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Survey of Protocol Reverse Engineering Algorithms:
Decomposition of Tools for Static Traffic Analysis

Stephan Kleber Lisa Maile Frank Kargl

Abstract— Knowledge about a network protocol to understand
the communication between entities is necessary for vulnerability
research, penetration testing, malware analysis, network recon-
naissance, and network modeling. Traffic analysis is one approach
to infer a protocol, and this approach has specific challenges,
tasks, methods, and solutions. In this survey, we collect tools
presented by prior research in the field of protocol reverse
engineering by static traffic trace analysis. We dissect each tool to
discern the individual mechanisms and the algorithms on which
they are based, then categorize and contrast the mechanisms
and algorithms used in static traffic trace analysis to discuss
how successfully they were applied in each case.

To structure our discussion about the tools, we compared clas-
sification schemes for protocol reverse engineering. We present
and discuss an explicit process model for static traffic trace
analysis to reveal the common structure of the decomposed tools
and frameworks from previous research. Via discussions of the
algorithms applied within each tool, we show relations between
tools, methods, and the process for each process task. We validate
our model by applying it to each of the tools, then provide an
outline of the utility of protocol reverse engineering. Beginning
with the process description, we deduce which solutions and
algorithms have already been investigated and where challenges
remain to determine how new solutions may be researched in the
future. Across the entire field of protocol reverse engineering, few
implementations of tools and frameworks are publicly available,
which remains a prevalent problem.

Index Terms—Protocol reverse engineering, Communication
networks, Pattern recognition, Statistical analysis, Machine learn-
ing, Network security.

I. INTRODUCTION

Network protocols are intended to enable communication
between nodes. The communicating nodes are entities which
implement a shared protocol specification. In this context, a
specification defines how the receiver must interpret transmit-
ted data as well-defined information. It is necessary to under-
stand how systems are interconnected, what interdependencies
exist in a deployed network, and whether implementations of a
protocol work as expected in order to analyze any implications
that the communication has on functionality, performance,
and security of the network. Any analysis of a network is
based on knowledge of the occurring protocols’ inner work-
ings; however, being confronted with communication using
an unknown specification impairs the work of the network
researcher and practitioner. An analyst bound to work with
such a protocol will need to reverse engineer its specification
by monitoring network traffic or the communicating entities.
Numerous examples, such as security analyses of implantable
medical devices [1] or inference of botnet communication [2],
show that this reverse engineering task is tedious and time
consuming.

A. Basic Terms

Protocol reverse engineering (PRE) is intended to infer
an approximation of the protocol specification by observing
the communication. This inference goal sets PRE apart from
reverse engineering of executable program binaries (software),
which focuses on obtaining source code or an understanding
of a program’s implementation. PRE may, however, employ
reverse engineering of software, but it is not limited to these
kinds of analyses to infer the communication [3]. Therefore,
two main methods for learning the inner workings of a
protocol can be discerned: entity and trace analysis.

Entity analysis infers the protocol by applying software
reverse engineering to a node implementation (e. g., [4, 5]).
Entity analysis requires access to the program and its execution
environment in a way that allows the use of techniques
for software control flow analysis and memory introspection.
Often it proves impossible to either obtain the program or a
suitable execution environment for it; in both cases, techniques
for entity analysis are not applicable. In contrast, traffic
trace analysis resorts solely to analysis of the communication
that is observable in the link between entities; traffic trace
analysis remains possible in cases where reverse engineering
of the executable program is not feasible. Whereas such trace
analysis can only gain information from what can be observed
on the communication link, it is non-invasive and does not
require control over any entity.

The security assessment of an implantable cardioverter
defibrillator (ICD) requires several steps [6] and stands as an
example of a trace analysis task. Since the communication is
wireless with a proprietary physical layer, the radio frequency
transmission first needs to be recorded and decoded. The actual
PRE process begins after obtaining the transmitted bits, via
inspection of the trace to determine similar messages of the
same format, e. g., carrying patient data. By recognizing pat-
terns in the messages, like ASCII-encoded characters denoting
the patient name, the common format of the message type
may be revealed, and data fields in the message may thus
be inferred. Finally, valid message exchange sequences, like
the acknowledgment of the ICD’s telemetry data, need to be
determined.

Software reverse engineering techniques are fundamentally
different from traffic analysis. They require different methods,
a different set of tools, and a different kind of analysis process;
software reverse engineering techniques also require of the
analyst a specific type of experience. Moreover, the methods
necessary for entity analysis are common and well understood
beyond PRE [7]. We therefore focus our discussion on traffic
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Fig. 1: Strategy of this survey.

trace analysis, which is based only on captured network traffic.
Since this analysis is performed offline after recording, and
therefore without any interactive or dynamic analysis, we call
this approach static trace analysis (STA).

B. Lacking Automation of Protocol Reverse Engineering

The PRE process requires that an analyst brings a large
spectrum of knowledge and experience [8, 9, 10] to solve
its tasks. The approaches we discuss in this survey have
been proposed to support the PRE process by increasing the
level of automation, which reduces the requisite expertise
and increases coverage of the available information about
a protocol from traces. The field of automated mechanisms
has been attracting researchers for the last fourteen years,
starting with Beddoe [11] in 2004. Despite this constant effort,
however, no approach automates fully the whole PRE process.
Automation or semi-automation of individual tasks has been
proposed by each respective approach we included in this
survey; however, the discussion has mostly been applied to
each approach in isolation. Throughout the PRE community,
there is no detailed definition of the PRE process steps and
the challenges each presents. This hinders further discussion,
comparison, and research, but most importantly, it prevents the
widespread application of PRE automation and cooperation
among experts. This is due to the notion that intuitive strate-
gies, though casually accepted, tend to be baseless, incomplete,
and subjective. The subtasks of the PRE process can most
often be dealt with individually, but there exist dependencies
between steps; therefore, a structured process and method
description is of great interest for PRE as a common basis.

C. Strategy of this Survey

The overall strategy of this survey, as visualized in Figure 1,
is to examine the workflows of all proposed STA-PRE frame-
works and tools to deduce a common sequence of process
steps. We decomposed all surveyed tools into their contained
solutions and algorithms. From this decomposition approach,
for each process step, we then identify and discuss the utilized
solutions and algorithms.

After relating our survey to existing work on the system-
ization of PRE and general process descriptions in Section II,
we revisit known classifications of (semi-)automated static
traffic analysis tools in Section III as basis of our discussion.

Section IV highlights the PRE workflow tasks, which each
of the previously proposed tools addresses. Deducing from
this task analysis, we introduce a process model implicitly
common to all (semi-)automated tools and discuss various
known adaptations of this model in Section V. Applying
our model to all revisited tools, we dissect each into their
underlying solutions and algorithms, map these to the tools,
classify them, and discuss their utility for the use case in
Section VI.

In this survey, we focus on automated and semi-automated
approaches and tools since manual analysis is cumbersome
and based mostly on analyst intuition, rendering it highly
individual, burdened by the drawbacks inherent to a subjective
approach. The analysis of software has a completely different
set of challenges, and thus the processes are not comparable.
We therefore leave the discussion of software analysis tech-
niques for PRE to a future discussion.

II. RELATED SURVEYS AND OVERVIEW

In 2006, Rauch [12] discussed automation of PRE and
identified the steps necessary to reduce repetitive work by
humans in the PRE process. The tool he presented at BlackHat
was never published, so that no perpetual improvements for
the PRE field could be gained. Over a decade later, the
typical PRE process is still most often performed manually,
although in the meantime several approaches with different
levels of automation were proposed (e. g., Cui et al. [13],
Antunes et al. [14], Krueger et al. [15], and Bossert et al. [16]).
These new approaches have received only isolated discussion,
and a more general understanding of the underlying common
process and the algorithmic foundation of their functionality
were never discussed. We argue that a structured identification
of interdependencies of common procedures, algorithms, and
solutions is needed. Several approaches have been proposed
to improve static trace analyses by increasing the amount of
automation in the process (e g., [13, 14, 15, 16, 17]). However,
to the best of our knowledge, the present contribution marks
the first extensively structured process description and method
discussion.

There do exist a few previous works that survey the PRE
field, each covering specific aspects. We discuss all known
surveys and compare them in the following paragraphs and
Table I. As first of its kind, the survey by Li and Chen
[8] provides a selective view of PRE by revisiting seven
analysis tools, four static traffic analysis approaches [11, 13,
18, 29], referring to them as network-based, and four entity
analysis approaches [36, 37, 38, 39, 40], naming them hybrid
and binary-based. Li and Chen classify goals of PRE into
obtaining knowledge about functions, messages, syntax, and
the state machine of a protocol; but the study lacks an in-depth
comparison of the listed concepts.

Narayan et al. [9] are considerably more verbose and
provide a thorough classification of approaches. Their survey
is broad and provides many valuable insights, but contains few
details on the employed algorithms. In addition, not all existing
tools for static traffic analysis are covered. On the other hand,
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Surveyed STA-Tools

PI [11] (2004)
RolePlayer [18] (2006)
Discoverer [13] (2007)
Whalen et al. [19] (2010)
Biprominer [20] (2011)
ProDecoder [21] (2012)
Li et al. [22] (2015)
FieldHunter [23, 24] (2015, 2016)
Cai et al. [25] (2016)
PRE-Bin [26] (2016)
Xiao et al. [27] (2016)
NEMESYS [28] (2018)
ScriptGen [29] (2005)
PEXT [30] (2007)
Trifilo et al. [31] (2009)
Veritas [32] (2011)
PREUGI [33] (2017)
AutoFuzz [34] (2010)
ReverX [14] (2011)
ASAP [35] (2010)
PRISMA [15] (2012)
AutoReEngine [17] (2013)
Netzob [16] (2014)

Goal/Contribution

describe tools
discuss tools
compare and categorize tools
evaluate tools
decompose tools to algorithms
discuss and compare algorithms
synthezise process model
future work for algorithms

TABLE I: Comparison with related survey articles

Narayan et al. address not only static traffic analysis but also
entity analysis; therefore, their work is broader than ours.
Their survey discusses eleven trace and thirteen entity analysis
approaches, naming them network trace and dynamic analysis
tools, respectively. They define syntax and state machine as
components of a protocol specification and categorize ap-
proaches accordingly. The survey offers a compact outline of
the three aspects “correctness,” “conciseness,” and “coverage”
as metrics for the quality of PRE results, as adopted from
Cui et al. [13]; an inference is correct if each format is not
recognized as multiple different ones. An inference is concise
if an inferred format matches not more than one true type
or state; finally, the coverage of an inference is high if each
message in the available input data is reflected by at least one
format or state in the inference. In the following discussion
we use the terminology for protocol elements suggested by
Narayan et al.

Duchêne et al. [10] provide a very recent survey that
discusses nine traffic-based (“network based”) and seventeen
entity-based (“application based”) tools. Their survey distin-
guishes “passive” and “active” approaches, where passive is
the analysis of observed static data and active performs the
analysis by controlled execution. The previous publication of
Duchêne et al. [41] had already introduced the steps “obser-
vation,” “pre-processing,” and “inference,” which the authors
use here [10] to discuss the main challenges of PRE. They
classify approaches by the message type inference method,
the message format model, the behavior (“grammar”) model,
and whether the inference is active or passive. The survey
presents at a glance the main contributions of each tool for
PRE as a research field at one glance. Although Duchêne et al.
introduce multiple steps of PRE, they classify and discuss
the tools only by the methods used in the inference step.
In comparison, we extend the definition of steps to a full
process model of eight steps and characterize all surveyed
tools according to the mechanisms and algorithms that each
applies in each step individually. Thus, our discussion focuses
on the concrete specific algorithms and methods employed
by each tool for each step, while Duchêne et al. provides a
high-level comparison of the different main types of solutions
available for each inference step.

Bossert et al. [16] introduce and evaluate their own approach
Netzob, but also compare it empirically to Discoverer [13],
ScriptGen [29], and ASAP [35]. They do include a detailed
analysis of the inner workings and employed algorithms of all
three tools, but they do not discuss the other approaches in
the same manner.

The present work provides a detailed, step-by-step process
description, going well beyond the tasks in existing surveys,
which all are limited to message type identification, format
inference, and state machine construction. While Duchêne
et al.’s three-step model of PRE is based on an idea similar
to ours, it is not detailed enough to enable a comparison of
the methods based on an underlying common process model.
We provide this detailed process description, step-by-step,
then discuss it and base the comparison of methods on it.
In our work, we discuss thoroughly the PRE process, which
we compiled from all surveyed works.

It is important to note that our focus does not lie on
the monolithic tools themselves, their overall contributions,
and their applicability, as this has been done extensively in
the surveys of Li and Chen, Narayan et al., and Duchêne
et al. Instead, we decompose each tool into its employed
algorithms and methods, since those are the foundation of the
tools’ functionality. We classify, discuss, and compare these
algorithms and methods per step. We argue that this more
detailed look at PRE enables researchers to better understand
the algorithms and methods used in the different steps of PRE,
which should inspire new approaches via new combinations
or by introductions of new algorithms.
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Fig. 2: Use cases for the analysis of unknown communication.

III. CLASSIFICATION OF

PROTOCOL REVERSE ENGINEERING TOOLS

Several concurring classifications of PRE are possible. The
general discrimination that we also used to define the scope of
this survey is derived from Li and Chen [8]. They differentiate
between PRE based on static traffic and entity analysis. They
also offer the notion of a hybrid approach, which we, however,
interpret as entity analysis that additionally incorporates traffic
analysis. Therefore, we do not include these hybrid approaches
in this survey, since they use distinctly different executable
analysis methods, as argued above.

Another classification scheme is based on the target use

case of the result, for which four general use cases of PRE are
common, illustrated in Figure 2. First, during malware analysis

it is required to understand whether and how malware com-
municates to its masters, especially for information leakage

discovery and in botnet analysis where bots are capable of two-
way communication with a Command and Control Server [2].
Second, alternative protocol re-implementations of proprietary
or legacy protocols require the protocol specification, which is
unavailable and can only be deduced through observation of
genuine communication partners. Samba was developed this
way [42] as a substitute for an SMB/CIFS-server. PRE also
helped in recovering shutdown online-services [43].

Third, proprietary protocols with undisclosed specification
are commonly used in network and point-to-point connections
for industrial control systems and the Internet of Things.
It is common for business customers to require security

assessments of purchased products before they are deployed
in their network. To estimate the protocol design quality [1,

44], to validate the compliance of the implementation to
legal and organizational requirements [1, 45], and to discover

vulnerabilities [1, 46, 47] requires a depth of understanding
of the protocol, which is typically not intended by the product
vendor, i. e., the vendor does not entrust the original protocol
specification to the customer. Wireless control links for med-
ical implants are an example of proprietary communication
protocols that need to be assessed for a thorough security
analysis of an IT-infrastructure or device [1]. A common task
in security assessments is to specify a honeypot- or fuzzer-
configuration. The manual modeling of a protocol, even for
a known specification, may be too great an effort. Therefore,
resorting to PRE helps to instead generate the model [15, 47].

Finally, various means for modeling of networks are used
to identify the source of network problems in terms of func-
tionality or performance and to discern between normal and
irregular behavior during network monitoring with the goal
of anomaly detection [48]. Protocol implementation quality

assessment investigates discrepancies between specification
and implementation of known protocols that may lead to
incompatibilities and security vulnerabilities [44]. Obtaining a
meaningful model requires the inference of the actual protocol
primitives. The type of target use case subsequently determines
the kind of necessary information about the protocol and the
desired level of detail.

In this survey we classify tools based on the portion of

the protocol model that is the analysis goal: Protocol parts
that are of interest denote our first two categories (A) message

format (Section IV-A) and (B) behavior (Section IV-B). In
addition, there are tools that include both aspects of PRE,
which we subsume into a third category, (C) format and

behavior (Section IV-C). This classification scheme, which
we apply to STA frameworks and to tools, is illustrated in
Figure 3. To support this classification, we relate use cases to
the named categories. The use case of each PRE approach also
governs the portion of the protocol under test that is required to
be reverse engineered. Since a protocol specification consists
of multiple parts, protocol reverse engineering tools may target
a specific part depending on the use case. Common targets are
either the message format or the protocol behavior. The format
describes the syntax of the byte sequence of a message, typ-
ically by denoting protocol fields and thereby structuring the
contained data. The protocol behavior characterizes sequences

A. Inference of

Message Formats:

Section IV-A

B. Reconstruction of

the Behavior Model:

Section IV-B

C. Deduction of

Format and Behavior:

Section IV-C

Fig. 3: Classification of Static Traffic Analysis Tools
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of messages to be valid and meaningful, like a message
for retrieving data only being successful after a valid login
message. Whether format or behavior is relevant is a central
aspect of the analysis; known in advance, this may be used
to decide which tools to choose. Therefore, we selected the
supported tasks of the approaches as high-level categorization,
as Narayan et al. [9] and Duchêne et al. [10] also proposed.

IV. FRAMEWORKS AND TOOLS

In this section, we present an overview of all existing tools
or frameworks of static traffic analysis and elaborate on the
tasks that are covered by each approach. For each tool, we
outline in brief its assumptions, the tasks the tool addresses,
and the tool’s functionality. We focus on a decomposition
approach to (1) derive common steps from all surveyed tools
(Section V), and (2) identify and describe the algorithms and
methods implemented in each tool (Section VI). We therefore
do not provide a general discussion about the tools themselves
but only a brief introduction. Thorough reviews of their overall
contributions and applicability is provided in Narayan et al. [9]
and Duchêne et al. [10].

As stated in the previous sections, static traffic analysis
(STA) approaches work solely based on offline analysis of
recorded network traffic traces. Within our scope of STA, we
differentiate all STA approaches into those addressing only
message formats, those addressing only the behavior model
of the protocol, or those addressing both.

All mentioned approaches typically require the identifica-
tion of message types as essential information even before the
different formats of each type are inferable. Some approaches
also provide solutions for additional analysis tasks, such as
semantic deduction. We will highlight in detail these internal
concepts and functionalities in the subsequent sections and
then draw further conclusions.

A. Inference of Message Formats

In protocol reverse engineering, the following tools con-
centrate on the message format. This part of the protocol
specification may be regarded on its own, since the message
format is already sufficient, depending on the use case. Such
use cases may require only an understanding of the message
format, without knowing the meaning of the message, its
contents, and the circumstances that determine them. For
instance, this is true for fuzzing or for deep packet inspection
by intrusion detection systems.

1) Protocol Informatics (2004): Beddoe [11] is considered
the pioneer of automated PRE, due to proposing Protocol
Informatics1 (PI). He first applied sequence alignment algo-
rithms, designed to align amino-acid sequences for bioinfor-
matics, in static traffic analysis to infer message formats.
A remarkable number of subsequent approaches base their
analysis at least in part on the general ideas of PI; these include
RolePlayer, Discoverer, the tool by Whalen et al., ProDecoder,
ScriptGen, PEXT, AutoFuzz, and Netzob, all of which will

1see http://www.4tphi.net/~awalters/PI/PI.html for PI’s implementation

be presented within this section. PI is intended to be applied
to a large number of network traces of one protocol under
test. It identifies message types by clustering and infers each
independent message format by sequence alignment.

2) RolePlayer (2006): RolePlayer’s [18] purpose is the
adaptive replay of application communication. Basically, it
allows for a previously seen portion of communication to be
replayed in a different context. To that end, RolePlayer uses
single messages from traces to determine a template for reply-
ing to a seen message. Since no statistical variance in values
can be observed in comparing only two messages, heuristics
and human effort are employed to determine message fields
of interest. Finally, sequence alignment is applied to a pair of
messages to find variable fields.

3) Discoverer (2007): Discoverer was a project conducted
by Cui et al. [13] at Microsoft Research2 for reverse en-
gineering of application-level message types and formats.
Discoverer’s design goal is a fully automated analysis from
network traffic traces only, without the need for any additional
information about the protocol. The concepts of RolePlayer
were employed in Discoverer, and its sequence alignment
techniques are closely related to Beddoe’s work [11]. Since
Cui et al. argue that parameters for sequence alignment are
difficult to determine, especially for variable-length fields, they
propose an alternative for both: clustering and field inference.
As a solution, they introduce a type-based alignment algorithm
using the distinction between sequences of bytes in the range
of ASCII-encoded values in contrast to arbitrary byte values
to determine message formats and types.

4) Whalen et al. (2010): This an alternative approach to
specifically analyze message formats of static traffic traces.
Whalen et al. promote the use of probabilistic graph models
to enhance the inference of message formats. The tool requires
an initial separation of sequences common throughout similar
messages, which can be provided by sequence alignment. The
authors give a comprehensive introduction to the utility of
hidden Markov models (HMMs) for automated protocol learn-
ing, thus they derive ǫ-machines, which provide deterministic
transitions between states, while the states then represent parts
of a message format in graph representation.

5) Biprominer (2011): Biprominer (BInary PROtocol
MINER) [20] specializes in the format extraction of binary
protocols. The analysis process performed by Biprominer con-
sists of a learning phase, iteratively alternating with a labeling
phase, finalized by the generation of a transition probability
model. It realizes a statistical analysis of the messages to
identify common byte values sequences as format building
blocks, representing protocol field candidates.

6) ProDecoder (2012): ProDecoder [21] was designed in
2012 to address the limitations of Discoverer in inferring
the message types and formats of communication protocols.
Compared to Discoverer, it is intended to be applicable to
asynchronous protocols; it does not assume that a fixed number
of leading bytes of a message are distinctive for a message
type, and it does not assume the existence of delimiters.

2The same team developed the entity analysis tools Polyglot [4, 36],
Dispatcher [49], and Replayer [50]
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Proposed by the same team of authors, ProDecoder is con-
ceptually similar but internally unrelated to Biprominer [20].
At the same time, ProDecoder outperforms Biprominer due to
its support for keyword-based, human-readable protocols. The
identification of message types is accomplished by clustering
messages according to common keywords across a subset of
messages. Afterwards, within each cluster, the message format
is derived using progressive sequence alignment.

7) Li et al. (2015): Li et al. [22] present a method similar to
ProDecoder that determines common message parts for then
deducing message types that derive from them. Afterwards,
they use association analysis to discover relations between
the extracted keywords. Thus, they extract words that occur
frequently and that are strongly related, and thus may represent
the message type; but the authors do not, however, investigate
the contents of other parts of the messages nor do they use a
clustering strategy.

8) FieldHunter (2015 and 2016): Bermudez et al. [23,
24] developed a tool to specifically extract fields and their
types. Depending on the protocol type, they extract fields by
identifying delimiters as frequent non-alphanumeric sequences
or by dividing messages into tokens according to the inferred
field type. Afterwards, they identify message type fields and
other semantic meanings by calculating the entropy and then
check for causal relations of fields. As a foundation for their
assumptions about typical field characteristics, the authors in-
vestigated common protocols. They deduced design decisions
for fields in these protocols to obtain hypotheses on field sizes
and behavior.

9) Cai et al. (2016): An idea similar to Whalen et al. [19]
for extracting message formats was proposed by Cai et al. [25],
relying completely on Markov Models. In contrast to Whalen
et al., the new approach requires no previous knowledge of
field boundary candidates. Therefore, Cai et al. transfer all
messages into a complete Hidden Semi-Markov Model of
single bytes and map the underlying Markov process to fields.
Afterwards, message types are inferred by clustering messages
according to their message format.

10) PRE-Bin (2016): Tao et al. [26] developed the tool
PRE-Bin, which extracts the message format of specific com-
mon protocols. They proposed a completely new approach for
identifying different message formats: PRE-Bin uses clustering
for format inference and proposes a silhouette coefficient to
determine the optimal number of clusters. Then it derives
indications on field boundaries by sequence alignment which
the authors adapted to the special characteristics of their target
protocols. In the last step, a Bayesian model determines the
most likely positions of field boundaries by analyzing the
frequency of gaps in the message alignments.

11) Xiao et al. (2016): Xiao et al. [27] discussed the
challenge of format extraction. They describe a method for
keyword identification by the frequency analysis of field
contents. The approach relies on the separation of fields by
delimiter characters.

12) NEMESYS (2018): Kleber et al. [28] propose
NEMESYS as a method of structure inference for binary
protocols. It derives field boundaries of individual messages
from the distribution of value changes in the byte sequence.

B. Reconstruction of the Behavior Model

The following approaches focus on the reconstruction of the
behavior model of a protocol, which is also known as protocol
grammar or state machine. For the emulation of a protocol,
e. g., as a honeypot, the understanding of the behavior is
sufficient to reply to a message, in a way similar to an already
observed message exchange. Use cases requiring replay of
message sequences can also be served this way.

1) ScriptGen (2005, 2008): ScriptGen’s [29] main purpose
is to generate honeypot scripts by analyzing static traffic traces.
The generated scripts may then be deployed on a honeypot
to serve a protocol not even known to the security tester.
ScriptGen was the first tool tailored to building the state
machine of a communication protocol from traffic traces. Leita
et al. embedded their work into SGnet [51], a distributed
honeypot deployment. ScriptGen builds a state machine of ob-
served message sequences, which is simplified and generalized
afterwards. ScriptGen therefore merges common transitions
and states according to clusters determined by means of PI
and Region Analysis, one of its own contributions.

2) PEXT (2007): Shevertalov and Mancoridis [30] de-
signed PEXT to infer the behavior model of the actual
operation of a protocol by static traffic analysis. PEXT clusters
messages to identify message types, which are used as states
for the behavior model; it derives and minimizes a protocol
state machine from the states cited above.

3) Trifilo et al., (2009): An approach to extract a state
machine of the behavior for binary protocols from static traffic
traces was proposed by Trifilo et al. [31]. The approach
compares byte values at the same position across messages for
their variance and thus identifies bytes, which then determine
the message types. The basic idea is that only certain fields of
a protocol message define the message type, and those fields
can be used to create and refine a behavioral model.

4) Veritas (2011): Veritas [32] is an approach to automat-
ically infer protocol behavior from network traces; it was
conceived in 2011 by Wang et al. Veritas extracts the protocol
state machine, without any knowledge about the protocol,
using statistical methods for clustering and defining states.
Veritas introduced its own state model to describe the protocol
state machine in a probabilistic manner.

5) PREUGI (2017): Xiao and Luo [33] proposed PREUGI,
a scheme to derive a protocol state machine. The performed
grammatical inference is based on the concept of error-
correction in combination with the statistical probability of
message sequences. The approach contains a method for
simplification of the state machine to remove redundant states
using negative samples.

C. Deduction of Format and Behavior

The following approaches are designed to infer all main
protocol specification parts: Message types, message formats,
and the behavior model. Some approaches also presented ways
to support basic semantic deduction of message content.
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1) AutoFuzz (2010): The first tool which aims at deriving
both message format and state machine of unknown proto-
cols is AutoFuzz [34]. It was not designed primarily as a
PRE approach, but for smart-fuzzing the implementations of
an unknown protocol to identify unexpected behavior and
potential security vulnerabilities. AutoFuzz therefore works
as a proxy server that needs to be configured at an active
client and server to extract the state machine of a protocol
and to infer the message formats. Using the inferred protocol
model, AutoFuzz acts as a smart fuzzer to test protocol
implementations of communication nodes by manipulating
messages and communication sessions.

2) ReverX (2011): Antunes et al. [14] introduced ReverXto
infer format and state machine of a protocol from network
traces; it does so by constructing and generalizing one state
machine, representing the formats, and another state machine
for the protocol behavior. The approach is limited to text-based
protocols, while the authors proposed a set of small changes
to support binary protocols in the future.

3) PRISMA (2012), extending ASAP (2010): PRISMA
(“PRotocol Inspection and State Machine Analysis”) [15]
presents a method to infer a stateful model of a protocol based
on the analysis of recorded traffic. This model is intended
to simulate valid communication of the inferred protocol for
use in malware analysis and the deployment of honeypots.
The approach includes the inference of the protocol behav-
ior, message format, and field semantics. Whereas Whalen
et al. apply a probabilistic graph model for syntax inference,
PRISMA contains a probabilistic approach to model the proto-
col behavior. It was developed by Krueger et al., incorporating
their earlier work called ASAP [35] (“Automatic Semantics-
aware Analysis of network Payloads”, 2010). The inference of
field semantics is addressed by the discovery of information
propagated between protocol states.

4) AutoReEngine (2013): AutoReEngine [17] is based on
keyword extraction to identify message types and formats,
thus it derives states of the protocol behavior. Since this tool’s
analysis method is to identify high-frequency strings, only the
most prevalent message contents are considered as keyword.
Likewise, only message sequences which prove most frequent
are retained to describe the behavior. Thus, the resulting model
may be considered an intermediate result on which to base a
more targeted protocol analysis.

5) Netzob (2014): Netzob is a tool crafted specifically to
support an analyst throughout the process of protocol analysis.
It is the most versatile and production-ready tool publicly
available, capable of message type and format inference,
behavior model reconstruction, some semantic deduction, and
even protocol simulation. Netzob’s architecture offers different
methods and provides an easily extensible framework to match
the great diversity of real network traffic. Moreover, Bossert
et al. [16] presents its own enhanced clustering and sequence
alignment approach, based mostly on Beddoe’s concept [11],
and an innovative dynamic traffic analysis for the behavior
model reconstruction.

A.

B.

C.

D.

E.

F.

G.

H.

Preparation

Data Collection and Preprocessing

Feature Extraction

Message Type Identification

Message Format Inference

Semantic Deduction

Behavior Model Reconstruction

Processing of Results

Fig. 4: Illustration of the process steps

V. STATIC TRACE ANALYSIS PROCESS MODEL

In the previous section, we reviewed tools concerning
static traffic analysis. By identifying and correlating all the
tools’ building blocks, we determined the common process
model, which we present in the current section. The Appendix
provides graphical representation of all the discovered tools’
and frameworks’ building blocks and the mapping to each of
the process steps of our model.

The protocol reverse engineering process model, which we
present in the current section, is one of the contributions of
our paper. It is deduced from the surveyed literature as the
common foundation of the sequence of tasks to be performed
during PRE using static traffic analysis. Although it may
appear to be the natural thing to do, no explicit process model
has ever been established as a reference for all approaches.
Consequently, no classification according to a common process
model has been possible, which hinders comparison and
understanding.

We define the purpose of each step of the process and
conceptually describe methods that are applicable to each step.
At the end of each subsection (in Challenges), we discuss
caveats, lessons learned, and practical experiences that an
analyst will need to perform the analysis step; this discussion is
intended to provide higher-order insights about the challenges
of each step. After we have introduced and discussed all eight
steps, we provide, at the end of this section, a mapping of
the functions of the surveyed state-of-the-art tools to the steps
they perform within the newly outlined process model.

An outline of the steps—also illustrated in Figure 4—is
as follows: Before starting a new analysis, preparations must
be made. Data, particularly traffic traces, must be collected

and preprocessed. Features must be extracted from each
message to determine similarities between messages. Message

types must be identified and their formats inferred. Observed
messages are abstracted towards general message types to
represent them as groups of similar messages. Semantic com-
prehension, deduced from correlations in messages, profits
from correctly inferred message formats. Finally, the recon-
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Byte 1-4 5-6 7 8 9 10 11-12 13-15 16

01 9d401cd8 0000 00 00 00 00 0000 c0a801 03

02 0000000a 0000 80 00 00 00 0000 c0a801 65

03 4f214e45 0000 80 00 00 00 0000 c0a801 66

04 8940fa36 0000 80 00 00 00 0000 c0a801 67

05 07911c2a 0000 80 00 00 00 0000 c0a801 68

06 a55cb819 0000 00 00 c0a80166 c0a801 66

07 36499f6c 0000 00 00 c0a80167 c0a801 67

08 ac3f2106 0000 00 00 c0a80168 c0a801 68

09 0a4da00f 0000 00 00 c0a80169 c0a801 69

10 8940fa36 0000 00 00 c0a801 6700000000

Fig. 5: Different kinds of misinterpretations in the field struc-
ture of an excerpt of messages of the binary protocol DHCP.

struction of the protocol behavior model identifies sessions and
associates message types with protocol state transitions. The
results need to be processed to prove suitable for the respective
use case. Several approaches propose repeating certain steps
multiple times to refine findings.

A. Preparation

1) PURPOSE

The purpose of this first step is to define the desired result

of the analysis. The analysis goal may be a required level of
correctness, conciseness, and coverage of any of these aspects:
message type identification; message format inference; seman-
tic deduction; or state machine generalization. This guides
the selection of methods and their parameters in subsequent
steps. Moreover, available knowledge about the protocol and
the environmental context in which it is observed, are assessed.
This facilitates a more efficient analysis and aids in estimating
whether the defined analysis goal can actually be reached.

2) METHODS

The preparation can be categorized into two aspects: assess-
ment of information and the scope of the analysis.

a) Assessment of Information: A protocol might com-
pletely lack specification or it may be sparsely documented.
Furthermore, an informal specification in natural language
(e. g., RFC) may be available, while the effort to formalize
it is too high. On the other hand, the specification may be
available but the implementation may be unknown [44].

Another source of information is the diversity produced by
the context of the communication. Diversity in the message
content is necessary to find structure, and it provides additional
information, especially for semantic deduction of values and
behavior. Consequences of missing diversity are illustrated in
Figure 5: In the example, the series of zeros (red boundary)
are erroneously aligned with the unrelated 8th byte of other
messages also having a value of zero. Actually, these zeros
of bytes 9 to 12 are part of an unset IP address field.
Considering Figure 5, all of the IP addresses are from a local
subnet (192.168.1.0/24 reading c0a801 in hex), leading to the
interpretation of a static field 09 and one subsequent variable
byte.

b) Define Scope: A well-defined goal determines the
desired level of detail, e. g., if it is necessary to know the
address semantic of fields or if it suffices to know that these
are 4-bytes long. IP addresses are examples for fields with
such semantics and are shown in Figure 5 at bytes 9 to 12 and
13 to 16. Furthermore, the goal needs to include measurable
criteria of the quality of the results. For a protocol with at
least a partly known specification, like the number of message
types, fields per message type, or interrelations of states, it
is possible to define quantitative criteria. As such criteria,
Narayan et al. [9] adopt the evaluation metric of Cui et al.
[13] to compare the inferred protocol with the specification to
determine correctness, conciseness, and coverage aspects for
the identification of message types.

3) CHALLENGES

To prevent futile analysis attempts, general limitations of
STA should be considered. For instance, compression or
encryption may be prohibitive. If a first inspection of the
raw trace data exhibits discernible patterns (e. g., Figure 5),
no encryption or compression is expected. Both encryption
and compression prevent a superficial preliminary analysis:
If the message is compressed and the employed algorithm is
unknown, patterns can be too obstructed to extract information
from them, although the information is present in the trace.
Encrypted messages can only be analyzed if the clear-text
message can be obtained. This can be accomplished in two
ways: If it is possible to manipulate the sending or receiving
binary, messages may be gathered before or after encryption in
the entity [10]. This approach requires memory introspection
during the runtime of a program and is therefore not a method
of static traffic analysis. Alternatively, a proxy can be used
to record the decrypted messages by performing as Man-in-
the-Middle between two genuine entities [46]. These methods
require control over either the entities’ execution environment
or over the network topology.

Although the quality of the subsequent analysis steps de-
pends considerably on the diversity of the context, especially
the networking environment, no decisive set of parameters
can be outlined here since there has been no investigation on
the implications of the Preparation step. Instead, current ap-
proaches still rely much on human intuition. However, working
with a distinct set of preparation parameters while considering
the analysis goal would prove helpful in deciding about how
much effort to make. Moreover, a structured preparation is
beneficial in selecting methods and process steps to employ
for the analysis.

B. Data Collection and Preprocessing

1) PURPOSE

This step of the PRE process provides and prepares specimens
of the unknown protocol for the analysis. The data on which
the analysis is based is either a previously recorded network
trace, or if possible, traffic recorded in a network by the
analyst himself. Therefore, this step comprises of setting up a
network environment and recording traces, if this is possible,
and furthermore reconstructing or defragmenting, filtering, and
selecting parameters for further steps.
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2) METHODS

Typically, packet sniffers, like Wireshark3 or tcpdump4, are
used to capture network traffic. To gain enough diversity for
good coverage of valid messages and of content, the more
data that can be gathered, the better the inference can become.
However, capturing duration and performance considerations
will limit the amount of obtainable data.

The identification of individual messages of the target proto-
col may not be obvious, depending on whether encapsulation
of the protocol provides a virtual connection or allows for
fragmentation. Therefore, if present, fragmented messages
must be reassembled. If fragmentation information from an
encapsulating protocol is unavailable, time gaps between mes-
sages can be used as a heuristic [15].

Unique messages that are too special and dissimilar from
other messages must be eliminated since they tend to bias
pattern recognition and thereby reduce the quality of the
result. Figure 5 illustrates this in the last bytes of the last
message, which were misaligned in this example since the
last message was previously misclassified to be of a non-
matching DHCP message type. Duplicates, retransmissions,
and obviously invalid messages must be removed. Finally,
interfering foreign communication and lower layer artifacts
like acknowledgments must be filtered (e. g., using Wireshark).
This works well in a controlled environment with no other
traffic but might otherwise be incomplete.

3) CHALLENGES

Although unknown protocols are the target of reverse engineer-
ing, some information is necessary as parameters for further
analysis steps. Whether known, derivable, or guessed, the ana-
lyst has to obtain these parameters. One important information
for the selection of the suited tool and its parameters is whether
the protocol type is binary or textual. A protocol designed
to be human-readable is referred to as a textual protocol,
because in this case it consists mainly of encoded characters,
such as ASCII. In contrast, many protocols are designed to
be optimally machine-readable, using arbitrary byte values to
encode any type of data; this is commonly referred to as a
binary protocol. Further, a large number of ASCII byte values
suggests the unknown protocol to be textual, otherwise it may
be binary. Parameters that are determined from the protocol
type include threshold values for clustering and field delimiters
that are almost only relevant for textual protocols.

Filtering can remove large irrelevant portions of payload
data, e. g., the mail body in SMTP, if such a distinction can
be made. To enable this manipulation, and for the clustering
and the state machine construction steps, sessions need to be
identified from meta-data or the context, e. g., by larger gaps in
the communication or sender-receiver role changes. Sessions
are multiple message exchanges between entities denoted by
protocol state transitions.

3https://www.wireshark.org/. All URLs last accessed on January 24, 2018.
4http://www.tcpdump.org/
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250 2.1.5 <walt@blue5.ex>... Recipient ok

Fig. 6: Keywords and delimiters of textual protocol SMTP.

C. Feature Extraction

1) PURPOSE

The essence of the analysis of traffic traces is to determine
similarities and patterns within and across messages. As a
precondition for finding groups of similar messages or cor-
relating message patterns, features that quantify the similarity
of messages and pattern sequences need to be extracted.

2) METHODS

Due to the unknown structure of the byte sequences to be an-
alyzed for features, applicable methods for Feature Extraction
need to be able to efficiently correlate data. It is inefficient
to conduct a plain value comparison of every possible byte
combination in the trace, assuming a reasonable number M

of 5000 messages in a trace with an average length N of
1000 bytes already takes M(M−1)

2 N2 ≈ 1.25 · 1013 iterations
just to compare this number of message bytes. Therefore,
more sophisticated approaches need to be chosen. Guided by
the assumption that differences in values are due to different
message types, the typical strategy is to search for distinguish-
ing n-grams or keywords (see Section VI-C). Tokenization
and keyword extraction with statistical frequency and variance
analysis of byte values are methods for this task, which are
related to natural language processing. There are classes of
automated feature extraction more suitable for binary or for
textual protocols. Keyword extraction from n-grams, as well
as general frequency and variance analysis of byte values,
are applicable to binary protocols. For textual protocols, as
illustrated in Figure 6, tokenization and keyword identification
according to known field delimiters, like whitespace charac-
ters, have been established.

3) CHALLENGES

Feature extraction is an integral prerequisite of a clustering al-
gorithm to group messages. According to features determining
the similarity of messages, message types are determined dur-
ing the following Message Type Identification step. Defining
features that reflect the similarity of messages of a protocol in
a correct and efficient way is not trivial. For textual protocols,
statistically determining keywords that distinguish message
types from each other may be applied. Defining similarity
between messages by recurring values throughout the content
is typically used for binary protocols. There is no known
definition of similarity which works for all kinds of protocols.
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D. Message Type Identification

1) PURPOSE

The Message Type Identification step creates an abstraction of
syntactically similar messages to find groups of semantically
related messages. Assuming ideal correctness of the analysis,
after grouping similar messages, each group contains many
messages of only one distinct message type.

2) METHODS

Manual message type identification is mostly based on in-
tuition. Automated clustering, which applies methods from
machine learning, uses similarity metrics extracted as features
to relieve the analyst’s manual workload. However, typical
clustering methods require trial and error for suitable features
and parameters since almost no information on the clustering
result can be anticipated from the data in a trace or other
sources. An identification of message types that is as correct
as possible aids the analysis process, because then only related
messages need to be compared. This reduces the complexity
of a manual analysis, since groups of similar messages exhibit
the same structure. Using the previously extracted features,
either clustering or analytical methods are available to identify
message types. Approaches are typically classified by whether
they are suited for textual or for binary protocols.

3) CHALLENGES

Depending on the use case, either groups of messages which
exhibit the same syntactical structure, or groups of messages
with similar meaning, may be desired. This can be accom-
plished by clustering according to the syntactical similarity or
by keywords. By finding common keywords, a set of messages
can be grouped according to their semantical similarity. Using
syntactical similarity is in favor of the subsequent Message
Format Inference step since the step’s input is guaranteed to
consist of clusters of similarly formatted messages.

Determining the structural similarity between messages
typically results in a more fine-grained comprehension of
the protocol; in contrast, finding semantic message types
promotes the understanding of message purposes. Moreover,
semantically similar messages may not be of the same message
type and format, e. g., request and response messages may
contain the same data, recognized as keywords, but at different
positions in the messages. Figure 5 illustrates this in the last
message, being a DHCP reply among DHCP request messages,
which have a different address field containing a valid IP.

E. Message Format Inference

1) PURPOSE

A core step of the PRE process is the Message Format
Inference. Common patterns and structure in the messages of
each separate type are searched for in order to derive and
characterize fields. Each field is defined by its position and
length in the message and whether it is variable, ephemeral,
or static. Moreover, each field can be characterized by its
value domain, which can be numeric, ASCII, or a distinct
list of enumeration values. Enumeration values have a specific
implicit meaning, which is not contained in the message itself
but rather predefined in the protocol. For example, 0x01 in

DHCP’s hardware type field stands for “Ethernet,” 0x12 for
“Fibre Cannel,” and 0x20 for “Infiniband”. This step results
in known positions and lengths of presumed data fields in
messages.

2) METHODS

A multitude of methods to automate the message format infer-
ence have been proposed. They range from pattern recognition
by delimiters, to sequence alignment, to n-gram analysis or
keyword recognition. All results quality is highly dependent
on the analysis type and how well the chosen analysis type
matches the individual analysis situation.

The most prevalent approaches are based on sequence align-
ment [11]. Sequence alignment lines up single occurrences
of a certain byte sequence throughout two messages. To
fully align all bytes of two messages by inserting gaps into
either is called global sequence alignment. Multiple sequence
alignment extends pairwise alignment to the global alignment
of an arbitrary number of messages. Progressive sequence
alignment is a kind of multiple alignment where the alignment
gets iteratively refined by walking a hierarchical data structure.
This may be achieved, for example, by propagating the align-
ment of subsequently merged clusters towards the root of a tree
[52]. Finally, local sequence alignment only aligns the longest
common sub-sequence (LCSS) of two messages. Applications
of sequence alignment are discussed in Section VI.

3) CHALLENGES

Static values may have certain functions in the protocol, be it
delimiter, protocol version, or flags, such as how the first bit
of byte 11 of a DHCP-message is defined to denote whether
the message is unicast or broadcast. Coincidently, a field also
may be of the same value for just the set of test traces, thereby
not revealing any information. This confirms the importance
of diversity in traces.

Known context allows for semantics-aware field identifi-
cation: With known payload data, values originating in the
context can be recognized and messages can be associated
to sender-performed or to client-triggered actions. This way,
values of a commonly known format, like email addresses,
URIs, and file or host names reveal fields of the message
format. When the meta-data is known, IPs or other addresses
and timestamps can be pinpointed from the context infor-
mation. For example, knowing the addresses of the involved
entities allows one to conclude that Figure 5 shows these IPs
in bytes 9 to 16. Connections can be associated with session
identifiers and the communication direction. The peculiarity
of such an approach is that it reverses the order of the
Message Format Inference and Semantic Deduction steps since
semantic relations need to be explored first to derive fields
thereof.

Frequency and distribution analysis of characters allows for
the identification of keywords or field delimiters. One big
challenge is to determine the correct delimiters if multiple
levels of them are present, such as separators for values inside
of one field. To illustrate such hierarchical use of separators,
Figure 7 is showing \r\n as field delimiter and a colon
followed by a whitespace (: ) as separator between type
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From : "Jack McNeese" <jack.mcneese@blue2.ex> \r\n To : <odessa.waynick@blue6.ex> \r\n Subject : Subcritical

Fig. 7: Single SMTP message showing two hierarchies of delimiter characters: : and \r\n

and value of the field. By constant and high frequency and
distribution, a character becomes a candidate for a delimiter,
while constant and low frequency may indicate a keyword.
Semantics-aware fields identification marks the transition to
the following step of Semantic Deduction.

The step of Message Format Inference provides first results
that may be exploitable for a use case depending on the
introspection of single fields of the message content. If no
further information is required or expected from the analysis,
the process may stop here.

F. Semantic Deduction

1) PURPOSE

A protocol is designed for transmitting information from one
entity to another. To fulfill this purpose, semantic mean-
ing must be associated with the protocol syntax. Semantic
deduction is intended to reveal the semantic meaning of
fields and messages in order to gain actual comprehension
of the protocol. Common field semantics that can be derived
automatically include, for example, length and offset fields,
sequence numbers, address fields, and file names [13, 16, 21].

2) METHODS

More than for any other of the PRE steps, semantic deduction
is a time consuming and vague task. Due to the number of
possible dependencies, the complexity of semantic inference
is high; manual solutions can therefore only cover a small
fraction of the search space. Only a few methods have been
devised to ease the task by automation, and all approaches ulti-
mately rely on the interpretation of the analyst. Considerations
for this step include which kind of semantic dependencies to
search for and whether a semantic field inference is preferable
over a purely syntactic one. We discuss the challenges of
discovering intra-message, inter-message, and environmental
dependencies after explaining the difference between syntactic
and semantic field inference.

Syntactic versus Semantic Field Inference: Message For-
mat Inference and Semantic Deduction can be intertwined to
promote the quality of the result by all available information.
Two general approaches at the interconnection of syntactic
and semantic field inference can be discriminated: Either the
analyst ventures to (1) find semantics for fields previously
inferred by format inference; or, (2) find fields by semantic
deduction of expected values. On that account, the analyst
uses context to identify information contained in messages
and from that determines position, length, and representation
of fields. Information that is expected to be found in the trace
may be determined manually, or via automated dependency
analysis of the meta-data from encapsulating protocols. Using
semantic field inference exchanges the sequence of Message
Format Inference and Semantic Deduction [16] in the PRE
process.

3) CHALLENGES

Semantic relations are classified into three types [16]. En-
vironmental dependencies are caused by the communication
context, like entity implementation, settings, and network
topology. An inter-message dependency is a correlation be-
tween fields in different messages, like a sequence number.
The term intra-message dependency refers to relations between
multiple fields within one message, such as a field denoting
the length of another.

Environmental dependencies: relate payloads or message
meta-data to fields. Examples of these kinds of dependencies
are addresses and port numbers from encapsulation, transmis-
sion direction, and node names. Environmental information
can be searched for in traces by extraction from encapsu-
lating layers, directly from the capturing process, and from
knowledge about the context. Time of message transmission
or receiving that are recorded with the traces helps identify
timestamp fields. However, relating values in messages to
environmental keywords must be regarded carefully, as short
tokens often lead to false positives in binary data. For example,
a netmask of 255.0.0.0 (ff 00 00 00) may be mistaken for
an "End"-delimiter in DHCP (ff) typically followed by a 00-
byte field padding.

Inter-message dependencies: are detected by comparing
different messages. Searching for fields which are incremented
or values that are echoed allows for the detection of sequence
numbers and ephemeral cookie or session-ID fields. Correlat-
ing message directions reveals additional information for the
interpretation.

Intra-message dependencies: are detected by investigat-
ing whether the value of a field is reflecting a property of
another field or the whole message, e. g., its length. Besides
field or message length, checksums can be recognized by ap-
plying known checksum and hashing algorithms in brute force
manner on portions of the message. Encodings of data are
indicated by special patterns, like the lack of coherent zeros,
as is typical for base64 and XOR encodings. For example,
three zero-bytes are encoded as AAAA\n in base64 and using
an XOR-pattern of 0x42 0x23, the message would contain
0x42 0x23 0x42 in place of the zeros. Such patterns are
recognizable if no encryption or compression is present, which
both pose a show-stopper as explained in Section V-A.

G. Behavior Model Reconstruction

1) PURPOSE

The behavior of a protocol over time is typically expressed as
a “Protocol State Machine” by assigning valid transmission se-
quences of message types to states and transitions. Assignment
of protocol states and transitions to nodes (Moore machine)
and edges (Mealy machine) is representation-specific and can
vary between use cases, methods, and implementations. Types
of states that are used to determine a protocol’s condition are
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global protocol states or states of either entity. Global protocol
states are representing the state of the whole protocol-run from
an observer’s point of view. For its representation message
types are typically assigned to nodes and allowed message
successions are denoted by edges.

2) METHODS

Request and response cycles, semantic relations, and implicit
connections (e. g., TCP or serial lines) allow for the recon-
struction of valid message sequences represented by a state
machine. State machine types used for PRE so far are Prefix
Tree Acceptors and Markov Models. This can be automated
using identified message types and can be correlated to their
observed transmission sequences.

After the deduction of a state machine from observed mes-
sage sequences, it needs to be generalized. The FSM initially
accepts all observed sessions, it should, however, be able to
accept other messages of the same message type as a state,
even if it is not literally contained in the analyzed trace. This
is accomplished by the merger of redundant and generalized
states. Further generalization is achieved by finding potential
loops, optional states, and states which can be accessed in
arbitrary order. For automated approaches, heuristics deter-
mine what can be merged and generalized, and therefore the
procedure is exposed to the risk of misinterpretation [30]. It
is an inherent property of any state machine reconstruction
from static traces that the necessary generalization can only
be probabilistic.

3) CHALLENGES

Building a state machine that can be generalized validly
requires huge data-sets and exhaustive test cases. Each path
through the FSM must be of, at the most, one session.
Otherwise, the assumption of causal relationships between
messages inside a session is wrong. For example, if interleaved
messages—exchanged by one server with a client A that is in
a state before having logged in and a client B that already
did authenticate now starting to send data—are erroneously
combined in one FSM, the result is a mixed up state machine
with transition paths wrongly deduced as being valid inside a
single session. Therefore, it is imperative to identify sessions
from meta-data or context as explained in previous steps
(Section V-B).

H. Processing of Results

1) PURPOSE

The defined use case of the analysis typically requires further
manual and automatic processing of the analysis results.
Therefore, processing of the analysis output initially consists
of interpreting and arranging the results in a way that proves
useful for the final goal of the analysis. Examples of what may
be a useful representation are Regular Expressions derived
from a list of aligned messages, a graphical depiction of
a protocol state machine, or a fuzzer configuration to do
vulnerability testing with the inferred protocol. The processing
step includes the representation of the data in a suitable output
format for the respective use case.

We provide use cases in the security context, their associated
PRE goals, and the requirements about the kind of results
as examples in the remainder of this section. A security
assessment of deployed devices, common in penetration tests
and fuzzing, needs a basic semantic overview of messages
and fields and the behavior of the protocol. However, it is
not necessary to know exact value domains or valid lengths
for fields, even though, missing information, like undetected
message formats, might lead to undiscovered vulnerabilities.
Obtaining Intrusion Detection Systems’ (IDS) training data
requires discrimination between benign and malicious traffic.
For this, the IDS typically does not need semantic information
about fields, their value domains, the format of complete
messages, or the protocol’s behavior; identification of common
syntax patterns is sufficient.

2) METHODS

Output formats of the employed tools need to allow for
the representation of data in rich formats to comprise all
information. Challenges to correctly generalize field values
to regular expressions or represent field variance information
makes designing exporters non-trivial.

3) CHALLENGES

To determine whether the analysis has been successful and
whether the result meets the requirements defined in the
Preparation step, measuring the quality of the result is neces-
sary, although any metric faces an Oracle Problem. Since we
typically cannot assume an Oracle for an unknown protocol
and will not have enough information about the specification,
estimations about the true protocol must be made. These
estimations are highly protocol-dependent and no general
solution has so far been proposed. Manual investigation and
validation are possible due to human intuition, but this present
state is unsatisfactory.

I. Summary of the Process and Mapping to Tools’ Functions

The PRE process has eight distinct steps, of which seven can
be automatized. The exception is Preparation, which inherently
requires human decisions and manual setting up of the test
context. As we presented in this section, each of the steps can
be dealt with individually, making possible combinations of
tools and methods; this way, the most effective methods can
be selected for each step. To provide a solid basis for this
selection of a method for each step, we provide an overview
of the available methods that have been applied to PRE in the
surveyed work. This following discussion allows to determine
requirements and benefits of each method, either to apply
the method or to identify tasks that have not been automated
sufficiently and should gain attention in future research.

Based on the descriptions of tools and frameworks for static
traffic trace analysis presented in Section IV, we reveal a
mapping between these and their supported analysis steps
based on the process model in Section V. We present this
mapping in Table II. Our investigation of related work to find
common PRE process characteristics, eventually resulting in
the presented process model, shows most approaches consider
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Message Type Identification and Message Format Inference.
Behavior Model Reconstruction is regarded as stand-alone by
some tools; in others, message format, type, and state machine
are addressed by one combined approach. By this mapping, we
conclude the presentation of our process model in the current
section with illustration of the placement of all PRE tools and
frameworks within this single PRE general process model and
its steps.

VI. SOLUTIONS AND ALGORITHMS

In this section, we extensively describe all individual
solutions and algorithms employed by all presented tools
(Section IV); we extracted the process model (Section V)
as common foundation. Knowing the universally applicable
process steps, we are able to abstract from the individual tools
and explain the different algorithms and solutions used by
these tools to implement each of the various steps. In this
section, the methods and algorithms applied in each of the
tools are presented and explained, and each different case of
applicability is compared. We categorize each of the proposed
solutions into their nature and origin by placing them into
respective subsections.

At the end of each section, we conclude the application
of the presented methods and algorithms for the respective
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PI [11]
RolePlayer [18]
Discoverer [13]
Whalen et al. [19]
Biprominer [20]
ProDecoder [21]
Li et al. [22]
FieldHunter [23, 24]
Cai et al. [25]
PRE-Bin [26]
Xiao et al. [27]
NEMESYS [28]

ScriptGen [29]
PEXT [30]
Trifilo et al. [31]
Veritas [32]
PREUGI [33]

AutoFuzz [34]
ReverX [14]
ASAP [35]
PRISMA [15]
AutoReEngine [17]
Netzob [16]

TABLE II: Mapping of Tools’ Functions to Steps
( support; limited support)

process step. This discussion is intended to provide lessons
learned from the application of the methods. During each
discussion we also attempt to provide higher-order insights
about how the research on methods effected the step and what
issues remain open for future work. The conclusions for each
step discuss how the methods and algorithms can be applied
practically to the step using the surveyed tools. This includes a
survey of the tools’ shortcomings and what challenges remain
unsolved and need attention.

A. Preparation

For the Preparation step, there exists in the surveyed litera-
ture only sparse coverage of any specific methods. Neverthe-
less, all tools rely on the analyst’s preparation of the PRE
process, even if only the selection of the appropriate tool.
Therefore, we cannot give a simple mapping of tools to the
applied or required preparation tasks, like Table II or Table III.
Instead, in this section we discuss in detail the merits of the
surveyed approaches.

1) ASSESSMENT OF INFORMATION

Some tools require a fairly detailed preliminary assessment
of information before the approach can be applied in the first
place. Therefore, all available sources of information about
the protocol need to be analyzed. RolePlayer is an example
for particular requirements during preparation, since it only
compares two hand-selected messages. PEXT also specifically
requires the preliminary selection of messages from a trace
with representative input variations. AutoFuzz relies on so-
called abstraction functions, which must provide a mapping
of input messages to their message types to be applicable to
a specific protocol. The analyst manually implements a Java-
interface in order to specify such an abstraction function. How
exactly to obtain the information necessary to provide suitable
input and parameters for RolePlayer, PEXT, and AutoFuzz
remains unspecified and, therefore, is entrusted completely to
the analyst.

Most approaches assume that which kind of encapsulation
is present is known, in other words, whether any enclosing
layer adds header, trailer, or padding elements. Discoverer,
ScriptGen, Trifilo et al., Veritas, PRISMA, and AutoReEngine
require the encapsulation to be either a TCP/IP or a UDP/IP-
stack. RolePlayer, PEXT, AutoFuzz, and ReverX are only

Notation in Tables: For a better overview, we accompany each
section about a single step with a table which associates the
tools to the solutions they implement. We use the following
notation:

applied method
a alternative option
b used for binary protocols
t used for textual protocols
i used to yield an intermediate processing method

during the current step in this approach
+F method also used for Message Format Inference

in this approach
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applicable to TCP-encapsulated application protocols. In con-
trast, Whalen et al. propose to use entropy-analysis to discern
between header and payload data and thereby to aid in the
preparation.

Likewise, determining a protocol to be binary or textual is a
completely manual process for most approaches. The selection
of a tool suitable to either kind of protocol, such as Trifilo
et al. for binary or AutoFuzz for textual, depends on knowing
the protocol type before the actual analysis starts. PRISMA
offers methods for textual and binary protocols, but requires
the analyst to select beforehand which approach to choose.
Discoverer is applicable to textual and binary protocols and
determines the protocol type itself during its tokenization step
for Feature Extraction.

Another kind of information necessary for all textual pro-
tocol analysis methods is to know the delimiter-chars used
to separate fields. ReverX and PRISMA allow the analyst to
specify the characters, which requires manual preparation.

Further parameters to be determined apriori may be sim-
ilarity thresholds for clustering and the count of distinctive
message types. The tools applying UPGMA and Single Link-
age as clustering methods require a similarity parameter, and
ReverX requires the number of distinctive commands of the
protocol as a parameter. A possible approach for dealing with
this is for an analyst to exploratorily apply the analysis to
the same trace multiple times and then adjust the parameters
repeatedly until the best result is yielded.

2) AVAILABILITY OF ENTITIES

The availability of communicating entities governs the flexi-
bility of the analysis and which approaches may be applied
effectively. Three scenarios can be discerned for the kind of
entity-availability. First, only static trace files are available,
which is sufficient for most tools. Nevertheless, they still rely
on preliminary filtering for only the subject protocol, without
noise by unrelated network traffic. Second, if passive network

capturing in a controllable environment is possible, captured
traces are always from a desired known context and only of the
target protocol. Additional semantic information can therefore
be gathered, as is the case for Netzob’s semantics-aided format
inference or for RolePlayer’s reliance on manually specified
context values. Likewise, AutoFuzz requires capturing traces
on its own, acting as a proxy, which is only possible having
two running entities available. Finally, it may be the case that
the entities themselves are controllable via some accessible
interface. This allows for resetting them into a known initial
state from which to start the analysis.

If a captured protocol is encrypted or compressed, actions to
circumvent the security or compression measure are necessary.
If information sources are available for obtaining encryp-
tion keys and for determining encryption or compression
algorithms, the corresponding decryption and decompression
method may be applied before analyzing the protocol. For ex-
ample, Wireshark5 offers such functionality for WPA and TLS
among other common encryption layers. Other means to obtain
encryption keys may be possible if two entities are available in

5wiki.wireshark.org/HowToDecrypt802.11 and wiki.wireshark.org/SSL

a controlled network environment: By altering the forwarding
or routing rules, a Man-in-the-Middle can be set up that yields
the decrypted messages. Measures to bypass security may fail
if they have been implemented properly for the protocol’s
entities. Correctly applied security measures may completely
prevent static traffic analysis as discussed in this survey and
as noted by all presented tools. However, unencrypted traces
of protocols that need to be reverse engineered can most often
be obtained.

3) CONCLUSIONS

The Preparation step inherently consists of manual tasks

that provide decisions, information, and parameters for the
conduct of further steps. Of the surveyed tools, only a few are
concerned with possible methods and sources to obtain the

information necessary to start the analysis. Moreover, one
significant challenge is how to deal with encrypted messages,
for which none of the surveyed tools propose an evaluated
solution. The methods to investigate toward this solution
depend on the availability of entities and should consider how
to hook into an entity to gather decrypted messages and then
compare it to the Man-in-the-Middle approach.

B. Data Collection and Preprocessing

Capturing and preprocessing of network traffic traces are
considered standard tasks, not specifically regarded by au-
tomated approaches. However, some PRE approaches may
require specifically prepared traffic traces, e. g., to take care of
connection and session handling, and may therefore provide an
integrated solution for capturing and preprocessing raw mes-
sages. Approaches which propose such specific capturing and
preprocessing methods are discussed below and summarized
in Table III.

1) RECORDING AND FILTERING

To capture network traffic, several so-called network packet
analyzers are well established, foremost among them being
Wireshark and tcpdump. The tools RolePlayer, Xiao et al.,
PEXT, Trifilo et al., ASAP, and PRISMA describe specific
ways to apply tcpdump6 for recording and filtering traces.
tcpdump’s library module libpcap is directly integrated into
ReverX and Netzob for recording traces. For the analysis of
application protocol messages, re-ordering and re-assembling
of message fragments from packet flows, such as TCP-
segments assuring ordered data transfer, are required. Script-
Gen proposes libnids7 for this kind of pre-processing.

gt (“ground truth”): Most PRE tools expect their input to
be of one protocol only. How mixed traces should be filtered
for the unknown protocol is not addressed specifically, except
for Biprominer and Veritas. Both approaches propose to filter
traces for a specific protocol by the tool gt, proposed by
Gringoli et al. [53]. gt assigns labels to messages correspond-
ing to the process which handled the message. This requires
monitoring of a communicating host’s kernel, and therefore
requires full access to the entities’ runtime environment.

6www.tcpdump.org
7libnids.sourceforge.net
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Entropy analysis: Typically, arbitrary payload-data is
not a target of PRE; that is, determining the coding of a
compressed picture within the payload section of a protocol
is beyond the task of PRE. To optimize PRE to the protocol
format at hand and to exclude highly entropic payload data,
such as images and movies, Whalen et al. propose to use
entropy analysis for the discrimination of payload-data from
the protocol header. To accomplish this, Whalen et al. calculate
the Kullback-Leibler divergence [54] of message content. The
Kullback-Leibler divergence originally measures the distance
between probability distributions and is also known as relative
entropy.

2) CONTEXT INSPECTION

The context of the communication may reveal information
that cannot be obtained in any other way. The collection and
analysis of context information is used for session distinction
and the revelation of environmental semantic dependencies.

Session distinction: To be able to handle not only frag-
mented messages, but also multiple sessions of conversations
between one or multiple pairs of entities, the analysis needs
to discern individual sessions. In general, two approaches
for this can be differentiated: using meta-data from protocol-
encapsulation or conducting temporal analysis of the message
transmissions. Cai et al., PEXT, Veritas, ReverX, and Au-
toReEngine perform session identification based on context

data. They use tuples of addresses, direction, transport layer
protocol, and ports in different combinations. Cai et al., Xiao
et al., Veritas, ReverX, and PRISMA use statistics of temporal
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TABLE III: Solutions for Data Collection and Preprocessing

gaps between message arrival times to separate sessions from
each other for further analysis; by the same method, applied
within one flow, the tools separate distinct messages from each
other.

A similar idea is the basis for the action-frame detection
based on Gargi [55] and used by Netzob for session slicing.
An action is a single purposeful event: it can either trigger
an entity to send a message or it is the event that a message
triggers in the entity. An example for the first kind of action
is the event triggered by a user when clicking on a button
while a message is sent. The second kind of action may
be the application updating a UI-element with data received
in a message. Action-frames may reveal semantic correlation
between single purposeful entity actions and message content
sent during this action-frame.

Environment semantics: The automated action-frame
identification is not the only option for Netzob to obtain
context information for further analysis. Netzob allows and
RolePlayer requires the input of manually collected context
information to relate actions to the content of messages. The
semantics introduced into the protocol content by the envi-
ronment can then be traced. While Netzob uses the additional
information to improve clustering by semantics, RolePlayer
requires manual input of this very specific context information
in order to work.

3) CONCLUSIONS

Capturing network traces is a fairly standard task, therefore,
most tools do not include their own functionality for this.
Nevertheless, filtering is a relevant challenge since most
PRE tools expect their input to be of one protocol only. Their
performance and result quality are therefore highly dependent
on the noise produced by other protocols. Only Biprominer
and Veritas address this challenge and apply gt. Neither tool,
however, gives details about gt’s application to meet either of
their input requirements.

Besides a noisy trace, analysis performance is also nega-
tively impacted by lacking variance between messages and
large irrelevant payloads that do not contain information
about the protocol itself. Besides Whalen et al., no approach
considers how to deal with irrelevant payloads. However,
they always need to be taken care of before the analy-
sis, otherwise the large amount of data without information
about the protocol itself severely reduces performance and
result quality. Typically, though, no conclusive information
to discriminate payload can be obtained. Additional means
of payload detection have not been proposed in any of the
literature surveyed.

RolePlayer requires and Netzob supports the collection of
context information besides the traffic traces. In both cases,
the entity application’s execution needs to be observed and
messages need to be labeled by correlating actions and mes-
sages in time. While the benefit for the analysis has been
shown, no method to automate the collection of context

has been discussed in the surveyed literature. The analyst
determines these actions through literally taking notes of the
application’s execution. Automated action-frame distinction
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by instrumentation is only possible for entities that can be
placed inside a debugger, or inside a virtual environment, to
be observed and is, strictly speaking, no longer a static traffic
analysis method. There is no distinct research about how to
apply binary instrumentation to this end.

To summarize our conclusions on the Data Collection
and Preprocessing-step, only very few authors discuss its
challenges, and even fewer tools sufficiently support it. Several
authors only give a vague idea of what the analyst needs to
do when preprocessing the obtained traces to effectively apply
the tool. Only session identification is addressed specifically
by several tools, either by regarding information from the
encapsulating protocol or by assessing context data, like action
frames or temporal gaps between messages. The other tools
presented in Table II only propose general advice for the use
of external preprocessing methods. This poses an obstacle for
beginners, as well as researchers’ and practitioners’ adaption
of a tool for a new use case.

C. Feature Extraction

To identify patterns in the recorded messages for further
analysis, especially to derive message types thereof, the sim-
ilarity between messages needs to be determined. The most
prevalent sub-steps to complete this task are tokenization and
the calculation of similarity or distance metrics for the subse-
quent Message Type Identification step. Table IV provides an
overview about the application of algorithms by the surveyed
tools.

Abstraction function: An abstraction function general-
izes messages by extracting the distinguishing properties of
one message using apriori information about the protocol.
Instead of applying an automated approach for measuring
the similarity of messages, an analyst manually provides
an abstraction function. AutoFuzz uses this simple manual
approach to identify similarities in its subsequent identification
of the message types. In contrast, all further methods in this
section provide some kind of automation to abstract messages.

1) TOKENIZATION

Breaking down protocol messages into smaller parts is a
common first step. This renders feasible the analysis and
enables the application of methods that expect small basic
analysis units as input. A common term for this splitting into
parts is tokenization, for which two methods can be discerned:
generating n-grams and splitting on delimiters [56].

n-grams: In natural language processing, the generation
of n-grams is a common tokenization method. The generated
n-grams for a byte-sequence contain all possible subsequences
of length n of that byte-sequence. ProDecoder, Li et al.,
FieldHunter, and Veritas perform this kind of tokenization;
Discoverer, ASAP, and PRISMA do as well as an option
for binary protocols. However, Discoverer uses a simplified
application of this tokenization scheme by regarding only
single bytes for binary protocols.

Splitting on Delimiters: Delimiting message fields by
reserved characters is a design pattern of textual protocols
only. Therefore, splitting messages on delimiters is a kind of
tokenization applicable to only textual protocols and requires
the apriori knowledge about which characters or byte values
qualify as delimiters for a specific protocol. This approach
is available as an option to analyze textual protocols in
Discoverer, FieldHunter, ASAP, and PRISMA.

2) KEYWORD-BASED AND STATISTICAL ANALYSIS

One possibility to define the similarity of messages is to
identify keywords, which sometimes are just called words.
In this context, keywords are agglomerated tokens which are
characteristic for a specific set or type of messages. Identi-
fying discriminative keywords is typically accomplished by
statistical tests on the keyword distribution across the protocol
messages. A statistical (hypothesis) test in the context of PRE
is a means to determine statistically significant deviations of
the occurrences of tokens within the analyzed messages. This
way, the null-hypothesis of whether a message is of a specific
type is checked. The following statistical tests and methods
have been applied to STA.

Latent Dirichlet Allocation: ProDecoder and Li et al.
employ the established Latent Dirichlet Allocation (LDA)
[57] algorithm to extract keywords from n-grams. LDA is an
approach from natural language processing to identify words
which appear together frequently and coherently. The identifi-
cation of a set of keywords from the LDA-results is a classic
Bayesian inference problem, posing the drawback that one
parameter cannot be solved directly. Therefore, ProDecoder
and Li et al. apply LDA in conjunction with Gibbs sampling
[58], which is an iterative Markov Chain Monte Carlo method
able to efficiently find an approximate solution. The benefit of
using LDA for feature extraction is that not every token needs
to be regarded individually for clustering, which significantly
increases its performance.

Kolmogorov-Smirnov test: The Kolmogorov-Smirnov test
(KS) [59] measures the similarity of two samples, e. g., two
sets of n-grams. KS is a statistical test, which accepts if two
sets of samples have a similar probability distribution of their
items. Veritas uses KS to find common n-grams according to
their distribution of the occurrence frequency in messages. KS
is repeated while increasing the frequency threshold until the
test accepts. Veritas uses the result to determine message parts
as being type-distinguishing keywords, which are distinct for
each message type.

Veritas uses this method in conjunction with the Jaccard
index [60] to calculate a similarity metric. The Jaccard index
determines the number of elements that two sets of items have
in common. In this case, the message parts are the set of items
that the Jaccard index intersects.

Statistical t-test: A well-known statistical method for
measuring the similarity of a set of samples is the t-test [61].
It is a hypothesis test to determine if two sets of data are
significantly different from each other. ASAP’s and PRISMA’s
application for PRE determines if a string is neither constant
nor completely volatile, while simultaneously coping with data
diffusion and noise. Thus, frequency and volatility of n-gram
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TABLE IV: Solution Application for Feature Extraction

values can be deduced. ASAP and PRISMA combine the
statistical t-test with Holm’s correction [62] and the Pearson
correlation coefficient [63]. In this case, Holm’s correction
allows multiple testing at the same time for a string to be non-
constant and non-volatile. The Pearson coefficient integrates
multiple correlating tokens into a single one. Thus, the t-test
becomes a similarity metric, based on frequencies of keywords
with token correlation.

Apriori: By using keyword frequency analysis, words
that distinguish message types may be identified. To this
end, the Apriori data-mining algorithm [64] assumes that a
frequent string’s substrings must also be frequent. Therefore,
the algorithm identifies frequent individual strings and expands
them to a maximum coherent string. AutoReEngine extracts
keywords by a modified Apriori using the keywords to identify
message types.

FP Growth: Besides Apriori, FP Growth is one basic
algorithm for association analysis. It uses an extended prefix-
tree structure to efficiently analyze frequent patterns, and it
outputs the complete set of found patterns and their relation.
These frequent and related keywords are assumed to determine
the message type for both binary and textual protocols in the
approach of Li et al.

Distribution of Variances: Besides the five presented
statistical keyword analysis methods, a purely statistical metric
is the analysis of variances in the message sequences. The
following PRE tools introduce their own method for such an
analysis. ReverX uses byte-value variances as a similarity met-

ric, while Trifilo et al. introduce the analysis of the “Variance
of the Distribution of Variances” of bytes. The same basic
idea of byte-value variances is applied in ScriptGen’s Region
Analysis, essentially being tokenization based on the value
frequency, variance, and other byte characteristics. Likewise,
Biprominer performs a coherence analysis of the byte value
frequency to identify keywords.

Bit Similarities: Not completely unlike the Distribution
of Variances, NEMESYS uses value patterns of each single
message to identify the message’s structure. These value pat-
terns are calculated from bit similarities between subsequent
message bytes. The specific similarity measure applied by
NEMESYS is based on Sokal and Michener [66] and extended
to a feature called Deltas of Bit Congruence.

Viterbi Algorithm: To determine keywords, Cai et al.
use a probabilistic modeling approach. The tool initially uses
a Markov model (see Section V-E) to infer the message
format. The tool thereby swaps Message Format Inference and
Message Type Identification of the typical PRE process. To
deduce keywords from this Markov model, Cai et al. use the
Viterbi algorithm [67]. This recursive dynamic programming
algorithm yields the most probable sequence of hidden states
of a statistical process. Cai et al. use it to extract the key-
words from the observed bytes of messages and to assign the
keywords to the hidden nodes of a hidden Markov model.

k-means Clustering: A different approach to determine a
message characterization is to use a clustering algorithm on its
own. A clustering algorithm proposed for this kind of approach
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is k-means [68]. k random data points, called centroids, are
defined, and each message in the dataset is associated to its
nearest centroid. The algorithm therefore indicates the simi-
larities of messages, which PRE-Bin uses in place of a feature
extraction method. The difficulty of this clustering approach
is in defining the optimal value for k. PRE-Bin addresses
this problem with a silhouette coefficient [68]. It iteratively
repeats the k-means clustering with random centroids and
increases k each time. For each result, the silhouette coefficient
is calculated, which validates the consistency within clusters.
The value for k with the highest silhouette coefficient will be
used to derive the optimal number of subspaces with similar
messages.

3) SEQUENCE ALIGNMENT

An early metric applied in PRE to determine the similarity of
messages is sequence alignment, where alignments of multiple
byte-sequences are conducted to determine the amount of
difference between the sequences. For the two alignment
algorithms applied in PRE, Smith-Waterman and Needleman-
Wunsch, this difference is defined in terms of byte-matches,
mismatches, or the necessity to insert a gap in one sequence to
achieve alignment of the rest of the messages. To decide which
byte-values should be considered as similar, a score-function
φ is defined which assigns positive or negative penalty values
for match, mismatch, and gap. The similarity between two
messages, then, is determined during a traceback step, after the
actual alignment by the maximum of the scores for a match,
mismatch, or gap. Thereof, an N × N similarity matrix for
each pair of messages ni,j ∈ N is generated.

Needleman-Wunsch: Needleman-Wunsch [69] is a dy-
namic programming approach, guaranteed to find an optimal
global alignment of two messages. Netzob uses progressive
multiple sequence alignment based on Needleman-Wunsch as
a similarity metric for the following Message Type Identi-
fication. Progressive multiple sequence alignment allows for
iterative alignment of more than two sequences, but at the
cost of high computational complexity: O(NM2M ), for M

sequences with a maximal length of N [71]. ScriptGen pro-
poses a kind of token-type alignment, based on Needleman-
Wunsch, for determining the similarity of messages during
a phase it calls Region Analysis. Needleman-Wunsch-based
sequence alignment is more commonly used for Message
Format Inference than for Feature Extraction.

Smith-Waterman: Compared to the global alignment al-
gorithm Needleman-Wunsch, Smith-Waterman [70] is a local
sequence alignment method, determining the longest common
subsequence (LCSS) between sequences. It is not suitable if
message types are expected to differ in multiple positions,
as is the case for multiple variable length fields; however, it
has a slightly lower complexity of O(NM ) for M sequences
with a maximal length of N. Smith-Waterman is used by PI,
ScriptGen, and PEXT as similarity metric for message types.

4) CONCLUSIONS

The use of abstraction functions in the fashion of AutoFuzz
does not help solve the challenge of feature extraction and
cannot be regarded as an automated method. Automated

approaches first require the breaking down of messages into
smaller parts. Governed by the assumption that differences in
byte values at specific positions of messages are due to differ-
ent message types, different approaches have been designed

for textual and binary protocols. While for binary protocols
keyword extraction from n-grams and sequence alignment
work well, for textual protocols, tokenization and keyword
identification according to known field delimiters have proven
effective. To be able to split on delimiters, their byte value
needs to be known in advance. Most approaches assume white-
space characters as delimiters, but this is not necessarily true
for all protocols, rendering these tools ineffective.

Statistical methods, typically employed for natural lan-
guage processing, like LDA (ProDecoder), the Kolmogorov-
Smirnov test (Veritas), the t-test (ASAP and PRISMA), and
Apriori (AutoReEngine) in principle work for both textual and
binary protocols. However, the results of tools using statistical
methods for binary protocols are not as convincing as for
textual ones. Frequency and variance analysis of message
byte patterns have been applied by Biprominer, ScriptGen, and
Trifilo et al. to reveal properties of binary protocols. As an
exception, ReverX successfully applies a similar kind of byte
value analysis to textual protocols. Bit Similarity analysis is
similar to the analysis of byte values with the exception that
it does not require comparison of multiple messages to extract
the feature. This comes in favor of the analysis performance.

Using sequence alignment to determine the similarity of
messages is much less common than finding structure in
similar messages. This is due mainly to the lack of any kind
of template for the alignment, since we are dealing with
unknown protocols. Without a template, multiple sequence
alignment is necessary but has a high complexity, prohibitively
for even medium-sized sets of several hundred messages.
Therefore, sequence alignment using Needleman-Wunsch or
Smith-Waterman is not well suited for feature extraction.

Handling feature extraction by a clustering algorithm is an
unorthodox approach taken by PRE-Bin in using k-means. Ac-
cording to Tao et al. [26], the result quality of this approach for
binary protocols is superior to variance distribution, sequence
and type-based alignment, and keyword frequency analysis.

To summarize the Feature Extraction step, it is relevant
how well the method matches to the specific properties of
the unknown protocol—in particular textual or binary. This
is important, since the result quality of the subsequent PRE
steps is highly dependent on the kind of feature extraction.
Larger traces generally lead to better results—especially in
the Message Format Inference—since more diverse examples
of messages can be included in the analysis. At the same time,
with most current methods, the performance deteriorates expo-
nentially with the trace’s size. Therefore, a critical challenge
is to find suitable criteria about the similarity and structure
of messages—most prevalently for binary protocols. The sur-
veyed literature has no conclusive solution to selecting the
most appropriate method for the individual analysis situation.
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D. Message Type Identification

The identification of message types is based on message
features extracted in the previous step. By determining similar-
ities, tools have attempted to group messages into their types.
Available algorithms for this task are clustering approaches
from machine learning and self-contributed ad-hoc grouping
methods. The application of clustering with and without dis-
tance metric, as well as grouping with novel ad-hoc methods,
was contributed by several of the PRE tools. Table V shows
at one glance which tool applies which of the algorithms.

1) AD-HOC METHODS WITHOUT DISTANCE METRIC

To identify message types, the following PRE tools contributed
different straightforward ad-hoc methods.

Keyword analysis: To analyze messages based on key-
words which were derived in the Feature Extraction step,
some methods that differ slightly were proposed. The cor-
responding approaches Discoverer, Trifilo et al., Veritas, and
AutoReEngine have in common that they determine the char-
acteristic sets of tokens or keywords for each message type.
Terminology for the distinctive keywords, however, differs.
Discoverer calls the keywords “Format Distinguisher.” In
Veritas, the “Protocol Format String” contains the sequence
of keywords specific to a type. AutoReEngine calculates the
“Minimum Position Variance” of keywords as distinctive prop-
erty. FieldHunter calculates the entropy for every field. Thus,
if the same fields in different messages are neither constant
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Discoverer
Whalen et al.
Biprominer
ProDecoder
Li et al.
FieldHunter
Cai et al.
PRE-Bin
Xiao et al.
NEMESYS
ScriptGen
PEXT
Trifilo et al.
Veritas
PREUGI
AutoFuzz
ReverX
ASAP + PRISMA b t
AutoReEngine
Netzob

TABLE V: Solutions for Message Type Identification

m1 m2 m3 m4 m5

m1 0 4 6 2 9

m2 4 0 3 6 3

m3 6 3 0 8 6

m4 2 6 8 0 3

m5 9 3 6 3 0

Fig. 8: Distance matrix: 0 denotes equality; the higher the
value, the more dissimilar the messages are.

nor random, the mutual information of corresponding response
and request message pairs are examined. This indicates that
the fields represent the semantic of the whole message and
are therefore considered as Message Type fields. In PREUGI,
how to determine keywords characteristic to a message type is
completely up to the analyst. PREUGI expects to be provided
with a known set of tokens to search for in the trace.

Search for context data: If knowledge about the en-
vironment of the protocol-run is available as discussed in
Section V-A, it can be utilized for message type identification.
RolePlayer and Netzob search the messages for context data
which was derived from the environment, e. g., a known
username. If it is known that a value only occurs during
a specific functionality, like a username is only transmitted
within a login message, the according type of that message is
discernible. Additional message types can be identified when
recognizing implicit information in values, e. g., associating
the broadcast-flag of DHCP with the Ethernet addressing mode
used to disseminate any frame of this type. RolePlayer also
uses the result of the context search for the inference of the
message format.

Path through format-graph: A completely different ap-
proach for type identification and format inference is the
graph-based method. This method represents a model of all
message formats by a state machine. Each path from the start-
ing to the final state is one message type, while the traversed
states, labeled with n-grams or words, determine the message
format. For format inference, the type identification basically
is a by-product of the generation of the graph from the traffic
trace. Therefore, there is no explicit type identification, but
each type is a distinct path through the format graph. The
tools that use this method are Biprominer and ReverX.

2) CLUSTERING WITH DISTANCE METRIC

Most of the clustering methods from machine learning in use
for PRE are hierarchical agglomerative clustering approaches
with a similarity metric of messages. This approach recursively
merges (“agglomerates”) pairs of clusters in a hierarchical
generalization, up to a defined similarity threshold. This re-
quires a metric for the similarity or dissimilarity of messages.
A commonly used representation of pairwise similarities for
i messages mi is a distance matrix as shown in Figure 8.
Such clustering approaches are susceptible to noise in the
input data and therefore require thorough filtering of input
messages during the Preprocessing step. Although not specifi-
cally named, the clustering algorithm used by Discoverer and
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ProDecoder very likely is a hierarchical agglomerative one,
according to the explanation given. Other approaches explicitly
name UPGMA and Single Linkage.

Unweighted Pairwise Mean by Arithmetic Averages (UP-

GMA): UPGMA [66] is a hierarchical agglomerative clus-
tering method, having the optimal complexity of O(n2) for
this class of problems. It progressively locates the smallest
entry in the distance matrix and merges all entries which
intersect in this cell by calculating their mean values. In
this course, a phylogenetic tree is generated, representing
the affinity between clusters. This approach is taken by PI,
PRE-Bin, ScriptGen, AutoFuzz, and Netzob for message type
identification.

Single Linkage: Like UPGMA, Single Linkage clustering
[72], also called nearest neighbor clustering, is a hierarchical
agglomerative method of complexity O(n2). Single linkage
recursively merges clusters based on the distance between the
closest pair of members of each cluster. PRISMA uses it as a
clustering method for binary and PEXT uses it for binary and
textual protocols.

Partitioning around Medoid (PAM): In contrast to hier-
archical clustering, PAM [73] tries to find partitions in the
set of input data to cluster it according to a distance metric.
PAM iteratively assigns one arbitrary sample per cluster as its
center, the medoid. In continuously reassigning the medoid,
the recalculated distances between the other samples and the
medoids are minimized for each cluster. Finally, the medoid
has the minimal average dissimilarity to all other objects in
the cluster. This approach requires the expected number of
clusters as input, which typically is not known for unknown
protocols. To overcome this, and to therefore be able to
utilize PAM, Veritas uses a generalization of the Dunn index.
The Dunn index is a quality metric of the clustering result.
By maximizing this index, Veritas determines the number of
clusters.

Affinity Propagation: Affinity Propagation [74] is a non-
hierarchical clustering algorithm. It finds members of an input
set that are representative for their cluster. The algorithm
iteratively passes information about their properties between
data-points based on a similarity matrix until the clusters
emerge. The advantage of this approach is that no assumptions
on the internal structure of the data are needed, which means
that this approach does not need the number of clusters in
advance, nor does it require a specific form of the similarity
matrix. Cai et al. use this approach to identify message
types by clustering all derived messages with similar message
formats. To create the required similarity matrix, keywords are
derived during Message Format Inference, which in this tool
is performed before Message Type Identification.

3) GROUPING WITHOUT DISTANCE METRIC

Two methods of identifying message types have been proposed
in the surveyed literature that are not conventional clustering
approaches using a distance metric for similarity. Instead, they
rely on algebraic solutions for information compression to
reduce the problem dimensionality.

Non-Negative Matrix Factorization (NMF): Dimension-
ality reduction to allow for efficient pattern analysis can be

achieved by NMF [75]. This method is applied in the related
tools ASAP and PRISMA as an option for the analysis of
textual protocols. A matrix X is generated, which contains a
mapping of messages-to-token vectors. Similar messages are
represented by geometrically close vectors, whereas different
content results in larger distances. Applying the NMF, X can
be represented by two smaller matrices, with X ≈ B × C;
B,C ≥ 0, which are easier to handle. Moreover, clusters
can be derived directly from matrix C, as the values indicate
how strongly a message belongs to a certain cluster. NMF
is working well in PRE since the nature of the message-
token association guarantees each entry in the matrices to be
positive. To reduce the matrix size, the initial input for NMF
can already be reduced by merging the tokens that always
occur together [76].

Information Bottleneck method (IB): Slonim and Tishby
[77] originally proposed this approach to automatically reveal
topics of texts. IB provides a suitable trade-off between
complexity reduction of input data and retaining relevant in-
formation. The data compression is accomplished by removing
redundancy in word occurrences while revealing which data
is relevant [78]. Therefore, ProDecoder uses IB to group
messages on the distribution of relevant words. Given a joint
word-message probability distribution, IB groups messages
and words into clusters. By clusters of messages, clusters
of words can be predicted, since messages of similar type
contain similar words. Now, instead of regarding every word
in a message trace, it can be filtered to only regard relevant
keywords that are decisive for the message types.

4) CONCLUSIONS

The presented methods to implicitly and explicitly identify
message types have been applied to STA. The tools share
common ground, in that similarities are explored, and one or
multiple dimensions of shared properties are searched through-
out the set of messages. The differences among presented
methods, and their strengths and weaknesses for the STA use
case, are discussed in the following paragraphs.

Searching for and grouping by data originating from the
communication context is a simple and efficient method from
an algorithmic point of view. However, it requires a large

amount of manual effort to gather relevant context in ad-
vance. It is impossible to automate the extraction of the context
without extensive entity analysis to collect payload values and
communication parameters from the communicating software
process.

Typically, clustering needs to be unsupervised for appli-
cation in PRE, since no known samples of correct message
types are available as labeled data. Moreover, the number of

message types is unknown in advance. Among conventional
clustering approaches from machine learning, therefore, hierar-
chical agglomerative methods are often chosen. To allow a tool
to discern message types based on similarity, it needs a thresh-
old up to which messages should be regarded similar enough
to be grouped. Despite the fact that the according clustering
methods are unsupervised, they still need this threshold to

be specified by the analyst in advance. Setting these values
too low results in underspecified messages types and, thus,
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groups of unrelated messages. Choosing the threshold too high
tends to over-specify clusters, splitting one message type into
multiple clusters. Deciding whether clusters are over- or under-
specified and deducing the optimum in between requires hu-
man introspection. Empirical trial-and-error evaluations show
typical effective similarity thresholds are ranging from 30 %
to 60 %, more dependent on the protocol than on the method.
An exception to the application of hierarchical agglomerative
clustering are PAM and Affinity Propagation. While Affinity
Propagation works without an expected number of clusters,
PAM requires the count of clusters as parameter. Therefore,
Veritas runs PAM multiple times with a different cluster-
count-parameter, assessing the results and choosing the best.
With the exception of Affinity Propagation, neither proposed

clustering method from machine learning is applicable in
an efficient way, because many trial-and-error iterations are
necessary to optimize the result.

Using paths through a format-graph, NMF, and IB each
provide a different viewpoint for identifying message types
in an advanced way. NMF proves well-suited for textual

protocols, since keywords need to be extracted beforehand.
IB was evaluated with both binary and textual protocols but
has a large performance footprint. Following a path through a
format-graph is easy and efficient but shifts the challenge to
the graph generalization (see Section VI-E).

To summarize, there are multiple working options to
group messages according to their type for textual protocols.
However, coverage of grouping binary protocols is sparse. An
important improvement for the type identification in future
research would be to increase the overall performance and the
automation efficiency for determining the optimal clustering
result.

E. Message Format Inference

The inference of formats is intended to yield as its result the
position and length of message fields. The methods available
in the surveyed frameworks are presented in short in Table VI.

1) SEQUENCE ALIGNMENT

Sequence alignment has been used as a similarity metric
by some tools, as we laid out in Section VI-C. Since the
computational complexity is high, this usage has been adopted
widely. Instead, for the inference of the message format from
clusters, comprising considerably fewer messages and with a
presumably similar message syntax, sequence alignment has
been applied numerous times in various ways.

Simple alignment: A simple kind of alignment is to
just compare byte values based on their fixed position in
a message. The position-based correlation of bytes or n-
grams reveals field boundaries by distinguishing between static
and variable values. This approach works only for protocols
without variable-length fields. While the applicability to only
fixed-length protocol messages is its main limitation, simple
alignment works well for binary protocols which exhibit this
message format paradigm. The tool by Trifilo et al. uses this
kind of alignment, and it is also an optional approach in
Netzob.

Delimiter-based alignment: Some protocols use delim-
iters to separate message fields instead of relying on a specific
position of a value inside the message. Thus, fields are inferred
by aligning each delimiter byte across all messages of one
type. Byte sequences in between two separators are interpreted
as a field, which can assume the respective values of a field
in the same relative position in other messages. Only textual
protocols use this paradigm, which limits the applicability
of delimiter-based alignment to textual protocols only. To be
able to align on delimiters, most existing approaches require
the delimiter-char or -char-sequence for the protocol to be
known apriori. Discoverer and Netzob use delimiter-based
alignment as an option for text tokens. ReverX and Xiao
et al. use only this approach, thereby specializing solely in
textual protocols. FieldHunter uses alternative Message Format
Inference steps for binary and textual protocols and extracts the
delimiters automatically; they thus distinguish field delimiters
from delimiters between keys and values, for example, Port:
80, UID: 1234. Field delimiters are identified as frequent
non-alphanumeric sequences of one or two characters. Key-
value delimiters are located between field delimiters and are
identified by grouping the fields with the Longest Common
Prefix algorithm and extracting the common suffix within the
groups as a delimiter.

Needleman-Wunsch-based: In contrast to the application
in Feature Extraction, Needleman-Wunsch (NW) [69] is ap-
plied for Message Format Inference to actually infer field
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TABLE VI: Solutions for Message Format Inference
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From: ... To: ...
Observable process

= message byte sequence

f1 f2 f3 . . . Underlying process
= message fields

Fig. 9: Field inference of a SMTP message by a hidden semi
Markov model.

boundaries of one message type. For format inference, sev-
eral Needleman-Wunsch-based multiple-progressive sequence
alignment algorithms have been applied. The alignment is
performed in a separate analysis step for each message type
cluster. NW is applied this way by PI, RolePlayer, ProDecoder,
PRE-Bin, AutoFuzz, and Netzob.

Type-based alignment: An alternative application of NW
is not to align on single byte values but on tokens that have
been previously identified as being a word of the message
format. Such progressive alignment of tokens by NW, called
type-based alignment, is proposed by Discoverer. FieldHunter
uses this kind of alignment in a similar way and also regards
the entropy of tokens as criteria for the kind of field type on
which to align. The concept is related to ScriptGen’s “Region
Analysis,” which this tool uses only for type identification.
Moreover, AutoReEngine employs format inference by regard-
ing keyword-field-patterns, which is also remotely similar to
type-based alignment and Region Analysis.

2) GRAPH GENERALIZATION

In contrast, the following few alignment-free graph-based
format inference methods have been proposed. They apply
techniques similar to those of Behavior Model Reconstruction,
discussed in Section VI-G, to derive message formats. Since
graph representations are much more common for Behavior
Model Reconstruction, we explain most of the general op-
erations to manipulate graphs in that section. This method is
unique in that it does not require an explicit type identification
but provides an implicit one by itself as we explain in
Section VI-D.

State Splitting algorithm: Whalen et al. apply the State
Splitting algorithm by Shalizi and Shalizi [79] to messages for
determining the format. The State Splitting algorithm is de-
signed to reconstruct a hidden Markov model. Hidden Markov
models, which are a kind of statistic graph models, are much
more common for the representation of protocol behavior than
message format. Therefore, we provide more details about
them in Section VI-G. The State Splitting algorithm splits one
initial state of such a model as often as necessary to satisfy
a given statistical test. The specific kind of hidden Markov
model, used by Whalen et al. is called an ǫ-machine. This
ǫ-machine models the message format as causal states and a
set of transition matrices. Its reconstruction therefore obtains
the model without requiring any sequence alignment. The
occurrence probability of specific message formats is retained
and can be used to synthetically generate traffic of the inferred
protocol.

Hidden Semi-Markov Model: Building a Hidden Semi-
Markov Model (HsMM) [80] from messages also can derive

the complete message formats. Messages represent the observ-
able process, while each character is an observation. Compared
to Whalen et al.’s application of the similar ǫ-machines, fields
are blocks of observations as illustrated in Figure 9, not
states. The hidden underlying Markov process indicates the
lengths of fields as the state duration. Cai et al. introduce this
approach and emphasize the advantage that these models can
distinguish between strictly sequential fields and fields that
have a juxtaposition location in the message. For example,
in HTTP protocols, GET needs to be sequentially before
HTTP/1.1, whereas the fields Server: and Host: can
exchange their order. Whalen et al. cannot model this property
of a field. To retrieve this information, Cai et al. propose to
use the Baum-Welch algorithm [81], an established method to
estimate the necessary parameters of a hidden Markov model
by maximizing the likelihood of a given observation.

Prefix Tree Acceptor (PTA): In a PTA [84], a special type
of state machine, all descendants of one vertex have a common
prefix, leaving only the root starting without one. It can be
used as another alignment-free graph-based message format
inference. All byte-sequences of a message are assigned to
different subsequent vertices. By adding state sequences for all
observed messages, a PTA is generated, accepting all observed
messages. By simplification and generalization (see Section
VI-G), variable and optional subsequences are revealed and the
message format is inferred. Particular for this method is that
by inferring the message format, the message type is identified
simultaneously. The only applications of this method in PRE
are known in Biprominer and ReverX.

3) ALGEBRAIC AND ANALYTICAL SOLUTION

One algebraic and one analytical solution for format inference
are known:

Non-negative Matrix Factorization: PRISMA applies the
Non-negative Matrix Factorization (NMF) [83] for its protocol
analysis (see VI-D). It uses the properties of the resulting
factorized matrices to infer multiple aspects of the protocol.
Because the template of each message is derived from matrix
C, fields can implicitly be inferred from the NMF-result.

Delta Bit Congruence: NEMESYS determines field
boundaries heuristically at recognizable positions in the value
pattern of its feature Bit Congruence. These recognizable
positions are inflection points at the rising edges of the noise-
reduced Delta Bit Congruence; they denote field transitions
with high probability.

4) CONCLUSIONS

For format inference of specific and simple protocols, byte-
wise and delimiter-based alignments suffice. The application
to a wider range of protocols requires more sophisticated
methods, like the prevalent sequence alignment. However,
aligning multiple sequences is NP-complete [85], therefore,
Needleman-Wunsch offers a global optimal alignment at the
price of an exponential runtime. On the other hand, protocols
are designed by humans, so that structural patterns are bound
to recur in multiple protocols. Searching for design patterns

as heuristic for alignments has not been evaluated by any of
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the works surveyed. However, NEMESYS denotes a first step
in this direction.

One alternative to alignment-driven format inference is the
generalization of a format graph. It works well for textual
protocols, and first attempts to apply it on binary protocols
have been made. This method does not require an explicit
type identification, but it provides an implicit one by itself.
The challenge here is to choose the appropriate general-

ization assumptions for the type of protocol to be analyzed.
These assumptions need to be made from knowledge about
protocol design. Another alignment-free method is constituted
by generating a template from an NMF. Although templates
have a different goal in PRISMA, they also yield message
format descriptions.

To summarize, the generic methods, like NW, are highly
inefficient for large sets of messages. Assumptions about mes-
sage formats are inherently necessary for graph generalization
or heuristic pattern recognition. For example, ReverX and
AutoReEngine expect messages to always exhibit keyword-
value pairs. This pattern is true only for a small number of
protocols, and therefore is too specific a limitation. NEMESYS
makes a more balanced set of generic assumptions about
protocol format patterns. Additional research on hypothesis-
driven inference methods is needed to create an improved
trade-off between efficiency and universality.

F. Semantic Deduction

The sparse coverage reflected in Table VII shows that de-
ducing semantic information has gained only limited attention.
The existing methods can be categorized as statistical and user-
centric methods, as well as generic search.

1) STATISTICAL ANALYSIS

For the automated deduction of semantic relations between
values and fields of messages, statistical means of analysis
have been introduced.

Maximal Information Coefficient (MIC): MIC [86] is a
metric for the strength of linear and non-linear associations
between two variables. The resulting values of MIC range
between statistical independence and strong relation between
variables, making it possible to identify and characterize
important relationships in data, thus discovering inter- and
intra-message dependencies between field values (see Sec-
tion V-F). To deduce the different kinds of dependencies, Net-
zob employs MIC in combination with the Pearson correlation
coefficient.

Pearson correlation coefficient: While MIC reveals rela-
tions between variables, the Pearson product-moment corre-
lation coefficient [63] differentiates between linear and non-
linear correlation. Netzob uses both coefficients in combi-
nation to detect the kind of correlation of fields. It specif-
ically supports linear inter-message dependencies in cookie
and sequence number fields. Moreover, linear intra-message
dependencies are discovered in size and offset fields. The only
non-linear correlations Netzob supports are the intra-message

dependencies of SHA-1-hashed or CRC32-checksummed con-
tent and the count field for the number of subsequent option
fields in the message.

Mutation rate: The mutation rate is calculated by com-
paring the values at associated positions in multiple messages.
It can be used to discriminate constant and variable tokens and
is a very basic semantic of whether a value is variable when
compared within its message type. This method is employed
by Discoverer and by ScriptGen during its Region Analysis.
Xiao et al. describe a simple frequency-rate analysis of field
contents to identify command and parameter fields within the
message format.

2) USER-CENTRIC ANALYSIS

With only few applied statistical analysis methods, semantic
deduction strictly remains a human skill, at least up to the
present day; it can, however, be supported by the suitable
presentation of complex data and relations.

φ penalty score: Beddoe [11] suggested the penalty-
score-function φ [52] of Needleman-Wunsch to be used for
environment dependency detection. φ allows to define how
similar differing byte-values are considered. By applying
semantic tags to message bytes, Netzob allows to influence
φ towards aligning known context values. As a by-product,
these semantic tags can be interpreted after the alignment to
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TABLE VII: Solution Applications for Semantic Deduction
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recover semantics of fields. The actual interpretation, and the
assignment of labels, however, is left as a manual task for the
human analyst.

Content representation: The tedious manual interpreta-
tion of field types may be supported by a suitable and analyst-
friendly content representation. This includes the application
of value-encodings, since raw byte-data may obstruct an
analyst from recognizing characters or numbers. Highlighting
of field alignments and correlating values of these fields
helps in manually revealing semantics. Netzob offers multiple
configurable presentation modes for data to support manual
semantic deduction.

Matrix B (NMF): The matrix B, generated during NMF,
reveals the “topic” of messages. B is a representation of
the messages’ content that is semantically relevant for each
specific message type. PRISMA’s application of NMF supports
the deduction of message purposes by manually determining
the characteristic combinations of elements of the matrix B.
Interpreting a message’s purpose from these element combi-
nations remains the role of the analyst.

3) GENERIC SEARCH

If the Preparation step comprised an investigation of the
environment of the protocol-run, or some parameter values are
known which are reflected in the message content, a search for
the known or derived values in messages can be performed.
Conceptually, there are three options regarding what to search
for to deduce semantics:

First, a generic search for intra-message dependent fields,
such as length and offset, has been attempted. Discoverer
searches for these by correlating field properties to other
field’s values. Second, a generic search for inter-message

dependent fields, such as cookies, is proposed by RolePlayer,
Discoverer, and FieldHunter. The tools correlate aligned values
across messages to reveal dependencies between the messages.
Finally, a generic search for environment-dependent fields rec-
ognizes values that are known from context. RolePlayer, Dis-
coverer, and FieldHunter offer this semantic analysis method,
which requires the extraction or manual input of relevant
environmental context data.

4) CONCLUSIONS

Only few approaches have concerned themselves with se-
mantics. Thus, with current approaches, only very simple
semantics can be deduced automatically. More complex and
less direct dependencies need human interpretation.

Among the few applied automated methods, the most so-
phisticated are the Maximal Information Coefficient, which
Netzob uses to detect dependencies between pieces of

data within messages, and PRISMA’s application of Non-
Negative Matrix Factorization to assist semantic interpretation
of the purpose of whole messages. Moreover, highlighting
differences between chronologically ordered messages is a
common technique for manual interpretation of semantics by
RolePlayer, Discoverer, and ScriptGen.

Non-linear dependencies need additional means of corre-
lation. Such non-linearity occurs, for instance, when length
fields are expressed as a multiple of bytes or when field values

are an enumeration of predefined values. While the first case
can be solved algorithmically, the second needs a lookup table
that typically is neither known nor contained in the messages.
Semantic interpretation is thereby generally limited by the
available information.

Regarding the kind of semantics of message parts, the
coverage by tools is as follows.

Environmental dependencies can be derived automatically,
using RolePlayer, Discoverer, Netzob, or FieldHunter, search-
ing for meta-information that may be reflected in field values.
Encapsulating protocols can be sources of information that,
e. g., contain source and destination IP addresses.

Inter-message dependencies, such as subsequently increas-
ing or repeating values in consecutive messages, are identified
as candidates for sequence- or session-numbers with Netzob
and FieldHunter.

Intra-message dependencies revealed by Netzob and Dis-
coverer are field lengths correlated with the preceding field
value to determine their relation as length indicator, offset
fields and counter fields for array-like field structures, as well
as SHA-1 hashes and CRC32 checksums.

In summary, semantic deduction is vague in coverage,
methods, and results. Although some promising first steps
have been made by RolePlayer, Discoverer, Netzob, and Field-
Hunter, there are also severe limitations about how much of
this step can currently be automated. Effectively, only Netzob’s
specific application of the φ penalty score and the Maximal
Information Coefficient can be called general algorithmic solu-
tions to search for semantics within messages. More domain-
specific empirical research is needed about the appearance of
protocol messages in transfer to deduce more complex and
less direct dependencies. A large survey of message contents
of known protocols may determine common properties of
semantically similar fields, to recognize them more reliably
in unknown protocols.

G. Behavior Model Reconstruction

One decision to make for the implementation of the Behav-
ior Model Reconstruction step is the kind of state machine
that can represent the protocol’s behavior. Another central
aspect of this step is the method of reconstructing the protocol
state machine from the observed trace. Table VIII summarizes
the existing graph-based representations and the reconstruction
algorithms that have been employed for a protocol’s behavior
model.

1) PROBABILISTIC GRAPH-BASED

Finite State Machines (FSMs) are the typical representation
of protocol behavior to express the sequences of message
types that are observed in multiple valid protocol runs between
entities. State labels define the observed message types, and
state transitions resemble their sequences.

Prefix Tree Acceptor (PTA): A PTA is a special type
of state machine to represent valid message sequences. As
mentioned in Section VI-E, ReverX also uses it for Message
Format Inference. A PTA generated from trace observations
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TABLE VIII: Solutions for Behavior Model Reconstruction
(omitting tools that explicitly do not address this step)

offers a complete model of all sequences of message-type
occurrences. ScriptGen, PEXT, AutoFuzz, and ReverX use this
kind of representation of the model. Veritas and PRISMA use
a PTA for initial representation of the information contained
in the traces, but ultimately transform it to a hidden Markov
model. PREUGI represents the behavior of a protocol as
sequences of characteristic keywords in different subsequent
messages. Each of the keywords are then transformed into
an Augmented Prefix Tree Acceptor (APTA). This is then
refined recursively by an unnamed error correction mechanism
in PREUGI. Initially, after its generation, a PTA is unable
to distinguish between mandatory and optional messages and
loops in the state machine. The PTA, therefore, is simplified
or minimized, and generalized as follows.

Stochastic Mealy Machine with Deterministic Transitions

(SMMDT): SMMDT is a specific extended kind of FSM,
which Netzob introduced as an alternative to the PTA. It
explicitly supports the representation of transition probabilities
observed in the traffic.

Moore reduction: The Moore reduction [88] is a well-
known minimization operation on PTAs. It merges non-
distinguishable states, thereby simplifying the state machine.
AutoFuzz and ReverX apply Moore reduction for simplifying
their behavior model, while ReverX also uses it for its specific
method of format inference. PREUGI minimizes its state
machine using negative samples of similar protocols to merge
states which denote the same operation.

Generalization of PTAs: The PTA needs to be generalized
to accept not only the exact messages as they were observed
in the analyzed trace, but any message of the corresponding
message format. Generalization further simplifies a PTA by
merging multiple vertices or edges [82] that are considered
to represent the same transitions between message types.
Generalization needs assumptions about what qualifies as the
same message type, typically using the result of Message
Type Identification. Equally, the identified message types are
used in a heuristic to detect loops of message exchanges
within state sequences. Additionally, states can be merged

if their subsequent trees are isomorph. This kind of PTA
generalizations are employed by PEXT and AutoFuzz, while
ReverX again also uses it for its specific method of message
format inference (see Section VI-E).

State Splitting: A special method of simplification of
a state machine was contributed by Trifilo et al. Instead of
constructing a large state machine with one state for each
observed message transition and then afterwards merging the
states, Trifilo et al.’s strategy is the opposite. Its initial state
machine, created directly from the trace is tightly collapsed,
representing different sequences by the same state. Therefore,
Trifilo et al. contains a State Splitting algorithm8 to reconstruct
the minimal valid behavior-model state machine. It creates a
generic protocol state machine without transition probabilities
or structural constraints. To do so, sequences of states in the
initial, collapsed state machine are split if these states actually
represent not one but multiple portions of protocol behavior
in the trace.

Hidden Markov model: Specific adaptions of hidden
Markov models have been proposed as alternatives to PTAs
for the representation of a protocol’s behavior. A Markov
model is a statistic graph model that exhibits the Markov
property: Subsequent states only depend on the current state.
In hidden Markov models [87], observations are related to a
state of a Markov model, however, the current states are not
always known, so they are called hidden. PRISMA and Veritas
use hidden Markov models to retrace the observed messages
to the underlying behavior. Veritas calls its adaptation of a
hidden Markov model “Probabilistic Protocol State Machine”
(P-PSM). Compared to the application of Markov models in
Section VI-E, the model does not contain the sequence of
bytes or fields of one message type, but the sequence of
message types as they were exchanged between entities. In
a hidden Markov model of a protocol’s behavior, each state
has a probability of producing a specific message. A sequence
of messages, therefore, can provide information about the
sequence of states. Among other properties, a hidden Markov
model of the protocol behavior allows for the likelihood of the
type of the next message to be calculated.

2) NATURAL LANGUAGE PROCESSING-BASED

Regarding the reconstruction method of the behavior, two
approaches originating from natural language processing have
been proposed.

Apriori: AutoReEngine employs the keyword frequency
analysis by the Apriori algorithm [64], not only to identify
message types (see VI-D), but also to reconstruct the protocol
behavior. The algorithm is used to identify the most frequent
sessions in the traffic trace. This approach will, however,
only yield the partial solution of a list of the most prevalent
examples of message type sequences and does not provide a
general behavior model.

Angluin L*: In contrast to all other presented algorithms,
Angluin L* [89] is a dynamic traffic analysis method. As
an active grammar inference algorithm, it learns a protocol

8Own contribution of Trifilo et al. [31], not to be confused with the State-
splitting algorithm by Shalizi and Shalizi [79] described in Section VI-E.
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Fig. 10: A representation of a global protocol state machine.

behavior by probing a genuine entity communicating with the
protocol under test. Netzob proposes to formulate a hypothet-
ical model from the observed behavior and then refine the
behavior model by querying an entity according to Angluin
L*’s membership and equivalence queries. Via membership
queries, the algorithm determines whether or not a specific
variation of a message is also a valid member of the type at
the current position in the behavior model. By equivalence
queries, the completeness of the model, compared to the input
trace, is estimated. The entity’s responses are interpreted to
provide a Teacher for membership queries and an Oracle for
equivalence queries of the behavior model.

3) CONCLUSIONS

The reconstruction of a behavioral model requires the recog-
nition of the message type of each observed message. Then,
a given message type is interpreted as one state, so an
abstracted representation of each message type is needed,
as provided by the Message Format Inference.

In contrast to the behavioral model reconstruction during
PRE, it is common for protocol specifications to separately
define the states of each entity during the protocol run. This
is well suited for implementation guidelines of the server and
the client. Thus, nodes represent the internal state of the entity
while waiting for or preparing the next message, and edges are
transitions caused by receiving or sending a message. This
is not the kind of desired result for PRE, where a global

protocol state machine, as illustrated in Figure 10, is to
be derived. A global protocol state machine is not specific
to one entity but contains messages of both communication
directions. The depicted example shows the request as states
of the state machine, while the replies are annotated at the
transitions.

Prefix Tree Acceptors (PTAs) are the prevalent application
of state machines to represent protocol state relations. PTAs
do not allow for alternative branches to be represented by the
automaton, thereby preventing the introduction of ambiguities
in the state machine. PREUGI promises an additional way to
reconstruct the behavior of a protocol that is already partly
known. Several details of the approach remain undisclosed,
for example, how to determine the required set of protocol
keywords and how to obtain a similar but unrelated protocol
as negative sample. Hidden Markov models (HMM) enable
natural inference of a protocol-state-machine representation,
since the actual state machine cannot be observed directly.
Current approaches use hidden Markov models with con-

siderable simplifications to handle the complexity of the
model. Nevertheless, these tools show promise. In addition, to
overcome the challenges in deducing a hidden Markov model,
sophisticated generation algorithms have been proposed by
Veritas and by PRISMA. A direct comparison between the
suitability of PTA and HMM to represent protocol behavior
is not available in current research.

Another level of inter-message dependencies can be an-
alyzed if the interrelations between state transitions can be
specifically monitored over multiple states. PRISMA and the
approach by Trifilo et al. are the first tools to offer this kind
of functionality to track the history of message exchanges.

Natural language processing offers interesting alternative
methods for the Behavior Model Reconstruction but pose
several drawbacks. In particular, Apriori is used only to
determine examples of valid behavior and it is unable to
deduce a complete model. Netzob’s application of Angluin L*
is not a static traffic analysis method but the only known dy-
namic traffic analysis. Therefore, there are several exceptional
requirements: The analyst needs access to a runnable entity
and it must be controllable to ensure its deterministic execution
and to reinitialize on demand the protocol to an initial state.
Furthermore, entities need to fail in some obvious way, by
crashing, for example, if the submitted sequence of symbols
is not valid. If the entity is available and these requirements
can be satisfied, it is a promising approach that should gain
more attention in the future.

To summarize, the behavior reconstruction needs a suitable
model and a method of simplification and generalization to
abstract from the single analyzed trace. To represent the full
understanding of the model, it needs to support transition
probabilities and a horizon of state transition dependencies
that can be higher than just the previous state. However,
more research is necessary to improve the handling of the
complexity in reconstructing such a potent model. For any use
case of STA, it is vital to remember that the generalization
of the model will always be incomplete because the traces
can only contain positive samples. Therefore, dynamic traffic
analysis is interesting but yet unexplored, aside from the
proposition in Netzob.

H. Processing of Results

The representation of analysis results needs to contain
message type, format, or behavior model in a way suitable
for the specific PRE use case. The few solutions discussed in
the presented frameworks are outlined by Table IX.

A basic approach for presenting the inferred message format
is to visualize each message type as a matrix of messages
against their aligned fields. Netzob offers this straightforward
representation of aligned messages.

1) FORMAL SYNTAX NOTATIONS

The following syntax notations represent the analysis outcome
regarding the format.
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TABLE IX: Solutions for Processing of Results

Regular Expressions: Instead of domain-specific nota-
tions, the representation of aligned messages is achieved by
Regular Expressions [90] in ReverX and Netzob. Thus, the
common content of each field throughout all messages of one
type is typically expressed.

Consensus Sequences: An alternative representation of
aligned messages is Consensus Sequences [91]. Consensus
Sequences originate in amino-acid sequence representations
of molecular biology use cases and are employed by PI.
AutoFuzz calls the same concept generic message sequences
(GMS). Consensus Sequences show the most generalized
sequence that results from the alignment of a set of messages.

Substitution Rules: Instead of representing common por-
tions of messages of a whole message type, substitution
rules denote individual sub-sequences of single messages that
are variable throughout the type. This is useful for validly
replaying traffic by replacing ephemeral and variable message
content. RolePlayer and PRISMA use this kind of result
representation, since it fits their use case of generating traffic
from the inferred protocol.

2) GRAPH NOTATIONS

Only one solution to represent a state machine of the behavior
was mentioned by any PRE tool.

dot: A typical result of Behavior Model Reconstruction
is a state machine describing valid sequences of message
formats. For the representation of state machines in visualized
state graphs, ReverX and PEXT use the GraphViz format dot.9

9www.graphviz.org/doc/info/lang.html

3) TOOL INPUT

The specific use case of the following PRE approaches is to
provide input for another tool to make use of the knowledge
gained about the protocol. Since the transition from the PRE
tool to the subsequent application should be effortless, it needs
to be automated.

Fuzzer configuration: One application of the gained
protocol knowledge is the configuration of a smart fuzzer [92].
By varying the values of message fields during the replay of
captured sessions, vulnerabilities in the entity implementation
can be discovered. AutoFuzz provides an internal fuzzer that
gets its configuration directly from traffic analysis.

honeyd script: A similar usage of the inferred protocol
model is to use it as rules for a honeypot. A honeypot
simulates a service for the assessment of attacks performed
against this service. The integration of the protocol knowledge
allows the honeypot to reply to a message sent by an attacker
with a valid response, although the service and protocol
were originally unknown. ScriptGen is designed to generate
a Python representation of the protocol, compatible with the
format that the honeyd-honeypot [93] expects as the rule-set
of the service which it should thus emulate.

4) CONCLUSIONS

Formal syntax notations for message formats, such as BNF,
are employed for protocol design [94], but have not been

regarded for reverse engineering. Examples of output for-
mats that may be suitable in different PRE use-cases are
BNF/EBNF [95], finite state machines [96], or ASN.1 [97],
which all currently are not found in PRE tools.

Tool support for the output data type may be a relevant

decision criterion for a tool or framework in practical appli-
cation. Specific import formats for other tools, like Wireshark
and Scapy dissectors, would achieve improvement in efficiency
[46]. Another usage scenario is that the result may be intended
as configuration for the widespread Peach-fuzzer.10 Since no
such exporter exists in any tool, an individual implementation
would be necessary. Both scenarios require a description file to
be generated that represents field lengths, value domains, and
other gathered information from the respective tool’s internal
protocol representation.

In summary, it may be desirable to gain a formal textual
report as the output of the analysis. Alternatively, the analysis
output may be required as input for a specific, different tool.
No consensus has emerged from the existing approaches about
how to represent the resulting protocol model.

The few propositions in the surveyed literature for results
processing are limited in applicability. Therefore, practical

applications of PRE require additional manual effort to

refine the result format. This is due to the fact that all
proposed protocol representations remove relevant information
when abstracting result data. For example, abstraction of
message formats to regular expressions leads to a long list
of ORed values as they were observed in a field. Complete
generalization, on the other hand, may remove information
about the valid content or length of a field. The representation

10www.peach.tech
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therefore needs to be augmented by additional human-readable
annotations, which cannot, however, be interpreted automati-
cally afterwards.

VII. CONCLUSION

We conclude by setting our survey into its practical and
research context. Therefore, we validate our process model
by applying it to existing approaches. We discuss different
levels of utility of the static traffic analysis (STA) approach
and protocol reverse engineering (PRE) in general. Finally, we
identify open research questions and summarize conclusions
to be drawn from our survey.

A. Validation of the PRE Process

In Section V we distilled the PRE process from an analysis
of all the surveyed literature (Section IV). In Section V-I,
we show how the varying tools map well onto this process.
Additionally, the Appendix provides graphical representations
of all the tools’ and frameworks’ building blocks to further
illustrate the process model’s validity. The figures show the
sequence of tasks performed by each tool and our mapping
to the aligned process-model step of that task. Most tools
and frameworks follow the same sequence, although every
one does not cover every step (see Table II). There are some
tools that propose, however, to proceed differently. In the
current section, we identify each of the distinct deviations
and discuss the reasons for them. Therefore, it is important to
recall here the steps of the process model: A. Preparation; B.
Data Collection and Preprocessing; C. Feature Extraction; D.
Message Type Identification; E. Message Format Inference; F.
Semantic Deduction; G. Behavior Model Reconstruction; and,
H. Processing of Results.

Of the approaches considered, three use methods that com-
bine two steps into one but otherwise retain the order of the
process. ScriptGen combines Behavior Model Reconstruction
and Message Type Identification in its method for general-
izing the Prefix Tree Acceptor (PTA), while AutoReEngine
combines Message Type Identification and Message Format
Inference during the mapping of messages to keyword se-
quences. Finally, ReverX uses a PTA as model for the message
formats and thereby combines Message Format Inference
during generalization with Message Type Identification by
following the paths through the format graph.

Five approaches swap single process steps. One is Bi-
prominer, which, like ReverX, performs both Message Type
Identification and Message Format Inference in one step.
Therefore, Biprominer prepares the Message Format Inference
by creating graph states from high-frequency byte patterns.
This step takes place before the Message Type Identifica-
tion, which is performed during the generation of the graph
model. Therefore, Message Format Inference and Message
Type Identification are exchanged in Biprominer. The same
two steps are swapped in FieldHunter and Cai et al., which
base their Message Type Identification on the message formats
inferred beforehand. Another approach that swaps steps is

PRISMA. It places Behavior Model Reconstruction before
Message Format Inference and Semantic Deduction, since the
knowledge from the construction of the Markov model during
the Behavior Model Reconstruction is used by the methods
of the latter two steps. Discoverer also switches two steps
of its process in comparison to our common model. Semantic
Deduction and Message Format Inference are exchanged since
the type-based alignment derives the syntax using the deduced
semantic dependencies. Discoverer also has two further Fea-
ture Extraction-refinement-steps within an iterative cycle of
the steps Message Type Identification, Feature Extraction, and
Semantic Deduction. Besides the process steps recounted here,
all other steps of the mentioned deviating tools are performed
exactly as stated in our model. Furthermore, all other eleven
tools fit perfectly in the process model.

Our process model can be a guideline for analysts and
researchers of static traffic analysis for protocol reverse en-
gineering. Cooperative work on one analysis assignment and
identifying research directions for future work need not only
evaluations of isolated approaches, but a comparison of the
applied algorithms. Future discussion will also depend on in-
tegrating improved approaches at the corresponding positions
of the process. By organizing cooperation between analysts
during the practical application, a clearly defined process will
render analysis results more dependable and more comparable
and will ultimately improve the effectiveness of the procedure.
While applying the process, individual and intuitive deviations
must be possible. Our unified process model is the most
common way to automate static traffic analysis.

B. Levels of Utility of PRE for Different Use Cases

Depending on the target use case of the analysis, differing
requirements exist for PRE results, their completeness, and the
desired level of detail. Each use case presented in Section III
exhibits a specific set of expectations towards the result. In the
current section, we examine prevalent examples of the relation
between the use case and the level of utility of specific PRE
results; as a result, this section also contains what an analyst
needs to consider when selecting a tool for a concrete analysis
task.

Partial knowledge, gained only about a subset of the pro-
tocol model, already satisfies the use case of valid traffic
replay by a smart fuzzer or by a honeypot. In particular,
details about message fields that will not change, according
to the analyzed trace, may be sufficient for the fuzzer or the
honeypot. Other use cases include intrusion and misbehavior
detection, two examples that benefit the most from a concise
protocol model. It should contain only relevant aspects for the
detection of malicious traffic, like message fields specific to an
attack or statistical distribution of keywords of benign traffic.
From a penetration tester’s point of view, for example, when
assessing the risk for spoofing messages, it may be satisfactory
to confirm a state-of-the-art message authentication code. In
contrast, malware-, implementation-compliance-, or network-
topology-analysis need arbitrarily detailed and correct, concise
results [15, 29, 98] with full coverage of the inferred spec-
ification. An even more demanding use case, regarding the
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PRE result quality, is entity re-implementation. Since a full
protocol inference is difficult, sometimes impossible or at the
very least time-consuming, some approaches have focused on
use-case-specific results [2, 98]. For example, when only the
formats of small message headers are of interest, the analysis
can be constrained to the corresponding message part. These
approaches reach beyond pure PRE to increase efficiency in
their respective use case.

Preparation and Data Collection and Preprocessing: It is
not only the analysis output that determines the usability of a
tool, but also the available input data: not all kinds of analyses
are suited for any set of traces, and some tools are very
specialized in this regard. Representing one of those cases,
Trifilo et al. simply regard bytes at the same position within
each message, which makes their tool applicable only to fixed-
length protocols. RolePlayer, on the other hand, requires ample
context-knowledge on the part of the analyst and expertise
in selecting exactly two messages to be RolePlayer’s input.
Whalen et al. only regard the format of messages, while
message types need to be discerned beforehand. Likewise, the
applicability of many tools depends on the analyst selecting
whether a protocol is binary or textual. We also determined
from the investigation of the solutions for the Preparation step
(Section VI-A) that some context information is gathered from
TCP/IP or UDP/IP-encapsulation as a requirement of many
tools, so other protocols’ stacks, especially unknown ones,
cannot be handled.

Message Type Identification: The distinction between
textual and binary protocol designs is the only characteristic
of an input protocol that is evaluated significantly enough in
the surveyed literature to use it as a criterion for the tool’s
applicability. In particular, statistical and language processing
methods are well understood and work efficiently on textual
protocols; however, these methods’ applicability is limited
for binary protocols. These limitations comprise a severe
performance impact, therefore posing restrictions on expected
patterns inside of messages, such as fixed length fields (Trifilo
et al.), key-value patterns (AutoReEngine), or regarding only
the beginning of the message (Veritas). The use of sequence
alignment as a similarity metric especially prevents analysis
of input traces larger than a few hundred messages.

Message Format Inference: Despite this limitation, the
subsequent task of Message Format Inference is also domi-
nated by sequence alignment methods, which perform unsatis-
factorily for all but small input sets when aligning byte by byte
throughout multiple messages. Besides variations of sequence
alignment, NEMESYS is the only available universal solution
for format inference of binary protocols. Whalen et al., Cai
et al., Biprominer, and ReverX use multiple kinds of state
machines to infer and represent a message format. While
Whalen et al. and ReverX specialize in textual protocols,
Biprominer and Cai et al. also address binary ones. This
demonstrates that the approach is applicable for both types
of protocols, however, the assumptions Biprominer and Cai
et al. must make about the protocol format does limit their
usage.

Almost any of the Message Format Inference analysis
methods are suitable for a use case requesting the format,

while the result quality will depend on the characteristics of the
protocol. Exceptions are PRISMA, which derives templates for
messages, and AutoReEngine, which discerns only between
static and variable parts of messages.

Semantic Deduction: The term semantics represents a
wide range of meanings according to the different PRE
approaches surveyed. While some already regard the value
domain of a field as semantics, others mean addressing infor-
mation from the encapsulation; dynamic runtime information
about the entity is sometimes also called semantics. Besides
information which is contained in encapsulation, RolePlayer
and Netzob are the only tools to collect environmental data
and try to correlate it with observed patterns in messages.
In contrast, Non-negative Matrix Factorization as applied by
PRISMA is suitable for deducing the purposes of messages in
whole, rather not for single fields within. The limitations of
all other tools in terms of the definition of “semantic” leaves
only Netzob and PRISMA as options. The availability and
the dependency on environmental relations, or whether the
analysis goal is to identify the message purposes, determines
which of the two are applicable.

Behavior Model Reconstruction: The analysis by a typ-
ical tool for Behavior Model Reconstruction yields a be-
havior model for an inferred protocol that can be used to
recognize or predict valid sequences of messages. In contrast,
AutoReEngine only discovers the most frequent message se-
quences of the trace. Trifilo et al. and PRISMA regard not only
isolated states but also chains of states during the state machine
optimization; this way, a protocol run can be more realistically
simulated at the cost of a more complex model. Additionally,
it is specific to all tools for Behavior Model Reconstruction
that they do not provide a fine-grained format inference. If
this is desired, a separate analysis of the message format is
required.

To summarize, the use case of a protocol analysis is a
selection criterion for the suitable tool. The specialization of
methods for a specific kind of input trace further narrows the
suitable tools. The lack of implementations makes it necessary
to decide definitively which approach is best for investing re-
implementation effort.

C. Challenges for STA-Tool Designers

We believe one way to improve the application of STA
would be to synthesize and publish a new tool, which com-

bines the most promising methods for each step from the
surveyed tools. To improve the full coverage of the protocol
reverse engineering process, one fully integrated solution for
every single step is missing. The “Conclusions” sections of
each step in Section VI provide detailed information to select
candidates for algorithms to incorporate in such a tool. In the
current section we discuss challenges inherent to the selection
for each step. It is out of the scope of this survey to discuss
possible design decisions of a new tool.

Data Collection and Preprocessing: This step should
contain a solution for filtering of messages that matches the
requirements of the subsequently used algorithms. The goal
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should be to optimize the performance and overall usability
of the tool. Moreover, the collection of context information
should be considered. Given that multiple analysis methods are
offered alternatively, e. g., different ones for binary or textual
protocols, how to automatically decide at this point which kind
of analysis method to utilize for a specific trace should be
solved.

Feature Extraction: Plenty of working methods are avail-
able to handle tokenization during Feature Extraction of textual
protocols. Solutions for binary protocols are underrepresented
in this respect, especially considering their importance in
Industrial Control Systems or the Internet of Things. In those
or similar cases, the protocol design is governed by limited
entity and network resources, often leading to proprietary
binary protocols. A new solution should, therefore, focus on
selecting an appropriate method applicable to binary protocols,
since this is not trivial. For textual protocols, selecting one of
the existing keyword analysis methods for Feature Extraction
is most promising.

Message Type Identification: The used clustering method,
taken by itself, is not decisively important. The only require-
ment is that the number of expected clusters must not be
a parameter of the algorithm preventing the utilization of
partitioning clustering methods. The type of feature extraction
is more crucial, and a suitable clustering algorithm for the
provided input may then be fitted accordingly. The require-
ments for the type identification method are to have reasonable
performance while proving able to cope with the unknown
properties and parameters on which the result depends.

Message Format Inference: A byte-wise comparison of
messages for format inference has considerable performance
impact, however, no universal alternative is known for STA.
To select an appropriate method of Message Format Inference
requires an investigation of the subtle differences between
multiple byte-wise comparison methods and the implications
of protocol properties. This is especially required to address
binary protocols.

Behavior Model Reconstruction: It is a common notion
to utilize a probabilistic state machine. Prefix Tree Acceptors
are mostly applied for textual protocols, while hidden Markov
models are also used for binary protocols. Either kind of state
machine needs to contain probabilistic information about tran-
sitions. More important than finding a suitable representation
is how to generate any kind of state machine; this is the
decisive difference between the known approaches and should
be considered carefully for the implementation of a new tool.

Processing of Results: Many tool authors have used
HTTP as sample input for their evaluations. While this is
illustrating the approaches well, HTTP is an unsuitable choice
in regard to most target use cases of STA. Most proprietary
protocols that need to be reverse engineered by static traffic
analysis differ considerably from HTTP in design. Such main
target protocols are used between, for example, Malware and
their Command-and-Control-Servers, or are from embedded
devices in Industrial Control Systems or Internet of Things
applications.

D. Open Research Questions for Future Work

Automated approaches currently cannot replace manual
analysis. While we agree with Duchêne et al. [10] that pre-
processing of traces is one major effort to still undertake
manually, we argue that the inference itself also poses sev-
eral challenges to overcome. Although the analysis of the
network protocols’ type, format, and behavior is based on
methods from pattern recognition, natural language process-
ing, statistical tests, data mining, and bioinformatics, for
which widespread fully automated solutions are known, PRE
approaches only apply algorithms in a semi-automated way.
Therefore, automated approaches currently cannot fully re-
place manual analysis. To improve this situation, we propose
in this section future research directions for each individual
PRE process step.

Data Collection and Preprocessing: Filtering for the
unknown target protocol is still unsolved. Other fields of
research may help solve the challenge of noisy input traces.
One example is Protocol Identification (Securitas [99], Iustitia
[100], KISS [101], or SPID [102]) for filtering for the protocol
under consideration. Moreover, the surveyed literature does not
discuss, how message traces of high diversity can be compiled
into a high-quality input set of messages. This is, however,
necessary to reduce the performance impact of the subsequent
steps that rely on algorithms with high computational com-
plexity.

Feature Extraction: The applied statistical natural-
language and data-mining approaches LDA, KS, t-test, Apri-
ori, and Viterbi all promise good results for determining the
similarity of textual messages. A comparative evaluation of
these concurring methods is necessary to reveal their strengths
and weaknesses for specific use cases. Since in general the
performance of the feature extraction needs improvement,
especially for binary protocols, additional methods should be
adapted to static traffic analysis and evaluated.

First, it is necessary to empirically determine characteristics
of messages in transfer, in particular, field data types. To
consider patterns of protocol design in future work, which
are observable in messages, would allow for domain-specific
features to be extracted. All steps dependent on the extraction
of features would benefit from the domain specifics of network
traces that the determined characteristics could reveal.

Message Format Inference: It should be explored whether
instead of optimal alignment methods, more efficient heuristic
alignments or alignment-free methods, e. g., Leimeister et al.
[103], suffice to infer message format. The applied methods
could thus handle larger test-sets of messages, gaining more
variance in field values and thereby improving the analysis
result.

Semantic Deduction: Currently, for a successful Semantic
Deduction, human interpretation is a fundamental requirement.
However, manually observing correlation is almost impossible
due to the variety of employed encodings and conversions
or chronological implications of value changes in network
protocols. Statistical correlation for subsequent human inter-
pretation is much more promising; therefore, more study of
possible improvements of correlation is necessary.
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Behavior Model Reconstruction: In addition to the con-
ventional behavior-modeling by state machine generalization,
Netzob has proposed a completely different approach. It uses
dynamic traffic analysis to probe an entity with the recon-
structed, presumably valid, message sequence. The idea looks
highly promising but requires significant setup effort. On one
hand, it needs more evaluation, and on the other, it could
also be extended to other aspects of the protocol, beyond the
behavior alone, such as to format inference.

Processing of Results: Current tools provide insufficient
support to interpret and use the analysis results. The applica-
tion of visual analytics needs to be explored to enable human
introspection for a most beneficial utilization of the result
representation. Finally, we identify as necessary future work
the automatic calculation of a result metric, and the tackling
of the Oracle Problem of deciding whether a result for an
unknown protocol is correct.

Beyond the single steps of the process, we also identify
directions that future work could explore to increase the utility
of static traffic analysis in general.

As seen in Section VI, the steps Preparation, Data Col-

lection and Preprocessing, and Processing of Results needed
considerably more explanation than the core steps of the
process and still appear somewhat blurry. This is due to
the sparse coverage of the requirements of these steps by
established methods. These steps undoubtedly are necessary
parts of the process since all tools expect tasks to be performed
in their place to some extent. However, methods for automated
discovery of analysis parameters are not well established and
need to be investigated. To that end, methods for automatically
quantifying the inference result quality and thus re-adjusting
the analysis parameters need to be devised.

To the best of our knowledge, no general investigation of
properties of message-in-transfer encodings is available, result-
ing in a lack of knowledge regarding the statistical features
of individual message parts. Having such features available
would enable analysts to recognize them more reliably in
unknown protocols. Since protocols are designed by humans, a
general characterization of properties of protocol parts should
be possible.

Ongoing research focuses on enhancing Netzob as frame-
work and integrating new inference methods. Our ongoing
work seeks to integrate the most promising methods into
one tool and to evaluate new methods for the analysis of
binary protocols. Another recent proposal is the prevention of
protocol reverse engineering by obfuscation to hinder attacks
on network protocols. This is the goal of work currently being
performed by Duchêne et al. [41].

E. Summary

In this paper, we presented an explicit, structured process
model for protocol reverse engineering by static traffic trace
analysis (Section V). Based on a collection of classification
schemes (Section III), this process model reveals the common
structure of tools and frameworks from previous research

(Section IV). Our model provides the necessary overview
and structure to protocol reverse engineering for research and
practice. To the best of our knowledge, no similar previous
work exists. By discussing the tools and frameworks from
the new perspective of our model, we showed differences and
similarities in these approaches. Embedding into the process
model detailed discussions about the methods applied by the
tools, reveals fundamental insights about how tools and meth-
ods are intertwined (Section VI). We validated our model in
the light of the analysis of the solutions and algorithms utilized
in the considered tools and frameworks (Section VII-A), and
we outlined the utility of protocol reverse engineering for
typical use cases (Section VII-B).

For an analyst, our survey provides structure for practical
protocol reverse engineering by providing a defined purpose,
available methods, and considerations to make for each step
of the process. The mapping of tools to steps (Section V-I),
in which these can be applied, guides the selection of the
appropriate tools for a particular protocol reverse engineering
project.

To point out future relevant research opportunities, we
dissected the frameworks into specific mechanisms and single
algorithms (Section VI), making it possible to re-combine
these into new tools with either more specific applicability
or with improved results quality (Section VII-C). Combined
with the process description, we initiate a discussion of what
current tools may accomplish and which limitations exist. This
leads to an overview of which solutions and algorithms have
already been investigated and where challenges remain so that
novel solutions may be searched for in the future. In particular,
we highlight that the Preparation, Semantic Deduction, and
Processing of Results steps are not well covered by the current
methods.

Other high-level insights are:

• HTTP and similar protocols are unsuitable specimens for
tool evaluation.

• The analysis solutions for binary protocols are under-
represented, considering the importance of protocols de-
signed for low bandwidth links like industrial control
protocols and Internet of Things.

• The domain-specific characterization of types and formats
is more relevant than the clustering algorithm.

• The performance of the solutions is not considered suf-
ficiently, so that the analysis of large input traces is
impractical.

Except for ReverX [14], PRISMA [15], and Netzob [16],
the lack of protocol-reverse-engineering-tool implementations
thwarts comparable statements about the performance and
quality of methods, while the surveyed papers are not always
specific enough about implementation details to adequately
recreate their approach. For the whole field of protocol reverse
engineering, it is a prevalent problem that only very few
implementations of tools and frameworks exist which can be
evaluated, refined, and developed further to keep a constant
momentum of innovation. Although a growing interest in static
traffic trace analysis exists, a sufficient, universal solution is
currently not available.
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APPENDIX

For reference, we provide the tasks performed by each of the surveyed tools of Section IV in a simplified graphical
representation. The graphics contain the mapping to our PRE process model as annotation overlay using the following colors
and label notations:
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Processing of Results

steps exchanged in the tool
compared to the PRE process model

A. Inference of Message Formats
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Fig. 11: Protocol Informatics (Beddoe [11], 2004)
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Fig. 12: Discoverer (Cui et al. [13], 2007)
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Fig. 13: Whalen et al. [19] (2010)
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Fig. 14: Biprominer (Wang et al. [20], 2011)
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Fig. 15: ProDecoder (Wang et al. [21], 2012)
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Fig. 16: Li et al. [22] (2015)
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Fig. 17: FieldHunter (Bermudez et al. [23], 2015 and Bermudez et al. [24], 2016)
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Fig. 18: Cai et al. [25] (2016)
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Fig. 19: PRE-Bin (Tao et al. [26], 2016)
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Fig. 20: Xiao et al. [27] (2016)
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Fig. 21: NEMESYS (Kleber et al. [28], 2018)
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B. Reconstruction of the Behavior Model
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Fig. 22: ScriptGen (Leita et al. [29], 2005)
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Fig. 23: PEXT (Shevertalov and Mancoridis [30], 2007)
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Fig. 24: Trifilo et al. [31] (2009)
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Fig. 25: Veritas (Wang et al. [32], 2011)
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Fig. 26: PREUGI (Xiao and Luo [33], 2017)
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C. Deduction of the Complete Specification
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Fig. 27: AutoFuzz (Gorbunov and Rosenbloom [34], 2010)
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Fig. 28: ReverX (Antunes et al. [14], 2011)
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Fig. 29: PRISMA (Krueger et al. [15], 2012)
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Fig. 30: AutoReEngine (Luo and Yu [17], 2013)
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Fig. 31: Netzob (Bossert et al. [16], 2014)
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