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Abstract  
 

 

Multiprocessor architectures and platforms have been introduced to extend the applicability of Moore’s law. They depend on 
concurrency and synchronization in both software and hardware to enhance the design productivity and system performance. 
These platforms will also have to incorporate highly scalable, reusable, predictable, cost- and energy-efficient architectures. 
With the rapidly approaching billion transistors era, some of the main problems in deep sub-micron technologies which are 
characterized by gate lengths in the range of 60-90 nm, will arise from non-scalable wire delays, errors in signal integrity and un-
synchronized communications. These problems may be overcome by the use of Network on Chip (NOC) architecture. In this 
paper, we have summarized over sixty research papers and contributions in NOC area.  
 
Introduction 

 
On a billion transistors chip, it may not be possible to send a global signal across the chip within real-time bounds 
[1]. If the SoC (System-on-Chip) is synchronized by a global clock signal, the circuit will be more prone to EMI 
(electromagnetic interference) [2]. The traditional system designs are usually based on critical paths and clock trees. 
These critical paths and clock trees contribute to an increased amount of power consumption. Therefore, SoCs are 
not power efficient. Besides, it is difficult to manage these clock trees due to clock skew problems [3]. 
 
As compared to synchronous designs, asynchronous designs are modular and do not suffer from issues such as 
clock skew, higher power consumption and EMI. However, designing asynchronous systems is a more complex 
task as compared to designing a synchronous system [4]. Designing a glitch free circuit and managing clock arrival 
time are complicated in the case of an asynchronous system. There is not much support from the EDA (Electronic 
Design Automation) industry for asynchronous systems. Thus, researchers have combined the ideas of 
synchronous and asynchronous designs. One such strategy is GALS (globally asynchronous and locally 
synchronous) solution. GALS divides a system into smaller, locally decoupled synchronous regions and then 
composes a few of them to yield a localized subsystem. These synchronous regions and subsystems would be 
easier to integrate into a global solution and verify. There will be an asynchronous way in which all the local 
synchronous regions will communicate at the system level.  Therefore, these different synchronous regions need 
not have to be synchronized to a single global clock. This approach will reduce the requirement for chip-wide clock 
trees; the designers could focus on local synchronous regions only, which would be far less complex than the 
complete system. Since one has the flexibility to reduce the clock speed of a given synchronous region (or node) 
independent of other such regions, the amount of power consumption in a system can be managed better and 
reduced. One GALS solution is NOC (Network-on-Chip) [1]. NOC can improve design productivity by supporting 
modularity and reuse of complex cores. Thus, it enables a higher level of abstraction in the architectural modeling 
of future systems.   
 
Related Research  
 
In this section, we provide a detailed analysis of various contributions to the NOC domain. 
 
Topology 

From the communication perspective, there have been various topologies for NOC architecture. These include 
mesh, torus, ring, butterfly, octagon and irregular interconnection networks [5], [6]. Various researchers have 



exploited these different NOC topologies for their NOC implementations. Kim et al. have used a star-based NOC 
that communicated using the principle of CDMA (Code Division Multiple Access) [7]; Adriahantenaina et al. 
proposed a tree-based implementation of NOC [8], where each node in the tree behaves as a router in NOC; 
Pande et al. compared various network topologies for interconnection networks in terms of latency, throughput, and 
energy dissipation [6]. Several researchers have suggested that a 2-D mesh architecture for NOC will be more 
efficient in terms of latency, power consumption and ease of implementation, as compared to other topologies. The 
Octagon NOC demonstrated in [9] is an example of a novel regular NOC topology. 
 
Router Architecture 

NOC architectures are based on packet-switched networks. This has led to new and efficient principles for design 
of routers for NOC [10]. Assume that a router for the mesh topology has four inputs and four outputs from/to other 
routers, and another input and output from/to the Network Interface (NI). Routers can implement various 
functionalities - from simple switching to intelligent routing. Since embedded systems are constrained in area and 
power consumption, but still need high data rates, routers must be designed with hardware usage in mind. For 
circuit-switched networks, routers may be designed with no queuing (buffering). For packet-switched networks, 
some amount of buffering is needed, to support bursty data transfers. Such data originate in multimedia 
applications such as video streaming. Buffers can be provided at the input, at the output, or at both input and output 
[11]. 
 
Various designs and implementations of router architectures based on different routing strategies have been 
proposed in the literature. Wolkotte et al. proposed a circuit switched router architecture for NOC [12], while Dally 
and Towles proposed a packet switched router architecture [13]. Albenes and Frederico provided a wormhole-
based packet forwarding design for a NOC switch [14]. 
 
Routing Protocol 
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Figure 1. Routing algorithms. 
 
Routing algorithms can be classified in various ways, as shown in Figure 1. In unicast routing, the packets have a 
single destination, while in the case of multicast routing, the packets have multiple destinations. For on-chip 
communication, unicast routing strategies seem to be a practical approach due to the presence of point-to-point 



communication links among various components inside a chip. Based on the routing decision, unicast routing can 
be further classified into four classes: centralized routing, source routing, distributed routing and multiphase routing.  
 
In centralized routing, a centralized controller controls the data flow in a system. In case of source routing, the 
routing decisions are taken at the point of data generation, while in distributed routing, the routing decisions are 
determined as the packets/flits flow through the network. The hybrid of the two schemes, source and destination 
routing, is called multiphase routing.  
 
Routing algorithms can also be defined based on their implementation: lookup table and Finite State Machine 
(FSM). Lookup table routing algorithms are more popular in implementation. They are implemented in software, 
where a lookup table is stored in every node. We can change the routing algorithm by replacing the entries of the 
lookup table. FSM based routing algorithms may be implemented either in software or in hardware.  
 
These routing algorithms may further be classified based on their adaptability. Deterministic routing always follows 
a deterministic path on the network. Examples of such routing algorithms are XY routing, North first, South first, 
East first, and West first. Adaptive routing algorithms need more information about the network to avoid congested 
paths in the network. These routing algorithms are obviously more complex to implement, thus, are more expensive 
in area, cost and power consumption. Therefore, we must consider a right QoS (Quality-of-Service) metric before 
employing these algorithms.  
 
Routing algorithms can be fault-tolerant algorithms such as backtracking. In case of progressive algorithms, a 
channel is reserved before a flit is forwarded. Some routing algorithms send packets/flits only in the direction that is 
nearer to the destination. These routing algorithms are referred as profitable algorithms. A misrouting algorithm 
may forward a packet/flit away from the destination as well. Based on the number of available routing paths, routing 
algorithms can be finally classified as complete and partial routing algorithms.  
 
Various routing algorithms have been proposed for the NOC. Most researchers suggested static routing algorithms 
and performed communication analysis based on the static behavior of NOC processes, thus, determining the 
static routing for NOC. Siebenborn et al. and Hu et al. used a CDG (Communication Dependency Graph) to 
analyze inter-process communications [15] [16].  
 
Most NOC implementations used either XY routing or street sign routing algorithms. In [17], a comparison of 
deterministic (dimension-order) and adaptive routing algorithms for mesh, torus, and cube networks was presented. 
Mello et al. researched the performance of minimal routing protocol in NOC [18]. They concluded that the minimal 
routing provided better results than adaptive routing for on-chip-communications, as the adaptive routing 
concentrates on the traffic in the center of the NOC. 
 
Switching Techniques 

 
 
 
 
 
 
 
 
 
 

Figure 2. Switching techniques. 
 
Switching techniques can be classified based on network characteristics. Circuit switched networks reserve a 
physical path before transmitting the data packets, while packet switched networks transmit the packets without 
reserving the entire path. Packet switched networks can further be classified as Wormhole, Store and Forward 
(S&F), and Virtual Cut Through Switching (VCT) networks (see Figure 2). In Wormhole switching networks, only the 
header flit experiences latency. Other flits belonging to the same packet simply follow the path taken by the header 
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flit. If the header flit is blocked then the entire packet is blocked. It does not require any buffering of the packet. 
Therefore, the size of the chip drastically reduces. However, the major drawback of this switching technique is a 
higher latency. Thus, it is not a suitable switching technique for real-time data transfers. Al-Tawil et al. provided a 
well-structured survey of Wormhole Routing techniques and its comparison with other switching techniques [19]. 
 
S&F switching forwards a packet only when there is enough space available in the receiving buffer to hold the 
entire packet. Thus, there is no need for dividing a packet into flits. This reduces the overhead, as it does not 
require circuits such as a flit builder, a flit decoder, a flit stripper and a flit sequencer. Nevertheless, such a 
switching technique requires a large amount of buffer space at each node. Thus, it may not be a feasible solution 
for embedded applications. The CLICHÉ implementation of a NOC is an example of store-and-forward switching [2]. 
Millberg et al. employed this switching technique in their Nostrum NOC implementation [20]. In VCT switching, a 
packet is forwarded to the next router as soon as there is enough space to hold the packet. However, unlike S&F, 
the VCT algorithm divides a packet into flits, which may be further divided into phits. Therefore, it has the same 
buffer requirement as S&F. None of the NOC implementations has adopted this switching technique in their 
implementation. 
 
Ad-hoc switching techniques can be also developed by combining different switching techniques. For instance, VCs 
can be used for each class of traffic, while each channel is operated as per the principles of circuit switching. The 
Ethereal [10], [21] and Mongo NOC implementations use such a combination of techniques [22], [23]. 
 
Flow Control 

Flow control determines how network resources, such as channel bandwidth, buffer capacity, and control state, are 
allocated to a packet traversing the network. The flow control may be buffered or bufferless (see Figure 3). 
 
The Bufferless Flow Control has more latency and less throughput than thr Buffered Flow Control. The Buffered 
Flow Control can be further categorized into Credit Based Flow Control, ACK/NACK Flow Control, STALL/GO Flow 
Control, T-Error Flow Control, and Handshaking Signal based Flow Control.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flow control techniques. 
 
In Credit Based Flow Control, an upstream node keeps count of data transfers, and thus the available free slots are 
termed as credits. Once the transmitted data packet is either consumed or further transmitted, a credit is sent back. 
Bolotin et al. used Credit Based Flow Control in QNOC [24], [25]. 
 
In Handshaking Signal Based Flow Control, a VALID signal is sent whenever a sender transmits any flit. The 
receiver acknowledges by asserting a VALID signal after consuming the data flit. Zeferino et al. used handshaking 
signals in their SoCIN NOC implementation [26]. 
 
In the ACK/NACK protocol a copy of a data flit is kept in a buffer until an ACK signal is received. On assertion of 
ACK, the flit is deleted from the buffer; instead if a NACK signal is asserted then the flit is scheduled for 
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retransmission. Bertozzi, Benini, and Micheli used this flow control technique in their XPIPES implementation [27], 
[28], [29]. 
 
In the STALL/GO scheme, two wires are used for flow control between each pair of sender (producer) and receiver 
(consumer). When there is an empty buffer space, a GO signal is activated. Upon the unavailability of buffer space, 
a STALL signal is activated. None of the present NOC implementations have employed this flow control scheme. 
 
The T-Error Flow Control scheme is very complex as compared to other flow control mechanisms. It aims at 
enhancing the performance at the cost of reliability. Real time systems operating in a noisy environment must avoid 
the use of this flow control mechanism. None of the present NOC implementations has employed this flow control 
scheme. 
 
Virtual Channel 

The design of a virtual channel (VC) is another important aspect of NOC. A virtual channel splits a single channel 
into two channels, virtually providing two paths for the packets to be routed. There can be two to eight virtual 
channels. The use of VCs reduces the network latency at the expense of area, power consumption, and production 
cost of the NOC implementation. However, there are various other added advantages offered by VCs.  
 
Network deadlock/livelock: Since VCs provide more than one output path per channel there is a lesser probability 
that the network will suffer from a deadlock; the network livelock probability is eliminated (these deadlock and 
livelock are different from the architectural deadlock and livelock, which are due to violations in inter-process 
communications). 
 
Performance improvement: A packet/flit waiting to be transmitted from an input/output port of a router/switch will 
have to wait if that port of the router/switch is busy. However, VCs can provide another virtual path for the packets 
to be transmitted through that route, thereby improving the performance of the network.   
Supporting guaranteed traffic: A VC may be reserved for the higher priority traffic, thereby guaranteeing the low 
latency for high priority data flits [30], [24]. 
 
Reduced wire cost: In today’s technology the wire costs are almost the same as that of the gates. It is likely that in 
the future the cost of wires will dominate. Thus, it is important to use the wires effectively, to reduce the cost of a 
system. A virtual channel provides an alternative path for data traffic, thus it uses the wires more effectively for data 
transmission. Therefore, we can reduce the wire width on a system (number of parallel wires for data transmission). 
For example, we may choose to use 32 bits instead of 64 bits. Therefore, the cost of the wires and the system will 
be reduced.  
 
Bjerregaard and Sparso have proposed the design and implementation of a virtual channel router using 
asynchronous circuit techniques [23], [24]. 
 
Buffer Implementation 

A higher buffer capacity and a larger number of virtual channels in the buffer will reduce network contention, 
thereby reducing latency. However, buffers are area hungry, and their use needs to be carefully studied and 
optimized. Zimmer et al. and Bolotin et al. proposed a simple implementation of a buffer architecture for NOC [31], 
[32]. Zimmer et al. implemented buffers using 0.18 µm technology to estimate the cost and area of buffers needed 
for NOC. The Proteo implementation of a buffer architecture has been described in [33]. Gupta et al. studied the 
trade-off between buffer size and channel bandwidth to secure constant latency. They concluded that increasing 
the channel bandwidth is preferable to reducing the latency in NOC.  
 
Error Correction and Decoding 

The need for implementation of fault tolerant, error detection, and error correction techniques is not certain for on-
chip implementations. Frederico, Santo, and Susin proposed a fault tolerant routing protocol for NOC [14]. Bolotin 
et al. in their implementation of QNOC [24], [25] argued that the communication strategies for on chip network may 
be considered reliable, while [34] and [35] proposed a fault tolerant routing algorithm and fault tolerant flow control 



techniques for NOC architecture respectively. Zimmer, Jantasch, and Bertozzi, Binini, and Micheli proposed error 
detection and correction schemes for data on NOC links [36], [37]. 
 
Transmission Lines and Links 

 
Another important component of a NOC is the design of interconnects. Barger et al. proposed a transmission line 
based design of interconnects for NOC [38]. Morgenshtein et al. compared serial and parallel links for interconnect 
implementations [39].  
 
Network Interface 

The network interface (NI) is responsible for packetization and depacketization of data traffic, in addition to 
conventional interfacing. This functionality may be implemented either with hardware or with software. Bhojwani 
and Mahapatra [40] compared software and hardware implementations of NI. They showed that the software 
implementation of NI takes about 47 cycles to complete packetization/depacketization, while the hardware version 
takes only 2 cycles. Substantial research has been conducted to propose the right data formats needed for various 
layers in the protocol stack. Ethereal and XPIPES NOCs use the OCP protocol, while SPIN and Proteo NOC have 
integrated the Virtual Component Interface (VCI) protocol in their implementations.  
 
QoS 

New algorithms have been proposed in this domain to reduce power consumption and area requirements while 
securing cost optimization [41]. One of the main concerns in NOC is to be able to reduce the latency of operation. 
Therefore, there are various levels of latency metrics that may be offered. Router architectures for supporting GT 
(Guaranteed Bandwidth) and BE (Best Effort) services have been proposed [10]. 
 
Arbitration Techniques 

A NOC, which is capable of supporting different classes of service levels such as best effort and guaranteed traffic, 
needs to support an arbitration mechanism. This arbitration mechanism schedules a flit for transmission on the 
output path. There are various arbitration mechanisms such as RR (Round Robin), FCFS (First Come First Serve), 
PB (Priority Based), and PRBB (Priority Based Round Robin). Usually, RR and FCFS are used for best effort data 
flits and PB or PBRR is used for guaranteed traffic. SPIN [8], [41] and RASoC implemented RR arbitration, while 
QNOC [22], [23], XPIPES [27], [28], [29], and the Philips NOC [10], [21] have employed PBRR arbitration. 
 
Architectural Issues 

A NOC system may be categorized based on the customization and parameterization capabilities embedded in its 
architecture. A NOC architecture may further be defined as a homogenous architecture or a heterogeneous 
architecture. A heterogeneous architecture will have a fixed topology and cannot be customized as per an 
application requirement. Therefore, the design time with such an architecture will be less. However, a homogenous 
architecture may be customized each time as per the application requirement and may be more efficient in terms of 
area, power and latency of operation. Most of the NOC implementations support a homogenous architecture while 
the XPIPES supports a heterogeneous architecture [27], [28].  
 
Most researchers have focused on the communication architecture of NOC. Binini and Micheli mapped the OSI 
layered architecture onto a NOC for on-chip communication. Agarwal and Shankar focused on exploiting the 
computing capability and provided a layered architecture for system design [42]. Their layered architecture consists 
of mapping different domains such as applications, algorithms, RTOS and protocol on a NOC environment. 
Agarwal and Shankar further applied a concurrency-modeling methodology to NOC. Their proposed architecture 
consists of concurrency-compliant reusable and parametrizable components. Most of the NOC architectures have 
yet to be implemented for commercial purposes. The Arteris NOC is an example of a commercially available NOC 
[3]. Arteris has developed a NOC complier for targeting applications onto its NOC chip. STMicroelectronics has 
shown interest in NOC implementations as well. Philips has implemented the Ethereal NOC (discussed later in this 
paper).   



 
Once the design of the basic NOC architecture became established, new techniques evolved to address advanced 
issues such as dynamic load balancing, shortest/fastest data path, and energy-efficient NOC architecture design. 
 
Mapping of Applications and Applications for NOC 

Few researchers provide graph-based application decomposition and mapping strategies for NOC [16], [43]. 
Madasen et al. have proposed a RTOS (Real Time Operating System) architecture for NOC [44]. They provided a 
RTOS-based application scheduling technique on a NOC. Others have provided graph-based algorithms for 
application mapping onto a NOC platform [46], [47], [48]. NOC will not be a useful concept until we are able to 
demonstrate that an application performs better on an NOC as compared to a bus based communication 
infrastructure. Several researchers have studied this issue. For example, a LDPC (Low Density Parity Check) 
decoder was implemented on a NOC platform [48]. More than 60% of the hardware area of the LDPC is occupied 
by memory. The NOC architecture was thus shown to be a suitable platform for this application. Jiang, Wolf and 
Chanradhar implemented a video application on a NOC [49]. There is a need for a NOC emulation platform in order 
to study the impact of various NOC topologies on applications. Genko et al. provide a FPGA-based emulation 
platform for NOC [50]. 
 
Specific NOC Implementation 
 
In this section we review and discuss some specific NOC implementations found in the open literature.  

 
 XPIPES NOC 

The researchers of XPIPES [27], [28], [29] have generated a framework, XPIPES Compiler, which automatically 
instantiates customized NOC macros (switches, network interfaces and links) from the developed parametrizable 
building blocks implemented in SystemC. A static routing protocol called “street sign” routing along with wormhole 
switching are employed for on-chip communication. XPIPES uses pipelined links, similar to a shift register in 
operation, achieved by partitioning the wires into segments for the actual flit transfer. Each output module is deeply 
pipelined. The CRC (Cyclic Redundancy Check) decoders for error detection work in parallel with the switch 
operation. The first pipeline stage checks the headers of incoming packets on the different input ports to determine 
the correctness of the packet paths, the second pipeline stage resolves contention based on a round-robin policy. 
Arbitration is carried out when the tail flit of the preceding packet is received. A negative acknowledgement (NACK) 
for flits of non-selected packets is generated. The following arbitration stage keeps the status of the virtual channel 
registers and determines whether flits can be stored into the registers or not. The fifth stage is the actual buffering 
stage, and the ACK/NACK response at this stage indicates whether a flit has been successfully stored or not. The 
following stage takes care of forward flow control. Finally, a last arbitration stage multiplexes the virtual channels on 
the physical output link on a flit-by-flit basis. 
 
The XPIPES network interface uses the standardized OCP interface to network cores. Static routing information is 
accessed by the header builder. It is then passed to the flit builder circuit in the form of a number of hops (NumSB) 
and an actual direction bit (LutWord) along with the datastream, if BusyBuilder is not asserted high. This flit is then 
passed to the NOC through the output buffer stage. The response path includes receiving information through 
Synchro, which reads only useful information and passes it to the core through Receive Response. XPIPES 
implements an error control logic based on the retransmission of data packets upon the negative acknowledgement.  

 
QNOC 

QNOC [22], [23] aims at providing different levels of quality of service for the end users. The architecture of QNOC 
is based on a regular mesh topology. It makes use of wormhole packet routing. Packets are forwarded using the 
static X-Y coordinate-based routing. It does not provide any support for error correction logic and all links and data 
transfers are assumed to be reliable. Packets are forwarded based on the number of credits remaining in the next 
router. QNOC has identified four different service levels (SL) based on the on-chip communication requirements. 
These SLs include Signaling, Real-Time, Read/Write (RD/WR) and Block Transfer, Signaling being the top priority 
and Block transfer being the least in the order as listed. The Priority Based Round-Robin scheduling criterion is 



employed for transmission of flits. The cost functions for the QNOC implementation were calculated based on the 
estimation of area occupied by its components. Were also provided other performance parameters such as clock 
rate, end-to-end delay (latency of packet), and power consumption under different traffic loads. 
 
 

Ethereal NOC 

The Ethereal NOC developed by Phillips aims at achieving composability and predictability in system design and 
eliminating uncertainties in interconnects, by providing guaranteed throughput and latency services [10], [21]. It 
provides run-time reconfiguration. The Phillips NOC has an instance of a 6-port router with an area of 0:175 mm2 
after layout, and a network interface with four IP ports having a synthesized area of 0:172 mm2. All the queues are 
32-bits wide and 8-words deep. Hardware FIFOs (First In First Out) are used for implementing queues. Both the 
router and the network interface are implemented in 0:13 µm technology, and run at 500 MHz. The NI is able to 
deliver the BW of 16 Gbits/sec to all the routers in the respective directions. It is a topology-independent NOC. The 
NOC mainly consists of two components: the NI and the router, with multiple links between them. The NI offers the 
standard interface, such as AXI or OCP to the IP modules connected to the NOC. The NOC provides BE and GT 
service levels. A time-division multiplexed circuit switching approach with contention-free routing has been 
employed for GT. It uses wormhole routing with input queuing to route the flits. The router exploits source routing. 
GT flits are always scheduled for being routed in the next clock cycle, whereas BE flits are scheduled as per a 
round-robin criterion. Credit-based end-to-end flow control has been implemented to make sure that no flit is 
transmitted unless there is enough space in the destination buffer to accommodate it. The Phillips NOC implements 
the NI in two parts: the NI kernel and the NI shell. The NI kernel communicates with the NI shell via ports.  
 
SPIN NOC 

The Scalable Programmable Integrated Network-on-chip (SPIN) is based on a fat-tree topology [8], [41]. It 
addresses design decisions such as the nature of links, the packet structure and the network protocol. It is based 
on two kinds of components: initiators and targets. The system can have different numbers of cores for each type. 
The initiator components are traffic generators, which send requests to the target components. The target 
component sends a response as soon as it receives a request. All the components in the system are designed to 
be VCI (Virtual Socket Interface) compliant. SPIN is a packet-switching on-chip micro-network, which uses 
wormhole switching, adaptive routing and credit-based flow control. It is based on a fat-tree topology, which is a 
tree structure with routers on the nodes and terminals on the leaves, except that every node has replicated fathers. 
In a full 4-ary fat-tree topology, there are as many fathers as children on all nodes (routers). Such a topology 
produces a non-blocking network with a performance that scales gracefully with the system size. Links are bi-
directional and full-duplex, with two unidirectional channels. The channel's width is 36 bits wide, with 32 data bits 
and 4 tag bits used for packet framing, parity and error signaling. Additionally, there are two flow control signals 
used to regulate the traffic on the channel. In SPIN, packets are defined as sequences of 32 bits data words, with 
the header fitting in the first word. An 8-bit field in the header is used to identify the destination terminal, allowing 
the network to scale up to 256 terminals. The payload has an unlimited length as defined by two framing bits (Begin 
Packet / End of Packet). SPIN uses wormhole switching. The input buffers have a depth of 4 words, which results 
in cheaper routers. Routing in SPIN is adaptive and distributed. The basic building block of the SPIN network is the 
RSPIN router. It includes eight ports, each port with a pair of input and output channels compliant with the SPIN link. 
Internally, RSPIN includes a 4 words buffer at each input channel and two 18 words output buffers, shared by the 
output channels. They have a greater priority when competing with the input buffer to use an output channel, which 
allows reducing the contention, whilst minimizing the head-of-line blocking by freeing the queues in the input buffers. 
RSPIN contains a partial 10×10 crossbar, which implements only the connections allowed by the routing scheme: 
all the packets flowing down the tree can be forwarded to children and only such packets can use the output buffers 
when the required output channel is busy. Nevertheless, only the packets incoming from children can flow up the 
tree and be forwarded to the fathers.  
 
Other NOCs 

There have been a sizeable number of proposals/implementations of NOCs in the literature. Without being 
exhaustive, these include: 



A. A mesh-based NOC using Chip-Level Integration of Communication Heterogeneous Elements (CLICHÉ) [2]; 
B. Proteo, a flexible-topology NOC [33]; 
C. A guaranteed-throughput switch for a circuit-switched NOC, which supports both unicast and multicast [51]; 
D. HiNoc, a NOC offering both a low-overhead transmission service and one with guaranteed QoS, with a two-

level asynchronous/synchronous hierarchy [32]; 
E. A reconfigurable circuit-switched NOC [12]; 
F. NOCs for the Princeton Smart Camera SoC [49]; 
G. A CMOS implementation of a NOC interconnecting multiple processing units of different clock frequencies [52];  
H. MANGO (Message-passing Asynchronous Network-on-Chip providing Guaranteed services through OCP 

interfaces) [22] [23]; 
I. A connectionless NOC implementing Diffserv to provide QoS [53] [54]; 
J. SoCBUS (Switched Network on Chip for Hard real time embedded systems) aims at providing the guaranteed 

throughput [55]; 
K. SoCIN, a parametric and scalable NoC [26] based on the RASoC router soft-core [56], and its evolution 

SoCINfp, based on the ParIS switch [57]. 
 
NOC Issues and Challenges 
 
To enhance system productivity, it is very important that an architect be able to abstract, represent and address 
most of the design issues and concerns at a high level of abstraction. System-level design affords one the 
opportunity to review several different software-hardware architectures that meet the functional specifications 
equally well, to quickly trade-off among different QoS metrics such as latency, power, cost, size and ease of 
integration. Similarly, there are several issues related to NOC, such as the nature of the NOC link, link length, serial 
vs parallel links, bus vs packet-based switching, and leakage currents. In this section, we discuss these issues. 
 
Serial vs Parallel Link 

The transportation of data packets among various cores in a NOC can be performed by the use of either a serial or 
a parallel link. Parallel links make use of a buffer-based architecture and can be operated at a relatively lower clock 
rate in order to reduce power dissipation. However, these parallel links will incur high silicon cost due to inter-wire 
spacing, shielding and repeaters. This can be minimized up to a certain limit by employing multiple metal layers. On 
the other hand, serial links allow savings in wire area, reduction in signal interference and noise, and further 
eliminate the need for having buffers. However, serial links would need serializer and de-serializer circuits to 
convert the data into the right format to be transported over the link and back to the cores. Serial links offer the 
advantages of a simpler layout and simpler timing verification. Serial links sometimes suffer from ISI (Inter-symbol 
Interference) between successive signals while operating at high clock rates. Nevertheless, such drawbacks can be 
addressed by encoding and with asynchronous communication protocols.  
 
Interconnect Optimization 

Communication in a NOC is based on modules connected via a network of routers with links between the routers 
that comprise of long interconnects. Thus it is very important to optimize interconnects in order to achieve the 
required system performance. Timing optimization of global wires is typically performed by repeater insertion. 
Repeaters result in a significant increase in cost, area, and power consumption. Recent studies indicate that in the 
near future, inverters operating as repeaters [58] will use a large portion of chip resources. Thus, there is a need for 
optimizing power on the NOC. Techniques for reducing dynamic power consumption include approaches discussed 
in [59], [60], [61]. Encoding is another effective way of reducing dynamic power consumption [62]. In order to make 
NOC architectures more effective, innovative ways will have to be introduced   to minimize the power consumed by 
the on-chip repeaters. 
 
Leakage Power Consumption 

The leakage current, which was negligible relative to the dynamic switching current at larger transistor sizes (of 1 
micron or more), is expected to dominate the current drain at sub-100 nm technologies. In a NOC, the link 
utilization rates vary and in many cases are very low, reaching a few percentage points. Networks are designed to 



operate at low link utilization in order to meet worst case scenario requirements, and thus having a higher link 
capacity helps reduce packet collisions. However, even when NOC links are idle they still will consume power in 
repeaters, due to the dominance of this leakage current at small feature sizes. Thus, new techniques will have to 
evolve which will help reduce the leakage power consumption to make the NOC architecture more effective.  
 
 

Router Architecture 

For embedded systems such as handheld devices, cost is a major driving force for the success of the product and 
therefore the underlying architecture as well. Along with being cost effective, handheld systems are required to be 
of small size and to consume significantly less power, relative to desktop systems. Under such considerations, 
there is a clear tradeoff in the design of a routing protocol. A complex routing protocol would further complicate the 
design of the router. This will consume more power and area without being cost effective.  A simpler routing 
protocol will outperform in terms of cost and power consumption, but will be less effective in routing traffic across 
the system.  
 
Quality of Service Challenges 

QoS parameters for a NOC include latency, cost, power consumption, and silicon overhead in terms of the area 
that is required to support the packet switched network. It is expected that various applications such as real-time, 
multimedia and control, and computation-intensive algorithms such as video encoding and decoding algorithms, 3-
D gaming, and speech recognition, will be supported on a NOC environment. Under such a scenario, NOC should 
be able to provide various levels of support for these applications.  
 
The NOC infrastructure must be able to guarantee a timely exchange of data packets for a real-time application. 
However, given a certain network size, large latency fluctuations for packet delivery could be experienced because 
of network congestion. Such variability and non-determinacy are obviously not acceptable for real-time applications. 
One possible solution to this problem is over-dimensioning the network by adding some redundant paths (links), 
nodes and buffers. These paths can be utilized when the main network is congested. Another possible solution to 
this problem would be to reserve some paths for real-time applications in order to guarantee a timely delivery of 
data packets from one node to another. Both solutions are able to overcome the latency problem but increase the 
power consumption and the cost of NOC. A cost effective solution would be to provide priority levels to the data 
traffic. Real-time traffic can be guaranteed its on-time delivery to its destination by either reserving some paths for 
real-time data, or implementing priority-based scheduling criteria. In such systems, we would be able to route the 
data packet for a real-time application in time but a data packet belonging to a lower priority application may be 
starved, without appropriate scheduling algorithms.  
 
The NOC infrastructure includes components responsible for packetization, transmission, and de-packetization of 
data. These components, respectively, are the NI, the VC router, and the links. These components are repeated for 
every grid element in NOC. So, if we consider a NOC with 3×3 mesh network, then it will have nine sets of 
components of NI, VC router and links. It can be clearly seen that these components will occupy a significant 
amount of silicon space on the chip and therefore the cost and the power consumption of the chip would increase. 
However, it must be noted that serial packet-based communication will still remain an optimum solution as 
compared to a bus-based system in terms of the power consumption and will reduce the cost of system design in 
the longer run due to the potential for reuse.  
 
Consideration for System-Level Simulation Environments 

A simulation environment must allow us to integrate hundreds of cores and model concurrency and synchronization 
issues. This requires the representation of various activities and algorithms with appropriate MoCs (Models of 
Computation). We define here the five main issues that should be met for a simulation environment to be suitable 
for system-level designs. The simulation model must allow a system architect to: (1) model the system functionality 
well in advance of building the actual computing system; (2) model concurrency issues among various components 
in the system model; (3) manipulate an abstract set of design elements simultaneously to generate different sets of 
QoS parameters and performance metrics, and to fine-tune the system model; (4) integrate different MoCs onto this 



modeling environment; (5) access a well defined library of components defined in various MoCs so that the 
modeling time can be substantially reduced. 
 
Various simulation environments have been used for modeling NOC architectures. NS-2 was developed for inter-
computer networks, RSIM was developed for multiprocessor parallel computing, while other simulators were 
developed from scratch (e.g. NOCSim, Orion, PoPNet, and the re-targetable modeling and simulation platform 
using the Liberty Simulation Environment). Various researchers have used OPNET for simulation of on-chip traffic 
network. 
 
Conclusion 

 
The NOC concept elegantly separates the concerns of computing and communication, and is expected to be ideally 
suited to address this increased system complexity and declining system productivity. Researchers have well 
addressed NOC architectures and hardware-related issues. Still, an integrated approach for modeling, co-designing 
and co-developing HW-SW with a NOC architecture is missing. Application mapping strategies and feasible 
applications for NOC are other important aspects that need to be addressed in more detail. We need to research 
low cost, area and power efficient solutions of NOC for it to be applicable in the embedded systems industry. 
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