gaussian surface  ^  also predicts for D  « 1 x 
equality of  a»  and  a,  (Ref. 30);  for low frequencies 

Ok   ~ 0.2 ä - k haa8sin cp L I- (Eq. 58) 

showing the same frequency dependence as the Eckart theory 

(see Eq. 47), but for high values of  /  there is still a frequency 

dependency, in contrast to Eckart: 

aAcr a^ xA/2* (EcL- 59) 

This  last  result,   indicating a diffraction grating,   has also been 

found experimentally for     |x|   * 0.7     (Ref.   32). 

For    large  values of    D  (»  1)     "the amplitude fluctuations are an order 

of magnitude smaller than the phase fluctuations"   (Ref.   30),   but  still 

proportional with     y 



c) The probability density function for the amplitude, 

calculated from experimental data (Ref. 32), ("swell",  y > 1, 

pulsed CW), confirmed the results of Pollak (Ref. 67) and D'Antonio 

and Hill (Ref. 25), who obtained approximately a Rayleigh curve. 

For x <   *  a Gaussian curve was found to be a good approximation. 

d) Time autocorrelation functions, calculated with the same 

experimental data (Ref. 32), indicated for  y < 1  a decaying 

periodical behaviour, comparable to  $T. 

A sinusoidal surface, moving with constant velocity, has also been 

analyzed (Ref. 31).  Rayleigh's theory is used  (m = -1, 0 and +l). 

For x « 1,  aA  and  a,  have the same period as the surface wave; 

their magnitudes are equal and proportional to  \.  The maxima of 

cr*  coincide with the minima of a, ,   and vice-versa. 

As for the spatial autocorrelation, these have been studied 

theoretically (Ref. 33) and experimentally (Ref. 34).  In these 

papers T and R (i.e. the first receiver) are placed in the 

plane y = 0,  at depths zT and zR,  and at a horizontal distance I 

that is not smaller than z_,  or zR.  The surface is of the quasi- 

harmonic type, characterized by a correlation function similar to 

f.,  but the waves travel in a direction that makes an angle a 

with the X-axis.  Only correlation distances much smaller than I 

have been considered and y was assumed to be less than unity. 

Three cases have been treated: 

a)  Correlation in X-direction 

For surface waves in X-direction  (a - 0)  and D » 1  correlation 

functions B..( p )  and B^a.(px)  
are predicted that have a shape 

similar to  $. .  The effective correlation distance a ,  defined 

with B(a )/B(0) - e  , depends on the geometry but is larger than 

a  in most cases.  Experiments confirm this (Ref. 34).  If 

D «1 and K/k « 1 the normalized autocorrelation functions become 

BAA<Px> * Vpx> « {[l + e~°* /aa COS (Kpx>]       (Eq. 60) 

which assumes the value \     for p » a. 
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b)  Correlation in Y-direction 

The case  a - TT/2  and D  »1  yielded results similar to (a). 

The interesting case  a - 0,  however, has not been considered« 

With  a = 0,  D  «1  and K/k « 1  the correlation functions 

c)  Correlation in Z-direction 

i 

become 

BAA(Pz) *  %t(Pz> 

2 

Ä i[l + exp(- 0±±)  cos (pzM)] (Eq- 61) 

so that the correlation in Z-direction decreases much faster than 

in X-direction.  This has been observed at small grazing angles 

for BAA (Ref. 34). 

An important conclusion can be drawr. from all these cases:  both 

theory and experiment demonstrate the presence of a distinct 

correlation between the scattered field at one or more receivers and 

the state (period, roughness) of the diffracting surface.  For the 

reflection coefficient, such a correlation has not been found 

(see Liebermann's third conclusion, Section 3•5•1)• 

An extension of Gulin's paper (Ref. 33) to the case of a narrowband 

signal has been published by Chuprov (Ref. 21).  His results are 

closely related to Gulin's. 

4,3  Surfaces with Two Types of Roughness 

At the surface of the ocean the roughness can very often be 

considered as a superposition of several types of roughness: 
,! the typical sea surface is comprised of "swell", "sea" and "ripple" » 

(Ref. 35» p. 599).  In two papers a model with two types of roughness 

(large-scale plus small-scale) has been developed. 
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Kur'yanov (Ref< 4,0) supposed the two types to be uneorrelated.  The 

small-scale irregularities have been assigned a correlation function 

|(p) -2  Il(p/C)/(p/C),  where I,  is a modified Bessel function. 

The choice of this form of correlation function has no particular significance, 

but it considerably simplifies the subsequent calculations" (Ref. 40, p. 2 54). 

For the coarse surface a sinusoidal and a random one with Gaussian 

correlation function were taken.  In both cases a factor  Q  was 

calculated that expressed for a plane wave with grazing angle ^ 

the difference between scattered intensity from the small-scale 

irregularities on the coarse surface and that from the small 

irregularities on a flat plane.  This factor is about 1 for cp«~>90° , 

but increases rapidly for ^ < 60°. 

More realistic is the paper by Hayre and Kaufman (Ref. 35)«  These 

authors considered correlated roughnesses, with a normal distribution 

(four-dimensional), representing a statistically isotropic surface. 

They calculated the mean scattered power in an arbitrary direction 

when a plane monochromatic wave was incident.  For a slightly rough 

surface this scattered power contains two terms:  a specular and a 

diffuse one, the latter containing the effect of both types of 

roughness plus their combined effect, in a rather complicated way. 

These effects are expressed in second order quantities (variances 

and correlation coefficients).  A moderately rough surface produces 

additional terms of a more complicated structure.  The result of the 

last case, the "extremely" rough surface (but the Kirchhoff 

approximation is used and hence the surface cannot be too rough), 

can be interpreted as if the surfaces consisted of th»*ee independent 

processes:  small-scale, large-scale and a combined roughness. 

4.4 Surfaces with a Sublayer 

Below a wind-driven surface air bubbles are often formed.  Moreover, 

at sea sound speed can vary with depth and biological objects can 

also be present just below the surface.  Consequently the scattering 

of sound waves from the boundary can be accompanied by a sub-surface 

scattering. 
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In particular, Russian authors have tried to find out under what 

conditions this layer effect can become so important that it "screens" 

the surface scattering.  In most cases this is done via a modified 

Rayleigh approach.  Glotov and Lysanov (Ref. 29) assumed a homogeneous 

layer of air bubbles whose diameters are small compared with the 

incident wavelength.  Lysanov (Ref. 46) characterized the inhomo- 

geneous layer by the index of refraction \±(z)  and also studied the 

effect of a layer for which the sound speed is a function of depth 

(Ref. 47): 

c(z) =   (z * A).     (Eq. 62) 

/l - b(z-A) 

In this last case the scattering possesses a  resonance character: 

the reflection coefficient  shows peaks  " whenever the scattered wave 

turns out to be a natural vibrational mode for the given layer "   (Ref.   47,  p.   70). 

The  results  of  the work  of Glotov and Lysanov  (Ref.   29)   have  some 

interesting aspects.     The authors assume a  statistically homogeneous 

layer  of  small  air bubbles  from the boundary down  to a  depth 

z m A,     on which a plane wave is  incident with grazing angle    ep* 

The  concentration of air bubbles is  characterized with a  parameter  e. 

As for the  "screening"  effect they found: 

a) If     I sin tp\  «  e/k     the impedances of homogeneous medium 

and inhomogeneous layer are so different that total  reflection takes 

place in the plane    z » A.     The  reflection coefficient    V    is then 

completely determined by the properties of  the  lower boundary. 

b) For     | sin ep|   » e/k  " the absorption of sound in the layer before 

reaching the uneven surface is very great.    As opposed to the preceding case, 

screening is now caused by the strong absorption of sound in the layer, with 

reflection at the lower boundary almost totally absent»   (Ref.   29,   p.   362). 

74 



c)  In the intermediate region the surface has to be described 

in more detail.  Taking a periodically random surface with correlation 

function 

!(?) = h2 exp(-§2/a2) cos (K§) (Eq. 63) 

and assuming that  (K/k)2 «1,  Ka » 1  they calculated the 

reflection coefficient  V  as a function of  e/k  for several layer 

thicknesses  &•  The result is shown in Fig« 16 with  k = 40 m" 

(/ = 10 kHz),  K = 0.63 nT1 ,  h2 =0.1 m2 and  sin cp = 0.01 

(i.e.  ep r*s  0.6°).  The curves clearly underline the remarks made in 

(a) and (b). 

4•5  "Doppler" and Other Frequency Effects 

Many papers deal with surfaces that are independent of time. But a 

simple observation at sea shows that a realistic description of its 

surface is not possible without introduction of the time variable. 

Because of the time-dependency of the ocean surface the transmission 

of a monochromatic wave results in a received signal that shows 

random fluctuations in amplitude and phase, when they are recorded 

as a function of time (see also Section 3•5•1)• 

Such a signal suffering from amplitude and phase fluctuations 

can be thought of as being a carrier that is simultaneously amplitude and 

phase modulated by a random signal. Use of the term "modulation" is justified, 

since the highest significant frequency components of both amplitude and nhase 

are small as compared to the carrier frequency" (Ref. 2 5, p» 706). 

Since the phenomenon is due to movement of the surface elements the 

terms "Doppler effect" or "frequency smear" are also used. 

Rojas (Ref. 70 expressed the surface movement as a change in the 

length of the propagation path.  He assumed that this quantity can 

be represented by a Gaussian process.  In his very straightforward 

approach the carrier is only phase modulated, again with Gaussian 

distribution.  He calculated the power spectrum of the return signal 
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and found it to be Gaussian shaped and centred at the original 

frequency.  His formulae hold only for (near) normal incidence, but 

the influence of a different geometry could have been incorporated 

easily, with similar results. 

When a sinusoidal surface (wave number K) moving with constant 

speed  v  is considered, as has been done by Gulin (Ref. 31), the 

scattered waves of order  m  are Doppler shifted over a frequency  m 

that is given by: 

UVv = m K v (Eq. 64) 

It follows  from this formula  that  the  specularly reflected wave 

(m -  0)   is  not  influenced  by the Doppler  effect.     This  is  correct, 

as  the  specular  reflection  comes  from the   "average"   (flat)   surface. 

This   case may seem  somewhat  theoretical   since  the  ocean  surface  has 

a  spectrum of  sinusoidal  waves  rather than a  single wavelength. 

But Liebermann stated that   "monochromatic radiation will be preferentially 

scattered according to the familiar diffraction grating formula» (Ref.   43, 

p.   932):     for a  given geometry the  scattering of  a  monochromatic 

wave  is mainly produced by  the  surface  wave  of  length     /\,     where 

A = X(sin  ein + sin  eout)
-1, (Eq.   65) 

i.e.   the   scattering  has  a   resonant  character.     This  fact  is  also 

expressed by Eqs.   19 and  47» 

Measurements made  by Liebermann  (Ref.   43)   have  confirmed his 

statement,   and  formulae  derived by Marsh  also  indicate  that 

the revarberation spectra will be narrow and centred at frequencies 

m i V     (Ref.   53    p.   1836). 

Parkins (Ref. 65) recently calculated the spectral density of the 

waves scattered from a Gaussian surface described by the Neumann- 

Pierson directional wave spectrum.  Two cases have been considered: 
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the  slightly  rough  surface   (loA   frequency  or  low  sea   state)   and  the 

very  rough  surface   (high  frequency  or high  sea   state)0      "The 

reradiation from a surface only slightly rough is found,  expectedly,  to be 

principally a reflection;    the departure from this has been shown to be caused 

by the surface roughness of propagating gravity waves.    For a very rough 

surface,  there is diffuse scattering that causes the spectral line of the 

reflection to broaden into a Gaussian curve which shifts and changes in width with 

sea state and the angles of incidence and observation»   (Ref,   65,   p.    1267). 

4.6     Geometrical   Shadowing 

The  phenomenon  of   "shadowing"   of   certain  surface  areas  by  other  parts 

of  the  boundary,   which  can  occur when  the   surface  irregularities  are 

large  with  respect  to the  wavelength  of  the  incident   radiation  and  at 

small  grazing angles,   has  been  treated  separately.     The  papers 

devoted  to  this  phenomenon  are  concerned with  the  calculation  of  a 

"shadowing  function",   based   on  the   statistics   of  the   surface,   with 

which  the  scattering area  has   to  be weighted.     No  papers  have  been 

found  in which  the  shadowing function  is  applied.,f 

The  starting point  in  this  area   of   investigation  is  the  article  by 

Beckmann  (Ref.   14).     His method,   extended by others,   can be  explained 

with the  aid  of  Fig.   17,   in which  a   plane monochromatic  wave  is 

*~    
x 

x x+dx 

FfG. 17 SHADOWING OF A RANDOM POUGH SURFACE (From BecHmann- Ref. 14) 

A possible exception is Ref. 39  because the modified boundary 
condition (Eq. 48) can be interpreted as introducing a shadowing 
function with the value 0.5. 
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incident on a rough surface with incident angle  0.  The shadowing 

function  S  is the probability that the point  £(0)  is illuminated. 

If we let 

s(0, x) = Prob[c;(0)  is not shaded by any Q     up to  £(x)    (Eq. 66) 

the required shadowing function is 

S( 0) - lim  s( 0, x). (Eq. 67) 
X -► «Ö 

A differential equation for  s(0, x)  can be derived and solved, 

via the infinitesimal interval  (x, x + dx). 

For the limit of Eq. 67 Beckmann found 

00 

S(e) = exp[- [ q(x) dx] (Eq. 68) 

o 

where  q(x) dx  is the probability that  £(0)  is shaded by Q     in 

the interval  (x, x + dx), given it is not shaded by Q     in  (0. x). 

This probability is put approximately equal to the probability that 

Q    will interrupt the ray directed towards  £(0)  in  (x, x + dx) 

with slope greater than that of the ray, i.e. cot 0.  Hence, the 

integrand in Eq. 68 contains two conditions:  one on the surface 

elevation  £  in  (x, x + dx)  and one on the slope  j*•  Although 

these quantities are correlated, Beckmann treated them as independent 

"so as not to complicate matters ".  The resulting error "turns out to be 

zero for symmetrical distributions "  (Ref. 14, p. 385).  The general 

solution is therefore 

S(0) - exp[--J tan 0. Prob^f > cot ©)j, (Eq. 69) 

from which special cases can be studied.  For a surface with Gaussian 
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correlation function Eq. 69 yields 

S(0) = exp[~| tan 0. erfc(a C° 6 J], (Eq. 70) 

It is important to note that in Beckmann's calculation of S(0) 

only the elevation  £(0)  of the surface observation point has 

been considered.  But the slope  C'(0)  also plays a role:  if its 

value is larger than  cot 0 the point will certainly be shaded. 

This fact has been recognized by Wagner (Ref. 80).  He calculated 

S(0)  for given  £(0)  and Q'(0)>   using Beckmann's method.  He 

found instead of Eq. 68) : 

s(e|C(0), C'(0)) = exp[- J q(x) dx] u(cot 0 - £'(0))        (Eq. 71) 

where U is the unit step function.  To obtain S(0), Eq* 71 has 

to be averaged over all possible values of height and slope.  Wagner 

performed this operation while maintaining the correlation between 

these quantities. 

A simplified method for the evaluation of the integral in Eq. 59 has 

been published by Smith (Ref. 75).  He neglected the correlation 

between height and slope, but obtained for Gaussian  $  results that 

do not differ significantly from the more complete solution of 

Wagner (see Fig. 18). 

Shadowing in the case of backscattering has been simulated on a 

digital computer by Brockelman and Hagfors (Ref. 16).  Their 

shadowing function R(0)  puts special emphasis on those surface 

elements that are perpendicular to the line uf sight of the observer. 

This different concept of shadowing, which is based on reflecting 

facets, caused serious disagreement with Beckmann.  (See Ref. 16, 

p. 626:  Discussion.) 
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Brockelman and Hagfors generated on a digital computer a stationary 

"noise" with Gaussian correlation function. For a set of N srmples 

they calculated for a given  9» 

N   the number of shaded samples 

NR  the number of reflection points 

j 
Rs the number of shaded reflection points • 

In digital form Beckmann's shadowing function becomes 

S(9) = (N - Ns)/N (Eq. 72) 

" "  -----     - - -- - „ 

whereas Brockelman and Hagfors used 

R(e) = (NR - NRs)/NR. (Eq. 73) 

Even the comparison of curves according to Eqs. 70 and 72 for 

Gaussian  § led to disagreement (see Fig. 18).  But, as 

Brockelman and Hagfors remark (Ref. 16, p. 625), this discrepancy 

may possibly be explained by a mathematical error in Beckmann1s 

paper (Ref. 14).  This error was first noted by Shaw (Ref. 73). 

In Fig. 18 we have combined some results of the papers mentioned. 

The disagreement between Beckmann's theory and the computer 

"experiment" is especially large for the rougher surface 

(h/a - l).  It is also clear that Wagner is in excellent agreement 

and that the simplified approach of Smith is very useful. 

4.7 The Inverse Problem 

In the preceding parts of this study it has become clear that 

there is a strong relation between the characteristics aJ the 

scattered field and the surface correlation function  $(?, r\) • 
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In most cases certain assumptions are made about this function, to 

enable the continuation of the analysis.  In particular the 

expressions for  §  as given in Eqs. 55 and 56 are often met, but 

the more realistic theory of surface wave spectra is gaining ground 

(see Section 4.8.2). 

The present section deals with the opposite procedure, i.e. the 

problem how  § and related parameters can be derived from the 

properties of the secondary field. 

Eckart (Ref. 26) was the first to touch upon this "inverse problem". 

He observed that the surface wave spectrum  F  (the Fourier transform 

of  f) could in theory be measured for low frequencies via  a 

(see Eq. 47).  "Unfortunately, it is necessary to vary the directional 

parameters o. and 3 as well as the frequency of the incident radiation. This 

may be difficult in practice « (Ref. 26, p. 568).  Even more disappointing 

is the result for high frequencies:  in that case a    does not 

contain the function  $ but only the variances of the slopes. 

Proud, Beyer and Tamarkin (Ref. 69) > who have slightly modified the 

Eckart theory, expressed  $(5)  as the ratio of two empirical 

functions:  one is related to the scattered intensity as a function 

of frequency;  the other describes the source radiation pattern. 

The formula holds for a smooth surface:  Ikf    cos 0| « 1.  The '   "max 1 
authors  showed  " that in theory one can form an estimate of the reflecting 

surface correlation function from acoustic measurements alone.    It was shown, 

furthermore,  that all  the information about the surface is contei^-H in the 

oackscattering"   (Ref.   69,   p.   552). 

A  very simple experiment to perform a  spectral  analysis  of a  rough 

surface has been described by Liebermann  (Ref.   43).     He used the 

fact  that the  scattering of a monochromatic wave  from a  rough 

surface  is  resonant:     for a  given  geometry and  incident wavelength 

it  is mainly a  narrow band  of  surface waves  that  produces the 

scattering.     Hence,   " a 'spectrum' analysis of surface roughness can be 

obtained by slowly varying the frequency of the incident monochromatic 

radiation and observing the magnitude of the scattered radiation"    (Ref.   431 

p.   932).     Marsh  (Ref.   53)   provided  the  corresponding formulae  for 
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the two-dimensional  case and  showed how the  reverberation  spectrum 

and the  surface wave  spectrum are  related« 

Medwin  (Ref.   56)   analyzed  the  specular  reflection from a  wind- 

driven surface at normal  incidence and for  several  values  of  the 

roughness parameter     y>     as defined by Eq.   54«     He  found that 

measurement  of the  specularly  reflected intensity makes it possible 

to predict the  rms wave height  if     yf   * 0.1,     and  the  rms  surface 

slope  if     x3   *   10« 

4.8     The Surface  of  the Ocean 

4.8.1     Surface Height and Slopes 

In all  studies  that deal with a  random surface it  is assumed that 

the  surface elevation and  slopes  can be  considered as Gaussian 

processes,   stationary  (in time)   and homogeneous  (in space).     It has 

become  clear from measurements that this a   sumption,   although made 

mainly for  computational  reasons,   is fortunately not too far from 

reality. 

Kinsman recorded wave height with a capacitance pole and computed 

the probability density function of the surface displacement from 

24 records (Ref. 4, p. 345)» He found curves close to iiv~mal, as 

is illustrated in Fig. 19. As for the surface slopes, these have 

been studied by Cox and Munk  (Ref.   24).     Their method  consisted 

"in photographing from a plane the sun's glitter pattern on the sea surface, and 

translating the statistics of the glitter into the statistics of the slope 

distribution.    Winds were measured from a vessel at the time and place the 

photographs were taken.    They rangea from 1 m/s to 14 m/s. 

"If the sea surface were absolutely calm, a single, mirror-like reflection 

of the sun would be seen at the horizontal specular point»    In the usual case 

there are thousands of •aancing' highlights.    At each highlight there must be 

a water facet, possibly quite small, which is so inclined as to reflect an 

incoming ray from the sur, towards the observer.   ?The farther the highlighted 

facet is from the horizontal specular point, the larger muet be this 
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inclination,  Trn width of the glitter pattern is therefore an indication of the 

maximum slope of the sea surface» (Ref. 24, p. 83 8). 

As can be seen from Fig. 20, the slope density functions also are 

not far from a normal curve.  This is "aporopriate to a wide, continuous 

band spectrum but not to a few discrete frequencies» (Ref. 4, p. 3 50). 

4.8.2   The Surface Correlation Function and Wave Spectrum 

As for trie correlation function of thvi surface roughness, mainly 

two types have been applied, namely the ones given in Eqs. 55 and 56. 

They have been chosen for their relative simplicity in the evaluation 

of integrals,,  Moreover, the first one is not too bad for "swell", 

a narrow band t>pe of waves. 

More realistic, however, seems the introduction of the theory of a 

surface wave spectrum, which is very well explained by Kinsman 

(Ref. 4), among others.  In this theory the surface roughness is 

considered as the combined effect of a band of surface waves that 

travel in all directions over the surface, each of them having its 

own wavelength.  For the deep ocean the waves are gravity waves: 

their wave number K  is related to the frequency  w  via 

K = w3 /g . (Eq. 74) 

In general the surface correlation function  $ depends on the 

position of the points of observation and on the observation times. 

But for a stationary and homogeneous surface it is only the 

differerjes in position and in time that count.  Then the surface 

wave spectrum, which is the Fourier transform of  $,  becomes 

(in vector notation): 

F(K, u) ) = (2TT)"
3 •ip I d-T $(p, T) . exp^-i(K.0 - U>ST)J. 

(Eq. 75) 
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This function  F(K, w )  is still too general for practical use. s 
Easier to handle is the energy spectrum function  A2 ( U) , ft)>  where s 
ft  represents the direction of travel of the wave with frequency  u) . s 
It reduces to  A2 (U) )  when the surface is isotropic.  Then  §(p) 

becomes simply  $( p) . 

The relation between  A2(uu )  and  $( p) can easily be found.  A plane 

wave with frequency  m   and direction  ft  arrives at two observation 

points, situated on the X-axis at distance  p,  at times that differ 

by an amount  T,  such that 

T = P COS a. (Eq. 76) 
u 

Here  u  is the frequency-dependent wave velocity: 

u - g/u»s. (Eq. 77) 

which follows from Eq. 74.  The contribution of this wave to 
-/ \      !    -i(HsT $v p;  equals  e     ;  this has to be averaged over all possible 

directions and weighted with the energy spectrum A2( ui ).  The final s 
result is 

*(p) = i  fdm  Aa(w ) J0(w» p/g), (Eq. 78) S    N S'   "^ ~S 

0 

a formula applied by Marsh (Refs. 49, 50, 51). 

There is some disagreement in the literature about the explicit 

form of the function  A3(uO.  At least part of the discrepancies 

can be explained by realizing that the measurements on which the 

empirical formulae for  A2(w ) are based have not all been made in s 
seas with the same state of development.  We have already observed 

that this fact also plays a role in the different outcomes for 

backscattering measurements (see Section 3.5.2). 

When a constant wind starts creating waves on the sea surface, the 

stationary situation (that is, a "fully aroused sea") is not reached 

immediately but after a certain lapse of time*  Before that moment 

the sea is partially developed and has a wave-spectrum that is 
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different from that of the completely developed sea.  When the wind 

stops, or when the waves travel outside the "fetch" where they have 

been generated, their spectrum changes from broadband ("sea") to a 

narrow band and low frequency spectrum ("swell"), because the low 

frequencies outrun the high ones (cf Eq. 77).  An excellent account 

of the generation and propagation of ocean waves is given by 

Kinsman (Ref. 4). 

Marsh (Refs„ 49, 50) applied the Neumann-Pierson model for 

A8(u) ),  in which the wind speed  v appears as a parameter: s 

A2(u)s)   = C(Ds~6  exp(-2g2/Uis
2    v2); (Eq.   79) 

4 r 
v    is  expressed  in  cm/s  and  C  = 4.8   x   10     cm2/s   .     Parkins   (Ref.   65) 

used  the arisotropic   version 

A2(w  ,   a)   = Cu) ~6  exp(-2g2/uuf   v2)    cos2 a (-TT/2   < a  £ TT/2), 
& ES s 

(Eq.   80) 

and     C =  3.05 m2/s   .     In a  more   recent paper Marsh stated; 

"Arguments have been presented that a more satisfactory form of the equation 

is 

A8(wJ   - C  g2   uu  ~5   , (Eq.   81) 

where C = 7.4   y   10"   »  an absolute,  dimensionless    constant M .      This  formula 

'Contains no dependence on wind speed and is intended to apply to the fully 

developed sea"   (Ref.   51,   p.   240). 

The meaning of   "fully developed  sea"   or   "fully aroused  sea"   can  be 

understood with  the  function    A
8
(UJ  ).     It  is a   sea  whose  spectrum, 

for a  given wind  speed,   contains  components  of  all  frequencies 

0  £  u>    < •»   each with  the maximum energy of which  it  is  capable 

under the  given wind. 



The total energy in a fully aroused "Neumann sea" can be found by 

integration of Eq. 79 over  uu  from 0  to » (Ref. 4, p. 390). s 
With Eq. 78 it can be seen that this integral equals  2 $(0) , or 2h2 . 

Finally we note another interesting feature of the Eckart theory: 

it contains (at least for low frequencies) the surface wave spectrum 

F(K)  and is therefore not restricted to the Gaussian function chosen 

by Eckart. 

With the anisotropic version of Eq. 78, i.e. 

i(o) = i 
1 
2 

-TT 

da du)g  A
2(uus, a) expf-iuUg8 p cos a/gj,   (Eq, 82) 

the theory of surface wave spectra can be used in Eq, 47, because 

F(K)  is the Fourier transform of  $("}) : 

F(K) - (2TT)~8 [Tdp |(p) exp(-i K."J). (Eq. 83) 
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CONCLUSION 

1. Scattering and reflection of sound waves by the sea surface 

is dependent on time, on frequency of incident waves, and on the 

geometry of transmitter and receiver.  No theoretical models have 

been found in which these three basic variables are considered 

simultaneously, except the quasi-phenomenological model (Middleton). 

This latter model, however, has a serious disadvantage.0 it is based 

on quantities that have to be found by experiment. 

2. Almost all scattering theories are only valid for smooth 

surfaces (small slopes).  Of these theories the Eckart approach 

has been applied most frequently, because of its relative simplicity. 

The Rayleigh procedure, and its generalization for random boundaries 

(Marsh), is based on a seriously criticized assumption.  For very 

smooth surfaces, however, its results are comparable with those of 

other theories. 

3. The Uretsky theory not only covers the scattering at smooth 

boundaries, but also gives a fairly good prediction for rough 

boundaries. Unfortunately it has been developed only for a sinusoidal 

surface. 

4. The surface elevation and slopes are generally assumed to be 

stationary, Gaussian processes.  Measurements at sea have indeed 

shown the validity (with limitations) of this assumption. 

5. The most realistic way to incorporate the correlation functions 

of surface height and slopes is via the theory of the surface wave 

spectrum (Neumann-Pierson). 

6. The scattering of a monochromatic wave at a random surface is 

resonant: the scattering is mainly produced by a small band of 

surface waves that fit the incident radiation (Liebermann). 

7. The backscattering contains all statistical information about 

the surface. An acoustical determination of the surface statistics 

is therefore possible, in theory. 

91 



8, A large quantity of experimental data has been collected at 

sea and by using model tanks.  The influence of several parameters 

has been studied: wind velocity, frequency of incident radiation, 

grazing angle etc.  The data indicate three mechanisms: reflection 

by wave-facets near normal incidence, scattering by small air 

bubbles below the surface at small grazing angles, and scattering 

by irregularities that are small compared with the incident 

wavelength in the intermediate region (Urick). 

9. No correlation has been found between the height of a random 

surface and the reflection coefficient.  The second order statistical 

moments of the diffracted field (spatial correlation functions, 

intensity, etc.), however, show good correlation with the surface 

irregularities. 

V 
i 
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