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Abstract
Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data
from high-throughput sequencing. The open source Apache Hadoop project, which adopts the MapReduce frame-
work and a distributed file system, has recently given bioinformatics researchers an opportunity to achieve scalable,
efficient and reliable computing performance on Linux clusters and on cloud computing services. In this article, we
present MapReduce frame-based applications that can be employed in the next-generation sequencing and other
biological domains. In addition, we discuss the challenges faced by this field as well as the future works on parallel
computing in bioinformatics.
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INTRODUCTION
Bioinformatics researchers have continuously and

progressively helped biologists in solving computa-

tional biology problems, particularly in dealing with

large amounts of genomic data. Computing and

sequencing capability has recently improved fast.

Given the urgency of establishing a new computa-

tional framework, high-performance computing has

become extremely important for large-scale data

analysis. The message passing interface (MPI) and

graphics processing unit (GPU) are pioneer program-

ming application programming interfaces (APIs) for

parallel computing. More recently, the cloud com-

puting concept, which utilizes a parallel distributed

computing framework with computer clusters and a

web interface, has been presented. Cloud Web ser-

vices such as the Amazon Elastic Compute Cloud

(EC2) and Amazon Elastic MapReduce are commer-

cially available, whereas the IBM/Google Cloud

Computing University Initiative and the United

States Department of Energy’s Magellan service are

free. Users generally upload their data by using a

Web interface, after which they can perform oper-

ations on a remote client webpage.

MPI is a widely used traditional parallel program-

ming model. Although MPI provides a powerful

API for the general programmers, researchers with

a biology background still consider the program

complicated. Hadoop is written in Java with

high-level programming and provides a streaming

mode for easier script language calling. MPI passes

messages fast with minimal delay, but it lacks a dis-

tributed file system such as the Hadoop Distributed

File System (HDFS), which significantly improves

data access efficiency. Given that the number of

nodes may increase up to a certain threshold, the

network incurs huge data transfer costs. However,

the strong extensibility of Hadoop mitigates this
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problem. MPI cluster cannot deal with node failure.

However, when a node fails in the Hadoop system,

the framework will launch the same job in another

normal node. Given the absence of load balancing,

fault tolerance and a distributed file system, MPI is

unreliable and insufficiently robust.

The compute unified device architecture (CUDA)

programming model that is based on a GPU frame-

work has recently facilitated the improvement of

computing performance. The GPU architecture, in

which one GPU chip contains hundreds of cores

with threads that run in such cores, enables a GPU

to execute multiple tasks simultaneously. According

to the NVIDIA CUDA Programming Guide 4.0,

the CUDA programming model is divided into

three hierarchies, in which threads comprise a

thread block and thread blocks comprise a grid.

The parallel computing capability of the model is

suitable for computation-intensive tasks. However,

the memory size limitation of GPUs is a fatal flaw

when faced with large-scale data.

MapReduce is an easy-to-use and general-purpose

parallel programming model that is suitable for large

data set analysis on a commodity hardware cluster

developed by Google. On the other hand, the

Apache Hadoop is a framework that enables the

distributed processing of large data sets across clusters

of computers based on the MapReduce model [1].

With the combination of MapReduce and the

HDFS module, Hadoop aims to implement reliable,

scalable and distributed computing.

Aside from the Hadoop framework, numerous

other popular open source Apache projects are

related to Hadoop, including HBase, Hive,

Mahout, Pig and ZooKeeper. Dryad [2] is an exten-

sion of MapReduce from Microsoft and Azure is one

of Microsoft’s cloud technologies [3]. With Dryad,

Microsoft proposes the use of a directed acyclic graph

(DAG) to combine computational ‘vertices’ with

communication ‘channels’ to model data flow

graphs [4]. However, Dryad is a complicated pro-

gram and employs a general execution layer-data

flow with DAG, which incurs the risk that a new

programming model cannot be expressed [5]. The

related software and projects are shown in Table 1

and Figure 1.

Apache Hadoop and Microsoft Dryad/Azure are

widely implemented in local systems, not only for

their parallel capability but also for their easy deploy-

ment in a commodity hardware cluster. With only

several PCs and a local network, a parallelized envir-

onment can be built based on Hadoop, and no other

Table 1: Related software and projects on MapReduce

Software Description

YARN Next Generation Apache Hadoop MapReduce Framework. URL: http://hadoop.apache.org/docs/r0.23.
0/hadoop-yarn/hadoop-yarn-site/YARN.html

MAPR A complete distribution for Apache Hadoop and HBaseTM that includes Pig, Hive, Mahout, Cascading, Sqoop, Flume
and more.URL: http://www.mapr.com/

Hadoop Common The common utilities that support the other Hadoop subprojects. URL: http://hadoop.apache.org
Hadoop Distributed
File System (HDFSTM)

A distributed file system that provides high-throughput access to application data. URL: http://hadoop.apache.
org/hdfs/

Hadoop MapReduce A software framework for distributed processing of large data sets on compute clusters.URL: http://research.google.
com/archive/mapreduce.html

AvroTM A data serialization system URL: http://avro.apache.org
CassandraTM A scalable multi-master database with no single points of failure.URL: http://assandra.apache.org
ChukwaTM A data collection system for managing large distributed systems.URL: http://incubator.apache.org/chukwa/
HBaseTM A scalable, distributed database that supports structured data storage for large tables.URL: http://hbase.apache.org
HiveTM A data warehouse infrastructure that provides data summarization and ad hoc querying.URL: http://hive.apache.org
MahoutTM A Scalable machine learning and data mining library
PigTM A high-level data-flow language and execution framework for parallel computation.URL: http://pig.apache.org
ZooKeeperTM A high-performance coordination service for distributed applications. URL: http://hadoop.apache.org/zookeeper/
Dryad An implementation of extended MapReduce from Microsoft and Azure. URL: http://research.microsoft.

com/en-us/projects/dryad/
Haloop A modified version of the Hadoop MapReduce framework. It does not only extend MapReduce with programming

support for iterative applications but also dramatically improves their efficiency by making the task scheduler
loop-aware and by adding various caching mechanisms.URL: http://code.google.com/p/haloop/

Pregel A system for large-scale graph processing, similar with Haloop and Twister. URL: http://kowshik.github.
com/JPregel/pregel_paper.pdf

Twister Efficient support for Iterative MapReduce computations, extremely faster than Hadoop. URL: http://www.iterative
mapreduce.org/
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hardware is needed. This article discusses

MapReduce applications in bioinformatics and

gives suggestions for researchers.

SHUFFLE MECHANISM IN
MAPREDUCE
MapReduce executes computations by two main

functions, which are called Map and Reduce.

A Map task takes a chunk of files as input and outputs

a sequence of <key, value> pairs. The exact gener-

ation of <key, value> pairs is tailored by user pref-

erence. A Reduce task then turns the values

associated to a same key into another value in certain

user-defined manner.

The coordination of tasks and computing clusters

is managed by the ‘shuffle’ mechanism of

MapReduce. It detects the completion of all Map

tasks, gets the data that need to be calculated, groups

the values of the same key generated by each Map

task and assigns the results to the correct computing

cluster and Reduce task.

In order to observe the internal structure de-

tails of shuffle, we break it into two parts:

‘shuffle@map’ and ‘shuffle@reduce’. The details of

shuffle@map and shuffle@reduce are introduced in

Figures 2 and 3.

As shown in Figure 2, the stage of shuffle@map

can be decomposed to four finer granularities:

Partition, Sort, Spill and Group. When a ‘map’ func-

tion finishes its work, the stream of <key, value>

pairs are generated and buffered in memory. Before

the data in memory can be written to local disk, the

data are partitioned into r regions by a partitioning

function. r is strictly equal to the number of reduce

tasks. The partitioning function is responsible for

appointing each reduce task a specific key to work

on. The default partitioning function is simply a hash

of key modulo r. But a user can replace this with

another function if needed.

After the partition phase, each <key, value> pair

has a partition label. Then the spill and group phases

are implemented along with the sort phase. A spill

thread starts flushing the data to the local disk, when

the data in buffer reach the threshold. In the mean-

time, the data are sorted: first sorted by partition label

and then sorted by key under the same partition

label. After sorting, all pairs with same key are

grouped together in the disk.

When the data on the disk reach a certain amount,

they will be aggregated. All the <key, value> pairs

having the same partition value will form a ‘seg-

ment’. Within the segment, the spill files are

merged into a single partitioned and sorted output

file. All the pairs in a segment are sorted in ascending

keys. When all the map tasks are finished, we can

make an important conclusion: ‘If the number of

map tasks is m and the number of reduce tasks is r,
then m big merged files should be created, while

each one consists of r segments. These r segments

are denoted by partition label from 0 to

r� 1(0,1,2. . . r� 1), which represents the ith

Figure 1: The relation of the MapReduce software and projects.
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segment will be processed by the ith reduce task

(0� i�r� 1)’.

We illustrate the partitioning function by a simple

‘word counting’ job. Suppose ‘map tasks¼ reduce

tasks¼ 3’, single letter represents a word (there are

26 words totally). The partitioning function works

are shown in Table 2. We can see from the table that

the key c will be partitioned to the second segment

and processed by the second reduce task.

When one of the map tasks is completed, the

shuffle will move into the reduce stage: shuffle@re

duce. Word counting in ‘shuffle@reduce’ is shown

in Figure 3. As shown in Figure 3, shuffle@reduce

consists of two stages: Copy and Merge. The goal of

the copy phase is to get the data that need to be

executed by the user-defined ‘reduce’ function.

The copy thread of the ith reduce task will fetch

all the segments with partition label i. A copy

thread can be started as soon as each map task

finishes. It does not need to wait until all map tasks

have finished. And different copy threads work in

parallel. As shown in Figure 2, three different copy

threads are marked by different colors <red, blue and

green>.

When the segments with the same partition label i
flow to the ith reduce task, they will be stored.

When the buffer reaches a threshold, these segments

will be merged and spilled to disk. In this stage, there

are two kinds of merge: memory-to-disk merge and

disk-to-disk merge. The segments will be sorted in

Figure 2: Illustration of ‘shuffle@map’.

Figure 3: Illustration of ‘shuffle@reduce’.
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merge stage. The segments are stored in a heap struc-

ture, while each segment represents a tree node.

When a reduce task fetches all the map outputs,

the heap construction finishes. Then the reduce

task starts executing user-defined ‘reduce’ function.

MAPREDUCE INALIGNMENT
The Basic Local Alignment Search Tool (BLAST) is

widely used to search for similar regions between

sequences. Before the Hadoop-based BLAST was

created, mpiBLAST [6] and GPU-BLAST [7],

which are, respectively, based on the MPI and

GPU models, were in the spotlight. Given the lack

of scalability and a well-designed framework that can

hide system-level details for parallel programming,

these two solutions are not adequately optimal and

generalizable to perform the batch processing of

huge amounts of sequence data [8]. By applying

the Hadoop MapReduce framework, a parallel ver-

sion of BLAST can be designed.

CloudBLAST [9] integrates MapReduce with

virtual machine and virtual network technologies

to deploy NCBI BLAST2 on a wide area network

(WAN) between two distinct universities.

CloudBLAST has been evaluated in both non-

virtualized and local access network-based imple-

mentation. The comparison between mpiBLAST

and CloudBLAST shows that the latter is more effi-

cient than the former, which is the first time that

Hadoop has achieved satisfactory WAN perform-

ance. bCloudBLAST [10] improves efficiency

through the splitting of query sequences and of the

sequence database for alignment. A traditional

method such as CloudBLAST deals with query

sequences by splitting and then sending these

sequences to different nodes while copying a

complete sequence database to each node.

Therefore, the dual segmentation method presented

by bCloudBLAST achieves efficient performance for

a large sequence database.

Related works have been conducted by Gaggero

et al. [11] and Leo et al. [12]. Gaggero et al. have

parallelized BLAST and Gene Set Enrichment

Analysis (GSEA) into Hadoop. A sequence align-

ment tool such as BLAST generally processes huge

amounts of data, whereas a gene expression analysis

tool such as GSEA generally deals with computa-

tion-intensive tasks with limited data. The experi-

ments conducted by Gaggero et al. show that

results are better by an order of magnitude for com-

putationally intensive jobs even with a small number

of nodes. Their work contributes to structural and

genome-wide association studies that typically mix

these two computational categories, such as

GRAMMAR [13]. Leo et al. [12] tested the three

aforementioned tools, and the results indicate that:

(i) the Hadoop framework is capable of dealing with

canonical (light computation and large data set) and

non-standard problems (heavy computation and

small data set), (ii) implementation performance is

related to a number of parameters (e.g. number of

nodes, number of map tasks and HDFS block size)

and (iii) the use of virtual machines introduces a very

small overhead (<5%).

Sadasivam et al. [14] proposed a novel approach

that combines the dynamic programming algorithm

with the computational parallelism of Hadoop

data grids to improve accuracy and to accelerate of

multiple sequence alignment (MSA). The new

method reduces the time complexity of MSA from

O(Nn) (by using dynamic programming) to

O((n� 1)�N2/b), where N represents the average

length of ‘n’ sequences and b represents the block

size.

Recently, Yang et al. [8] demonstrated a

BLAST-like long-sequence alignment algorithm

with MapReduce. They employed a database seg-

mentation strategy that is similar to bCloudBLAST,

which segments a large sequence database into small

blocks of fixed size. Query sequences will be pro-

cessed by using the following steps: the word list is

built and the scanner is constructed; a scan is

conducted for hits and such hits are extended

during Map; results are sorted during ‘Shuffle’ and

results are reported during Reduce. However, the

fixed size for splitting a long sequence is difficult to

define.

Table 2: Partitioning function

Partitioning function

0 1 2
a b c
d e f
g h i
j k l
m n o
p q r
s t u
v w x
y z
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MAPREDUCE INMAPPINGAND
ASSEMBLY
Next-generation technology, which features low

cost and high throughput, generates an enormous

amount of sequence data (reads). Next-generation

equipments such as Illumina Solexa, HiSeq 2000,

454 Life Sciences sequencer (Roche, Applied

Biosystems’ SOLiD systems) and Ion Proton (Life

Technologies) continue to be widely used. Given

their short lengths (<500 bp), reads need to be pre-

processed before further analysis. ‘Mapping’ and

‘assembly’ are the key steps. Mapping requires a

pre-existing reference genome sequence that can

be employed to align the reads. Biological analyses

including gene expression, single-nucleotide poly-

morphism (SNP) discovery and genotyping are

highly associated with mapping. It ought to be

noticed that mapping in MapReduce is different

from mapping in bioinformatics. The former is a

program working mechanism, while the latter is a

problem for reads assembly in bioinformatics.

Assembly has two categories. The first category util-

izes the output of mapping and employs assemble

algorithms to obtain a new genome, called the ref-

erence assembly. The other category does not need a

reference genome sequence but requires a process for

constructing complex data structures, called de novo
assembly. Denovo assembly contributes to the discov-

ery of new or unknown sequences and is currently

indispensable in biological research.

MapReduce in mapping
BlastReduce with CloudBurst [15] was proposed by

Schatz in 2009 to map short reads against a reference

genome by using the MapReduce framework.

Recently, the BlastReduce project has been discon-

tinued and superseded by CloudBurst. BlastReduce

uses the ‘seed-and-extend’ alignment algorithm,

similar to BLAST, except that BlastReduce adopts

the LandauVishkin algorithm to extend the exact

seeds and to find alignments with a maximum of

k-differences quickly.

CloudBurst employs an alignment algorithm

modeled after RMAP [16] to map reads with any

number of mismatches or differences. With the

support of Hadoop, CloudBurst scales linearly as

the number of reads increases and speeds up linearly

as the size of the cluster increases. However,

BlastReduce and CloudBurst have insufficient

enrich features compared with traditional map/

align tools such as SOAP, MAQ, ZOOM and

RMAP. The most serious limitation is that

CloudBurst does not support pair-end reads as well

as bisulfite (BS) and fastq format input.

SeqMapReduce [17] have achieved 57.9 times

faster than CloudBurst and also presented a web

server. Unfortunately, the web server is not access-

ible now.

SEAL [18] not only integrates BWA [19] to map

pair-end reads but also removes duplicate reads ac-

cording to the same criteria as Picard MarkDuplicates

[20]. The two main programs of SEAL are

‘PairReadsOseq’ and ‘Seqal’. PairReadsOseq con-

verts qseq- or fastq-format files into prq-format

files. Seqal implements read alignment and optional

performs duplicate read removal. SEAL is deployed

into the Hadoop framework by using Pydoop,

which has satisfactory speed and scalability. Another

workflow [21], also developed by the authors of

SEAL, has an additional step that recalibrates base

quality scores by using the genome analysis toolkit

(GATK) [22].

A relatively complete tool for sequence mapping is

CloudAligner [23], which supports BS, pair-end

mapping, fastq format input, SAM/BED6 for-

mat output, Web interface and long reads with effi-

cient performance. However, the limitations of

CloudAligner included the incapability to operate

in a Web server, lave of a README file for the

project, lack of instructions on handling the software

and lack of long-term updates.

MapReduce in assembly
Assembly algorithms can be classified into the

overlap-layout-consensus (OLC) approach and the

de Bruijn graph approach [24, 25]. The OLC

approach is typically used to assemble long, high-

quality reads. This approach has also been used in

Celera (pipeline version: CABOG), Newbler (sup-

port Roche 454 Data), Arachne, EDENA (support

Solexa and SOLiD data), etc. The de Bruijn

approach, which was first proposed by Euler [26]

in 2001, performs well in assembling short reads

such as RNA-seq and resolves the 20-year-old ‘re-

peat problem’ in fragment assembly. Examples of the

de Bruijn approach include Velvet, ALLPATHS,

ABySS, SOAPdenovo and Contrail. Another prefix

tree-based algorithm is introduced by SSAKE and is

applied in SHARCGS and VCAKE.

Among the aforementioned tools, several assem-

blers are parallel powered. ABySS and Ray are

MPI-based, whereas Contrail is Hadoop-based.
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Based on implementations of Contrail, assemblers

that are based on graphs have limited success in scal-

ing to large mammalian-sized genomes because of

the large memory that is needed to construct and

manipulate graphs. To mitigate this problem,

Contrail combines the de Bruijn graph algorithm

with Hadoop for the de novo assembly of large gen-

omes with short sequencing reads [27].

Apart from de novo assemblers, HPC-MAQ [28] is

a short-read reference assembler based on Hadoop

and is revised from MAQ to achieve higher effi-

ciency. No additional information on HPC-MAQ

is currently available.

MAPREDUCE IN GENE
EXPRESSIONANALYSISAND SNP
ANALYSIS
RNA-seq data analysis is a method that is widely

used to study gene expression levels and to identify

variants that are important for the study of cell dif-

ference, medical diagnosis, phylogenies and drug

design. Expression analysis is generally processed by

using the following steps: First, the reads are aligned

to the reference and then categorized according to

the transcribed feature. Second, the distribution of

reads that are assigned to each feature is normalized.

Finally, a statistical analysis is conducted to identify

which features exhibit differential abundance [29].

Myrna [29] is a cloud-computing tool for analyz-

ing gene expression in large-scale RNA-seq data.

A paper on Myrna recommends the use of a permu-

tation model but not a single Poisson model, which

is inappropriate for biological replicates. Given the

different needs of users, Myrna provides three oper-

ating modes. ‘Cloud mode’, which is designed to

operate under Amazon Elastic, is suitable for users

without hardware support. ‘Hadoop mode’ requires

an actual Hadoop cluster and is suitable for users who

are proficient with Linux. ‘Singleton mode’, which is

driven is a similar manner as multi-threading, can be

run under single computer without a Hadoop envir-

onment. The primary limitation of Myrna is that

expression signals may be lost in the absence of a

process that can align reads across exon junctions.

Considering the difficulty in aligning spliced junc-

tion reads to a reference genome, a new method that

maps such reads against previous known or predicted

transcripts has been proposed [30]. Based on this ap-

proach, Hong etal. [31] developed an RNA-seq ana-

lysis tool called friendly gene eXpression analytic tool

(FX) for gene expression level analysis and genomic

variant calling. The output of FX contains gene

expression profiles, SNP calling and short indels.

Moreover, FX can be run on the cloud and a local

Hadoop cluster with a friendly interface.

Crossbow [32] focuses on whole-genome rese-

quencing and SNP detection by combining the

aligner Bowtie and the SNP caller SOAPsnp [33].

To illustrate its efficiency, Crossbow aligns and calls

SNPs from the 38-fold coverage of a human genome

with �2.66 billion reads in less than 3 h on a

320-core cluster (Amazon EC2). However,

Crossbow has inherited a limitation from Bowtie,

that is, only a maximum of three mismatches can

be detected in its mapping stage [23]. Crossbow

and Myrna both use the Hadoop streaming mode

with Perl scripts as wrappers.

Kim et al. [34] have developed a cloud-computing

tool for SNP detection as well as a visualization

interface called Sequence_Analyzer. According to a

previous paper, the SNP detection method considers

the alignment scores, base qualities, allete call scores

and sequencing errors. Moreover, results of SNP calls

can be imported into Sequence_Analyzer for con-

venient verification. CloudTSS [35] proposes a

Hadoop-based method, which is revised from trad-

itional dynamic algorithms to detect haplotype

blocks with improved computation efficiency com-

pared with the sequential method. However, the

two aforementioned works are not open source.

MAPREDUCE IN OTHER
BIOLOGICALAPPLICATIONS
MapReduce in quality assurance of
NGS data
Given the rapidly increasing rate of NGS data size,

quality assurance (QA) tools show the importance of

ensuring the minimum necessary standard for down-

stream analysis. Quake [36] is a QA tool that pro-

vides quality-aware detection and correction of

sequencing errors by using the redundancy inherent

in the sequence data. Experiments described in a

paper show that: (i) Quake aids Velvet in producing

better assemblies and can correct more reads than

SOAPdenovo in a de novo assembly and (ii)

Quake aids SNP detection tools such as Bowtie

and SAMtools in identifying more true SNPs.

Although Quake has achieved impressive perform-

ance and is capable of dealing with a billion reads, the
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processing of billion-level reads is time-consuming

because of the absence of parallel technical support.

SAMQA [37] is an efficient parallel tool that is

used to identify errors in population-scale sequence

data. The quality test includes the default technical

test according to the SAM specification and the bio-

logical validation test through expert analysis.

SAMQA takes the advantages of Hadoop-BAM to

process input BAM files, those of the Picard toolset

from SAMtools to conduct technical tests and those

of the Hadoop MapReduce framework to achieve

scalable and robust computing.

MapReduce in optimizing works
Sequence alignment is not only important in search-

ing for similar regions among multiple sequences but

also in terms of other aspects including gene expres-

sion analysis, microRNA study, mapping stage in

NGS and de novo assembly. However, sequence

alignment always needs a precomputed index of

the sequence to improve efficiency. Suffix array

(SA) and Burrows–Wheeler Transform (BWT) are

popular index structures. Menon et al. [38] proposed

a Hadoop-based algorithm for constructing SA and

BWT structures. The new parallel algorithm signifi-

cantly improves the performance of Vmatch (by

using SA) and Bowtie (by using BWT).

The BAM format [39], a compact and indexed

representation of nucleotide sequence alignments, is

widely used to compress sequence alignment/map

data into binary data. Analysis tools (e.g.

GATK and SEAL) do not have efficient parallel

access to BAM files because their low-level structure

hinders adoption. Hadoop-BAM [40] is a novel

library between BAM files and Hadoop-based

analysis applications that provides two efficient

modes of access to BAM files and an easy-to-use

interface that is presented with a Picard-compatible

Java API.

The GATK [22] is a structured and MapReduce-

based programming framework that is designed for

the easier development of analysis tools for NGS

data. The architecture of GATK including traversal

types, sharding, merging input files and paralleliza-

tion separates the manipulation of massive data from

specific analysis algorithms. Given GATK’s robust-

ness and efficiency, numerous GATK-based tools are

being developed, such as depth of coverage, simple

Bayesian genotyper and base quality score

recalibration.

MapReduce in other works
The MapReduce framework is not only used in pro-

cessing NGS data but is also applied in other aspects

of bioinformatics. Numerous tools have been

designed based on MapReduce, e.g. PeakRanger

[41] (a peak caller for ChIP-seq data with a good

performance), YunBe [42] (a gene set analysis tool

for biomarker identification), RSD [43] (a reciprocal

smallest distance algorithm for comparative gen-

omics), BioVLAB-MMIA [44] (an integrated analysis

tool for microRNA and mRNA expression data) and

AutoDockCloud (the MapReduce version of

AutoDock for virtual molecular docking). A

number of special cases have also caught our

attention:

� Efficient graph algorithms. Lin and Schatz pre-

sented three design patterns of MapReduce

graph algorithms, which emerged as an enabling

technology for large-scale graph processing. Their

work is directly related to the module detection of

protein–protein interaction networks and other

topological analysis of biological networks.

� SeqWare Query Engine [45], which is structured

with the scalable NoSQL HBase database from the

Hadoop project, supports the databasing of infor-

mation from thousands of genomes. This tool is a

good example for building a scalable and efficient

database while facing large-scale NGS data.

� Cloudera’s Distribution for Hadoop (CDH) helps

organizations in deploying a functional, scalable

and flexible Hadoop distribution environment

and in reducing their technical and administrative

requirements. The CDH3 package includes almost

entire popular Apache projects (e.g. Hadoop,

Hive, HBase and Mahout).

� DOE’s Cloud Computing: Magellan projects [46],

which were awarded as ‘Best use of HPC in the

Cloud’, benefit from the high-performance

computing of Hadoop and HBase.

Table 3 is the conclusion of the parallel bioinfor-

matics tools, which are free and also available from

Internet.

DISCUSSIONAND CONCLUSION
Hadoop with other Apache open-source projects

and cloud computing will become more popular

for its scalable, efficient and fault-tolerant/robust fea-

tures. Moreover, bioinformatics will be continually
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confronted with large-scale data, not only from NGS

but also from specific databases. The Hadoop frame-

work has recently been found to be the most suitable

method for handling bioinformatics data [48]. With

cloud computing and some Web servers becoming

more common and convenient, a number of prob-

lems must be considered, such as the time cost for

large input data from local to remote servers under a

slow network, charges for cloud computing, data

security and privacy and problems with iterative

structure, which are difficult for MapReduce to

mitigate.

After the Jcuda (Java version of CUDA) was intro-

duced, the study of CUDA on Hadoop clusters has

been burgeoning. With the combination of the scal-

ability of Hadoop and the super computational cap-

ability of CUDA, ‘CUDA on Hadoop’ shows

promising performance. However, CUDA and

Jcuda cannot be utilized so far in the Hadoop envir-

onment, since Hadoop is based on HDFS while

CUDA should be driven in the local disk. In

HDFS environment, the graphic memory could

not be found since the NVIDIA graphic card is not

driven. But we consider that this technique problem

will be solved soon by the NVIDIA company and

Apache, as the combine of GPU and MapReduce

shows promising expectation.

In the short term, traditional bioinformatics

resources, including tools and databases, will be re-

designed or planted to support Hadoop MapReduce

as an increasing number of researchers direct their

attention toward high-performance computing.

Key Points

� The Apache Hadoop gives researchers a possibility of achieving
scalable, efficient and reliable computing performance on Linux
clusters and cloud computing services.We present MapReduce
frame-based applications thatcanbe employedinbioinformatics.

� We introduce the flow of shuffle in MapReduce, which can help
the bioinformatics researchers to understand the mechanism of
MapReduce.

� We discuss about the future research of parallel computation in
bioinformatics and give our suggestion.
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