
 Open access Book Chapter DOI:10.1002/9780470172599.CH1

Survey of Numerical Methods — Source link

Jayathi Y. Murthy, W. J. Minkowycz, Ephraim M Sparrow, S. R. Mathur

Institutions: Purdue University, University of Illinois at Chicago, University of Minnesota, Ansys

Published on: 21 Jan 2009

Related papers:

 Numerical heat transfer and fluid flow

Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress
transport model

 Discretizations for the incompressible navier-stokes equations based on the lattice

 Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

 Higher order upwind finite volume schemes with ENO-properties for general unstructured meshes

Share this paper:

View more about this paper here: https://typeset.io/papers/survey-of-numerical-methods-
25m0rg8zt9

https://typeset.io/
https://www.doi.org/10.1002/9780470172599.CH1
https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9
https://typeset.io/authors/jayathi-y-murthy-c7pa11gzbg
https://typeset.io/authors/w-j-minkowycz-2eh1l0yhlq
https://typeset.io/authors/ephraim-m-sparrow-2jqbhttxo2
https://typeset.io/authors/s-r-mathur-151zwqd48t
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/institutions/university-of-illinois-at-chicago-2kgm2xd9
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/ansys-zgczpsn2
https://typeset.io/papers/numerical-heat-transfer-and-fluid-flow-3op0pg1t8z
https://typeset.io/papers/discontinuous-galerkin-discretization-of-the-reynolds-5bvn8uni3u
https://typeset.io/papers/discretizations-for-the-incompressible-navier-stokes-3r309k3ui1
https://typeset.io/papers/higher-order-compact-schemes-for-numerical-simulation-of-1ewysstb62
https://typeset.io/papers/higher-order-upwind-finite-volume-schemes-with-eno-4xw6fta2wi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9
https://twitter.com/intent/tweet?text=Survey%20of%20Numerical%20Methods&url=https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9
https://typeset.io/papers/survey-of-numerical-methods-25m0rg8zt9

CHAPTER 1

SURVEY OF NUMERICAL METHODS

J. Y. MURTHY

School of Mechanical Engineering

Purdue University

West Lafayette, Indiana, USA

W. J. MINKOWYCZ

Department of Mechanical Engineering

The University of Illinois at Chicago

Chicago, Illinois, USA

E. M. SPARROW

Department of Mechanical Engineering

University of Minnesota

Minneapolis, Minnesota, USA

S. R. MATHUR

Fluent Inc.

10 Cavendish Ct

Lebanon, New Hampshire, USA

1.1 INTRODUCTION 4

1.2 GOVERNING EQUATIONS 5

1.2.1 Continuity Equation 5

1.2.2 Momentum Equation 5

1.2.3 Energy Equation 5

1.2.4 Species Transport 6

1.2.5 General Scalar Transport Equation 6

1.3 ANATOMY OF A NUMERICAL SOLUTION 7

1.3.1 Domain Discretization 7

1.3.2 Discretization of Governing Equation 10

1.3.3 Solution of Linear Equations 15

1.3.4 Nonlinearity and Coupling 17

1.3.5 Properties of Numerical Solution Procedure 17

1.3.6 Summary and Discussion 18

3

4 SURVEY OF NUMERICAL METHODS

1.4 COMPUTATIONAL TECHNIQUES FOR UNSTRUCTURED MESHES 18

1.4.1 Discretization of Convection–Diffusion Equation 18

1.4.2 Gradient Calculation 22

1.4.3 Summary and Discussion 25

1.5 HIGHER-ORDER SCHEMES FOR CONVECTION OPERATORS 25

1.5.1 Upwind-weighted Higher-order Schemes 26

1.5.2 Control of Spatial Oscillations 28

1.5.3 Summary and Discussion 31

1.6 LINEAR SOLVERS 31

1.6.1 Line Gauss-Seidel Method 32

1.6.2 Multigrid Methods 33

1.6.3 Gradient-search Techniques 37

1.7 COMPUTATION OF FLUID FLOW 38

1.7.1 Storage of Pressure and Velocity 38

1.7.2 Solution Methods 43

1.7.3 Density-based Schemes 45

1.8 CLOSURE 47

1.1 INTRODUCTION

During the last three decades, numerical simulation has come to play an increasingly important

role in the analysis and design of engineering products and processes. A variety of techniques

have been developed, and several have reached sufficient maturity to warrant routine use. It is not

uncommon today for the industrial thermal analyst to use computational fluid dynamics (CFD)

and computational heat transfer (CHT) techniques to do preliminary design in applications as

diverse as electronics cooling, underhood automotive cooling, glass processing, as well as food,

pharmaceutical, and chemical processing, to name a few. Large-scale simulations involving tens

of millions of unknowns are now routinely performed in many industries using both serial

and parallel processing. Nevertheless, though the solutions to many problems, especially those

involving single-phase nonreacting Newtonian flows, are now within reach, a variety of industrial

thermal and fluid flow problems remain intractable. These include gas–solid and gas–liquid

flows, phase change, reacting flows, flows of viscoelastic fluids and other fluids with complex

rheologies, and complex turbulent flows, among others. The challenges in solving these flows

are related to deficiencies in existing numerical methods, insufficient computational power, and

an incomplete understanding of the underlying physical processes.

The objective of this chapter is to survey the state of the art in computational fluid dynamics

and heat transfer to arrive at an understanding of the types of numerical methods commonly

used and the range of application of these techniques. The chapter is divided into two parts. It

starts with a description of the typical governing equations for flow, heat, and mass transfer.

An overview of the basic numerical solution process is then presented, including mesh gen-

eration, discretization of a typical governing equation, the solution of linear algebraic sets of

equations, and the handling of nonlinearity and interequation coupling. The second half of the

chapter addresses more advanced issues. An overview of unstructured-mesh methods is pre-

sented. Higher-order discretization methods are reviewed for both structured and unstructured

meshes, as well as issues associated with the solution of linear algebraic equation sets for unstruc-

tured meshes. Finally, different approaches to the solution of compressible and incompressible

GOVERNING EQUATIONS 5

flows are reviewed. The chapter aims to give a broad overview of the central ideas, and subse-

quent chapters in the book amplify and expand on these ideas.

1.2 GOVERNING EQUATIONS

Industrial CFD simulations typically involve the solution of flows with heat transfer, species

transport, and chemical reactions. These types of flows are described by the equations of mass,

momentum, and energy conservation. For turbulent flows, it is common to use the Reynolds-

averaged form of the governing equations in conjunction with a suitable turbulence model.

Additional equations, such as those for radiative transport or for specialized combustion models,

are also used. Typical Reynolds-averaged governing equations for turbulent flow and heat and

mass transfer are presented in the following sections.

1.2.1 Continuity Equation

The Reynolds-averaged mixture continuity equation for the gas phase is

∂

∂t
(ρ) + ∇ • (ρV) = Sm (1.1)

Here t is time, ρ is the Reynolds-averaged mixture density, V is the Reynolds-averaged velocity

vector, and Sm represents external mass sources. Typically, these would result from mass-transfer

interactions from a dispersed phase such as spray droplets or coal particles.

1.2.2 Momentum Equation

The Reynolds-averaged gas-phase momentum equation is

∂

∂t
(ρV) + ∇ • (ρVV) + ∇p = ∇ • [(µ + µt)∇V] + F (1.2)

Here, p is pressure, µ is the molecular viscosity, and µt is the turbulent viscosity, obtained

from a turbulence model. F contains those parts of the stress term not shown explicitly, as well

as other momentum sources, such as drag from the dispersed phase.

1.2.3 Energy Equation

Heat transfer is governed by the energy conservation equation

∂

∂t
(ρE) + ∇ • (ρVE) = ∇ • [(k + kt)∇T] + ∇ • (τ •V) − ∇ • (pV) + Sr + Sh (1.3)

Here, k is the thermal conductivity and kt is the turbulent thermal conductivity resulting from

the turbulence model. τ is the stress tensor, p is the pressure, and E is the total energy per unit

mass defined as

E = e(T) +
V •V

2
(1.4)

6 SURVEY OF NUMERICAL METHODS

and e is the internal energy per unit mass. The terms on the LHS of Eq. (1.3) describe the

temporal evolution and the convective transfer of total energy. The first three terms on the RHS

represent the conductive transfer, viscous dissipation and pressure work, respectively. Sr is the

volumetric source term due to radiative heat transfer. In the present form of the energy equation,

reaction source terms are included in Sh, which also contains all other volumetric heat sources,

including those due to the presence of a dispersed phase.

1.2.4 Species Transport

Under the dilute approximation, the Reynolds-averaged conservation equation for the mass

fraction, ml , of specie l can be written as

∂

∂t
(ρml) + ∇ • (ρVml) = ∇ •

((

ρD +
µt

σm

)

∇ml

)

+ Rl (1.5)

Here, D is the diffusion coefficient of specie l in the mixture, σm is the turbulent Schmidt

number, and Rl is the volumetric source of the specie l due to chemical reactions.

1.2.5 General Scalar Transport Equation

The equations governing the transport of mass, momentum, energy, and chemical species may

be cast into the form of a generic scalar transport equation [1] as

∂ (ρφ)

∂t
+ ∇ • (ρVφ) = ∇ • (Ŵ∇φ) + Sφ (1.6)

Here, φ is the transport variable, Ŵ is the diffusion coefficient, and Sφ is the source term. Each

governing equation represents a different choice of φ, Ŵ, and Sφ . Table 1.1 shows the values of

φ, Ŵ, and Sφ corresponding to the governing equations shown in the previous sections. Different

choices for these values may be made in the case of the energy equation. Here, the convective

terms suggest a choice of φ = E; however, the diffusion term is most naturally written in terms

of the temperature and suggests φ = T . For an incompressible substance or a perfect gas at

low speeds, the equation of state de = CvdT may be invoked to obtain the choices listed in

Table 1.1. A detailed discussion of alternative choices may be found in [2]. Once the governing

equations are cast into the form of Eq. (1.6), a single numerical method may be devised to solve

them.

TABLE 1.1 Choice of φ, Ŵ, and Sφ for Governing Equations

Equation φ Ŵ Sφ

Continuity 1 0 Sm

X momentum u µ + µt Fx

Energy E
k + kt

Cv

∇ • (τ •V)

−∇ • (pV) + Sr + Sh

ANATOMY OF A NUMERICAL SOLUTION 7

It is important to note that Eq. (1.6) has been written in conservative form. In contrast, by

using the continuity equation, we may write the nonconservative form of Eq. (1.6) as

ρ
∂φ

∂t
+ ρV •∇φ = Ŵ∇ •∇φ + ∇Ŵ •∇φ + Sφ (1.7)

Though Eq. (1.7) is mathematically equivalent to Eq. (1.6), the two forms can yield numerical

schemes with substantially different properties. Numerical schemes that seek to preserve the

conservation property in the discretization start with the conservative form, Eq. (1.6), as the

basis.

1.3 ANATOMY OF A NUMERICAL SOLUTION

In this section, the basic components of typical numerical solution procedures used to discretize

and solve the general scalar transport equation are described. These include domain discretiza-

tion, discretization of one or more governing equations of interest, and, finally, the solution of

the resulting discrete algebraic equations.

1.3.1 Domain Discretization

The physical domain is discretized by meshing it, i.e., by dividing the domain into smaller,

usually polyhedral, volumes. Though many variants exist, for the purposes of this chapter, the

terminology shown in Fig. 1.1 will be used to describe the meshes. The fundamental unit of the

mesh is the cell (sometimes called the element). Associated with each cell is the cell centroid.

A cell is surrounded by faces, which meet at nodes or vertices. In three dimensions, the face is

a surface surrounded by edges. In two dimensions, faces and edges are the same. A variety of

mesh types are encountered in practice. These are described next.

Cell
centroid

Face

Node
(vertex)

Cell

FIGURE 1.1 Mesh terminology.

8 SURVEY OF NUMERICAL METHODS

Regular and Body-fitted Meshes In many cases, our interest lies in analyzing domains

that are regular in shape: rectangles, cubes, cylinders, and spheres. These shapes can be meshed

by regular grids, as shown in Fig. 1.2a. The grid lines are orthogonal to each other, and conform

to the boundaries of the domain. These meshes are also sometimes called orthogonal meshes.

For many practical problems, however, the domains of interest are irregularly shaped and

regular meshes may not suffice. An example is shown in Fig. 1.2b. Here, grid lines are not

necessarily orthogonal to each other, and curve to conform to the irregular geometry. If regular

grids are used in these geometries, stair stepping occurs at domain boundaries, as shown in

Fig. 1.3a. When the physical phenomena at the boundary are important in determining the

solution, e.g., in flows dominated by wall shear, such an approximation of the boundary may

not be acceptable.

(b)

(a)

FIGURE 1.2 (a) Regular and (b) body-fitted meshes.

Block

(b)(a)

FIGURE 1.3 (a) Stair-stepped and (b) block-structured meshes.

ANATOMY OF A NUMERICAL SOLUTION 9

Structured, Block-structured, and Unstructured Meshes The meshes shown in

Fig. 1.2 are examples of structured meshes. Here, every interior vertex in the domain is con-

nected to the same number of neighbor vertices. Figure 1.3b shows a block-structured mesh.

Here, the mesh is divided into blocks, and the mesh within each block is structured. However,

the arrangement of the blocks themselves is not necessarily structured. Figure 1.4a shows an

unstructured mesh. Here, each vertex is connected to an arbitrary number of neighbor vertices.

Unstructured meshes impose fewer topological restrictions on the user, and, as a result, make it

easier to mesh very complex geometries.

Conformal and Nonconformal Meshes An example of a nonconformal mesh is shown

in Fig. 1.4b. Here, the vertices of a cell or element may fall on the faces of neighboring cells

or elements. In contrast, the meshes in Figs. 1.2, 1.3, and 1.4a are conformal meshes. Here, the

vertices of cells sharing a common face are coincident.

Cell Shapes Many modern finite-volume and finite-element techniques support a variety

of cell and element shapes. The most widely used are quadrilaterals and hexahedra. Methods

for generating good-quality structured meshes for quadrilaterals and hexahedra have existed

for some time now [3]. Though mesh structure imposes restrictions on the complexity of the

geometries that can be meshed, structured quadrilaterals and hexahedra are well-suited for flows

with a dominant direction, such as boundary-layer flows. More recently, unstructured meshes

are becoming necessary to handle the complex geometries that characterize industrial problems.

Here, triangles and tetrahedra are increasingly being used, and techniques for their generation

are rapidly reaching maturity [3]. Another recent trend is the use of hybrid meshes. For example,

prisms are used in boundary layers, transitioning to tetrahedra in the free stream.

Node-based and Cell-based Schemes Numerical methods that store their primary

unknowns at the node or vertex locations are called node-based or vertex-based schemes. Those

that store them at the cell centroid, or associate them with the cell, are called cell-based schemes.

Finite-element methods are node-based [4]. Many finite-volume methods are cell-based [1, 5, 6],

though node-based finite-volume schemes are also available [7].

(b)(a)

Vertex

Cell

FIGURE 1.4 (a) Unstructured and (b) nonconformal meshes.

10 SURVEY OF NUMERICAL METHODS

1.3.2 Discretization of Governing Equation

The most commonly used approaches to discretize the general scalar transport equation are

the finite-difference, finite-volume, and finite-element techniques. These methods discretize the

governing equations directly, using a variety of local profile assumptions or approximations,

reducing the original partial differential equation into a set of coupled algebraic equations,

which must then be solved. In contrast, the boundary-element technique [8], which has been

used in a variety of heat conduction problems [9], invokes Green’s identities to convert the

original differential equation into an integral equation involving only surface quantities, which

is then discretized and solved. A detailed description of the technique may be found in Chapter

4. Here attention is directed to techniques that directly discretize the governing equations.

To illustrate the similarities and differences between finite-difference, finite-element, and

finite-volume techniques, consider a one-dimensional scalar transport equation with a constant

diffusion coefficient and no unsteady or convective terms

d

dx

(

Ŵ
dφ

dx

)

+ Sφ = 0 (1.8)

with boundary conditions φ(0) = φ0 and φ(L) = φL. Equation (1.8), which has been written in

conservation form, will be discretized using each of the three methods.

Finite-difference Methods Finite-difference methods approximate the derivatives in the

governing differential equation using truncated Taylor series expansions. First Eq. (1.8) is recast

in nonconservation form:

Ŵ
d2φ

dx2
+ Sφ = 0 (1.9)

Next, the discretization of the diffusion term is carried out. Consider the one-dimensional mesh

shown in Fig. 1.5. The unknown discrete values of φ are stored at the nodes shown. The Taylor

series expansion for φ can be written as

φ1 = φ2 − �x

(

dφ

dx

)

2

+
�x2

2

(

d2φ

dx2

)

2

+ O
(

�x3
)

(1.10)

and

φ3 = φ2 + �x

(

dφ

dx

)

2

+
�x2

2

(

d2φ

dx2

)

2

+ O
(

�x3
)

(1.11)

∆x ∆x

1 2 3

FIGURE 1.5 One-dimensional mesh.

ANATOMY OF A NUMERICAL SOLUTION 11

The term O(�x3) indicates that the terms that follow have a dependence on �xn where n ≥ 3.

Subtracting Eq. (1.10) from Eq. (1.11) gives

(

dφ

dx

)

2

=
φ3 − φ1

2�x
+ O(�x2) (1.12)

The addition of the two equations yields

(

d2φ

dx2

)

2

=
φ1 + φ3 − 2φ2

�x2
+ O(�x2) (1.13)

By including the diffusion coefficient and dropping terms of O(�x2) or smaller, the following

equation is obtained:

Ŵ

(

d2φ

dx2

)

2

= Ŵ
φ1 + φ3 − 2φ2

�x2
(1.14)

The second derivative of φ has thus been evaluated to second order.

The source term Sφ is evaluated at the point 2 using

S2 = Sφ (φ2) (1.15)

Substituting Eqs. (1.14) and (1.15) into Eq. (1.8) yields

2Ŵ

�x2
φ2 =

Ŵ

�x2
φ1 +

Ŵ

�x2
φ3 + S2 (1.16)

This is a discrete form of Eq. (1.8). By deriving a similar equation like for every grid point in

the mesh, a set of algebraic equations in the discrete values of φ are obtained. The value of φ

at each node is directly influenced only by its nearest neighbors; the use of a truncated Taylor

series leads to this type of local dependence. At the boundaries, the discrete values of φ may

be obtained by discretizing the boundary conditions. The resulting equation set may be solved

by a variety of methods, which are discussed later in this chapter.

Finite-difference methods do not explicitly enforce the conservation principle in deriving

discrete equations. Thus, energy balance may not be exactly satisfied for coarse meshes, though

finite-difference methods that have the consistency property [10] are guaranteed to approach

perfect conservation as the mesh is refined. As we will see, finite-difference methods yield

discrete equations that look similar to finite-volume and finite-element methods for simple cases;

however, this similarity not guaranteed in more complicated cases.

Finite-element Methods To develop the finite-element method, the one-dimensional diffu-

sion equation Eq. (1.8), is reconsidered. There are different kinds of finite-element methods of

which the method of weighted residuals is one. Here, a popular variant of the method of weighted

residuals, called the Galerkin finite-element method, is considered. More detailed information

about this class of numerical techniques may be found in [4, 11, 12].

The starting point is, again, the nonconservative form of the governing equation (1.9). The

computational domain is divided into N − 1 elements corresponding to N nodes; a typical

12 SURVEY OF NUMERICAL METHODS

element i is shown in Fig. 1.6. Let φ be an approximation to φ. Since φ is only an approximation,

it does not satisfy Eq. (1.9) exactly, so that there is a residual R

R = Ŵ
d2φ

dx2
+ Sφ (1.17)

We wish to find φ such that

∫

domain

WRdx = 0 (1.18)

where W is a weight function. Equation (1.18) requires that the residual R become zero in

a weighted sense. To generate a set of discrete equations, a family of weight functions Wj ,

j = 1, 2, . . . , N is used. Thus,

∫

domain

WjRdx = 0 j = 1, 2, . . . , N (1.19)

The weight functions Wj (x) are typically local in that they are nonzero in the vicinity of node

j , but are zero everywhere else in the domain. Further, a shape function Nj (x) is assumed for

φ, which specifies how φ varies between nodes. Thus,

φ (x) =

N
∑

i=1

Ni(x)φi (1.20)

The Galerkin finite-element method requires that the weight and shape functions be the same,

i.e., Wi = Ni . Typically, the shape function variation is also defined locally, as shown for the

case of a linear shape function in Fig. 1.6. Here, for xi ≤ x ≤ xi+1,

Ni(x) =
xi+1 − x

xi+1 − xi

Ni+1(x) =
x − xi

xi+1 − xi

Ni

Element ii i + 1

Ni + 1

Element ii i + 1

fi

fi + 1

f (x)

FIGURE 1.6 Linear shape functions on element i and corresponding variation of φ.

ANATOMY OF A NUMERICAL SOLUTION 13

Furthermore, the source term Sφ is also interpolated on the domain from

S(x) =

N
∑

i=1

Ni(x)Sφ,i (1.21)

Thus, under the Galerkin finite-element formulation, Eq. (1.9) becomes

∫ xL

x0

ŴNj (x)
d2φ

dx2
dx +

∫ xL

x0

Nj (x)Sdx = 0 j = 1, 2, . . . , N (1.22)

The next step is to integrate the first term in Eq. (1.22) by parts. This procedure yields

ŴNj (x)
dφ

dx

∣

∣

∣

∣

∣

xL

x0

−

∫ xL

x0

Ŵ
dNj

dx

dφ

dx
dx +

∫ xL

x0

Nj (x)Sdx = 0 j = 1, 2, . . . , N (1.23)

Furthermore, Eq. (1.20) may be differentiated to yield

dφ

dx
=

N
∑

i=1

dNi

dx
φi (1.24)

The first term in Eq. (1.23) is

Nj (x0)q1 + Nj (xL)qN (1.25)

Here q1 and qN are the heat fluxes into the domain at the boundaries. Here N1(x0) = NN (xL) = 1

by definition. If the shape function Nj (x) is local, it is nonzero only in the vicinity of the node

j . Thus, Eq. (1.25) becomes

Nj (x0)q1 + Nj (xL)qN = q1 if j = 1

= 0 if j = 2, . . . , N − 1

= qN if j = N (1.26)

Thus, the overall equation may be written as

∫ xL

x0

Ŵ
dNj

dx

N
∑

i=1

dNi

dx
φidx −

∫ xL

x0

Nj (x)

N
∑

i=1

Ni(x)Sidx = Nj (x0)q1 + Nj (xL)qN

j = 1, 2, . . . , N

(1.27)

14 SURVEY OF NUMERICAL METHODS

The discrete equation for a node j may thus be written as

N
∑

i=1

Kijφi + Sj = q1 if j = 1

= 0 if j = 2, . . . , N − 1

= qN if j = N (1.28)

Here

Kij =

∫ xL

x0

dNi

dx

dNj

dx
dx

Sj = −

∫ xL

x0

Nj (x)

N
∑

i=1

Ni(x)Sidx (1.29)

In the above equations, when φ0 and φL are given, the equations at nodes j = 1 and j = N

may be used to evaluate the fluxes q1 and qN . On the other hand, when q1 and qN are specified,

the same equations are used to find φ0 and φL. By choosing specific shape functions Ni(x), a

coupled algebraic equation set may be derived for the nodal values φi . Since Ni is local, the

matrix Kij is sparse. It is important to note that because the Galerkin finite-element method

requires the residual to be zero only in a weighted sense, it does not enforce the conservation

principle in its original form; like the finite-difference method, conservation is satisfied in the

limit of a fine-enough mesh. Next, attention is turned to a method that employs conservation as

a tool for developing discrete equations.

Finite-volume Methods The finite-volume method (sometimes called the control-volume

method) divides the domain in to a finite number of nonoverlapping cells or control volumes over

which conservation of φ is enforced in a discrete sense. The starting point is the conservative

form of the scalar transport equation (1.8). Consider a one-dimensional mesh, with cells as

shown in Fig. 1.7. Discrete values of φ are stored at cell centroids, which are denoted by W ,

P , and E. Far neighbor cells WW and EE are shown for later use. The cell faces of cell P are

denoted by w and e. The face areas are assumed to be unity.

The focus is on the cell associated with P . Equation (1.8) is integrated over the cell P ,

yielding

∫ e

w

d

dx

(

Ŵ
dφ

dx

)

dx +

∫ e

w

Sdx = 0 (1.30)

dxe

∆x

dxw

EWW W P EE

ew eeww

ue

FIGURE 1.7 Arrangement of control volumes.

ANATOMY OF A NUMERICAL SOLUTION 15

which can be integrated to give

(

Ŵ
dφ

dx

)

e

−

(

Ŵ
dφ

dx

)

w

+

∫ e

w

Sdx = 0 (1.31)

This equation can also be obtained by writing a diffusion flux balance over the cell P from first

principles. Thus far, no approximation has been made.

A profile assumption, i.e., an assumption about how φ varies between cell centroids, is now

made. If it is assumed that φ varies linearly between cell centroids, we may write

Ŵe (φE − φP)

δxe

−
Ŵw (φP − φW)

δxw

+ S�x = 0 (1.32)

Here S is the average value of S in the control volume. Note that the above equation is no

longer exact because of the approximation in assuming that φ varies in a piecewise linear

fashion between cell centroids.

Collecting terms, Eq. (1.32) becomes

aP φP = aEφE + aW φW + b (1.33)

where

aE =
Ŵe

δxe

aW =
Ŵw

δxw

aP = aE + aW

b = S�x (1.34)

Equations similar to Eq. (1.33) may be derived for all cells in the domain, yielding a set of

algebraic equations, as before. These may be solved using a variety of direct or iterative methods.

Unlike finite-difference and finite-element methods, the finite volume discretization process

starts with the statement of conservation over the cell. Cell values of φ that satisfy this conser-

vation statement are then found. Thus, conservation is guaranteed for each cell, regardless of

mesh size. Conservation does not guarantee accuracy, however; accuracy depends on the profile

assumptions made. The solution for φ may be inaccurate, but will, nevertheless, be conservative.

1.3.3 Solution of Linear Equations

Regardless of what method is used, the process of discretization leads to a coupled algebraic

set of equations in the discrete values of φ, such as Eq. (1.33). These equations may be linear

(i.e., the coefficients are independent of φ) or they may be nonlinear (i.e., the coefficients are

functions of φ). The techniques for solving these equations are independent of the discretization

method and represent the path to solution. If the problem is well-posed and the discrete equation

set is linear, it is guaranteed that only one solution exists, and all linear solvers that converge

to a solution will lead to the same discrete solution. The accuracy of the solution depends only

on the accuracy of the discretization technique.

Solution methods may be broadly classified as direct or iterative. Each class is considered in

turn.

16 SURVEY OF NUMERICAL METHODS

Direct Methods The discrete algebraic equations derived in the previous sections may be

written as

Aφ = B (1.35)

where A is the coefficient matrix, φ = [φ1, φ2, . . .]T is a vector consisting of the discrete values

of φ, and B is the vector resulting from the source terms.

Direct methods solve Eq. (1.35) using the standard methods of linear algebra. The simplest

direct method is inversion, whereby φ is computed from

φ = A−1B (1.36)

A solution for φ is guaranteed if A−1 can be found. However, the operation count for the

inversion of an N × N matrix is O(N3). Consequently, inversion is almost never employed in

practical problems. More efficient methods for linear systems are available. For the discretization

methods of interest here, A is sparse, and for structured meshes it is banded. For certain types

of equations, for example, for pure diffusion, the matrix is symmetric. Matrix manipulation

can take into account the special structure of A in devising efficient solution techniques for

Eq. (1.35). A number of standard textbooks describe direct solution techniques, Ref. [10], for

example.

Iterative Methods Iterative methods are widely used in computational fluid dynamics. These

methods employ a guess-and-correct philosophy, which progressively improves the guessed

solution by repeated application of the discrete equations. Let us consider an extremely sim-

ple iterative method, the Gauss-Seidel method. Here, each grid point in the mesh is visited

sequentially, and the value of φ is updated using

φP =
aEφE + aW φW + b

aP

(1.37)

The neighbor values, φE and φW , are required and are assumed known at prevailing values.

Thus, points that have already been visited will have recently updated values of φ, and those

that have not will have old values. The domain is swept over and over until convergence. A

related technique, Jacobi iteration, employs only old values during the sweep, updating all grid

points simultaneously at the end of the sweep.

Convergence of the process is guaranteed for linear problems if the Scarborough criterion is

satisfied, which requires

|aE| + |aW |

|aP |
≤ 1 for all grid points

< 1 for at least one grid point (1.38)

Matrices that satisfy the Scarborough criterion are said to be diagonally dominant. Direct meth-

ods do not require the Scarborough criterion to be satisfied; a solution to the linear set of

equations can always be obtained as long as the coefficient matrix is not singular.

The Gauss-Seidel scheme can be implemented with very little storage. All that is required

is storage for the discrete values of φ at the grid points. The coefficients aP , aE , aW , and b

can be computed on the fly if desired, since the entire coefficient matrix for the domain is

not required when updating the value of φ at any grid point. Also, the iterative nature of the

scheme makes it particularly suitable for nonlinear problems. If the coefficients depend on φ,

ANATOMY OF A NUMERICAL SOLUTION 17

they may be updated using prevailing values of φ as the iterations proceed. Furthermore, the

Gauss-Seidel technique can be applied to sparse matrices with arbitrary fill patterns and does not

require a band structure. Nevertheless, it is rarely used in practice because of slow convergence;

techniques to accelerate its convergence are discussed in Section 1.6.

An alternative to solving the linear system is use a time-advancement strategy. Here, even

though the desire is to solve the steady-state problem, the problem is posed as unsteady, and the

solution marched to steady state. If an explicit scheme is used [1], no linear solver is necessary;

however, the time step is limited by the stability limits imposed by explicit schemes. If an

implicit time-stepping strategy is used [1], linear solvers are again necessary.

1.3.4 Nonlinearity and Coupling

In many engineering applications it is necessary to solve a number of governing equations

simultaneously over the computational domain. In solving natural convection problems, for

example, the flow field and the energy equation must be solved simultaneously. The solution

of the flow field itself requires the simultaneous solution of the continuity and momentum

equations. In addition, the governing equations may be nonlinear.

The simplest approach to solving coupled sets of governing equations is the sequential

approach [1]. Here each governing equation is discretized and solved in turn using the procedures

described previously. Prevailing values of the other solution variables are used where necessary.

Governing equations are iterated upon in this way until the solution is deemed converged. This

approach has been used widely for the solution of incompressible flows using pressure-based

algorithms.

When the coupling between governing equations becomes strong, this type of sequential

solution procedure can become untenably slow, and may even lead to instability and divergence.

When computer memory and cost are not a limitation, it is possible to discretize all the governing

equations at each node or cell centroid, and solve the complete nonlinear system using the

Newton-Raphson method or other techniques [10, 13].

1.3.5 Properties of Numerical Solution Procedure

The discretization and solution procedures described here may be characterized by their accuracy,

consistency, stability, and convergence characteristics. A discussion of these four characteristics

now follows.

Accuracy Errors in the computed solution may result from (1) modeling errors, i.e., errors

engendered by incorrectly representing the physics in the governing equations, (2) a lack of

convergence in the iterative solution procedure, or (3) the truncation error in the discretization

procedure. As was seen in Section 1.3.2, d2φ/dx2 may be represented as

Ŵ

(

d2φ

dx2

)

2

= Ŵ
φ1 + φ3 − 2φ2

�x2
(1.39)

The truncation error for this representation is O(�x2). The error decreases quadratically with

�x. A scheme whose truncation error is O(�xn) is an nth-order scheme.

Consistency A discretization scheme is consistent if the error in the solution tends to zero as

�x → 0. If the truncation error is of the form O(�xn), consistency is guaranteed. A numerical

scheme for unsteady problems that has a truncation error O(�x/�t), for example, would not be

consistent unless �x/�t → 0. Consistency is an important property of the discretization since

it ensures that refining the mesh (or the time step) will yield more accurate solutions.

18 SURVEY OF NUMERICAL METHODS

Stability A stable numerical scheme for a steady problem is one that can converge to a solution

to the discrete equation set. For an unsteady problem, the time-stepping scheme employed must

result in a bounded solution in time if the physical problem being solved has a bounded solution.

Convergence The term convergence is used in two senses in the CFD literature. On the

one hand, one may speak of convergence to a mesh-independent solution by repeated mesh

refinement. On the other hand, the term may also imply convergence to a stable solution during

iteration or time marching.

1.3.6 Summary and Discussion

Thus far, the most important components of the basic solution process have been examined.

It has been shown that the equations governing heat, mass, and momentum transfer have a

common form represented by the general scalar transport equation. The most commonly used

methods to discretize this set of equations are the finite-difference, finite-element, and finite-

volume methods. The first two methods are not conservative on coarse meshes. On the other

hand, the finite-volume method is predicated upon the conservation principle and guarantees

perfect conservation even for coarse meshes. All discretization methods result in coupled sets of

algebraic equations, which may be solved by either direct or iterative methods; the latter have

emerged as the preferred alternative over the last two decades. Nonlinearity and coupling may

be handled either through a simple segregated approach or through a coupled approach using

Newton-Raphson or other direct-solution techniques.

Attention is next turned to more advanced topics in CFD. In the next few sections, we

examine in greater depth emerging unstructured-mesh techniques for addressing complex geome-

tries, higher-order discretization schemes, solvers for linear algebraic equations on unstructured

meshes, as well as issues related to pressure–velocity coupling for compressible and incom-

pressible flows.

1.4 COMPUTATIONAL TECHNIQUES FOR UNSTRUCTURED MESHES

Over the last two decades, there has been a concerted effort to develop CFD techniques to address

realistic industrial geometries. Early efforts [5, 14–16] concentrated on body-fitted meshes, either

single block or multiblock, using either covariant or contravariant velocity formulations. Both

staggered and colocated formulations were pursued [5, 17]. However, it quickly became apparent

that these approaches, though useful, could not address very complex geometries, and that far

more flexibility in mesh connectivity was required.

Two distinct approaches have emerged over the last two decades to address this need. Finite-

element methods [4, 18] were extended and refined to address fluid flow computations. At the

same time, a number of cell- and node-based finite-volume formulations were developed [6, 7,

19–22]. Here, a typical cell-based unstructured finite volume formulation is presented to illustrate

the underlying principles and to highlight special issues that arise with respect to developing

linear solvers and higher-order techniques. A detailed discussion of this method may be found

in [6].

1.4.1 Discretization of Convection–Diffusion Equation

The starting point of the development is the general scalar transport equation in conservation

form, given by Eq. (1.6). The domain is discretized into arbitrary unstructured convex polyhedral

COMPUTATIONAL TECHNIQUES FOR UNSTRUCTURED MESHES 19

C0

C1dr
→

face f

A

ês

ds

a

b

c

d

e

FIGURE 1.8 Control volume in unstructured mesh.

cells, as shown in Fig. 1.8, and conservation is enforced on these cells. In cell-based schemes,

all transport variables are stored at cell centroids. One advantage of this arrangement is that

conservation can be ensured for arbitrary control volumes with nonconformal interfaces without

special interpolation techniques. Consider the mesh shown in Fig. 1.8, for example. Cell C1

can be considered to have five faces, a-b-c-d-e, and no special treatment is required. Another

advantage is that on triangular and tetrahedral meshes, the ratio of the number of cells to nodes

is between three and five. As a result, cell-based storage enjoys better resolution than node-based

storage for roughly the same amount of work, which is typically proportional to the number of

cell faces.

The basic development parallels the one-dimensional finite-volume example presented in

Section 1.3.2 but special attention must be paid to mesh nonorthogonality and the lack of

structure. Integrating Eq. (1.6) about the control volume C0 yields

[

∂

∂t
(ρφ)

]

0

�V0 +
∑

f

Ff φf =
∑

f

Df + (Sφ�V)0 (1.40)

where Ff is the mass flow rate out of C0 at the face f , �V0 is the volume of the cell C0, Df

is the transport due to diffusion through the face f , and the summations are over the faces of

the control volume. For the purposes of scalar transport, the mass flow rate Ff is assumed to

be known. To obtain a set of algebraic equations, all other face quantities as well as volume

integrals in Eq. (1.40) must be written in terms of the unknowns, i.e., values of φ at cell and

boundary face centroids.

Diffusion Term The diffusion term across a face is given by

Df = Ŵf ∇φ •A (1.41)

A is the area vector associated with the face f . Since the line joining the centroids (associated

with the vector ês in Fig. 1.8) is not perpendicular to face f , the gradient of φ normal to the face,

20 SURVEY OF NUMERICAL METHODS

i.e., ∇φ •A, cannot be written purely in terms of a gradient in the ês direction. Decomposing

the gradient in directions parallel to ês and tangent to A, and using consistent approximations

for derivatives, it is possible to write the diffusion term Df as [6]

Df = Ŵf

φ1 − φ0

ds

A •A

A • ês

+ Sf (1.42)

where

Sf = Ŵf

(

∇φ •A − ∇φ • ês

A •A

A • ês

)

(1.43)

Here ∇φ at the face is taken to be the average of the derivatives at the two adjacent cells,

determined as discussed in Section 1.4.2. Thus, Df is seen to consist of a primary diffusion

term consisting of the first term in Eq. (1.42), and a secondary diffusion term, Sf . For orthogonal

meshes, A • ês = 0 and Sf is therefore zero. The primary component is expressed in terms of

the difference of φ values in the two cells adjacent to face f (i.e., φ0 and φ1). The primary

component is treated implicitly in the discrete equation for the two cells.

Convection Term On a structured mesh, a first-order approximation for the value of φ on

the face e in Fig. 1.7 may be obtained using an upwind scheme as

φe = φP if Fe ≥ 0

= φE if Fe < 0 (1.44)

Here Fe is the flow rate on the east face e, and is positive if the flow is in the positive x

direction. A second-order central-difference approximation for φe may be written on a uniform

mesh as

φe =
φP + φE

2
(1.45)

Similar schemes can be devised on unstructured meshes. For example, a first-order upwind

approximation for φ at the face f can be taken to be the value at the upwind cell in Fig. 1.8:

φf = φupwind (1.46)

Similarly for a uniform mesh, a central-difference approximate to φf can be written as

φf =
φ0 + φ1

2
(1.47)

Though higher-order schemes are generally preferred over first-order schemes in CFD, higher-

order convection operators frequently result in a loss of boundedness unless specific steps are

taken to limit spatial oscillations. A more complete discussion of interpolation schemes for

convective operators may be found in Section 1.5.

COMPUTATIONAL TECHNIQUES FOR UNSTRUCTURED MESHES 21

Unsteady Term In the present numerical scheme, the unsteady term is discretized using

backward differences. A first-order approximation is

[

∂

∂t
(ρφ)

]

0

=
(ρφ)n+1

0 − (ρφ)n0

�t
(1.48)

higher-order representations of the unsteady term can be written using more levels of storage.

For unsteady problems, the discretization of the convection, diffusion, and source terms

may be carried out at the previous time level n, resulting in an explicit scheme. Alternatively,

discretizing these terms at the time level n + 1 results in an implicit scheme. Schemes such as

the Crank-Nicholson scheme employ averages of both time levels [1].

Source Term The source term Sφ is first written in linearized form as

Sφ = SC + SP φ0 (1.49)

The forms of SC and SP are chosen from stability considerations [1]. As seen earlier, iterative

linear solvers require diagonal dominance to converge. If such solvers are to be used, it is prudent

to require SP to be negative to improve diagonal dominance of the coefficient matrix resulting

from the discretization process [1]. In most engineering problems, negative values of SP arise

naturally from the physical nature of the source term itself. A useful linearization process is to

expand the source term in a truncated Taylor series about the current iterate, denoted by starred

values:

(

Sφ

)

0
=

(

S∗
φ

)

0
+

(

∂S

∂φ

)∗

0

(

φ0 − φ∗
0

)

(1.50)

By comparing Eqs. (1.49) and (1.50), SC and SP may be written as

SC =
(

S∗
φ

)

0
−

(

∂S

∂φ

)∗

0

φ∗
0 (1.51)

SP =

(

∂S

∂φ

)∗

0

We note that at convergence, φ = φ∗, and the true value of Sφ is recovered. Thus, the lin-

earization procedure changes the path to solution, but not the final solution itself. The linearized

source term is used in Eq. (1.40).

Discrete Equation Set Collection of all the terms results in a discrete equation for each

cell involving face neighbors of the cell. Using the first-order upwind approximation with an

implicit time-stepping scheme, the overall discrete equation may be written as

aP φP =
∑

nb

anbφnb + b (1.52)

22 SURVEY OF NUMERICAL METHODS

where

anb =
Ŵf

ds

A •A

A • ês

+ Max[−Ff , 0]

aP =
∑

nb

anb − SP �V0 +
ρn

0 �V0

�t
+

∑

f

Ff +
ρ0 − ρn

0

�t
�V0

b = SC�V0 +
∑

nb

(

Sf

)

nb
+

ρn
0 �V0

�t
φn

0 (1.53)

Here nb denotes the cell-centroid values associated with the face neighbor cells. Since only

face neighbors appear directly in the discrete equation, the resulting coefficient matrix is sparse.

Other neighbor values appear indirectly in Sf in the computation of the gradient of φ, but do

not appear in the coefficient matrix. The superscript n + 1 has been dropped for clarity. Thus,

the unsuperscripted terms are to be understood as being evaluated at time level n + 1.

1.4.2 Gradient Calculation

Accurate computation of φ gradients is an important part of any unstructured mesh technique.

Computation of secondary gradient terms requires the knowledge of gradients of φ at the cell

centroids. Gradients are also required for the construction of higher-order convection operators

(see Section 1.5) as well as in many physical models. For example, velocity derivatives are

required to compute the production term in turbulence models or to compute the strain rate

for non-Newtonian viscosity models. Unlike for structured grids, these cannot be obtained by

simple finite differences. Classical finite-element methods and control-volume finite-element

methods [7] address this by analytically differentiating the underlying shape functions. Cell-based

finite-volume methods have typically employed two different approaches to gradient calculation,

which are now presented.

Gradient Theorem Approach One approach is suggested by the gradient theorem which

states that for any closed volume �V0 enclosed by surface A

∫

�V0

∇φdV =

∫

A

φdA (1.54)

where dA is the outward-pointing incremental area vector. A discrete version of Eq. (1.54) may

be written as

∇φ =
1

�V0

∑

f

φf Af (1.55)

where Af is the outward-pointing face area vector for face f . As a first approximation, the face

value φf may be computed as the average of the two cells values sharing the face so that

φf =
φ0 + φ1

2
(1.56)

COMPUTATIONAL TECHNIQUES FOR UNSTRUCTURED MESHES 23

C0

C1

Af

V

f

∆r1
∆r0

FIGURE 1.9 Arrangement of cells in unstructured mesh.

Once the derivative has been obtained by using Eqs. (1.55) and (1.56), the initial approximation

of the face average value of φ may be successively improved by reconstructing it from the

cell value. Thus, from Fig. 1.9, φf may be written as

φf =
(φ0 + ∇φ0 •�r0) + (φ1 + ∇φ1 •�r1)

2
(1.57)

By iteratively applying Eq. (1.57) to the gradient calculation in Eq. (1.55), the accuracy of

the computed gradient may be improved. Iteration increases the effective stencil of φ values

appearing in the discrete equation and can lead to oscillatory results. In practice, the gradients

used to reconstruct face values are limited to the bounds dictated by neighbor φ values so as

to avoid undershoots and overshoots in the solution. The concept of limiting is discussed in

Section 1.5.2.

Least-squares Approach The least-squares approach computes the gradient at a cell such

that it reconstructs the solution in the neighborhood of the cell in a least-squares sense. For

example, consider cell C0. It would be desirable to have the value of φ computed at the centroid

of neighbor cell Cj in Fig. 1.10 be equal to φj . By assuming a locally linear variation of φ,

one may write

φ0 + ∇φ0 •�rj = φj (1.58)

Here �rj is the vector from the centroid of cell C0 to the centroid of cell Cj . Substituting for

�rj in Eq. (1.58) yields

�xj

∂φ

∂x

∣

∣

∣

∣

0

+ �yj

∂φ

∂y

∣

∣

∣

∣

0

= φj − φ0 (1.59)

for all cells Cj , j = 1, . . . , J surrounding C0.

It is convenient to assemble all the equations in matrix form as follows:

Md = �φ (1.60)

24 SURVEY OF NUMERICAL METHODS

C0

C1

C2

C3

C4

∆
∆r3

∆r2

∆r1∆r4

FIGURE 1.10 Nodal locations and vectors used in least-squares calculation of cell gradient.

Here M is the J × 2 matrix

M =

�x1 �y1

�x2 �y2

...
...

�xJ �yJ

(1.61)

and d is the vector of the components of gradients of φ at cell C0

d =

∂φ
∂x

∣

∣

∣

0

∂φ
∂y

∣

∣

∣

0

(1.62)

and �φ is the vector of the differences of φ

�φ =

φ1 − φ0

φ2 − φ0

...

φJ − φ0

(1.63)

Equation (1.60) represents J equations in the two unknowns (∂φ/∂x)|0 and (∂φ/∂y)|0.

Since, in general, J is larger than two, Eq. (1.60) is an overdetermined system. Physically,

HIGHER-ORDER SCHEMES FOR CONVECTION OPERATORS 25

this means that a linear profile cannot be assumed for φ in the vicinity of cell C0 that exactly

reconstructs the known solution at all of its neighbors. One can only hope to find a solution that

fits the data in the best possible way, i.e., a solution for which the root mean square (rms) value

of the difference between the neighboring cell values and the reconstructed values is minimized.

From Eq. (1.59), the difference in the reconstructed value and the cell value for cell Cj is

Rj = �xj

∂φ

∂x

∣

∣

∣

∣

0

+ �yj

∂φ

∂y

∣

∣

∣

∣

0

− (φj − φ0) (1.64)

The sum of the squares of the errors over all the neighboring cells is

R =
∑

j

R2
j (1.65)

The objective is to find (∂φ/∂x)|0 and (∂φ/∂y)|0 such that R is minimized. By differentiating

R with respect to (∂φ/∂x)|0 and (∂φ/∂y)|0 and equating to zero, we obtain

MT Md = MT �φ (1.66)

MT M is a 2 × 2 matrix that can easily be inverted analytically to yield the required gradient

∇φ. The least-squares approach is easily extended to three dimensions. This method places no

restrictions on cell shape, and does not require a structured mesh.

1.4.3 Summary and Discussion

In this section, an overview of typical unstructured, cell-based, finite-volume techniques has

been presented. These techniques involve conservation, albeit over arbitrary polyhedral cells.

To obtain diagonal dominance in the linear system, the diffusion term in unstructured formula-

tions is decomposed into primary and secondary terms, with the primary term being implicitly

included in the coefficient matrix. First-order accurate convective operators are easily incorpo-

rated, but higher-order convective operators are more challenging to formulate, and remain an

open research area; this aspect is discussed further in Section 1.5. The computation of gradients,

again, is substantially more complicated than for structured meshes. The nominally linear alge-

braic equation set resulting from the discretization is sparse but not banded. Solution techniques

to address this type of problem are discussed in Section 1.6.

1.5 HIGHER-ORDER SCHEMES FOR CONVECTION OPERATORS

Over the last two decades, a great deal of effort has been devoted to improving the accuracy

of convective operators for both structured and unstructured meshes. The first-order upwind

and second-order central-difference schemes described in Section 1.4.1 are usually not suitable

for practical use on moderate-sized meshes. Consider convection of a scalar φ over the square

domain shown in Fig. 1.11. The left and bottom boundaries are held at φ = 0 and φ = 1,

respectively. The flow field in the domain is given by V = 1.0i + 1.0j, so that the velocity

vector is aligned with the diagonal, as shown. The objective is to compute the distribution of φ

in the domain using the upwind and central-difference schemes for the case when the flow Peclet

number Pe = ρ|V|L/Ŵ → ∞. For this case, the solution is φ = 1 below the diagonal and φ = 0

26 SURVEY OF NUMERICAL METHODS

f = 1.0

x

y

L
f = 0

V

V

0.0 0.2 0.4 0.6 0.8 1.0
−0.5

0.0

0.5

1.0

1.5

f

y

Exact

Upwind scheme

Central difference

FIGURE 1.11 Schematic of scalar transport in a square domain and computed variation of φ along the vertical centerline.

above the diagonal. Figure 1.11 shows the predicted φ values along the vertical center-line of

the domain (x = 0.5) using 13 × 16 quadrilateral cells. The first-order upwind scheme smears

the φ profile so that there is a diffusion layer even when there is no physical diffusion. The

central-difference scheme, on the other hand, shows unphysical oscillations in the value of φ.

Though this example employs a Peclet number of infinity, similar problems manifest themselves

for high Reynolds number flows on moderate-sized meshes in many practical simulations.

Over the last two decades, a number of improvements to the discretization of the convective

operator have been made. Two broad approaches have been taken. One approach has been to

develop schemes that are substantially more accurate than the first- and second-order schemes

described thus far. For applications such as direct numerical simulation (DNS) of turbulence

and for computational aero-acoustics (CAA), ultra-high-accuracy methods using compact finite

differences and spectral/spectral-element schemes have been developed [23–25]. The second

approach has addressed more conventional applications. Here the focus has been on constructing

higher-order upwind-weighted schemes by truncating Taylor series expansions to second order

or higher. Methods have been developed to control spatial oscillations in these schemes while

retaining formal higher-order accuracy. This latter class of schemes is now described.

1.5.1 Upwind-weighted Higher-order Schemes

The upwind scheme may be interpreted as a truncation to O(�x) of a Taylor series expansion for

φ. If face e in Fig. 1.7 is considered for the case Fe > 0, such an expansion in the neighborhood

of the upwind point P may be written, assuming a uniform mesh of size �x, as

φ(x) = φP + (x − xP)
∂φ

∂x
+

(x − xP)2

2!

∂2φ

∂x2
+ O(�x)3 (1.67)

By retaining more terms in the Taylor series, a family of upwind-weighted higher-order schemes

may be developed.

HIGHER-ORDER SCHEMES FOR CONVECTION OPERATORS 27

Second-order Upwind Schemes A second-order upwind scheme may be derived by

retaining the first two terms of the expansion in Eq. (1.67). Evaluating Eq. (1.67) at xe =

xP + (�x)/2, we obtain

φe = φP +
�x

2

∂φ

∂x
(1.68)

This approximation has a truncation error of O(�x)2. To write φe in terms of cell centroid

values, ∂φ/∂x must be written in terms of cell centroid values. On a one-dimensional grid, the

derivative at P may be written using either a forward, backward, or central difference formula

to give three alternative second-order schemes. For example, if ∂φ/∂x is written using

∂φ

∂x
=

φP − φW

�x
(1.69)

we obtain

φe = φP +
φP − φW

2
(1.70)

This is the basis of the Beam-Warming scheme [26].

Third-order Upwind Schemes Third-order accurate schemes may be derived by retaining

the second derivative in the Taylor series expansion as

φ(x) = φP + (x − xP)
∂φ

∂x
+

(x − xP)2

2!

∂2φ

∂x2
(1.71)

Using cell-centroid values to write the derivatives ∂φ/∂x and ∂2φ/∂x2 we obtain

∂φ

∂x
=

φE − φW

2�x
+ O(�x2) (1.72)

and

∂2φ

∂x2
=

φE + φW − 2φP

(�x)2
+ O(�x2) (1.73)

Inserting Eqs. (1.72) and (1.73) into Eq. (1.71) and rearranging yields

φe =
φE + φP

2
−

φE + φW − 2φP

8
(1.74)

This scheme is called the QUICK scheme (quadratic upwind interpolation for convective kinet-

ics) [27]. These schemes are not truly multidimensional in that upwinding occurs along grid

lines. Also, line structure is required in these schemes, making them unsuitable for use on

unstructured meshes.

28 SURVEY OF NUMERICAL METHODS

Extension to Unstructured Meshes Formulation of higher-order schemes for unstructured

meshes is an area of active research and new ideas continue to emerge. A second-order accurate

unstructured mesh scheme based on the ideas in the previous section is now presented. The

starting point is the multidimensional equivalent of Eq. (1.68). Referring to Fig. 1.9, if Ff > 0,

φ may be written using a Taylor series expansion about the upwind cell centroid as

φ (x, y) = φ0 + (∇φ)0 •�r + O(|�r|2) (1.75)

where �r is

�r = (x − x0) i + (y − y0) j (1.76)

To find the face value φf , Eq. (1.75) is evaluated at �r = �r0, as shown in Fig. 1.9, to give

φf = φ0 + (∇φ)0 •�r0 + O(|�r0|
2) (1.77)

As with structured meshes, (∇φ)0 must be evaluated. This can be done using either of the

techniques described in Section 1.4.2.

1.5.2 Control of Spatial Oscillations

The schemes described in the previous section give higher-order accuracy but can still produce

spatial oscillations in steady problems. If used in conjunction with the Euler explicit scheme [26]

for time-stepping in unsteady problems, these schemes are unconditionally unstable. A number

of research efforts have tried to remedy these problems, two of which are described below.

Added Dissipation Schemes One technique to eliminate spatial oscillations is to use one

of the higher-order schemes developed in the previous sections, but to damp out the oscillations

through the explicit use of an artificial viscosity tailored to maintain the desired formal accuracy

of the scheme [28]. In the case of the central-difference scheme, a dissipation term involving a

discrete fourth derivative is used. Thus, referring to Fig. 1.7, φe can be expressed as

φe =
φP + φE

2
+ ε(4)

e (φEE − 3φE + 3φP − φW) (1.78)

This amounts to adding a term of the type �x3(∂4φ/∂x4) to the governing equation. Since the

additional term is O(�x3), it does not change the formal second-order accuracy of the central-

difference scheme. Near discontinuities in φ, it is necessary to add a stronger dissipation and a

second-order term is also introduced, which reduces the formal accuracy of the scheme to first

order [28]. The resulting expression for φe is

φe =
φP + φE

2
− ε(2) (φE − φP) + ε(4)

e (φEE − 3φE + 3φP − φW) (1.79)

To use this type of idea successfully, it is necessary to choose the coefficients ε
(2)
e and ε

(4)
e , and

also to detect discontinuities and shocks, so that ε
(2)
e can be made small in the bulk of the flow.

HIGHER-ORDER SCHEMES FOR CONVECTION OPERATORS 29

Flux Limiters The use of Eq. (1.68) does not guarantee that φe is bounded by φP and φE , or

by any other stencil in the neighborhood of face e, leading to spatial oscillations in the computed

values of φ. Schemes employing flux limiters seek to overcome this problem by limiting the

contribution of the gradient term using

φe = φP +
e(re)
�x

2

∂φ

∂x
|P (1.80)

Here
 is limiter function chosen to assure the boundedness of φ. The gradient (∂φ/∂x)|P
depends on the scheme being implemented. For the Beam-Warming scheme, for example,

φe = φP +
e(re)
�x

2

φP − φW

�x
(1.81)

The limiter
 is a function of the variable re, which is itself a function of differences of φ:

re =
φE − φP

φP − φW

(1.82)

A variety of limiter functions have been used in the literature, including the minmod, superbee,

van Leer, and van Albada limiters [29, 30]. The corresponding functional variation is shown

in Fig. 1.12. The advantage of using a limiter becomes readily apparent when considering the

problem of linear advection of a square wave form with a uniform velocity u. Since there is no

diffusion, the numerical scheme must preserve the shape of the wave form during its translation.

Figure 1.13 shows the prediction of the Beam-Warming scheme with and without limiters. In

the absence of limiters, oscillations in the shape of the wave begin to develop and grow with

time, and are particularly evident at corners. These oscillations disappear when limiters are used.

For a more detailed discussion of these methods, see [29, 30].

0 1 2 3 4

r

0

0.5

1

1.5

2

Ψ

minmod

Superbee
van Leer
van Albada

FIGURE 1.12 Limiter functions.

30 SURVEY OF NUMERICAL METHODS

0 0.2 0.4 0.6 0.8

x/L

−0.5

0

0.5

1

1.5

2

f

Beam-Warming

Exact solution

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1

1.5

2

f

minmod

Exact solution

x/L

FIGURE 1.13 Linear advection of a square wave using Beam-Warming scheme (a) without limiter, (b)

with minmod limiter, and (c) with superbee limiter.

LINEAR SOLVERS 31

0 0.2 0.4 0.6 0.8 1

x/L

−0.5

0

0.5

1

1.5

2

f

Superbee

Exact solution

FIGURE 1.13 (continued).

1.5.3 Summary and Discussion

In this section, we have reviewed widely used higher-order schemes for the convection operator.

Schemes based on higher-order truncations of the Taylor series do yield more accurate schemes,

but require special manipulation using either artificial dissipation or limiting to control spatial

oscillations. As is clear from the development, the schemes described in this section require line

structure. The extension to unstructured meshes remains an area of active research.

1.6 LINEAR SOLVERS

Attention is now turned to another important aspect of the numerical process, namely the solution

of linear algebraic equation sets. As discussed in Section 1.3.3, regardless of what discretization

process is used, the result is a coupled algebraic set of equations in the discrete values of

φ. The resulting coefficient matrices have two important characteristics. First, they are sparse,

and in the case of structured meshes, they are banded. Second, the coefficient matrices are

usually approximate; for nonlinear problems, for example, the coefficient matrix is updated

repeatedly as a part of outer iteration loop to resolve nonlinearities. Over the last three decades,

iterative methods have emerged as the preferred approach in CFD. They are naturally suited for

handling nonlinearities since the coefficient matrix can be updated during the iterative process. In

addition, operation counts as well as storage typically scale as O(N), where N is the number of

unknowns. The specific solution techniques depend on whether the underlying mesh is structured

or not. Special algorithms taking advantage of band structure are used for structured meshes. For

unstructured meshes, matrix sparseness is exploited. Of course, linear solvers for unstructured

meshes can be used for structured meshes as well. Typical solution techniques will now be

considered.

32 SURVEY OF NUMERICAL METHODS

1.6.1 Line Gauss-Seidel Method

The line Gauss-Seidel technique (LGS) is widely used with structured meshes. The central

component of LGS is a direct solver for tridiagonal systems called the tridiagonal matrix algo-

rithm (TDMA), which is applied iteratively along lines in the structured mesh. The procedure is

also sometimes called the line-by-line TDMA. The TDMA is essentially a Gaussian-elimination

procedure which takes advantage of the tridiagonal structure of the matrix.

Tridiagonal Matrix Algorithm Consider the equation system

aiφi = biφi+1 + ciφi−1 + di (1.83)

This type of equation results from the discretization of a 1D convection–diffusion equation

using the techniques described previously. An equation of this type maybe written for each grid

point i. For the first grid point, i = 1, ci = 0, and for the last grid point, i = N , bi is zero.

Thus, for point i = 1

φ1 = P1φ2 + Q1 (1.84)

Equation (1.84) may now be used to eliminate φ1 in favor of φ2 in the equation for i = 2,

resulting in

φ2 = P2φ3 + Q2 (1.85)

In general,

φi = Piφi+1 + Qi (1.86)

Here,

Pi =
bi

ai − ciPi−1

Qi =
di + ciQi−1

ai − ciPi−1

(1.87)

It should be noted that P1 = b1/a1, Q1 = d1/a1, and PN = 0. The equation for the last point,

i = N , yields

φN = QN (1.88)

The implementation of the algorithm is done in two parts. In the forward step, the coefficients

Pi and Qi, i = 1, 2, . . . , N are found using Eq. (1.87) recursively, and φN is calculated. In the

backward sweep, Eq. (1.86) is used recursively for i = N − 1, N − 2, . . . , 1 to recover φi .

Line-by-line Algorithm For two- and three-dimensional structured meshes, the equation

system is banded, but is not tridiagonal. In these cases, the TDMA is applied iteratively along

LINEAR SOLVERS 33

S

W P

N

E
∆y

∆x

e

n

s

w

FIGURE 1.14 Two-dimensional Cartesian mesh.

lines. For two-dimensional structured meshes (see Fig. 1.14), the discrete equation for a point

P may be written as

aP φP = aEφE + aW φW + aNφN + aSφS + b (1.89)

Here each grid point P is connected to its four neighbor points E,W, N, S. A tridiagonal system

may be created along each line by assuming values on the neighbor lines to be temporarily known

so that

aP φP = aNφN + aSφS + b∗ (1.90)

where b∗ =
(

b + aEφ∗
E + aW φ∗

W

)

, and the starred values are prevailing values of φ.

The procedure starts with a guess of all grid point values of φ. Starting with a vertical grid line

I = 1, Eq. (1.90) is solved, with b∗ being evaluated from the current guess of φ. The TDMA is

used along I = 1 to obtain φ values along the line. These are, of course, provisional since b∗ is

based on guessed or prevailing values. The calculation now shifts to line I = 2, and the procedure

is repeated; the most recently computed values on I = 1 are used to construct b∗. All I lines

are visited in this fashion. The same procedure is then applied in the J direction. Several such

iterations may be done to obtain a converged solution for φ. For three dimensions, grid planes are

visited sequentially and iteratively, applying the LGS on each plane until overall convergence

is obtained. Other iterative techniques for structured meshes include the alternating direction

implicit (ADI) technique, which uses the TDMA in conjunction with a time-stepping scheme

[31], incomplete lower–upper (ILU) decomposition [31], and the strongly implicit procedure

(SIP) [32].

1.6.2 Multigrid Methods

The LGS technique cannot be used for unstructured meshes since there are no easily identifiable

lines in the domain. It may be recalled from Section 1.3.3 that the Gauss-Seidel technique does

34 SURVEY OF NUMERICAL METHODS

not require line structure, and can be applied to sparse matrices with diagonal dominance, making

it ideal for solving the sparse systems resulting from unstructured discretizations. However, the

rate of convergence is too slow for practical use. Multigrid techniques may be used to accelerate

Gauss-Seidel iteration, although techniques other than Gauss-Seidel may be used as the core

solver in multigrid techniques as well.

Convergence Behavior of Jacobi and Gauss-Seidel Techniques Although the Jacobi

and Gauss-Seidel methods are easy to implement and are applicable for matrices with arbi-

trary fill patterns, their usefulness is limited by their slow convergence characteristics. The

usual observation is that residuals drop quickly during the first few iterations but afterward the

iterations “stall.” This behavior is especially pronounced for large matrices.

To demonstrate this behavior, a one-dimensional 1D Laplace equation over a domain of

length L is considered, that is,

∂2φ

∂x2
= 0 (1.91)

Dirichlet boundary conditions are applied, so that φ(0) = φ(L) = 0. The exact solution to this

problem is simply φ(x) = 0. The behavior of iterative schemes may be studied by starting with

an arbitrary initial guess. The error at any iteration is then simply the current value of the

variable φ. To distinguish the convergence characteristics for different error profiles, the current

problem is solved with an initial guess given by

φi = sin

(

kπxi

L

)

(1.92)

Equation (1.92) represents Fourier modes and k is the wave number. Equation (1.91) is dis-

cretized using the techniques described previously. Starting with Eq. (1.92) as the initial guess,

the Gauss-Seidel method is applied for 50 iterations on a grid with N = 64. The maximum

error in the solution is shown in Fig. 1.15a. With an initial guess corresponding to k = 1, the

maximum error has reduced by less than 20% after 50 iterations. On the other hand, with a

guess of k = 16, the error reduces by over 99% after merely 10 iterations. An arbitrary initial

guess would contain more than one Fourier mode. To see what the scheme does in such cases,

an initial guess consisting of modes corresponding to k = 2, 8, and 16 is used. For this situation

φi =
1

3

[

sin

(

2πxi

L

)

+ sin

(

8πxi

L

)

+ sin

(

16πxi

L

)]

(1.93)

From Fig. 1.15b it can be seen that the error drops rapidly at first but then decreases much

more slowly. The Gauss-Seidel scheme is very effective at reducing high wave-number errors.

This accounts for the rapid drop in residuals at the beginning. Once the high-wave-number

components are removed, only the smooth error profiles remain for which the scheme is not

very effective and thus convergence stalls.

Using this sample problem, another commonly encountered shortcoming of the Gauss-Seidel

iterative scheme can be observed. It is found that convergence deteriorates as the grid is refined.

Retaining the same form of initial guess and using k = 2, the previous problem is solved on

three different grids, N = 32, 64, and 128. The resulting convergence plot, shown in Fig. 1.16,

indicates that the rate of convergence becomes worse as the mesh is refined. On a finer grid,

LINEAR SOLVERS 35

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

M
ax

.
er

ro
r

k = 1

k = 2

k = 3

k = 8

k = 16

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

Iteration

M
ax

.
er

ro
r

FIGURE 1.15 Convergence of Gauss-Seidel method on N = 64 grid for (a) initial guesses consisting of

single wave numbers and (b) initial guess consisting of multiple modes.

it is possible to resolve more modes. The higher modes converge quickly but the lower modes

appear more “smooth” and hence converge more slowly. The initial error profile behaves like a

high-wave-number profile on a coarser grid, but like a low-wave-number profile in a finer grid.

A quantitative analysis of these behaviors may be found in [33].

The multigrid method seeks to accelerate the convergence rate of iterative linear solvers by

involving coarser grids. It is necessary that the accuracy of the final solution be determined

only by the finest grid that is employed. This means that the coarse grids can provide only

corrections or guesses to the fine-grid solution. As the fine-grid solution approaches the exact

answer, the influence of any coarse levels should approach zero. Thus, it is enough to solve

36 SURVEY OF NUMERICAL METHODS

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

M
ax

.
er

ro
r

N = 32

N = 64

N = 128

FIGURE 1.16 Convergence of Gauss-Seidel method on different-sized grids for initial guess correspond-

ing to k = 2 mode.

only an approximate problem at the coarse levels since their solution will not govern the final

accuracy that is achieved.

Two different multigrid approaches are available in the literature. The first is the geometric

multigrid or full approximation storage (FAS) procedure ([34, 35], for example). Here, a sequence

is created of coarse multigrid meshes that are not necessarily nested. (A nested multigrid mesh is

one in which each face of the coarse mesh is composed of the faces of original fine mesh.) The

governing equations are discretized on each coarse level independently, and the solution errors

at each level are used to accelerate the solution on finer levels. An alternative is the algebraic

multigrid method [36, 37], which is now described.

Algebraic Multigrid Method The algebraic multigrid (AMG) method is well-suited for

unstructured meshes since it does not involve discretization of the governing equations on

coarser grids. Instead, a hierarchy of coarse equation sets is constructed by grouping a number

of fine-level discrete equations. Residuals from a fine-level relaxation sweep are “restricted” to

form the source terms for the coarser-level correction equations. The solution from the coarser

equations is in turn “prolongated” to provide corrections at the finer level. The use of different

grid sizes permits the reduction of errors at all wavelengths using relatively simple smoothing

operators.

It is useful to represent the discrete equation at point i at a grid level l as

∑

j

M l
ijφj + Si = 0 (1.94)

where j is the index of a neighbor cell.

The algebraic multigrid method visits each ungrouped fine-level cell and groups it with n

of its neighboring ungrouped cells for which the coefficient Mij is the largest [37]. The AMG

LINEAR SOLVERS 37

performs best when the group size, n, is 2. The coefficients for the coarse-level equations are

obtained by summing the coefficients of the fine-level equations:

M l+1
IJ =

∑

i∈GI

∑

j∈GJ

M l
ij (1.95)

where the superscripts denote the grid level and GI is the set of fine-level cells that belong to

the coarse-level group I . This results in a system of equations of the same form as the fine level

(i.e., Eq. (1.52)), with 1/nth the number of unknowns

M l+1
IJ φl+1

J −
∑

i∈GI

Rl
i = 0 (1.96)

where Rl
i is the residual in the fine-level equation at the current iteration

Rl
i = M l

ijφ
∗l
j + Si (1.97)

The value φ∗l
j is the current iterate. The process is repeated recursively until no further coarsening

is possible. A variety of strategies, such as the V, W, and Brandt cycles [38] may be used to

cycle between the grid levels. The solution at any level is obtained by a Gauss-Seidel iterative

scheme and is used to correct the current iterate at the next finer level. Thus, for all i ∈ GI :

φl
i = φ∗l

i + φl+1
I (1.98)

Intelligent mesh agglomeration strategies for creating coarse-level meshes are critical for

obtaining significant convergence acceleration using multigrid schemes. Lonsdale [37] employed

an agglomeration strategy that grouped together cells connected by the largest coefficients. This

strategy has proven effective for a variety of problems involving high thermal conductivity

ratios, large domain aspect ratios, and disparate grid sizes. For a more in-depth discussion of

mesh agglomeration strategies, see [39].

Algebraic multigrid methods used with sequential solution procedures have the advantage

that the agglomeration strategy can be equation-specific; the discrete coefficients for the specific

governing equation can be used to create coarse mesh levels. Since the coarsening is based

on the coefficients of the linearized equations, it also changes appropriately as the solution

evolves. This is especially useful for nonlinear and/or transient problems. In some heat transfer

applications, however, the mutual coupling between the governing equations is the main cause

of convergence degradation, and sequential solution procedures do not perform well. Typical

examples include flows with large body forces such as high-Rayleigh number buoyant flows,

or flows with large swirl numbers. Geometric or full-approximation storage multigrid methods

that solve the coupled problem on a sequence of coarser meshes may offer better performance

in such cases.

1.6.3 Gradient-search Techniques

Gradient-search techniques have recently found increased use in CFD because of their ability

to solve the equation sets resulting from unstructured discretizations. For symmetric positive-

definite matrices, the original problem Aφ = B can be shown to be equivalent to the minimiza-

tion of a functional F defined as

F = 1
2
φT Aφ − φT B (1.99)

38 SURVEY OF NUMERICAL METHODS

The method of steepest descent essentially finds the minimum of F by using search directions

opposite to ∇F . This search process is usually too slow for practical use. In contrast, conjugate

gradient methods [40] employ search directions that are conjugate to all previous search direc-

tions; preconditioning may be used to improve the speed of conjugate gradient techniques. Few

of the linear systems resulting from CFD problems are either symmetric or positive-definite.

Extensions of the method to address asymmetric matrices include biconjugate gradients [31],

CGSTAB and BI-CGSTAB [41, 42], and GMRES [43].

1.7 COMPUTATION OF FLUID FLOW

The class of problems considered thus far involve convection and diffusion of a scalar in the

presence of a known flow field. Even though the continuity and momentum equations have the

same form as the general scalar transport equation, Eq. (1.6), a number of additional factors

must be considered in the computation of the flow field. In three dimensions, the unknowns to

be computed are the three velocity components and the pressure. The equations available for

their computation are the three momentum equations and the continuity equation. A number of

issues arise in the storage and computation of pressure and velocity, which are now discussed.

1.7.1 Storage of Pressure and Velocity

For simplicity, we consider the uniform structured two-dimensional mesh shown in Fig. 1.14.

The pressure p and the velocity vector V are assumed to be stored at the cell centroid. Following

the practices outlined in previous sections, the discrete u- and v–momentum equations may be

written as

aP uP =
∑

nb

anbunb + (pw − pe)�y + bu

aP vP =
∑

nb

anbvnb + (ps − pn)�x + bv (1.100)

The summation over nb denotes a summation over the neighbors E,W,N , and S in Fig. 1.14.

Here, the pressure gradient is written in terms of the values of pressure on the control volume

faces. Since the pressure is stored at the cell centroids and not at the face, interpolation is

necessary. For a uniform grid, pe may be found by linear interpolation between cell centroids

from

pe =
pE + pP

2
(1.101)

The other face pressures may be similarly interpolated. Incorporating this assumption into the

discrete momentum equations yields

aP uP =
∑

nb

anbunb + (pW − pE)
�y

2
+ bu

aP vP =
∑

nb

anbvnb + (pS − pN)
�x

2
+ bv (1.102)

COMPUTATION OF FLUID FLOW 39

The pressure terms occurring in the momentum equations are seen to involve alternate pressures

rather than adjacent pressures; the value pP does not appear in the equations at all.

Next, attention is turned to the continuity equation. Discretizing the continuity equation, we

obtain

(ρu)e �y − (ρu)w �y + (ρv)n �x − (ρv)s �x = 0 (1.103)

The face velocities are not available directly but must be interpolated from the cell centroid

values to the face. For a uniform grid, for example, (ρu)e may be found by linear interpolation

as

(ρu)e =
(ρu)P + (ρu)E

2
(1.104)

The other terms in Eq. (1.103) may similarly be interpolated. Gathering terms, the discrete

continuity equation for the cell P is

(ρu)E �y − (ρu)W �y + (ρv)N �x − (ρv)S �x = 0 (1.105)

An examination of the discrete continuity equation for cell P reveals that it does not contain

the velocity for cell P . Consequently, a checkerboarded velocity pattern of the type shown in

Fig. 1.17 can be sustained by the continuity equation. If the momentum equations can sustain this

pattern, the checkerboarding would persist in the final solution. Since the pressure gradient is not

known a priori, but is computed as a part of the solution, it is possible to create pressure fields

whose gradients exactly compensate the checkerboarding of momentum transport implied by the

checkerboarded velocity field. Under these circumstances, the final pressure and velocity fields

would exhibit checkerboarding, even though the discrete momentum and continuity equations

are perfectly satisfied.

In practice, perfect checkerboarding is rarely encountered because of irregularities in the

mesh, boundary conditions, and physical properties. Instead, the tendency toward checkerboard-

ing manifests itself in unphysical wiggles in the velocity and pressure fields. It should be

emphasized that these wiggles are a property of the spatial discretization and would be obtained

regardless of the method used to solve the discrete equations.

A number of different remedies have emerged to address the checkerboarding problem, some

of which are described below.

Staggered Storage of Pressure and Velocity A popular remedy for checkerboarding on

structured meshes, either regular or body-fitted, is the use of a staggered mesh [1]. A typical

staggered mesh arrangement is shown in Fig. 1.18. We distinguish between the main cell or

control volume and the staggered cell or control volume. The pressure is stored at centroids

of the main cells. The velocity components are stored on the faces of the main cells as shown,

100 200 100 200

FIGURE 1.17 Checkerboarded velocity field.

40 SURVEY OF NUMERICAL METHODS

Cell for
v velocity

Cell for
u velocity

N

S

EW

Main
cell f u eu w

v n

v
s

P

p

FIGURE 1.18 Staggered mesh.

and are associated with the staggered cells. The u velocity is stored on the e and w faces and

the v velocity is stored on the n and s faces. Scalars such as enthalpy or species mass fraction

are stored at the centroids of the cell P . All properties, such as density and Ŵ, are stored at the

main grid points.

The cell P is used to discretize the continuity equation as

(ρu)e �y − (ρu)w �y + (ρv)n �x − (ρv)s �x = 0 (1.106)

However, no further interpolation of velocity is necessary since discrete velocities are available

directly where required. Thus, the possibility of velocity checkerboarding is eliminated.

For the momentum equations, the staggered control volumes are used to write momentum

balances. The procedure is the same as that described previously, except that the pressure gradient

term may be written directly in terms of the pressures on the faces of the momentum control

volumes, without interpolating as in Eq. (1.101). Thus, for the discrete momentum equation for

the velocity ue, the pressure term is

(pP − pE) �y (1.107)

Similarly, for the velocity vn, the pressure term is

(pP − pN) �x (1.108)

Thus, with the use of Eqs. (1.107) and (1.108), there is no longer a dependence on alternate

pressure values; adjacent pressure values appear in the balance and do not support pressure

checkerboarding. It may be noted that the mesh for the u-momentum equation consists of

nonoverlapping cells that fill the domain completely. This is also true for the v-momentum

equation and the continuity equation. The control volumes for u, v, and p overlap each other,

but this is of no consequence. Furthermore, since the velocities are available on the main cell

COMPUTATION OF FLUID FLOW 41

faces, face flow rates can easily be computed where they are needed for the discretization of

the convective terms in the scalar transport equation.

For body-fitted meshes, components of either the covariant or the contravariant velocity

vector are stored on the faces [5, 15]. In all other respects, the basic idea is the same as that

described here.

Unequal Order Schemes For unstructured meshes in either the finite-volume or the finite-

element context, pressure–velocity staggering is difficult to implement because of geometric

complexity. As a result, control-volume finite-element methods (CVFEM) as well as conven-

tional finite-element methods have used unequal-order interpolation of pressure and velocity [7,

44, 45]. Here, pressure is effectively interpolated to lower order than velocity. In CVFEM, this is

accomplished by resolving the pressure on a macroelement, whereas the velocity is resolved on a

subelement, which is formed by dividing the macroelement into smaller elements. Alternatively,

a lower-order interpolation function may be used for pressure vis-à-vis velocity [44, 45].

Colocated Schemes Both mesh staggering and unequal-order interpolation require book-

keeping and storage of extra geometric information. As a result, research has been directed to

the development of colocated or equal-order interpolation schemes. Here, pressure and Carte-

sian velocity components are both stored at the cell centroid. However, the interpolation of the

face velocity from cell-centered velocities is modified so as to remove checkerboarded pressure

modes [17, 46, 47]. The modified interpolation is equivalent to an added dissipation that damps

spatial wiggles in pressure and velocity; consequently, these schemes are sometimes referred to

as added-dissipation schemes. Formulations for regular, body-fitted, and unstructured meshes

have appeared in the literature [6, 17, 46]. A formulation for an equal-order CVFEM has been

published in [47]. In the finite-element context, formulations interpolating velocity and pressure

to equal order have been published [18, 48].

In the discussion that follows, an orthogonal, one-dimensional, uniform mesh is used for

clarity. The mesh and associated nomenclature are shown in Fig. 1.7. Adopting a linear inter-

polation of pressure between cell centroids, the discrete u-momentum equations for cells P and

E may be written as

aP uP =
∑

nb

anbunb + bu
P +

pW − pE

2

aEuE =
∑

nb

anbunb + bu
E +

pP − pEE

2
(1.109)

For convenience, Eqs. (1.109) are recast as

uP = ûP + dP

pW − pE

2

uE = ûE + dE

pP − pEE

2
(1.110)

where dP = 1/aP and dE = 1/aE , and

ûP =

∑

nb anbunb + bu
P

aP

ûE =

∑

nb anbunb + bu
E

aE

(1.111)

42 SURVEY OF NUMERICAL METHODS

The continuity equation for point P is discretized to yield

ρeue − ρwuw = 0 (1.112)

Colocated formulations prevent checkerboarding by devising interpolation procedures that

express the face velocities ue and uw in terms of adjacent pressure values rather than alter-

nate pressure values. The face velocity ue is not defined purely as a linear interpolant of the

two adjacent cell values; an additional term, called the added dissipation prevents velocity

checkerboarding. If ue is linearly interpolated

ue =
uP + uE

2
=

ûP + ûE

2
+ dP

(

pW − pE

4

)

+ dE

(

pP − pEE

4

)

(1.113)

Instead, the following interpolation is used:

ue =
uP + uE

2
− dP

(

pW − pE

4

)

− dE

(

pP − pEE

4

)

+ de (pP − pE)

=
ûP + ûE

2
+ de (pP − pE) (1.114)

Here de = (dP + dE)/2. A similar expression may be written for uw.

In obtaining Eq. (1.114), the pressure difference term resulting from the linear interpolation

of velocities (which involves the pressures pW , pE , pP , and pEE) was removed. In its place,

a new pressure difference term (pP − pE) was added instead. Another way of looking at this

is to say that in writing ue, the û component is linearly interpolated between P and E, but the

pressure difference term is written directly in terms of the adjacent cell-centroid pressures pP

and pE .

This type of interpolation is sometimes referred to as momentum interpolation in the literature.

It was proposed, with small variations, by different researchers in the early 1980s [16, 17].

Similar concepts have also been used in the compressible flow community with density-based

solvers. It is possible to show that the interpolation procedure is equivalent to adding a dissipation

proportional to (∂4p/∂x4)�x3 to the continuity equation. Consequently, it is also sometimes

referred to as an added dissipation scheme. Since the added dissipation is a third-order term, its

addition preserves the formal accuracy of second-order schemes. Another useful way to think

about momentum interpolation is to consider the face velocity ue to be a sort of staggered

velocity, which is obtained by interpolation. By not using an actual staggered cell, momentum

interpolation avoids the creation of staggered cell geometry and makes it possible to use the

idea for unstructured meshes.

An important point to be noted is that the discrete continuity equation is written in terms of

the face velocities ue and uw. It is not written directly in terms of the cell-centered velocities uP

and uE . Thus, at convergence, it is the face velocities that directly satisfy the discrete continuity

equation, not the cell-centered velocities. On the other hand, the cell-centered velocities directly

satisfy the discrete momentum equations. They satisfy the continuity equations only indirectly

through their role in defining ue and uw. This curious distinction between cell-centered and face

velocities is an inherent property of colocated schemes. Another important issue with momentum

interpolation is that the final solution obtained is dependent on the underrelaxation factor, and

for unsteady problems, it is time-step dependent. A strategy for avoiding this dependence may

be found in [46].

COMPUTATION OF FLUID FLOW 43

1.7.2 Solution Methods

Thus far, issues related to discretization of the continuity and momentum equations have been

examined. Attention is now turned to the solution of these equations.

One alternative is to employ a direct solution technique. The discrete continuity and momen-

tum equations over the entire domain may be assembled into a large algebraic system of the

form

Mφ = b (1.115)

where M is a matrix of size N × N × 4, and N is the number of grid points. For a colo-

cated formulation, the unknowns consist of the three velocity components and pressure at the

cell centroids of all N cells. This approach has not thus far been tenable for most practical

industrial problems with present-day computational power. However, the emergence of efficient

multifrontal solvers [13] have made this approach viable for specialized applications, and the

technique may find greater use in the future as computational power increases.

For practical CFD problems, sequential iterative solution procedures are frequently adopted

because of low storage requirements and reasonable convergence rate. However there is a dif-

ficulty associated with the sequential solution of the continuity and momentum equations for

incompressible flows. To solve a set of discrete equations iteratively, it is necessary to asso-

ciate the discrete set with a particular variable. For example, the discrete energy equation is

used to solve for the temperature. Similarly, the discrete u-momentum equation is used to solve

for the u velocity. If the continuity equation were to be used to solve for pressure, a problem

would arise for incompressible flows because the pressure does not appear in the continuity

equation directly. On the other hand, the density does appear in the continuity equation, but

for incompressible flows, the density is unrelated to the pressure and cannot be used instead.

Thus, if sequential, iterative methods are to be used, it is necessary to find a way to introduce

the pressure into the continuity equation. Methods that use pressure as the solution variable are

called pressure-based methods. They are very popular in the incompressible flow community.

A number of methods in the literature [29, 30] use density as a primary variable rather

than pressure. This practice is especially popular in the compressible flow community. For

compressible flows, pressure and density are related through an equation of state. It is possible

to find the density using the continuity equation, and to deduce the pressure from it using an

equation of state. Such methods are called density-based methods.

For incompressible flows, a class of methods called the artificial compressibility methods have

been developed, which seek to ascribe a small (but finite) compressibility to incompressible flows

to facilitate numerical solution through density-based methods [49]. Conversely, pressure-based

methods have also been developed, which may be used for compressible flows [5, 50, 51].

It is important to realize that the necessity for pressure- and density-based schemes is directly

tied to the decision to solve the governing equations sequentially and iteratively. It is this choice

that forces us to associate each governing differential equation with a solution variable. Other

methods, such the point-coupled technique of Vanka [34], require no such association.

Pressure-based Techniques: SIMPLE Algorithm For simplicity, the implementation

of pressure-based techniques is discussed in the context of a staggered storage scheme for

pressure and velocity. A detailed description for colocated storage on unstructured meshes may

be found in [6]. The starting point is the semi-implicit method for pressure-linked equations

(SIMPLE) [52], though a number of variants have been published over the years, such as

SIMPLER [1] and SIMPLEC [53].

44 SURVEY OF NUMERICAL METHODS

The primary idea behind SIMPLE is to create a discrete equation for pressure (or alternatively,

a related quantity called the pressure correction) from the discrete continuity equation. Since

the continuity equation contains discrete face velocities, it is necessary to relate these discrete

velocities to the discrete pressure field. The SIMPLE algorithm uses the discrete momentum

equations to derive this connection.

Consider the staggered mesh arrangement shown in Fig. 1.18. Let u∗ and v∗ be the discrete

u and v fields resulting from a solution of the discrete momentum equations. Let p∗ represent

the discrete pressure field, which is used in the solution of the momentum equations. Thus, u∗
e

and v∗
n satisfy

aeu
∗
e =

∑

nb

au
nbu

∗
nb + �y

(

p∗
P − p∗

E

)

+ be

anv
∗
n =

∑

nb

av
nbv

∗
nb + �x

(

p∗
P − p∗

N

)

+ bn (1.116)

Similar expressions may be written for u∗
w and v∗

s . If the pressure field p∗ is only a guess or

a prevailing iterate, the discrete u∗ and v∗ obtained by solving the momentum equations will

not, in general, satisfy the discrete continuity equation, Eq. (1.106). A correction to the starred

velocity field is proposed such that the corrected values satisfy Eq. (1.106). Correspondingly, a

pressure correction is also proposed. Thus,

u = u∗ + u′

v = v∗ + v′

p = p∗ + p′ (1.117)

An approximate correction equation modeled on Eqs. (1.116) is now proposed:

aeu
′
e ≈ �y

(

p′
P − p′

E

)

anv
′
n ≈ �x

(

p′
P − p′

N

)

(1.118)

The corrected velocities, given by Eq. (1.117), are required to satisfy the discrete continuity

equation, Eq. (1.106). Substituting in the discrete continuity equation, the pressure-correction

equation may be derived as

aP p′
P =

∑

nb

anbp
′

nb + b (1.119)

where

aE =
ρe�y2

ae

aW =
ρw�y2

aw

aN =
ρn�x2

an

COMPUTATION OF FLUID FLOW 45

aS =
ρs�x2

as

aP =
∑

nb

anb

b = ρwu∗
w�y − ρeu

∗
e�y + ρsv

∗
s �x − ρnv

∗
n�x (1.120)

The source term in the pressure-correction equation is the mass imbalance for the cell P . If the

face flow rates satisfy the discrete continuity equation (i.e., b is zero), p′ = constant satisfies

Eq. (1.120), and differences of p′ are zero. Thus, the velocity field is corrected only as long as

the velocity fields produced by the momentum equations do not satisfy continuity.

The overall procedure for the SIMPLE algorithm employs a sequential solution of the

momentum- and pressure-correction equations, correcting the velocities produced by the momen-

tum equations to satisfy the discrete continuity equation. A detailed description of the procedure

may be found in [1]. Even though pressure-based schemes were originally intended to address

incompressible flows, pressure as a variable is well-suited for the solution of compressible

flows as well. Segregated pressure-based algorithms for all-speed flows have been published

in [5, 50, 51].

Coupled Techniques Though segregated techniques have had a great deal of success in solv-

ing industrial problems, they can be slow to converge and may even diverge when interequation

coupling is strong. A number of researchers have developed more strongly coupled approaches

[34, 35, 54–56]. Among the earliest of these attempts is [34]. Here, a symmetric coupled

Gauss-Seidel iteration forms the relaxation sweep of a FAS multigrid scheme. A staggered

grid approach is used. The Gauss-Seidel sweep visits each main control volume, solving for

the four face velocities (in 2D) and the cell-centered pressure simultaneously, assuming neigh-

bor values to be temporarily known. Coarse-level meshes are created by grouping fine-level

cells together while retaining a structured Cartesian mesh. In an alternative approach, one of

the SIMPLE family of algorithms is used as the relaxation sweep in a FAS multigrid scheme

in [35, 55]. Nonorthogonal body-fitted meshes in a colocated formulation are addressed in [55],

whereas unstructured meshes are used in [35]; here, the coarsest mesh is generated first, and

progressively fine meshes are created by subdivision. An algebraic coupled multigrid scheme is

presented in [54]. Here, only the finest mesh is created, and coarse-level equations are found

from the algebraic manipulation of fine-level discrete equations. Substantial increases in the

rate of convergence have been reported in these papers, though with a storage cost. Despite

their promise, the use of coupled schemes still lags that of segregated solvers for more complex

physics, and the area remains ripe for future research.

1.7.3 Density-based Schemes

In incompressible flows, pressure is not a thermodynamic quantity and, as noted earlier, it does

not appear directly in the continuity equation. However, in compressible flows, it is directly

related to density and temperature through the equation of state. This fact has important conse-

quences for numerical solution procedures. The basic differences between incompressible and

compressible flow methods are best illustrated by considering the treatment of the convec-

tive terms. Consequently, attention will be focused only on the inviscid part of the governing

46 SURVEY OF NUMERICAL METHODS

equations. The analysis begins by writing the equations for mass, momentum, and energy con-

servation collectively in the following form

∂

∂t
(Q) + ∇ • (E) = 0 (1.121)

where Q is the vector of conserved variables and E represents the inviscid fluxes

Q =

ρ

ρu

ρv

ρw

ρE

, E =

ρu

ρu2 + p

ρvu

ρwu

uH

i +

ρv

ρuv

ρv2 + p

ρwv

vH

j +

ρw

ρuw

ρvw

ρw2 + p

wH

k (1.122)

This equation set, which is also referred to as the Euler equations, is closed by the equation of

state, and thermodynamic relations that relate the energy (E), enthalpy (H), density (ρ), and

pressure (p).

Equation (1.121) has the same form as the general transport equation, Eq. (1.6), except

that the transported variable is a vector and not a scalar. In principle, the same discretization

procedures described above for the scalar transport equation can be used. For example, a finite-

volume discretization of Eq. (1.121) can be written in a manner similar to Eq. (1.40) as

[

∂

∂t
(Q)

]

0

�V0 +
∑

f

Ef •A = 0 (1.123)

The unsteady term can be written in the same manner as Eq. (1.48). The main difference from

the scalar equation is in how the convective face fluxes, Ef , are evaluated. Unlike a passive

scalar, the face values for the conserved variable cannot be simply be computed using an

upwind scheme based on the convecting velocity field. This is because the Euler equations have

multiple characteristic directions along which different characteristic variables are propagated

with different speeds. The speeds are defined by the eigenvalues of the Jacobian matrix, A ≡

∂E/∂Q. For ideal gases, the eigenvalues are Vn + c, Vn (repeated thrice) and Vn − c, where Vn

is the face normal velocity and c is the speed of sound. For supersonic flow, Vn > c, and all

the five eigenvalues are positive. Therefore, the face flux can be written purely in terms of the

upwinded Q. However, for subsonic flow, one of the eigenvalues is negative. This means that

one piece of information at the face must come from the downwind cell and the other four from

the upwind cell.

A variety of schemes have been derived for computing the numerical fluxes that preserve the

physical properties of the Euler equations. All the schemes have a means of distinguishing the

contribution to the face flux from the left and right cell states. In flux-splitting methods [57, 58],

the fluxes from the left and right states are combined according to the eigenvalues of some

averaged state. In another class of methods, referred to as flux-difference splitting [59], the flux

is written as a sum of the averaged flux from both sides and a flux difference, which is typically

evaluated from an approximate solution of the Riemann problem formed by the difference of

the conserved variables. The ideas discussed in Section 1.5 for higher-order discretization of the

convective fluxes can be incorporated into these methods as well.

Once a numerical flux method has been chosen, the discrete set of equations can be solved

using either explicit or implicit schemes. For the former, a multistage Runge-Kutta type method

is usually employed, with the residual of the fluxes evaluated using the previous stage values

CLOSURE 47

of Q [28]. At each stage the conserved variables, Q, at each location are updated based on

the residual; all the other variables can then be computed using the auxiliary equations. This

time-marching process is also used for steady-state problems where the solution is updated till

it becomes invariant in time. These methods have restrictions on the maximum time step that

can be used because of the Courant-Friedrichs-Lewy (CFL) condition [26].

For implicit schemes, the residual is calculated in the same manner as for explicit schemes,

but in addition the fluxes are linearized with respect to Q so that a linear system of the same form

as Eq. (1.52) is obtained relating Q at any discrete location to the values of Q at neighboring

locations. Typically, the unsteady term is retained even for steady-state solutions; it serves the

same purpose as the underrelaxation that is used for the scalar transport equation. The resulting

matrix has the same sparse pattern as that for the scalar equations but instead of a scalar

coefficient, a dense block matrix of dimension 5 × 5 appears. Such a system can be solved

using the block-matrix equivalents of the methods used for scalar systems. Because of the

nonlinearity of the equations, iterations must be used even with an implicit coupled solution

procedure.

Density-based techniques are very efficient when used for transonic or supersonic flow

regimes. However, the pressure–velocity coupling problems discussed earlier for incompressible

flows are also encountered in these techniques when used for low-speed applications, both in

permitting checkerboarded pressure and velocity fields as well as in causing deterioration of con-

vergence rates. As the Mach number is decreased, the maximum allowable time step decreases,

making explicit time-marching methods impractical. The Jacobian A becomes singular in the

incompressible limit. Many approaches have been formulated to overcome this problem. Early

methods used an artificial compressibility idea to avoid the singularity [49]. Modern methods

use a preconditioning approach wherein the unsteady term in Eq. (1.121) is premultiplied with a

preconditioning matrix Ŵ such that the resulting system has well-behaved eigenvalues [60]. The

preconditioning matrix can also be tailored to incorporate ideas equivalent to the momentum

interpolation discussed in Section 1.7.1 to avoid the checkerboarding problem. In this process,

the temporal behavior of the equations becomes nonphysical since the unsteady term is modified

but the steady-state solution is a valid solution of the equations. When time accuracy is required,

dual-time-stepping schemes [61] are used wherein an additional physical time derivative term

is added and at each physical time step the system is iterated to convergence in the pseudo-time

variable.

1.8 CLOSURE

In this chapter, a survey of numerical methods to solve the equations for fluid flow and heat

transfer has been presented. The emphasis has been on widely used discretization techniques,

such as the finite-difference, finite-element, and finite-volume techniques. All these methods

are seen to have common elements, including mesh generation, discretization of the governing

equations, and solution of linear algebraic equations. These approaches also resolve checker-

boarding issues related to the storage of pressure vis-à-vis velocity with similar techniques.

The solution of incompressible flows using segregated as well as coupled techniques has been

reviewed, as have density-based techniques for compressible flows.

The chapters in the handbook expand on the material presented in this chapter. They are

divided into two sections. The emphasis of the first half is on the fundamental algorithmic

aspects. Detailed expositions on finite-difference and finite-element methods, boundary-element

techniques, control-volume based techniques, high-resolution spectral-element techniques, and

meshless methods are presented in Chapters 1–7.

48 SURVEY OF NUMERICAL METHODS

The overview in the present chapter has dealt primarily with the solution of equations gov-

erning heat conduction and convection phenomena. Chapter 8 addresses the use of the Monte

Carlo method for radiative heat transfer, a statistical technique employing particle-tracking ideas

quite different from the Eulerian techniques described in the overview. Chapter 9 also addresses

radiative transport, but the techniques described employ many of the discretization ideas dis-

cussed in the present chapter for the scalar transport equation. Chapter 10 expands on the

introduction to pressure-based techniques for fluid flow given here and Chapters 11 and 12

address modeling and simulation issues related to the computation of turbulent flows. Chapters

13–16 address a variety of enabling technologies related to CFD, including high-performance

computing, validation of CFD solvers and models, mesh generation, as well as the emerging

area of symbolic–numerical computations.

The emphasis of the second half of the handbook is on applications. In Chapters 17–27,

a wide variety of areas are addressed, ranging from biomedical applications and the thermal

management of data centers to materials processing applications. Two chapters, on microscale

heat transfer and molecular dynamics, address numerical methods for the rapidly evolving field

of micro- and nanotechnology. The handbook closes with an overview of available numerical

methods and their use, information on the resources available to both the user and the developer

of CFD software, as well as discussion of future research directions.

NOMENCLATURE

aP , anb coefficients of discrete equations, Eq. (1.52)

A area vector, Fig. 1.8

A Jacobian matrix

b source term in discrete equation, Eq. (1.52)

c speed of sound

Cv specific heat at constant volume

D diffusion coefficient of species l in mixture, Eq. (1.5)

Df diffusion flux on face f , Eq. (1.41)

e, w, n, s control-volume faces for structured mesh, Fig. 1.14

E,W, N, S neighbor cell centroid locations, Fig. 1.14

E total energy per unit mass, Eq. (1.3)

f control-volume face, Fig. 1.8

Ff mass flow rate on face f , Eq. (1.40)

Fx body force in x-momentum equation, Table 1.1

k thermal conductivity, Eq. (1.3); wave number, Eq. (1.92)

kt turbulent thermal conductivity, Eq. (1.3)

L length of calculation domain

ml mass fraction of species l, Eq. (1.5)

N number of grid points

Ni shape function, Eq. (1.20)

p static pressure, Eq. (1.2)

R residual, Eq. (1.17)

Rl volumetric source of specie l, Eq. (1.5)

P centroid of control volume, Fig. (1.7)

SC , SP components of linearized source term, Eq. (1.49)

Sh energy source per unit volume, Eq. (1.3)

Sm mass source per unit volume, Eq. (1.1)

REFERENCES 49

Sr radiation source per unit volume, Eq. (1.3)

Sφ source of φ per unit volume, Eq. (1.6)

S secondary diffusion term, Eq. (1.42)

T temperature, Eq. (1.3)

(u, v) Cartesian velocity components

Wi weight function, Eq. (1.18)

V velocity vector, Eq. (1.1)

(x, y) coordinate directions

�V volume of control volume, Eq. (1.40)

Greek Symbols

φ transported scalar, Eq. (1.6)

Ŵ diffusion coefficient, Eq. (1.6)

µ molecular viscosity, Eq. (1.2)

µt turbulent viscosity, Eq. (1.2)

 limiter function, Eq. (1.80)

ρ density, Eq. (1.1)

σm turbulent Schmidt number, Eq. (1.5)

REFERENCES

1. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.

2. J. Y. Murthy and S. R. Mathur, A Conservative Numerical Scheme for the Energy Equation, J. Heat

Transfer, 120, 1081–1085 (1998).

3. J. F. Thompson, B. K. Soni, and N. P. Weatherill (eds.), Handbook of Grid Generation, CRC Press, 1998.

4. O. C. Zienkiewicz, The Finite Element Method, Vols. 1–3, Butterworth-Heinemann, Oxford, UK, 2000.

5. K. C. Karki and S. V. Patankar, Pressure-based Calculation Procedure for Viscous Flows at All Speeds in

Arbitrary Configurations, AIAA J., 27, 1167–1174 (1989).

6. S. R. Mathur and J. Y. Murthy, A Pressure-based Method for Unstructured Meshes, Numer. Heat Transfer,

31, 195–216 (1997).

7. B. R. Baliga and S. V. Patankar, A Control-volume Finite Element Method for Two-dimensional Fluid

Flow and Heat Transfer, Numer. Heat Transfer, 6, 245–261, 1983.

8. C. A. Brebbia, J.C.F. Telles, and L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, Berlin,

1984.

9. A. J. Kasab and L. C. Wrobel, Boundary Elements for Heat Conduction, in W. J. Minkowycz and E. M.

Sparrow (eds.), Advances in Numerical Heat Transfer, Vol. 2, pp. 143–187, Taylor & Francis, New York,

2000.

10. J. D. Hoffman, Numerical Methods for Engineers and Scientists, Marcel Dekker, New York, 2001.

11. J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993.

12. K. H. Heubner and E. A. Thornton, The Finite Element Method for Engineers, Wiley, New York, 1982.

13. T. Davis, UMFPACK Version 4.1, University of Florida, Gainseville, Florida, April 2003.

14. W. Shyy, S. M. Correa, and M. E. Braaten, Computation of Flow in a Gas Turbine Combustor, Combustion

Sci. Technol., 58, 97–117 (1988).

15. W. Shyy and T. G. Vu, On the Adaptation of Velocity Variable and Grid Systems for Fluid Flow in

Curvilinear Co-ordinates, J. Comput. Phys., 92, 82–105 (1991).

50 SURVEY OF NUMERICAL METHODS

16. M. Peric, A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts,

Ph.D thesis, University of London, 1985.

17. C. M. Rhie and W. L. Chow, Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge

Separation, AIAA J., 21, 1523–1532 (1983).

18. T. E. Tezduyar, R. Shih, S. Mittal, and S. E. Ray, Incompressible Flow Computations with Stabilized

Bilinear and Linear Equal-order Interpolation Velocity–Pressure Elements, Technical Report, University of

Minnesota Supercomputer Institute Research Report UMSI90/165, 1990.

19. Y. Jiang and A. J. Przekwas, Implicit, Pressure-based Incompressible Navier-Stokes Equations Solver for

Unstructured Meshes, AIAA-94-0305, 1994.

20. L. Davidson, A Pressure Correction Method for Unstructured Meshes with Arbitrary Control Volumes, Int.

J. Numer. Methods Fluids, 22, 265–281 (1996).

21. I. Demirdzic and S. Muzaferija, Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress

Analysis Using Unstructured Moving Meshes with Cells of Arbitrary Topology, Comput. Methods Appl.

Mech. Eng., 125, 235–255 (1995).

22. C. Prakash, An Improved Control Volume Finite Element Method for Heat and Mass Transfer, Numer.

Heat Transfer, 9, 253–276 (1986).

23. S. K. Lele. Compact Finite Differences with Spectral-like Resolution, J. Comput. Phys., 103, 16–42 (1992).

24. C. H. Amon. Spectral Element Methods for Unsteady Fluid Flow and Heat Transfer in Complex Geome-

tries:Methodology and Applications, in W. J. Minkowycz and E. M. Sparrow (eds.), Advances in Numerical

Heat Transfer, Vol. 2, pp. 71–108, Taylor & Francis, New York 2000.

25. R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer-Verlag, New York, 2002.

26. J. C. Tannehill, D. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 2d

ed., Series in Computational Methods and Physical Processes in Mechanics and Thermal Sciences. Taylor

& Francis, Philadelphia, 1997.

27. B. P. Leonard, A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream

Interpolation. Comput. Methods Appl. Mech. Eng., 19, 59–98 (1979).

28. A. Jameson, W. Schmidt, and E. Turkel, Numerical Solution of the Euler Equations by Finite Volume

Methods Using Runge-Kutta Time-Stepping Schemes, AIAA 91-1259, June 1981.

29. C. Hirsch, Numerical Computation of Internal and External Flows: Computational Methods for Inviscid

and Viscous Flows, Wiley, New York, 1990.

30. C. B. Laney, Computational Gas Dynamics, Cambridge University Press, Cambridge, UK, 1998.

31. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, New York,

1996.

32. H. L. Stone, Iterative Solution of Implicit Approximations of Multidimensional Partial Differential

Equations, SIAM J. Numer. Anal., 5, 530–558 (1968).

33. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2d ed., SIAM, Philadelphia,

2000.

34. S. P. Vanka, A Calculation Procedure for Three-dimensional Steady Recirculating Flows Using Multigrid

Methods, Comput. Methods Appl. Mech. Eng., 55, 321–338 (1986).

35. R. Jyotsna and S. P. Vanka, Multigrid Calculation of Steady, Viscous Flow in a Triangular Cavity, J.

Comput. Phys., 122, 107–117 (1995).

36. B. R. Hutchinson and G. D. Raithby, A Multigrid Method Based on the Additive Correction Strategy,

Numer. Heat Transfer, 9, 511–537 (1986).

37. R. D. Lonsdale. An Algebraic Multigrid Scheme for Solving the Navier-Stokes Equations on Unstruc-

tured Meshes, in Proceedings of the 7th International Conference on Numerical Methods in Laminar and

Turbulent Flow, pp. 1432–1442, Stanford University, Palo Alto, CA, 1991.

38. A. Brandt, Multi-level Adaptive Solutions to Boundary Value Problems, Math. Comput., 31, 333–390

(1977).

REFERENCES 51

39. S. R. Mathur and J. Y. Murthy, Unstructured Finite Volume Methods for Multi-mode Heat Transfer, in

W. J. Minkowycz and E. M. Sparrow (eds.), Advances in Numerical Heat Transfer, Vol. 2, pp. 37–67,

Taylor & Francis, New York, 2000.

40. G. H. Golub and C. van Loan, Matrix Computations, Johns-Hopkins University Press, Baltimore, MD,

1990.

41. H. A. van den Vorst and P. Sonneveld, CGSTAB, a More Smoothly Converging Variant of CGS, Technical

report, Delft University of Technology, Delft, The Netherlands, 1990.

42. H. A. van den Vorst, BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution

of Non-symmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13, 631–644 (1992).

43. Y. Saad and M. H. Schultz, GMRES: A Generalized Residual Algorithm for Solving Non-symmetric

Linear Systems, SIAM J. Sci. Stat. Comput., 7, 856–869 (1986).

44. P. Hood and C. Taylor, Navier-Stokes Equations Using Mixed Interpolation, in J. T. Oden, O. C.

Zienkiewicz, R. H. Gallagher, and C. Taylor (eds.), Finite Element Methods in Flow Problems, pp. 121–132.

UAH Press, Huntsville, AL, 1974.

45. P. S. Huyakorn, C. Taylor, R. L. Lee, and P. M. Gresho, A Comparison of Various Mixed-interpolation

Finite Elements in the Velocity–Pressure Formulation of the Navier-Stokes Equations. Comput. Fluids, 6,

25–35 (1978).

46. S. Majumdar, Role of Underrelaxation in Momentum Interpolation for Calculation of Flow with Non-

staggered Grids, Numer. Heat Transfer, 13, 125–132 (1988).

47. C. Prakash and S. V. Patankar, A Control-volume Based Finite Element Method for Solving the Navier-

Stokes Equations Using Equal-order Velocity–Pressure Interpolation, Numer. Heat Transfer, 8, 259–280

(1985).

48. T. J. R. Hughes, L. P. Franca, and M. Becestra, A New Finite Element Formulation for Computational

Fluid Dynamics, V: Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation

of the Stokes Problem Accommodating Equal-order Interpolations, Comput. Methods Appl. Mech. Eng.,

59, 85–99 (1986).

49. A. J. Chorin, A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Comput. Phys.,

2, 12–26 (1967).

50. M. H. Kobayashi and J. C. F. Pereira, Characteristic-based Pressure Correction at All Speeds, AIAA J., 34,

272–280 (1996).

51. S. R. Mathur and J. Y. Murthy, All-speed Flows on Unstructured Meshes Using a Pressure-correction

Approach, AIAA 99-3365, Norfolk, VA, 1999.

52. S. V. Patankar and D. B. Spalding, A Calculation Procedure for Heat, Mass and Momentum Transfer in

Three-dimensional Parabolic Flows, Int. J. Heat Mass Transfer, 15, 1787–1805 (1972).

53. J. P. Van Doormaal and G. D. Raithby, Enhancements of the SIMPLE Method for Predicting Incompress-

ible Flow Problems, Numer. Heat Transfer, 7, 147–163 (1984).

54. M. Raw, Robustness of Coupled Algebraic Multigrid for the Navier-Stokes Equations. AIAA 96-0297,

1996.

55. K. M. Smith, W. K. Cope, and S. P. Vanka, A Multigrid Procedure for Three-dimensional Flows on

Non-orthogonal Collocated Grids, Int. J. Numer. Methods Fluids, 17, 887–904 (1993).

56. R. Webster, An Algebraic Multigrid Solver for Navier-Stokes Problems, Int. J. Numer. Methods Fluids,

18, 761–780 (1994).

57. B. van Leer, Toward the Ultimate Conservative Difference Scheme, J. Comput. Phys., 32, 101–136 (1979).

58. M. S. Liou and J. C. Steffen, A New Flux Splitting Scheme, J. Comput. Phys., 107, 23–39 (1993).

59. P. L. Roe, Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, J. Comput. Phys.,

43, 357–372 (1982).

60. Y. H. Choi and C. L. Merkle, Application of Preconditioning in Viscous Flows, J. Comput. Phys., 105,

207–223 (1993).

61. S. Venkateswaran and C. L. Merkle, Dual Time Stepping and Preconditioning for Unsteady Computations,

AIAA-95-0079, 1995.

