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1. Introduction

The importance and popularity of research toward mobile robots and mobile manipulators (robotic arms
on mobile bases) has grown in recent years [1]. This emphasis on research and development has also spiked 
in recent years due to advances in technology that have enabled broad use of automation and robotics while 
simultaneously reducing costs. In general, mobile manipulators have been more recently researched and are 
now becoming commercial tools for industrial use [2-4]. In research, considerations have focused on the 
coordination of movements of the robot and the base since redundant degrees of freedom (DoF) are created 
by adding the moving base. Measurements of mobile manipulators performing standard tasks (poses and 
motions) are non-existent except for simply ensuring that the task has been more or less completed. 
Although mobile manipulators have been researched for use in many areas including marine [5], undersea 
[6], agriculture [7], and space [8] applications, this paper mainly focuses on manufacturing and industrial 
applications. 
      An example mobile manipulator consists of a six DoF robot arm mounted onboard a wheeled base (e.g., 
automatic guided vehicle, AGV, or mobile robot) with two translational and one rotational DoF in the 
horizontal plane for a total of nine DoF [9]. Some mobile manipulators have more or fewer DoF and may 
also be equipped with vertical axis motion control of the robot arm base. Holonomic and non-holonomic 
are frequently used terms throughout mobile robot research to describe system kinematics. Mobile 
manipulator control can range from manual teleoperation to full autonomy (i.e., an operator or facility 
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management system controls the mobile manipulator using typically high level remote commands to the 
onboard controller with no direct operator interface). 
      Metrics for safety and performance of mobile manipulators include many areas, such as: safe operation, 
task completion, time to complete the task, quality, and quantity of tasks completed. Inherent in “quality” 
and “quantity” are the mobile manipulator accuracy and repeatability, respectively. These metrics not only 
include task completion but also focus on how well and how many times the task was completed. 
      Prior to industrial acceptance and standards development for mobile manipulators, users of these new 
systems will expect manufacturers to provide real performance data to guide their procurement and assure 
suitability for given application tasks. Robot performance measurements typically include the difference in 
position and orientation, or pose, of the end of arm tooling from the commanded robot pose. Ground truth 
measurement using motion tracking systems provides relatively accurate robot joint, segment, or tool point 
position information, enabling comparisons with the commanded pose. Review of robot, mobile robot, and 
mobile manipulator performance measurement research shows this as being a relatively new technique for 
performance evaluation within the research community. 
      The motivation and objective of the survey are to provide a current state-of-the-art in mobile 
manipulator research and performance measurements for these systems. The target audience of the article is 
robotics researchers, users, manufacturers, and standards developers of mobile manipulators. 
      The survey provides a literature review of mobile manipulator research with examples of experimental 
applications. The survey also provides an extensive list of planning and control references as this has been 
the major research focus for mobile manipulators which factors into performance measurement of the 
system. The survey then reviews performance metrics considered for mobile robots, robot arms, and mobile 
manipulators and the systems that measure their performance. Emphasis is placed on tracking systems for 
dynamic measurements as needed for mobile manipulators. Lastly, the survey includes a section on 
performance measurement research for robots, mobile robots, and mobile manipulators, beginning with 
calibration, standards, and mobile manipulator artifacts being considered for evaluation of mobile 
manipulator performance. However, this survey does not include grasping and in-hand manipulation of 
objects. 
 
 
2.  Mobile Manipulator Research 
 
      Expert researchers reported in 2005: “Autonomous mobile manipulation is a relatively young discipline 
within robotics.” [10] As will be shown in this survey, much research on mobile manipulation occurred 
over the last 20 years and much of the research is task specific. The United States (U.S.) National Science 
Foundation (NSF)/National Aeronautics and Space Administration (NASA) Workshop on Autonomous 
Mobile Manipulation wrote that mobile manipulation combines a wide variety of research areas, ranging 
from force control to mechanism design to computer vision. Workshop recommendations for U.S. research 
laboratories included creating technological foci in the area of dexterous manipulation and physical 
interaction, among other critical areas. Programmatic recommendations included development of a simple 
integrated mobile manipulator aimed at a much lower price point so that it could be widely disseminated. 
      Mobile manipulators are capable of moving about—and interacting mechanically with—environments, 
and may be designed specifically to assist human beings in factories and in homes. The Introduction (Sec. 
1) references examples of commercial mobile manipulators [2-4, 7] developed and being used for industrial 
purposes. An extensive literature review of the research leading to commercial mobile manipulators is 
provided in this section. As a precursor to mobile manipulator research, a literature review of mobile robot 
research was performed [1], which also includes a few examples of research on mobile manipulators. An 
earlier work by Bogh et al. [11] at Aalborg University, Denmark, provided a timeline of mobile 
manipulators that spans 30 years (see Fig. 1). The timeline shows relatively lightweight manipulators on a 
variety of mobile robots used for research, and effectively concludes with the authors’ own platform1  

                                                 
1 Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the 
materials or equipment identified are necessarily the best available for the purpose. 
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Fig. 1. Timeline of mobile manipulator development. (Photo courtesy of MTECH, Aalborg University, Denmark [11]). 

 
designed as a proof-of-concept for general-purpose applications (such as material handling) within an 
industrial environment. 
      Many mobile manipulator applications are suggested throughout the research and discussed within this 
survey, for example: 

• Processing or assembly of large-scale parts such as wind turbine blades or towers 
• Surface processing (sanding, coating removal, or painting) of large systems such as aircraft or 

ships  
• Welding of large-scale parts and components 
• Large-scale rapid prototyping 
• Conveyor tending 
• Material handling 
• Flexible manufacturing 

      This section provides an in-depth literature mobile manipulator research review divided into sections 
on: experimental applications and planning and control. Because of the major research efforts in mobile 
manipulator planning and control, this section is further divided into subsections on: unified motion, 
trajectory planning, configuration optimization, multiple tasks, stability, obstacle avoidance, outdoor use, 
and miscellaneous areas. 
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2.1  Experimental Applications 
 
      Through direct experimental applications, several researchers have improved the capabilities of mobile 
manipulators solving potential future large volume robot arm applications. Hamner et al. [12] developed an 
autonomous mobile manipulator system that was demonstrated experimentally to achieve “peg-in-hole” 
type of insertion assembly tasks. The system overcame inherent system uncertainties and exceptions by 
using control strategies that employ coordinated control, combined visual and force servoing, and 
incorporated reactive task control. A force-controlled, spiral search was used to overcome the positioning 
uncertainty of the system relative to the assembly environment. Researchers at Aalborg University 
described in [13] and demonstrated in [14] how their mobile manipulators initially calibrated to a fixture 
and then performed peg-in-hole assembly of a rotary shaft for a pump. Flannigan et al. [15] developed a 
mobile manipulator system that utilized remote position sensing of the end-effector to accurately operate 
over a large work envelope, for example an aircraft wing or fuselage. The goal was to utilize an off-the-
shelf, industrial, seven DoF robot arm, an omni-directional mobile platform, and a metrology system. 
The metrology system tracked multiple objects within a large work space with relatively high accuracy 
(200 μm) and in real-time. Chen et al. [16] designed a hierarchical intelligent controller using a neural 
network for the coordinated control of a mobile manipulator that identified and remedied leakage points of 
jugs filled with dangerous chemicals. The controller consisted of decision, processing, and execution levels. 
      Peterson et al. [17] and Nagatani et al. [18] developed force/torque control of a mobile manipulator to 
open a door. Alternatively, Chitta et al. [19] showed how to overcome the high-dimensionality of the 
planning problem by identifying a graph-based representation that was small enough for efficient planning 
yet contained coordinated arm and base motions to open varying type doors. Pin and Culioli [20] studied a 
particular aspect of the mobile manipulator kinematic redundancy resolution for material handling tasks. 
Specifically, they studied the system’s utility to optimize its position and configuration during task 
commutations to handle changes in task requirements or constraints. Basic optimization schemes were 
developed for cases when load and position constraints are applied at the end-effector. 
      Various optimization criteria have been investigated for task requirements including obstacle 
avoidance, maneuverability, and several torque functions. Similarly, although for human assistance, Advait 
and Kemp [21] developed EL-E (see Fig. 2). Once provided with a three-dimensional (3D) location via 
brief illumination with a laser pointer, the robot autonomously approached the location and then either 
grasped the nearest object or placed an object. 
      Agah and Tanie [22] discussed control issues for a service mobile manipulator delivering and handing 
objects to a human. In [23], Tomizawa et al. described a system which used a mobile manipulator as a 
remotely teleoperated tool to help humans browse books located in a library via the Internet. A voice-
guided mobile manipulator was presented by Bort and Pobil [24]. The user could interact verbally with the 
system to help it localize, identify, database, and pick up objects. 
      Holmberg and Khatib [25] designed and developed a powered caster vehicle (PCV) which provided the 
desired smooth, accurate motion and coordination with an onboard manipulator, a holonomic vibration-free 
wheel system that can be dynamically controlled. They proposed a new approach for modeling and 
controlling the dynamics of this parallel redundant system. 
      Dual manipulators have also been researched, mainly for material handling. In 1996, Khatib et al. [26, 
27] developed multiple mobile manipulation systems and the basic models and methodologies for their 
analysis and control. They extended four fixed base manipulation methodologies to mobile manipulation 
systems, called Stanford Assistant Mobile Manipulators (SAMM). The methodologies included: “1) the 
Operational Space Formulation for task-oriented robot motion and force control; 2) the Dexterous Dynamic 
Coordination of Macro/Mini structures for increased mechanical bandwidth of robot systems; 3) the 
Augmented Object Model for the manipulation of objects in a robot system with multiple arms; and 4) the 
Virtual Linkage Model for the characterization and control of internal forces in a multi-arm system.” Figure 
3 shows a graphical depiction of the SAMM carrying a pipe. 
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Fig. 2. EL-E mobile manipulator [22]. 

 
 

 
 

Fig. 3. Graphical depiction of the Stanford Assistant Mobile Manipulators (SAMM) carrying a pipe [26]. 
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      Cooperating control (a derivation of force control) of multiple mobile manipulators was later studied by 
Osumi et al. [28] and Sugar and Kumar [29]. In 2005, Stroupe et al. [30], demonstrated a behavior-based 
system in which two mobile-base robots perform assembly tasks. One robot served as a master and the 
other as a slave in the assembly of beams into a structure. Stereo vision was used to locate fiducial marks 
on the components and force-torque sensing was used during transportation and assembly. 
      Beyond the laboratory, Madsen et al. [31] evaluated two autonomous mobile manipulators in a real-
world, industrial pump, manufacturing environment. The objective was to integrate the mobile 
manipulators with existing equipment to increase the technology-readiness-level for industrial use. The two 
robots worked together to produce rotors over a period of 10 days and were set up in less than a day. The 
experiment included workspace adaptation, safety regulations, rapid robot instruction and running 
production. Not included in the Fig. 1 timetable is the Meka M1 Mobile Manipulator [3], pictured in Fig. 4 
which also included a vertical axis for the manipulator. The Meka M1 is being further developed by 
Alphabet and includes a humanoid system equipped with two compliant manipulators with 6-axis force-
torque sensors at the wrist, compliant grippers, a “head” with a 3D sensor, and an omnidirectional wheel 
base. 
 

 
 

Fig. 4. Meka M1 Mobile Manipulator [3]. 

 
      Design of mobile manipulators has also been researched for specific or generic use. Towards design of 
a mobile manipulator for a specific application, namely automated highway construction and maintenance, 
Gardner and Velinsky [32] described a systematic, unified, kinematic analysis for manipulator arms 
mounted to mobile platforms. The differential kinematics for the combined system was used, along with an 
extended definition of manipulability, to generate a design tool for this class of systems. An example was 
presented in which a three DoF anthropomorphic manipulator was mounted on a platform powered by two 
independent drive wheels. Scaled manipulability ellipses were used to visualize the effect of manipulator 
mounting position on the overall mobility of the system. 
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2.2  Planning and Control 
 
      Most of mobile manipulator research has been in planning and control due to the redundant DoF, such 
as the stability of the system with a moving manipulator onboard. While complicating planning and control, 
this kinematic redundancy is desirable since it allows mobile manipulators to operate under many modes of 
motion and to perform a wide variety of tasks. The survey of planning and control is, therefore, divided into 
several areas where research was published, including unified motion of the manipulator with the base, 
trajectory planning and coordinated control of the system, the system performing multiple tasks, stability, 
obstacle avoidance of the manipulator combined with the base, the system use outdoors, and other 
miscellaneous mobile manipulator research. 
 
2.2.1  Unified Motion 
 
      To plan a mobile manipulator’s motion, some researchers considered the onboard manipulator as extra 
joints of the mobile base, where the locomotion controller is part of the manipulator controller. However, it 
is difficult to implement both controllers as one since the controllers are typically manufactured by two 
different companies. In 2000, Papadopoulos and Poulakakis [33] described a planning and control 
methodology for mobile manipulators, allowing them to follow simultaneously-desired end-effector and 
platform trajectories without violating the non-holonomic constraints. In 2002, Kim et al. [34] formulated a 
combined approach for the mobile manipulator mobility and manipulation using a redundant scheme which 
used zero moment point. In the same year, Nagatani et al. [35] developed a path planning algorithm where 
the locomotion controller was independent from the manipulator controller, and cooperative motion 
occurred using communication between controllers. Further, in 2006, Katz, et al. [36] considered end-
effector-centric, integrated mobility with manipulation, or simply, tool-point control. The combination 
resulted in an experimental platform that allowed researchers to focus only on end-effector behavior 
without having to worry about the motion of the remaining DoF. Mailah et al. [37] proposed in 2006 the 
resolved acceleration control (RAC) and proportional-integral active force control (PIAFC) as an approach 
for the robust mobile manipulator motion control. The concept utilized a differentially-driven, wheeled, 
mobile platform with an onboard two-link planar arm. The study emphasized the integrated kinematic and 
dynamic control strategy in which the RAC was used to manipulate the kinematic component while the 
PIAFC compensated for dynamic effects, including disturbances and uncertainties. 
 
2.2.2  Trajectory Planning 
 
      Several researchers have studied trajectory planning. In 1997, Chen and Zalzala [38] developed an 
approach for the modeling and motion trajectory planning of a mobile manipulator system with a non-
holonomic constraint. Tanner and Kyriakopoulos [39], in 2001, used Kane’s dynamic equations. Mohri et 
al. [40], also in 2001, developed a trajectory planning method to optimally control the combined system of 
a mobile manipulator with the end-effector’s specified path. Shin et al. [41], in 2003, presented a motion 
planning method for mobile manipulators where the base was moved to discrete poses from which the 
manipulator could be deployed to cover a prescribed trajectory. Finally, in 2011, Tang et al. [42] presented 
differential-flatness-based, integrated, point-to-point trajectory planning and control. 
 
2.2.3  Configuration Optimization 
 
      In 1992, Yamamoto and Yun [43] studied a planning and control algorithm for a mobile manipulator so 
that the manipulator was always positioned at the preferred configurations measured by its manipulability. 
Simulation results initially proved the intended algorithm result followed by implementation and 
verification on a real mobile manipulator system. In 1997, Chen and Zalzala [44] described a genetic 
algorithm approach to multi-criteria motion planning of mobile manipulator systems. Least-torque norm, 
manipulability, torque-distribution, and obstacle avoidance were considered for multi-criteria, mobile 
manipulator position and configuration optimization. The emphasis of the simulated study was placed on 
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using genetic algorithms to search for global, optimal solutions and solve the minimax problem for 
manipulator torque distribution. 
 
2.2.4  Multiple Tasks 
 
      In 1994, Pin et al. [45] focused on minimax planning the positions and configurations in which the 
system needed to be at task commutation in order to assure that it could properly initiate the next task to be 
performed. An implementation of the algorithms was performed using the HERMIES-III mobile 
manipulator. In 1997, Lee and Cho [46] proposed a new motion planning method for mobile manipulators 
to sequentially execute multiple tasks where, the final simulated configuration of each task was the initial 
configuration of the subsequent task. 
 
2.2.5  Stability 
 
      As mentioned in the previous section, stability has been a large area for mobile manipulator research. 
As a mobile manipulator moves at high speeds and/or if the manipulator carries a non-centric load, the 
manipulator can dynamically disturb the vehicle, even causing a vehicle to tip over. Mobile manipulators 
operating in industrial or field environments will be required to apply forces, manipulate loads, and to 
perform such tasks on uneven terrain which may cause the system to approach, or reach, a dangerous tip 
over instability. To avoid tip over in an automatic system, or to provide a human operator with an 
indication of proximity to tip-over, a variety of control methods have been researched. 
      In 1989, Dubowsky and Vance [47] presented a planning method for mobile manipulators which 
insured that dynamic disturbances did not exceed the capabilities of the vehicle, and compromise its 
stability, while permitting the mobile manipulator to perform its tasks rapidly. Dubowsky et al. [48] later 
derived the dynamic equations of a fully spatial mobile manipulator with link flexibility. Huang et al. 
provided seven works [49-55] that researched stability of mobile manipulators - two examples are provided 
here. In 1994, Huang et al. [49] presented a control scheme for maintaining or recovering stability, called 
the method of zero motion path (ZMP) planning by a stability potential field, considering goal and 
prohibitive stability states. In 2000, Huang et al. [55] considered both stabilization and manipulation 
simultaneously while coordinating vehicle motion and manipulator motion. In 2001, Inoue et al. [56] 
verified their stability control strategy for a mobile manipulator when an external force exists and 
confirmed this through several experimental results. In 2003, Furuno et al. [57] presented methods of 
trajectory planning for a mobile manipulator with stability considerations. The proposed planning method 
was to generate a mobile manipulator trajectory from a given end-effector path when considering stability. 
Then, a dynamic model of the mobile manipulator was derived considering it as the combined system of 
the manipulator and the mobile platform. Zero motion point criterion was used as an index for the system 
stability demonstrated in simulation. In 2007, Shibata and Murakami [58] described a control strategy of 
mobile manipulator null space motion which used passivity-based stabilization of end-effector position. 
The research was verified by simulations and experiments of a two wheeled mobile manipulator. 
      In 1996, Papadopoulos and Rey [59] defined a measure of available stability margin and in 2000 [60], 
they applied the force-angle stability measure which: had a simple geometric interpretation, was easily 
computed, and was sensitive to changes in center of mass height. Force-angle performance measurement 
was compared with that of other stability margin measures using a forestry vehicle simulation. In 2006, 
Thibodeau et al. [61] compared whole body postural control of humanoid robots to mobile manipulators, 
i.e., robot arms mounted onboard mobile robots having a reduced footprint and raising the center of mass of 
a robot. The results suggested that for pushing, pulling, or carrying tasks, using whole body postural control 
could lead to higher performance by allowing a platform to apply more force to the environment. 
 
2.2.6  Obstacle Avoidance 
 
      Some research, expanded from mobile robots, focused on obstacle avoidance for mobile manipulators. 
Since mobile manipulators can change their volumetric profile by protruding the manipulator beyond the 
base, the manipulator can potentially collide with obstacles that are outside of the mobile base volume. 
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      Referring independently to robot arms and mobile bases, in 1986, Khatib [62] presented a very well 
referenced and unique real-time obstacle avoidance approach for manipulators and mobile robots based on 
the artificial, potential-field concept. This research also has bearing to the mobile manipulator research area 
since the principles of collision avoidance, traditionally considered a high level planning problem, can be 
effectively distributed between different levels of control for both the manipulator and base. 
      In 1995, Yamamoto and Yun [63] developed a control method and discussed simulation results for 
mobile manipulators that integrated an obstacle avoidance scheme with a coordination scheme. The 
obstacle avoidance scheme was based on superquadric potential functions with coordination in preferred 
operating regions. The controller allowed a mobile manipulator to retain optimal or sub-optimal 
configurations while avoiding obstacles. Yamamoto and Fukuda [64] also investigated multiple, wheeled 
mobile manipulators coordinating with each other under a collision avoidance situation. Their earlier 
research in 1995 derived kinematic and dynamic manipulability for multiple mobile manipulators 
simultaneously transporting a single object. The later effort in 2002 extended the previous approach to a 
system consisting of two mobile manipulators avoiding a collision while carrying an object. The two 
mobile manipulators dynamically changed their configurations so that they did not collide with each other 
while not only maintaining the support for the object, but also keeping the arm’s configuration away from 
singularities. 
      Reactive obstacle avoidance for mobile robots and sample-based motion planning for mobile 
manipulators were outlined in 2010 in Nowak et al. [65]. In their report, they aimed to develop a 
methodology for identifying and providing best practice algorithms in a range of robotics fields. The 
methodology found objective performance comparison measures, and finally resulted in a number of open 
source, best practice libraries. Suggested performance criteria are: 

• Mission success 
• Path length 
• Time taken 
• Number of collisions 
• Obstacle clearance 
• Robustness in narrow spaces 

 
2.2.7  Outdoor Use 
 
      Researchers have studied the mobile manipulator control algorithm including dynamic motions caused 
by onboard manipulator motion, especially in undulating terrain [66]. In 2007, Najjaran and Goldenberg 
[67] presented real-time motion planning for an autonomous mobile manipulator that scanned outdoor 
terrain to detect landmines. In their systems, a terrain map was generated using laser and ultrasonic 
rangefinder measurements. A generated map of obstacles from the measurements was then used to define 
an obstacle-free, detector path which was verified by experiments on a prototype mine-detector robot. A 
significant amount of research was also done and continues in mobile manipulators for use outdoors. For 
example, Wells and Deguire [68] described TALON, a mobile manipulator originally developed under 
Defense Advanced Research Project Agency’s (DARPA’s) Tactical Mobile Robotics (TMR) Program to 
extend “the reach and capabilities of the war fighter” for explosive ordinance disposal and to counter 
improvised explosive devices. 
      In 2006, Yang and Brock [69] stated that the “autonomous execution of manipulation tasks in 
unstructured, dynamic environments requires the consideration of various motion constraints. Any motion 
performed during the manipulation task has to satisfy constraints imposed by the task itself, but also has to 
consider kinematic and dynamic limitations of the manipulator, avoid unpredictably moving obstacles, and 
observe constraints imposed by the global connectivity of the workspace. Furthermore, the unpredictability 
of unstructured environments requires the continuous incorporation of feedback to reliably satisfy these 
constraints.” They presented a novel, feedback motion planning approach, called “elastic roadmap 
framework,” which satisfied all motion constraints in autonomous mobile manipulation, when tested via 
simulation, as well as their respective feedback requirements. 
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2.2.8  Miscellaneous 
 
      In 1988, Graettinger and Krogh [70] defined the acceleration radius, as opposed to the acceleration 
tangent, as a global index for quantifying the dynamic capabilities of manipulator-positioning systems over 
a continuous operating region. The authors developed a numerical algorithm to solve the unbounded 
acceleration issues and applied the solution to the acceleration radius concept. Manipulator design and 
workspace specification examples were illustrated. In 1998, Chung and Velinsky [71] presented mobile 
manipulator modeling and control where the equations of motion were derived using the Lagrange-
d’Alembert formulation (i.e., considering applied forces) for a non-holonomic mobile manipulator model. 
The dynamic model, which considers slip of the platform’s tires, was developed using the Newton-Euler 
method and incorporates Dugoff’s tire friction model. In 2000, Watanabe et al. [72] described analysis and 
control for a holonomic, omnidirectional mobile manipulator, in which their platform included three lateral, 
orthogonal wheel assemblies and a mounted manipulator with three rotational joints, located at the platform 
center-of-gravity. Simulated results showed that the mobile manipulator could be controlled to retain any 
end-effector pose, regardless of the external, applied-force direction. In 2005, Mbede et al. [73] applied a 
robust, adaptive, fuzzy, reactive motion-planning algorithm for mobile manipulator navigation. The system 
included an incomplete mathematical robot system model and sensor data uncertainties. For the vehicle 
platform, they combined the advantages of a probabilistic roadmap as a planner and fuzzy navigation to 
allow adaptability similar to an elastic band. Stabilization, mobilization, and manipulation are all 
considered. In 2004, Korayem et al. [74] developed the Iterative Linear Programming (ILP) method to 
determine dynamic load carrying capacity of mobile manipulators. The authors presented numerical 
method examples that included a PUMA robot mounted on a linear-tracked base and a wheeled, mobile 
manipulator. 
 
 
3.  Performance Metrics 
 
      Albus [75] wrote: “A major barrier to the development of intelligent systems is the lack of metrics and 
quantifiable measures of performance. There cannot be a science of intelligent systems without standard 
units of measure. There are few benchmarks or standardized tests wherein performance can be compared.” 
      Benchmarks play an important role in various aspects. Some see it related to roadmaps where 
benchmarks may guide developments and make progress in the right directions measurable. Another 
important aspect is the relation to standards [76]. Benchmarks are the framework leading to standards and 
alternatively, standards can foster the requirement for benchmarks in a field. This section describes the 
metrics for mobile manipulators and research that has occurred in this area. Besides the development of a 
three-dimensional, statistical, evaluation framework for performance measurement of robotic systems [77] 
dated 1998, the majority of references date research in this area within only the last 13 years (i.e., 2003–
2016) implying that there is a relatively new thrust in measuring robot performance. 
      Mobile robot navigation is a highly researched robotics challenge and one of the key capabilities for 
robot autonomy. Navigation techniques have become more and more reliable, but evaluation mainly 
focuses on individual navigation components (i.e., mapping, localization, and planning) using datasets or 
simulations. As an example, performance measures are often neglected in the mobile robot navigation 
research for applications such as: vacuuming, surface coating, and systematic foraging. In 2002, Wong et 
al. [78] presented two metrics for measuring performance of robot coverage (i.e., volume accessed by the 
robot) tasks and applied them to a real robot coverage experiment: percentage of coverage and distance 
traveled by the robot. The study found that the percentage of coverage is a good performance indicator if 
physical limitations of the robot are taken into account. On the other hand, distance traveled alone is a poor 
indicator because it completely ignores the amount of area (mobile base plus onboard manipulator) covered 
by the mobile manipulator. In 2014, Sprunk et al. [79] defined an experimental protocol to evaluate the 
whole navigation system, deployed in a real environment. To ensure repeatability and reproducibility of 
experiments, their benchmark protocol provided detailed definitions and controls for the environment 
dynamics (i.e., variations in different environments). They defined standardized environments and 
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introduced the concept of a reference robot to allow comparison between different navigation systems at 
different experimentation sites. 
      The robotics community is seeing a growing awareness of the difficulty to compare, in a rigorous 
quantitative way, the many research results obtained from many different robotic application areas. 
Moreover, Ioan et al. [80] also wrote that “there is a lack of good benchmarks for mobile manipulator 
motion planning.” In 2009, Bonsignorio et al. [81] focused on the issues raised by the 
replication/reproducibility of results. They suggest that one aspect of these results are “a cornerstone of any 
scientific methodology,” versus being “a basic prerequisite to compare different methods for common 
problems” previously proposed. In 2003, Jacoff et al. [82] discussed the development and proliferation of 
metrics in the form of robot test arenas that provide tangible, realistic, and challenging environments for 
mobile robot researchers interested in search and rescue applications and other unstructured environments. 
This effort may also apply to mobile manipulator performance evaluation for industrial environments.  
      Lampe and Chatila [83] simulated an approach to qualify robot autonomy by measuring robot 
performance in completing a task as compared to the robot environment complexity. Steinfeld et al. [84] 
attempted to identify common metrics for task-oriented, human-robot interaction (HRI). HRI can also 
pertain to mobile manipulators where it is expected that future smart manufacturing systems will work 
collaboratively with humans. More recently, specific aspects of robot measurements were considered for 
smart manufacturing implementation. Two examples were in mobile robots used for welding and in 
dynamic pose estimation, both of which are critical to also consider for mobile manipulator use. Welding 
requires process validation prior to use in the manufacturing process. However, there is a lack of industry 
standards for mechanized or robotic welding that can impede the introduction of mobile robotic welding 
systems in the market place. There is also a lack of generalized fitness measures that gauge the suitability 
of mobile robot topologies or dimensional designs to a set of tasks and can be used in the design or 
verification process. Canfield et al. [85] proposed such a metric and demonstrated its use in evaluating 
mobile robot designs for welding tasks. Similarly, Eastman et al. [86] reported that an unsolved but 
important problem in intelligent manufacturing is dynamic pose estimation under complex environmental 
conditions, i.e., tracking an object’s pose as it moves in an environment with uncontrolled lighting and 
background. This is a central task in robotic perception, and a robust, highly-accurate solution would be of 
use in a number of manufacturing applications. 
      As an example of metrics suggested in research for mobile manipulators, Ilnicki and Zadarnowska [87] 
researched the problem of defining performance measures of doubly non-holonomic mobile manipulators. 
Results consisted of a definition of the following local performance characteristics: the dexterity ellipsoid, 
the local dexterity, the energy efficiency, and the motion efficiency. 
      Accuracy and repeatability, two common metrics considered in robotics, were described in Shiakolas et 
al. [88]. The factors that affect these characteristics were identified, and an error tree was developed. A new 
measure called “degree of influence” was established that qualitatively assesses the relative contribution of 
each kinematic parameter variation to the accuracy and repeatability of rigid manipulators. The developed 
formulation provided for easy evaluation of the degree of influence measures for rigid manipulators in 
either numerical or symbolic form. Based on the above references and on past research in robotics for 
industrial use, the authors of this survey list and define example metrics to consider for mobile 
manipulators. The importance of each metric is determined by the commanded task. 

• time/task duration – the time for the mobile manipulator to complete a commanded task 
• distance traveled – the distance that the mobile manipulator has traveled 
• repeatability – the variation in measurements taken of the mobile manipulator with the same 

conditions per trial 
• accuracy – the amount that a mobile manipulator measurement conforms to the correct value 
• task completion/effectiveness – how successful the mobile manipulator is in performing a 

commanded task 
• efficiency – the ratio of the expected mobile manipulator performance to the total performance.  
• dexterity – the agile or nimble performance of a mobile manipulator 
• autonomy – independent control performance of the mobile manipulator 
• stability – the firmly established performance of the mobile manipulator 
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• obstacle detection and avoidance – the ability of the manipulator, mobile base or combined system 
to perceive and avoid objects in the environment 

• exploration of unknown environments – the ability of the manipulator, mobile base or combined 
system to perceive and navigate the environment that is not currently within the system’s map 

 
 
4.  Performance Measurement Systems 
 
      Given the above metrics to consider for mobile manipulators, a survey of performance measurement 
systems to achieve these metrics is provided. Contact and non-contact sensors are readily available to 
measure various aspects of machine performance and are listed here. Each measurement system is 
numbered and listed in Table 1 and Table 2 as the authors suggest their usefulness in measuring 
performance of mobile manipulators based on the metrics listed in Sec. 3. Table 1 shows the usefulness to 
measure mobile manipulator performance where the systems used to measure mobile manipulator 
performance “may be constrained” by the measurement system and Table 2 shows the measurement “not 
constrained” by the measurement system. Not-constrained means only the distance, not the accuracy 
measurement capability which could also be affected by a minimal distance measurement capability. The 
“x” means usefulness in measuring performance, the yellow box means that the system has little use in 
measurement, and the red box means the system cannot measure performance of the metric. Some 
limitations are also cited below for measurement systems to measure unconstrained performance of mobile 
manipulators. 

1. Touch probes: contact measurement of positioning systems (e.g., computer numerical controlled 
machine backlash error measurement) [89]. [limitations may occur from touch probe measurement 
distance and digital vs. variable response] 

2. Wireless indoor position measurement systems: three typical location estimation schemes – 
triangulation, scene analysis, and proximity performance comparisons include: accuracy, 
precision, complexity, scalability, robustness [90]. 

3. Tools for mechanical design and performance evaluation of robots: Dynamics-based local 
performance evaluation of manipulator global, open- or closed-chain, and alternative dexterity, 
link and joint deflections, acceleration radius, elasto-static performance (i.e., robot response to 
applied loads), and elasto-dynamic performance (i.e., link and moments of inertia) [91]. 

4. Perception sensing systems: six DoF position and motion capture measurement systems, typically 
used to track people or other objects, are currently being used for assessing static [92] and 
dynamic [93] robot performance. 

5. Motion tracking camera systems: 
a. using passive fiducial targets [94] affixed to the subjects being tracked with sub-

millimeter accuracy; 
b. using active fiducial targets [95] affixed to the subjects being tracked; 
c. two camera opto-electronics measuring system tracks the 3D location of infrared light 

emitting diodes (LEDs) attached to a robot with resolution of approximately 0.01 % and 
absolute accuracy of 0.05 % [96]. 

6. Active camera mounted on a pan/tilt platform: image mapping is used to align images of different 
viewpoints so that static camera motion detection could be applied. The system extracts moving 
edges from dynamic images [97]. 

7. Acoustic and inertial motion tracking systems: obtain two types of measurements, acoustic and 
inertial, associated with the motion of a body and used extensively for measuring performance of 
robot systems [98, 99]. 

8. Laser tracking systems (LTS): long range laser, relatively high accuracy, non-contact 
measurement system, used extensively to measure robot performance. System use examples are: 
[limitations may occur from complex or high speed motions breaking the line-of-sight beam] 

a. Real-time 3D static and dynamic positioning accuracy of a robot end-effector at 12.5 
μm–50 μm and wrist orientations to within 2 sec of arc [100]; 
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b. LTS used with a vision system for six DoF, dynamic, real-time robot measurement for 
high-accuracy straightness measurement, precision leveling, and absolute distance 
metrology [101, 102]; 

c. LTS with an automatic routine to reinsert calibrated parameters into robot/machine 
calibration tables to improve system accuracy to approximately 10 µm or higher [103]. 

9. Multiple sensors:  
a. Two lasers: static and dynamic 3D performance measurement using two laser beams to 

track an optical target attached to the robot end-effector, where target position 
coordinates are estimated using triangulation [104]. 

b. LTS, a laser interferometer system, and a telescopic metrology bar: an LTS and the laser 
interferometer system are used to measure linear errors along a linear path of motion and 
angular errors about axes orthogonal to the path of motion, and a telescopic metrology 
bar is a low‐cost, high‐precision tool for assessing the static and dynamic positioning 
performance of industrial robots [105]. [limitations may occur from complex or high 
speed motions breaking the line-of-sight beam]  

10. Laser diode with a position-sensitive detector: a non-linear, coupled, and measurement-based 
dynamic system model, a Lyapunov-type controller based on the deflection feedback to measure 
the tip oscillations and regulate the endpoint of the flexible robot [106]. [limitations may occur for 
dexterity measurement since manipulator endpoint (i.e., three DoF, not six DoF) is measurement] 

11. Indoor global positioning system (iGPS): multiple rotating, angled, laser scanners detect the 
triangulated position of transmitters with measurement accuracy of approximately 200 μm [107, 
108]. 

 
 
Table 1. Metrics and the corresponding numbered measurement systems to measure mobile manipulator performance where the 
systems used to measure mobile manipulator performance may be constrained by the measurement system. Boxes marked with an “x” 
indicate utility in performance measurements, while boxes highlighted in yellow or red indicate limited or no utility, respectively 
toward measuring the specified metrics. 
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Table 2. Metrics and the corresponding numbered measurement systems to measure mobile manipulator performance where the 
systems used to measure mobile manipulator performance are not constrained by the measurement system. 
 

 
 
 
5.  Performance Measurements 
 
      This section surveys the performance measurement research for robots, mobile robots, and mobile 
manipulators. The literature search of robot performance measurement uncovered few published articles; 
mobile manipulation performance measurement, being a relatively new area of research, provided even 
fewer articles. Calibration, standards, and artifacts to evaluate performance are surveyed in this section. 
 
5.1  Calibration 
 
      Calibration greatly improves the correspondence between the real position of the robot end effector and 
the position calculated from the mathematical model of the robot. Elatta et al. [109] describe parametric 
robot calibration as using the kinematic parameters to define models of an industrial robot. Kinematic 
parameters describe the relative position and orientation of links and joints of the robot while the dynamic 
parameters describe arm and joint masses and internal friction. 
      Robot calibration and metrology systems vary widely in performance, but as a general rule, they are 
considered to be expensive systems that are normally beyond the budget of the average company. Hidalgo 
and Brunn [110] performed a market survey involving some of the leading systems available and revealed 
that the leading performers are characteristically easy to set‐up and operate, and are more economical. 
Nevertheless, the price range of these systems is still too high for them to be in widespread, regular use. 
They suggest that development of systems that combine these characteristics, but at a low‐cost, would fill 
an important void in the automated manufacturing industry. 
      Greenway [111] discussed robot accuracy and repeatability and the mechanical and control aspects of 
robots that lead to errors occurring in static positioning and dynamic path following. He described both 
“string pull” devices (two examples of which are described in [112], see Fig. 5, and in [113]) and laser-
based systems, that utilize laser light for both alignment and distance measurement. An example of one 
such laser-based system mounted a laser on a 2 axis tracking head that follows the movement of a target. 
Vision-based photogrammetry and videogrammetry systems, which are vision systems with a minimum of 
two cameras, are stationary while a fixed pattern of light sources attached to the robot moves within the 
field-of-view of the cameras where the location and orientation of the light sources can be calculated from 
the camera images. 
      Sensors must be calibrated both to the manipulators and to each other, since fused sensor data is often 
needed. Pradeep et al. [114] proposed an extendable framework that combined measurements from the 
robot’s various sensors (proprioceptive and external) to calibrate the robot’s joint offsets and external 
sensor locations. The framework was validated by implementing it on a commercial mobile manipulator 
robot, providing a significant improvement in the robot’s calibration. A popular configuration widely used 
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Fig. 5. NIST Robot Calibrator [112]. 
 
in a variety of robotic applications is to mount a camera on the robot manipulator hand. Before performing 
a measurement task using such a system, both the camera and the robot need to be calibrated. Zhuang et al. 
[115] discussed a procedure developed for simultaneous calibration of a robot and a monocular camera. 
Unlike conventional approaches based on first calibrating the camera and then calibrating the robot, the 
algorithm solved for the kinematic parameters of the robot and camera in one stage, thus eliminating error 
propagation and improving noise sensitivity. Preising and Hisa [116] demonstrated the use of a single 
camera 3D computer vision system as a position sensor to perform robot calibration instead of being 
calculated from the kinematic equations. The authors describe a vision feedback scheme they termed 
vision-guided robot control (VRC) which may improve the accuracy of a robot in an on-line, iterative 
manner. The degree of accuracy was determined by setting a tolerance level for each of the six DoF in 
Cartesian space. In general, a small tolerance level requires a large number of iterations in order to position 
the end effector, while a large tolerance level requires fewer iterations.  
 
5.2  Standards 
 
      The standards landscape is represented by both safety and performance standards. For industrial robots, 
safety is addressed in both international (ISO 10218 parts 1, 2 [117]) and national (American National 
Standards Institute (ANSI)/Robotics Industry of America, RIA, 15.06 [118]) standards. AGV safety is 
currently defined only in national standards (e.g., ANSI/Industrial Truck Standards Development 
Foundation (ITSDF) B56.5 [119], and European Standards (EN BS) 1525 [120]). Industrial robot 
performance is also defined at both the international (ISO 9283 [121]) and national (RIA 15.05 [122]) 
levels. AGV performance standards are currently being developed through ASTM International Committee 
F45 [123]. 
      However, these standards are not combined for mobile manipulators, and leave gaps in both safety 
[124] and performance. RIA began a standards development working group for mobile manipulators in 
2015. At the time of writing, there are no performance standards efforts or standard test methods for mobile 
manipulators to compare capabilities of various manufacturers systems as they evolve. Assuming mobile 
manipulator safety [125] will be solved and standardized in the near-term, performance standards must 
follow so that potential users can compare systems against tasks. ISO 9283 and the RIA 15.05 standards 
depict the performance criteria and related testing methods to determine performance characteristics of 
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industrial robots. They define the important performance characteristics, describe how they shall be 
specified, and recommend how they should be tested. The ASTM F45 committee of performance standards 
for automatic guided industrial vehicles includes environmental effects, docking and navigation, 
communication and integration, object detection and protection, and terminology areas. F45 is expected to 
include performance test methods for mobile manipulators where “precision” docking of the system may be 
expected to provide, for example, two or more orders of magnitude smaller tolerance docking than are 
needed for pallet acquisition for assembly or other similar tasks. 
 
5.3  Artifacts to Evaluate Performance 
 
      Performance evaluation artifacts for safety of robots and mobile robots/AGVs appear in their respective 
safety standards. However, industrial safety system performance artifact research is non-existent for robots: 
a literature search provided no results and minimal results for mobile robots/AGVs [124]. Similarly, a 
literature search for artifacts used to measure mobile manipulator performance was virtually non-existent 
until recently at the U.S. National Institute of Standards and Technology (NIST) [126]. Mobile manipulator 
users could spend a relatively large amount of money having artifacts machined. However, advancements 
in additive manufacturing technologies enable rapid prototyping capabilities that significantly reduce the 
cost and effort necessary to produce such artifacts. Figure 6 (a) shows a graphical depiction of an artifact 
being developed and used at NIST for measuring performance of mobile manipulators. The artifact allows 
a machined surface (flat as in Fig. 6 (a) or convex/concave as in Fig. 6 (b)) with patterned holes to position 
reflectors and to be tilted horizontally, vertically, or at any angle beside or above the mobile manipulator. 
Each reflector can be positioned perpendicular to the surface or at any pitch and/or yaw angle. A laser 
retro-reflector is wielded by the manipulator and positioned above and in-line with each reflector to 
measure manipulator position accuracy (within the laser and reflector tolerance), repeatability, detection, 
time for detection, efficiency of motion, dexterity, and autonomy. Many of these parameters can be 
determined by measurement from one mobile base position. Additionally, travel distance coupled with 
dexterity and autonomy can also be measured using the apparatus by indexing or continuously moving the 
mobile base along or around the apparatus. Alternatively, the robot could wield a reflector while the 
apparatus houses laser retro-reflectors, resulting in a much simpler robot interface, but with greater cost 
from additional lasers. 
 

 

 

a b 
 
Fig. 6. Graphic of the NIST mobile manipulator artifact showing (a) adjustable height table with multiple geometric patterns of tapped 
holes and (b) flat (top/bottom), concave (inside edge), convex (outside edge) patterns of holes for mounting reflectors or laser 
retroreflectors and designed to mount into circular or sinusoidal shapes. 
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5.4  Robot Performance Measurement 
 
      There have been very few published works pertaining to robot performance measurement research, 
especially for industrial robots. Most papers discuss the systems used to measure robot performance, 
instead of the test method developed, and are included in Sec. 4. Included in this section is research 
describing mathematical tools, measurement of a teleoperated robot, and a software framework for robot 
performance measurement. 
      Dynamic capability equations (DCE) are described by Bowling and Khatib [127] and provide a new 
description of robot (non-redundant manipulators with as many actuators as DoF) acceleration and force 
capabilities, which they called a “new tool for analyzing manipulator performance.” Robot acceleration and 
force capabilities refer to a manipulator’s ability to accelerate its end-effector and to apply forces to the 
environment at the end-effector. The key features in the development of these equations were that they 
combined the analysis of end-effector accelerations, velocities, and forces, while addressing the difference 
in units between translational and rotational quantities. 
      Although teleoperated, Hannaford et al. [128] measured performance of the flight telerobotic servicer 
robot in a series of generic and application-driven tasks with and without force feedback, and with control 
shared between teleoperation and local sensor referenced control. Measurements defining task performance 
included 100 Hz recording of six-axis force-torque information, task completion time, and visual 
observation of predefined task errors. Park et al. [129] evaluated methods of measuring motion 
characteristics (i.e., payload, repeatability, maximum speed, and position accuracy) of pose and path for a 
dual-arm robot and provided results. 
      Although not aimed at industrial robot performance measurement research, a software framework was 
developed in 2006 by Balakirsky et al. [130] that allowed for the realistic modeling of robots, sensors, and 
actuators, as well as complex, unstructured, dynamic environments. Because it was a simulation framework 
for these performance measurements, it could therefore be adapted to industrial applications as well. 
Multiple heterogeneous agents could be concurrently placed in the simulation environment thus allowing 
for team or group evaluations. 
 
5.5  Mobile Robot Performance Measurement 
 
      Robot motion performance evaluation methods and systems remain a challenge, although substantial 
progress has been made in recent years. Off-line evaluation techniques are non-existent yet, evaluation is 
“deeply influenced by the task, the environment, and the specific representation chosen for it.” Calisi and 
Nardi [131] concentrated on tasks that require the robot to move from one configuration to another. They 
describe that the task can either be an independent sub-task of a more complex plan or represent a goal by 
itself. After characterizing the goals and the tasks, the authors described the commonly-used problem 
decomposition and different kinds of modeling that could be used, from accurate metric maps to 
minimalistic representations. 
      In 2000, Baltes [132] described a benchmark suite for mobile robots that provided quantitative 
measurements of a mobile robot’s ability to perform specific tasks. The benchmarks tested the path- and 
trajectory-tracking control and accuracy, the static path planning, and the dynamic path planning ability of 
a mobile robot. A set of metrics that provide important information about a mobile robot’s performance are 
also presented. Baltes states that, “benchmarks could also be used as simple games which would lead to an 
increased opportunity for researchers to evaluate their work without having to buy expensive or special 
purpose equipment.” In 2014, Ceballos et al. [133] developed a mobile robot simulator for research and 
education that was implemented in Matlab. It modeled the robot’s differential kinematics and proximity 
sensors. It allowed the performance assessment of navigation algorithms through various quality metrics 
that are useful for comparing and analyzing simulated navigation algorithms of mobile robots. 
      Commercially available AGV’s could provide the mobility for onboard manipulators for agile 
manufacturing applications. To ensure that all AGV’s performance characteristics are expressed in the 
same manner, Bostelman et al. [134] measured the performance of an AGV towards development of 
standard performance test methods. Measurements of the AGV navigating standard geometrically shaped 
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paths (e.g., circle, square, etc.) and in various steering modes and velocities were compared to a multiple 
camera tracking system used as ground truth. 
      In 1998, Duckett and Nehmzow [135] researched self-localization in autonomous mobile robot 
navigation, including a general performance metric and a standard experimental procedure. The concept 
allows disparate localization systems to be compared on the same robot in the same environment. To 
demonstrate the utility of the approach taken, they tested the evidence-based localization system in six 
different environments, comparing its performance to that of localization using dead reckoning or currently 
observable landmarks. 
      A survey of the mobile robot competitions that fostered quite a lot of mobile robot research progress is 
found in [136]. A recent competition, not included in [136], is RoCKIn [137] which fostered benchmarking 
of robots for home and work. The survey led to the formation of the ASTM International F45 automatic 
guided vehicle performance standard committee. For example, one competition in the report included the 
US Defense Advanced Research Project Agency’s Learning Applied to Ground Robots (LAGR) program, 
which ran from 2004 until 2008. LAGR had the goal of accelerating progress in autonomous, perception-
based, off-road navigation in robotic unmanned ground vehicles (UGVs) using one mobile robot. In the 
LAGR program, mobile robot performance was measured, against other robots, by completion of a task 
over three consecutive attempts, learning during each run to decrease travel time to the goal. After LAGR 
and other surveyed competitions in [136], the Multi-Autonomous Ground Robotics International Challenge 
(MAGIC) 2010 [138] occurred. MAGIC invited competing teams to field squads of unmanned vehicle 
prototypes that autonomously coordinated, planned, and executed a series of timed tasks including 
classifying and responding to simulated threats and exploring/mapping diverse terrains. 
 
5.6  Mobile Manipulator Performance Measurement 
 
      As there have been relatively minimal performance measures considered for robots and mobile robots 
with regards to industrial applications, even fewer measures have been published for mobile manipulators. 
As stated in the mobile robot performance measurement section, measures are deeply influenced by the 
task, the environment, and their specific representation. In 2007, Zadarnowska and Tchon [139] noted that 
there are challenges in the performance evaluation of mobile manipulators and they considered the 
controllability of its theoretical configuration. They stated: “It seems that this area has not been explored 
systematically in the literature.” For example, they reference motion generation, coordinated tasks, 
locomotion, and manipulation, kinematics to drive design, and trajectory planning. This survey has already 
discussed and referenced example planning and control where the literature only described the proposed 
control concepts and reported results from simulation or physical systems as either having worked or not. 
In other words, there was no generic measurement technique or test method to compare the various mobile 
manipulator control method performance nor many of the other metrics described previously. 
      Of the few references uncovered, the most generic physical measure used to develop controls for 
mobile manipulators appears in 1992 in Hootsmans et al. [140]. They emulated the performance of the 
mobile manipulator system by mounting a robot arm onboard a six DoF Stewart platform, parallel-link 
manipulator. The authors experimentally investigated the behavior of a manipulator mounted on a 
compliant or moving base. The system could emulate a wide variety of linear and non-linear compliant 
vehicles. Dynamic interaction measurements were made using a six DoF force and torque sensor mounted 
on top of the platform and underneath the robot arm. Using an inverse kinematic model of the platform, the 
required vehicle motions were translated into Stewart mechanism commands. 
      Simulations of stability performance measurement were conducted by Yamamoto and Yun [141] in 
1994 to evaluate the performance of dynamic interactions by using a mobile manipulator model for three 
different trajectories: straight line with a constant velocity along a 145° direction with respect to the initial 
heading angle, circular trajectory, and straight line with constant velocity while the arm followed an 
oscillatory motion along the X-axis. In 2007, Zadarnowska and Tchon [142] proposed a control theoretic 
methodology for defining mobile manipulator dynamic performance measures, including compliance and 
admittance measures. They introduced both local and global performance characteristics, including: the 
agility ellipsoid, the agility and mobility, the condition number, and the distortion. The authors 
demonstrated the measures on a mobile robot to only determine optimal motion patterns. 
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      And in 2010, performance measurements, although not for industrial use, were performed by Advait 
and Kemp [21] to evaluate completion of specific tasks for a mobile manipulator. The robot approached 
and grasped objects from 25 object categories that were ranked most important for robotic retrieval by 
motor-impaired patients. Perhaps a similar list of items could be considered for task specific, performance 
measurements of mobile manipulators to be used in industrial environments. 
 
 
6.  Conclusion 
 
      This survey provided an extensive literature review for mobile manipulators, including robot arm and 
mobile robot research since they form the basis of mobile manipulators. Beginning with a brief discussion 
of what types of mobile manipulators have been studied, experimental applications research is then 
surveyed as they have driven research in other areas. Experimental applications have been considered and 
will drive their rapid use in industrial settings (e.g., assembly, inspection, opening doors, material handling, 
etc.). After considering the desired application for mobile manipulators, development of planning and 
control methods has been at the forefront of mobile manipulator research. Most of the planning and control 
research areas for mobile manipulators have included: unified motion; trajectory planning; configuration 
optimization; multiple tasks; stability; obstacle avoidance; outdoor use. 
      The lack of metrics and quantifiable measures of performance have been considered major barriers in 
the development of other intelligent systems. Benchmarks are important for mobile manipulators and may 
even guide developments in the correct directions. As in Sec. 3, benchmarks are the framework to 
standards. Based on the enclosed references and on past research in robotics for industrial use, the authors 
therefore summarized that metrics to consider for mobile manipulators might be: 

• time/task duration 
• distance traveled 
• repeatability 
• accuracy 
• task completion/effectiveness 
• efficiency 
• dexterity 
• autonomy 
• stability 
• obstacle detection and avoidance 
• exploration of unknown environments 

      The tools that are used to measure the performance of systems, whether machine tool or robots, were 
surveyed where the machine tool and part measurement systems and their methods may prove useful in, or 
at least contrast, measuring performance of mobile manipulators. However, motion tracking systems are the 
focus of the majority of literature surveyed since mobile manipulators are dynamic in nature. The survey 
considered various motion tracking technologies, such as: camera, multi-camera, laser, and rotating laser 
systems. 
      Lastly, performance measurement research, specific to robots, mobile robots, and mobile manipulators 
are surveyed, beginning with calibration. In this area, contact and non-contact calibration systems are 
surveyed, including string-pull, laser, vision, light emitting diode with cameras, etc. and the fused sensor 
algorithms. Performance, as well as safety, standards are then listed for robot and mobile robot/AGV 
systems where ASTM F45 will be an ideal venue for mobile manipulator performance test methods. One 
area that shows promise for performance measurement, including calibration, of mobile manipulators is 
with standard artifacts. Metrology bars or other calibrated artifacts can provide a simple, reproducible, cost-
effective measurement system with known accuracy and repeatability for measuring mobile manipulator 
performance. NIST has been developing such a system that promises a virtually unlimited number of 
measurement configurations for mobile manipulators. 
      Perhaps the least published area of mobile manipulator research is in performance measurements, 
including artifacts. Minimal performance measurement of robots, mobile robots, and mobile manipulators 
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literature was uncovered. A few research works were published discussing software frameworks, 
teleoperated systems measurements, benchmarks, and localization. A survey of research that includes 
military competitions leading to the ASTM F45 performance standard was also included. Mobile 
manipulator performance measurement research was suggested as not being explored systematically. 
Expectedly, robot and mobile robot performance measurement research is more prevalent than for mobile 
manipulators since this area is relatively new. However, robot and mobile robot measurement provides 
excellent basis for mobile manipulator measurement methods and is included in the survey. The survey is 
useful to practitioners as a sound basis for mobile manipulator implementation for planning, control, 
stability, indoor and outdoor use, etc. followed by a comparison of technologies and research results that 
support mobile manipulator application. Since artifacts provide such a simple, yet useful method for 
measuring mobile manipulator performance, it is in this area of mobile manipulator performance 
measurement and test method development that are suggestions or challenges to the research community. 
      The authors recommend the following research be considered for measuring the performance of mobile 
manipulator systems: 

• Exhaust the usefulness of measurement systems that are unconstrained to mobile manipulator 
testing in a variety of applications (e.g., navigation, assembly, material handling), 

• Develop performance standards based on performance research for mobile manipulators when 
used in a variety of applications and environments. 
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