
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1984

Survey of Routing Algorithms for Computer Networks Survey of Routing Algorithms for Computer Networks

Lu Yu

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Yu, Lu and Sager, Thomas J., "Survey of Routing Algorithms for Computer Networks" (1984). Computer

Science Technical Reports. 82.

https://scholarsmine.mst.edu/comsci_techreports/82

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/82?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SURVEY OF ROUTING ALGORITHMS

FOR COMPUTER NETWORKS

Lu Yu*

and Thomas J. Sager

CSc-84-16

Department of Computer Science

University of Missouri-Rolla

Rolls, MO 65401 (314) 341-4491

This report is substantially the M.S. thesis of

the first author/ completed December 1984

*

ii

ABSTRACT

This thesis gives a general discussion of routing for

computer networks, followed by an overview of a number of

typical routing algorithms used or reported in the past few

years. Attention is mainly focused on distributed adaptive

routing algorithms for packet switching (or message

switching) networks. Algorithms for major commercial

networks (or network architectures) are reviewed as well,

for the convenience of comparison.

iii

ACKNOWLEDGEMENT

I wish to express my deep gratitude to my advisor, Dr.

Thomas J. Sager, who gave good lectures for the course of

computer networks and provided valuable guidance and

assistance throughout my work on the thesis.

Thanks are also due to Dr. John B. Prater and Dr.

Farroll T. Wright for their special concerns over my work.

Last, but not least, I would like to thank Mr. Charles

Spradlin of Monsanto Inc. and Mr. Luke Lien of IBM Inc.,

who gave me help in searching the literature.

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOLEDGEMENT ... iii

TABLE OF CONTENTS iv

LIST OF FIGURES .. V

I. INTRODUCTION .. 1

II. THE PROBLEM OF ROUTING 5

III. CLASSIFICATION OF ROUTING ALGORITHMS 9

IV. THE NEED FOR ADAPTIVE ROUTING 13

V. THE NEED FOR DISTRIBUTED ROUTING 21

VI. EXAMPLES OF ROUTING ALGORITHMS 25

A. ARPANET ALGORITHM 26

B. CHU: ALGORITHM FOR TOPOLOGY UPDATE PROBLEM 33

C. GALLAGER: MINIMUM DELAY ALGORITHM AND

SEGALL ET AL: FAILSAFE ALGORITHMS 39

D. OTHER ALGORITHMS FOR QUASISTATIC ROUTING 45

E. JAFFE ET AL: RESPONSIVE ALGORITHM 50

F. CHIN ET AL: PPD ALGORITHM 54

G. RUDIN: DELTA ROUTING AND

OTHER SIMILAR ALGORITHMS 59

H. MURALIDHAR ET AL: HIERARCHICAL ALGORITHM 64

I. BRAYER: SURVIVABLE ALGORITHM 68

J. GERLA ET AL: UNIDIRECTIONAL ALGORITHM 72

K. SNA AND TYMNET ALGORITHMS 77

L. OTHER PRACTICAL ALGORITHMS 83

XII. OTHER RESEARCH IN THIS AREA 90

XIII. CONCLUSION 94

BIBLIOGRAPHY .. 96

iv

V

3

10

17

18

19

20

23

34

36

52

74

76

85

89

LIST OF FIGURES

The network architecture based on ISO's OSI model

Routing algorithms in 3-space

Performance with balanced traffic

Performance with balanced traffic with surge

Performance with unbalanced traffic

Performance with chaotic traffic

Routing traffic concentration near the NRC

Sink tree for destination node D

Critical distance table at node I

Routing table at node A

PDL table for a sample network configuration

Path tracing to upstream neighbors

DECNET routing database and routing message

TRANSPAC routing example

1

I. INTRODUCTION

As computers have become smaller, cheaper, and more

numerous, people have become more interested in connecting

them together to form networks and distributed systems.

The merging of computers and communications has had a

profound influence on the way computer systems are

organized. Hence, the advent of computer networks, by which

we mean an interconnected collection of autonomous

computers. The goal of such networks is twofold. One is

to end the tyranny of geography, the other to provide high

reliability by having alternative sources of supply. As a

natural consequence of such goals, computer networks can

provide a powerful communication medium among widely

separated people. Some of the major advantages of building

a large system from many small localized machines are: a

favorable price/performance ratio, graceful degradation

upon failure, and incremental growth.

In any network, there exists a collection of machines

intended for running user programs. We call these machines

hosts. They are connected by the communication subnet

whose job is to carry messages from host to host. A subnet

consists of two basic components: switching elements (or

nodes) and transmission lines (or links or channels).

Broadly speaking, there are two general types of

subnets: point-to-point and broadcast. The former type of

subnet contains numerous cables or leased telephone lines,

each connecting a pair of nodes. When a message is sent

from one node to another via one or more intermediate

nodes, the message is received at each intermediate node in

its entirety, stored there until the required outgoing line

is free, and then forwarded. Hence the name store-and-

forward subnet.

Since the computer-to-computer traffic needs

intermittent use of a high bandwidth channel, it entails

packet switching or message switching rather than circuit

2

switching used in telephone networks for human-to-human

traffic. The fundamental property of packet switching (or

message switching) networks is that the bandwidth is

acquired and released as it is needed/ instead of being

reserved in advance.

To conquer the complexity/ a highly structured way is

needed in designing networks. That is why most networks

are organized as a series of layers (or levels)/ each built

upon its predecessor. One of the most widely accepted

models today is the 7-Layered Reference Model of OSI (Open

Systems Interconnection) proposed by ISO (International

Standards Organization) [94]. F i g u r e 1 is a good

illustration for this model.

When there are multiple paths (or routes) possible

between source-destination pairs/ at some point in the

hierarchy of layers/ a routing decision must be made. Such

routing decisions are often a key design issue at layer 3/

the network layer/ or sometimes called communication subnet

layer, in the ISO's OSI model. They could be based on

static tables that are "wired" into the network and rarely

changed. They could be determined at the start of each

conversation. Finally, they could also be highly dynamic,

being determined anew for each packet, to reflect the

current network load.

The last class of routing techniques mentioned above

are called adaptive ones, which have received considerable

attention in recent years. A great number of new designs

and implementations have appeared in the literature. The

purpose of this thesis is to provide a survey of such

adaptive routing techniques, with the emphasis on

distributed algorithms, by which we mean that decisions are

made by individual nodes throughout the network as opposed

to the usage of central control. The scope of the review

of algorithms will also be limited mainly to packet (or

message) switching networks with point-to-point subnets.

Following the introduction, the problem of routing.

Layer

Application
Application protocol

f I n t e r f a c e
v_____

Presentation

r
Session

Transport

Network

T
Jl

Data link

I
Physical

Presentation protocol

Session protocol

Application

f
_____ v_____

Presentation

Transport protocol

Communication subnet boundary

T
V

Session

I
Transport

•» Network
T

♦ Network -

Internal subnet protocol

- ♦ Data link J.. Data link

Physical Physical

Network

Data link

I
Physical

— Network layer

- Data link layer

Physical layer

Figure 1. The network architecture based on ISO's OSI model

Name of unit
exchanged

Message

Message

Message

Message

Packet

Frame

Bit

4

the classification of routing algorithms/ and the

advantages of adaptive and distributed routing are

discussed in separate chapters. Then a comprehensive

review is given of the typical algorithms developed and

proposed in the past few years, which will hopefully

provide a useful overview of the recent advancement of

research in this area. Finally, an extensive bibliography

is supplied for reference.

5

II. THE PROBLEM OF ROUTING

A computer network can be viewed as a network graph G

= (X,A), where X is the set of network nodes and A is the

set of transmission lines connecting the nodes. A path of

a network joins two network nodes through a collection of

connected lines. Such a directed path is a sequence of

arcs (a^, a^ + 2 ' ai + 2'-**' an) such that the ending node of

arc a^ + k *s ^he same as the beginning node of arc Sji+k + i*

These paths through the network are also called routes. A

message starting from its source node follows the path to

reach its destination node. Thus, the routing algorithms

are the rules that determine the path(s) for each message

from its source node to its destination node. Throughout

this thesis, except for specifically indicated, a path is

meant for a bidirectional path, i.e. duplex, in

communications terminology.

Routing in networks involves sending each incoming

message to its destination intelligently via a continuous

path u s u a l l y incorporating several lines. The

implementation of the route chosen consists of setting up

at each node along the path a routing table that directs

messages with particular destinations to the appropriate

outgoing line at that node. Since routing can be

defined as the process of picking the "best" paths for

traffic flow in the network, we should first discuss what

the "best" means. Regardless of the variations and

differences in design philosophies and implementations,

there are certain properties that are desirable in a

routing algorithm, i.e. correctness, simplicity,

robustness, stability, fairness and optimality [86].

Correctness is quite self-explanatory. The property

of simplicity assumes increasing importance as further

requirements are placed on the algorithm and as complexity

tends to grow. Robustness is very important, because once

a network starts running, it is expected to be able to run

6

continuously for years without system-wide failures. This

requires that the routing algorithms be able to cope with

changes in topology and traffic. Such property may also

imply reliability, adaptability or recoverability. Another

basic requirement is that, given a static set of input

data, the routing algorithm should arrive at a steady state

solution rather than oscillating. Though elementary,

stability should not be neglected either in the early

design or in the later operation. Besides, the routing

algorithm should be fair to competition for shared

resources. The last, but not the least, property is

optimality. Routing choices can stablize at many points in

a given situation. In all but the best case, however, some

network resources are being wasted and some network traffic

handled inefficiently. The routing algorithm must seek to

select the optimal paths, based on some combination of

availability, error rate, queue lengths and estimated

delays of the alternative paths. In a word, we seek to

minimize the average delay for interactive traffic and

maximize the total throughput for bulk traffic. Sometimes,

however, strict global optimality would completely shut

off traffic between some nodes, and this is unfair. So we

need to find a trade-off between the two conflicting goals

[50].

As Gerla analyzed in [31], the optimization of packet

delay can be approached in two different ways, i.e. system

optimization and user optimization. Using the former, the

paths between all source-destination pairs are optimized

jointly according to a common objective, the overall

average delay. With the latter, on the other hand, each

sour ce-des t i na t i on requirement is optimized independently

until a competitive equilibrium is reached. It turns out

that the routing solutions obtained using these distinct

criteria are not very different, especially for large

networks with uniform requirements.

It was summarized by McQuillan in [50] that evaluation

7

of a routing algorithm is usually in terms of performance

and cost. The performance is considered in four respects:

delay, throughput, cost and reliability. Five specific

costs are likely to be incurred by any routing plan. They

are: nodal bandwidth, nodal delay, nodal storage, line

bandwidth and line delay.

The problem of designing routing algorithms has

received considerable attention over the past few years.

Considerable improvements have been made especially in

terms of robustness and optimality, resulting in many

valuable new techniques worth mentioning in the following

part of this thesis.

What makes the routing problem a challenging one is

that it is a problem distributed in space and in time. One

must consider how to best allocate the resources available

to a network to accomplish the work the network has to do

at a certain time, but any global characterization of such

work can be based only on the past as opposed to the

current information values, which are usually used as an

indication of the global state of the network. Because of

the complexity of the problem, much of the existing

comparison of algorithms has been carried out by

simulation, the amount of analytical studies is very

limited.

Most of the routing algorithms developed or

implemented turn out to be variants, in one form or

another, of shortest path algorithms that route packets

from source to destination over a path of least cost [73].

Poisson arrivals, exponential message independence

assumptions are usually made in the analysis so as to force

the queueing model to be the M/M/l type*. This is referred

* The notation M/M/l is widely used for queueing models

where the interarrival-time probability density and the

service-time probability density are both exponential

and the number of servers is 1.

8

to as the optimum routing rule [43]. Numerical methods such

as flow deviation [27], gradient projection [3], [72] and

others have been used to solve for the optimum flow

distribution.

While the difference lies primarily in the choice of a

line cost function used to establish the minimum cost path,

the routing algorithms may also differ in the following

aspects:

— The place at which the algorithms are run.

— How dynamic they are, i.e. how rapidly and in

what manner they adapt, if at all, to changes in network

traffic and/or topology information.

— The actual implementation, e.g. the size of the

routing table, the routing overhead required, etc-

— The number of routes a packet (or message) is

assigned (single-path routing or bifurcated routing).

— The range in which optimization is attempted,

system-wide optimization or user (end-to-end) optimization.

From different points of view, the routing algorithms

are variously classified as in the next chapter.

9

III. CLASSIFICATION OF ROUTING ALGORITHMS

Research and development in the area of network

routing algorithms is characterized by their increasing

growth and diversity. A classification is needed before we

can proceed to further talk about them.

For the purpose of classifying numerous routing

algorithms, a cube was suggested by Rudin in [67] as is

illustrated in Figure 2. One dimension tells where the

decisions are made, either at the node in distributed

fashion (D) or centrally (C). This dimension is shown in

the horizontal line in Figure 2. The second dimension of

the horizontal plane describes the kind of strategy to be

used, on the one end is nonadaptive or invariant (I), and

on the other adaptive (A). This axis can also be thought

of as a measurement of the speed at which the routing

algorithm can change or adapt. The vertical dimension

describes the kind of information to be used in making

decisions, either local (L), i.e. using only the

information locally available at the nodes, or global (G)

information.

As can be seen in the cube, one important way to

classify the routing algorithms is according to how

adaptive they are, with the ends of the scale consisting of

purely static and completely dynamic strategies.

With purely static strategies, given fractions of the

traffic at node i of the network for each of the other

nodes j/i are directed on each of the outgoing lines of

node i. The paths for any source-destination pair are

decided upon before the network starts operating. They are

fixed in time, and depend only on the time and ensemble

averages of the message flow requirements in the network.

At the other end of the scale are the completely

dynamic strategies, which allow continuous changes of the

paths. The paths can be varied not only as functions of

time, but also according to topology and traffic changes in

10

Figure 2. Routing algorithms in 3-space

11

various portions of the network. Dynamic routing is based

upon the instantaneous state of the network.

Each of the extreme strategies has some advantages and

drawbacks. The static routing is simple but unable to cope

with changes in traffic and topology effectively. The

completely dynamic ones are supposed to be able cope with

these changes, but on the other hand, they may require a

large amount of overhead. To have the desired properties of

both, a strategy somewhere in between the two extremes is

also often considered, according to Gallager [28]. That is

quasistatic routing, where changes of paths will only be

needed relatively infrequently. Reordering and individual

addressing of messages are not needed, but if the topology

changes or the traffic and delays build up in a particular

section of the network, the paths will be changed

accordingly.

In this thesis, we choose to include both the

completely dynamic and the quasistatic into the category of

adaptive routing.

The choice of control regime to be used in the

operation of the algorithm is also a frequently used way of

classification. Centralized routing means one in which

routing decisions are made centrally by an NRC (Network

Routing Center) and then sent to the nodes for execution.

On the other hand, in decentralized routing, the decisions

are made by individual nodes throughout the network.

Decentralized routing, however, can be further divided

into isolated and distributed ones, depending on whether

they make exclusive use of local information (isolated) or

utilize the internode cooperation and exchange of

information to arrive at routing decisions (distributed)

[52].

As Rudin pointed out in [67], one would, ideally, like

to operate at the top of the rearmost plane with a very

adaptive (fast reacting) strategy based on global

information. Whether this is achieved by means of

12

distributed or centralized decision is a question of

implementation. Unfortunately, considerations of physical

realizability may often prevent operation in this ideal

region, the reason being that too much line capacity must

be used in propagating status and routing information,

leaving too little capacity for the transmission of

"useful" data.

Routing algorithms have been studied, compared, and

classified according to various criteria. In general, each

approach seeks to optimize some set of performance criteria

under a particular set of system constraints. The problem

of choosing the best routing technique for a proposed new

application requires careful study and considerable

thought.

An excellent list of references can also be found in

the paper by Schwartz et al [73]. There were many other

studies on the classification of routing algorithms.

Examples can be found in [43] and [23].

13

V. THE NEED FOR ADAPTIVE ROUTING

After an overview of a large variety of the routing

algorithms available/ the question arises: Which of them

are better, and why?

In answering such a question, a comparison between

static and adaptive routing strategies and between the

philosophies behind them may be in order.

As mentioned before, the routing algorithms are

designed for intelligently transmitting messages under

various traffic conditions of the networks. The traffic

conditions may vary due to a number of factors such as

traffic input rates, transmission capacities of lines,

processing capacities of nodes, topology changes, and flow

control mechanisms used in the networks.

Static routing strategies, by its name, are

predetermined as part of the network design, based on

factors like network topology and average traffic

conditions. Usually, they do not change during message

transmission and network operation. Thus, an apparent

merit of them is simplicity in implementation. No overhead

is required for route recalculation, status information

communication, etc. This may sound ideal. However, this

is only good in situations where traffic requirements are

predictable and without great variation. Unfortunately,

much computer traffic in reality is bursty in nature. A

user may ask to have a large file sent between two

machines, putting a heavy load on portions of the subnet

for a few minutes, and may then abstain from using the

subnet for a long period of time. In such cases, the

average traffic conditions, on which the static algorithms

are based, can be of little value.

Adaptive algorithms, on the other hand, are capable of

adapting to the network changes by changing the selected

paths on which the packets are routed. Apparently, they

seem more appropriate for actual computer networks.

14

Besides, nodes and lines are subject to failures. It is

highly desirable to have networks capable of adapting to

such topology changes. Another reason is that the inherent

capability of the limited length of data units (packets) in

packet switching networks can only be well exploited with

adaptive routing. While the adaptive nature appears to

be more advantageous than the static, it is not without

drawbacks. The overhead caused by the routing calculations

and status information exchanges is not negligible.

Another sort of difficulty i n v o l v e s practical

implementation. At this point, it becomes unclear which is

more desirable after all.

Indeed, there are three different schools of thought.

There are those who are in strong favor of the dynamic

strategies. They usually base their conclusions on

mathematical models and the simulations of these

mathematical models. There are also those who prefer the

static ones. Their conclusions are usually based on the

experience with some operating networks. There are also

some people who hypothesize that a combination of the two

would probably result in a more ideal strategy. Their

beliefs are usually derived from network measurements.

Before we draw our conclusion in this issue, some

recent research work done by Chou, Bragg and Nilsson [15],

[16], [17] is worth reviewing.

The approach in which they studied this problem is by

classifying the traffic conditions into four categories.

Investigations of preference for a static or an adaptive

routing strategy were made with respect to the following

four traffic categories:

1) balanced, emulating known and stationary traffic

conditions;

2) balanced with surge, emulating a balanced traffic

condition with possible unexpected sudden increase in

traffic demands between some source-destination pairs;

3) unbalanced, emulating unknown or nonstationary

15

traffic conditions with low to moderate traffic loading;

4) chaotic, emulating unknown or nonstationary traffic

conditions with heavy traffic loading.

A simulation program was used in the evaluation of the

static and adaptive routing strategies under the above four

different traffic conditions.

From a quantitative point of view, they characterized

a routing strategy by two features:

1) The delay metric function used to determine routes

and routing table. Associated with each line in the

network is a metric. It is usually a function of the delay

experienced by a packet queueing and transmitting through

the line or a function of the number of packets queued for

the line.

2) The frequency of updating routing tables. This is

a compromise between the desire to propagate the changes as

soon as they are detected and the amount of the overhead

generated by the updates.

In their simulation, they generalized the metric

function into

a0 + aiQ + a2 ^

where Q is the queue size at the time of routing update and

aQ, a^ and a2 are coefficients. By appropriately choosing

the coefficients, as they observed, such a metric could

define a routing strategy that behaves almost statically

when the traffic is reasonably balanced (queue size Q is

small) and adaptively otherwise (due to the increased

impacts of the second and third terms).

For each of the four traffic conditions, one static

and three adaptive strategies are compared. The three

adaptive strategies are:

1) metric is 1 + Q and update frequency is 10 seconds

(similar to the new ARPANET strategy);

2) metric is 1 + 0.25Q and update frequency is 0.25

16

second (similar to the old ARPANET strategy);

3) metric is 1 + 2Q/15 + Q^/50 and update frequency is

0.25 second (a well-chosen strategy derived from their

analysis and simulation on a hypothetical network model).

Their simulation results for average message delay as

a function of network throughput for the four traffic

conditions are given in Figures 3/ 4, 5 and 6. From the

results, we can see that among the four traffic conditions,

only the balanced conditions verify the static routing

stategies, and adaptive ones are definitely more desirable

for unbalanced or chaotic conditions.

Although the flexibility of adaptive routing is

achieved at the cost of additional software complexity, the

transmission facility resources saved in providing the same

grade of service as the nonadaptive ones more than offset

the additional cost under unbalanced or chaotic conditions.

In the perspective of new development in the future,

adaptive routing is undoubtedly a likely direction. The

fast growing computer technology will, in the long term,

justify the complexity of adaptive routing.

It is also reasonable for some operational networks to

keep using static routing strategies for some particular

traffic conditions, since the cost of changing the entire

routing mechanism may not be worthwhile. Besides, static

routing finds an important application in the network

design process, because the analysis of adaptive routing is

an extremely difficult task.

A
v
e
r
a
g
e

n
e
t
w
o
r
k

d
e
l
a
y

(
m
s
e
c
)

17

Network throughput (kbits/sec)

Figure 3. Performance with balanced traffic

A
v
e
r
a
g
e

n
e
t
w
o
r
k

d
e
l
a
y

(
m
s
e
c
)

18

Figure 4. Performance with balanced traffic with surge

A
v
e
r
a
g
e

n
e
t
w
o
r
k

d
e
l
a
y

(
m
s
e
c
)

19

A

400-

300“

2 0 0 ~

100 -

- - - - - - - - - - j- - - - - - - - - - - - - - - - - j- - - - - - - - - - - - - - - - - r

10 20 30

Network throughput (kbits/sec)

Figure 5 Performance with unbalanced traffic

A
v
e
r
a
g
e

n
e
t
w
o
r
k

d
e
l
a
y

(
m
s
e
c
)

20

h

600-

500-

400-

300-

20 0_

1 0 2 0 Jo

Network throughput (kbits/sec)

Figure 6 Performance with chaotic traffic

21

VI. THE NEED FOR DISTRIBUTED ROUTING

Now we turn to another question: Which is preferable,

centralized routing or distributed routing, and why?

With centralized routing, somewhere within the network

there is a Network Routing Center (NRC), which periodically

receives status information sent from each of the nodes and

uses the collected global information to compute the

optimal paths for the source-destination pairs. From the

results of such computation, it builds new routing tables

and distributes them to all the other nodes.

Distributed algorithms, on the contrary, exercise no

central control over the network routing. Each node

exchanges status information with other nodes and makes

routing decisions on its own.

Two aspects of the performance of routing algorithms

can be used in judging the relative advantages and

disadvantages of each of the two philosophies. One is long

term in nature, in which one hopes that the network is

operated in an efficient manner, i.e. the resources are

used wisely so that one resource does not remain idle while

another (equivalent) resource is overtaxed. Another is of

short term, in which one wants, in addition, the network to

react quickly when a traffic burst must be handled or when

a resource fails.

Some experience has shown that centralized routing

strategies are more efficient in the long term aspect,

given stable traffic flows. This is because a single

entity (NRC) with global knowledge of the network status as

last reported can make consistent decisions. The decisions

made distributively at each node tend to be efficient only

in the environment local to that node, possibly resulting

in a network not working consonantly as a whole. Looping

in the old ARPANET algorithm is such an example.

On the other side of the coin, distributed strategies

allow a node to respond much more rapidly to a change in

22

traffic or topology in its own immediate environment. In

addition, distributed routing exhibits a number of other

advantages in those aspects where centralized routing

appear very weak, as Tanenbaum noted in [86].

For centralized routing, if a subnet is to be able to

respond to changes in traffic, the routing calculation will

have to be performed very frequently. If the network is a

large one, then the amount of such calculation will impose

a heavy burden on the CPU.

A more serious problem of centralized routing is the

vulnerability of NRC. In the situation where the NRC goes

down or isolated by line failures, the subnet is suddenly

put in a disaster. If a second machine is used to work as

a backup to remedy the vulnerability, it will result in

even more computation, and an arbitration method is also

needed in case the primary NRC and backup NRC present

inconsistent results.

The theoretical argument in favor of using centralized

routing is, in the first place, that it can find optimal

paths. However, if it does not use alternate paths for the

source-destination pairs, the failure of even a single line

or node will probably cut some nodes from the NRC,

resulting in disastrous consequences. If alternate paths

are to be used, then the advantage of centralized routing

stated above will be weakened.

Since the NRC has to collect status information from

all nodes throughout the network, the routing traffic will

be heavily concentrated on the lines leading into the NRC.

Those lines near the NRC with heavy load will consequently

be very vulnerable. This situation can be illustrated as

in Figure 7.

Besides the above vulnerabilities, the way in which

the NRC distributes the routing information to the nodes

throughout the network may lead to some other undesirable

problems. For example, the nodes that are close to the NRC

will receive their new routing tables early and will switch

23

On the shortest path from each node to the NRC,
there are a number of arrows. Each arrow represents
that the node is reporting to the NRC via that line.
The closer to the NRC a line is, the more arrows
there are on that line, consequently the more vulner
able that line is.

Figure 7. Routing traffic concentration near the NRC

24

over to the new paths before the distant nodes have got

their tables. Inconsistency may arise and the packets,

including those of the routing tables for the distant

nodes/ may be delayed, making the inconsistency from bad to

worse.

Distributed routing strategies are supposed to be able

to resolve those problems stated above for centralized

ones. They get the traffic burden of transmitting routing

information more evenly distributed within the network.

Failures of lines or nodes will not cause so serious

consequences as with centralized routing.

The nature of distributed routing allows the status

and routing information to be exchanged and processed more

quickly than with centralized ones. Therefore the

decisions are made based on more up-to-date information and

the network has better adaptability to changes in traffic

and/or topology. That is to say that the essential

philosophy behind adaptive routing can be better realized

with distributed strategies.

Of course, distributed routing is not without

weakness. For all its drawbacks, it is still a preferable

direction of development for routing algorithms, in the

author's viewpoint.

25

XI. EXAMPLES OF ROUTING ALGORITHMS

In recent years, many developments in the design and

implementation of routing algorithms for computer networks

have been reported in the literature. A large part of them

fall into the catagories of adaptive routing and

distributed routing. Some of the major commercial networks

or network architectures use routing algorithms not

belonging to these categories. For the convenience of

comparison, however, they are reviewed as well as the

adaptive and distributed ones in this chapter.

26

A. ARPANET ALGORITHM

The last decade has seen numerous designs,

implementations and operations of distributed routing

algorithms. ARPANET is one of the earliest and most

important.

It was generally agreed that the first published

description of a packet switching concept was contained in

a 1964 study report by P. Baran of the Rand Corporation.

In 1966, an experimental packet system was set up under the

sponsorship of the Advanced Research Projects Agency

(ARPA). The first link joined a computer at the System

Development Corporation with one at M.l.T. Lincoln

Laboratory. Out of this beginning grew the ARPANET, which

now connects well over one hundred universities and

research facilities across the United States, Hawaii, and

Europe. It is a research-oriented system operated by the

United States Defense Communications Agency (DCA) , and is

used as a test bed for many research areas including

routing and flow control.

Though the original routing algorithm designed in 1969

for the ARPANET had served remarkably well considering how

long ago in the history of packet switching it was

conceived, many corrective modifications had been made

before 1979. Then, a new algorithm was designed and

installed. The new algorithm has undergone extensive tests

and turned out to be an effective improvement over the old

one. In this section, an overview of the new algorithm will

be given after a brief introduction of the old one.

Details of these algorithms can be found in [50], [51],

[52], [54], [54], [55], [66].

The original ARPANET routing algorithm can be

summarized as follows: Each packet is directed toward its

destination along a path for which the total estimated

transit time is smallest. Instead of determining this path

in advance, each node, also called IMP (Interface Message

27

Processor) in ARPANET terminology, individually decides

which line to use in transmitting a packet addressed to a

destination. A simple table lookup procedure is used for

this selection. For each possible destination, an entry in

the routing table at each node designates the appropriate

next line in the path.

Each node also maintains a network delay table giving

the delay calculated for a packet to reach every possible

destination over each of its outgoing lines. Every 2/3 of

a second, the node calculates the minimum delay to each

destination and puts them in its minimum delay table. The

number of the line giving minimum delay is accordingly kept

in the routing table for use in routing packets. Each node

also sends its minimum delay table to each of its neighbors

every 2/3 second. Therefore each node receives a minimum

delay table from each of its neighbors every 2/3 second.

After all the neighbors' estimates have arrived, the node

adds its own contribution to the total delay to each

destination. Thus the node accomplishes the computation of

the total delay to each destination.

In parallel with the above computation, the nodes also

compute and propagate shortest (minimum hop count) path

information in a similar fashion. An upper limit of the

number of the hops in the longest path in the network is

used as cut-off for disconnected or nonexistent nodes.

This information is only used for the "reachability test".

It also travels at roughly 2/3 second per line, so that

changes in topology are recognized by the whole network in

only a few seconds.

The algorithm was a good design in that it was simple,

inexpensive and performed well in steady state and in

reacting to small changes in traffic. However, it did have

some problems, some of which being fundamental that

required a complete redesign. As summarized in [55], the

following are the major problems to be addressed.

1) As the network grew larger, the size of routing

28

packets would become correspondingly larger and could

adversely affect the flow of network traffic.

2) The distributed manner of route calculation could

not easily ensure the consistency of the routes used by

different nodes.

3) The rate of exchanging routing tables and the

distributed nature of calculation made the network adapt

too slowly to congestion and to important topology changes,

yet too quickly (perhaps inaccurately) to minor changes.

4) Periodically the node counted the number of packets

queued for transmission on its lines and added a constant

to it. This delay measurement procedure was quite simple,

but was inaccurate, because the queue length was only one

of the many factors that might affect a packet's delay.

Lines have different speeds and propagation delays, and

packets queued for each line have different sizes. The

waiting time for a packet to get some resources before

being queued may be long. Yet none of these were reflected

by the delay measurement — queue length. And the

significant realtime fluctuation in queue length at any

traffic level could not be predicted by the instantaneous

measurement of queue length, either.

McQuillan et al reported in [55] that the new

algorithm is an improvement over the old one in that it

uses fewer network resources, operates on more realistic

estimates of network conditions, reacts faster to important

network changes, and does not suffer from long-term loops

or oscillations. This new algorithm is described here in

terms of three of its basic components.

1) Routing Calculation.

The SPF (Shortest Path First) Algorithm attributed to

Dijkstra [22] is employed for this purpose. A tree

representing the minimum delay paths from a given root node

to every other node is generated using a database that

specifies which nodes are directly connected to which other

nodes, and what the average delay per packet is on each

29

network line, both types of data being updated dynamically

on the basis of realtime measurement. Starting from just

the root node, the tree is augmented to contain the node

that is closest (in delay) to the root and that is adjacent

to a node already on the tree. The process continues by

repetition of this last step. Eventually the furthest node

from the root is added to the tree and the algorithm

terminates. The tree constructed is used in creating the

routing table, and the routing table is used in forwarding

packets.

To reduce the amount of computation, an important

modification has been made to the SPF algorithm. When a

single line delay changes (or if a line or node is added or

deleted), each node does a partial computation to

reconstruct its shortest path tree. Thus it is an

incremental c a l c u l a t i o n rather than a complete

recalculation of all shortest paths.

2) Delay Measurement

This is a crucial aspect of the routing algorithm.

Each node measures the actual delay (including processing,

queueing, transmission, retransmission and propagation

time) of each packet flowing over each of its outgoing

lines by means of time-stamp, and calculates the average

delay every 10 seconds. Only when the change in line delay

since last report exceeds a certain threshold will the

delay measurement be transmitted. The threshold is a

decreasing function of time.

The choice of 10 seconds as the measurement period

represents a significant departure from the old algorithm.

Though a longer period means less adaptive routing if

conditions actually change, a shorter period means less

optimal routing because of inaccurate measurements. The

queue lengths varied rapidly with time and the short

measurement period might result in adaptivity so quick that

the perceptions of shortest paths could change during the

period a packet traversed the network, i.e. too frequent to

30

be accurate. Since the routing update generated by a

particular node contains information only about the delays

on its outgoing lines and is transmitted less frequently,

the total communication overhead involved in delay update

exchanges is quite small (less than one percent).

Another aspect is that the measurement periods are not

synchronized across the network. In different nodes the

measurement periods are randomly phased. This is an

important property, because synchronized measurement

periods could, in theory, lead to instability.

3) Updating Policy

This is also of critical importance, because it must

ensure that each "update" packet is actually received at

all nodes so that identical databases of routing

information are maintained at all nodes. Hence the

flooding method, in which each update packet is transmitted

unchanged to all nodes (not just to the neighbors) on all

lines. Transmitting update packets back to the adjacent

node from which it was received provides an automatic

acknowledgement mechanism. Duplicated update packets are

dropped. While such information propagates through the

network, it does not circulate infinitely. Since the

update packets are handled with the highest priority, they

flow very quickly (within 100 ms) through the network.

One difficult point is that some nodes may become

disconnected and then join the network after some period of

time. How to ensure that databases at all nodes are

correctly updated? To take care of this problem, an "age”

field is used in each update packet. Out-of-date delay

information can be recognized and discarded when lines are

reconnected and routing tables recomputed. Also helpful to

this purpose is the mechanism of the "waiting" state for a

node to get enough updates before it can actually come up.

Since all nodes perform the same calculation on an

identical database, there are no permanent routing loops.

Transient loops may still form for a few packets when a

31

change is being processed. This is/ however, quite

acceptable, since it has no significant impact on the

average delay in the network.

If the new algorithm is to be compared against the old

one, some results can be summarized as follows, according

to McQuillan et al [55].

1) Better utilization of resources (line and processor

bandwidth).

2) Quicker and more correct response to topology

changes.

3) Better congestion control.

4) Less instability or oscillations due to feedback

effects.

5) No significant impact of loops on the average delay

of the network.

6) More capability of coping with heavy load.

7) Tendency to route traffic on minimum hop paths.

As they pointed out in [55], there is a sense that the

old routing computation is a distributed, global one in

that the inputs to the computation at one node are the

outputs of the computation at the neighboring nodes. Since

the nodes perform the computation in an unsynchronized

manner, the output of the global computation at any instant

depends more on the history of events around the network

than on the network traffic at that instant. The new

algorithm, on the other hand, is a local computation. It

does depend on measurements made all around the network,

but the updating protocol provides these measurements to

all nodes unchanged and unprocessed. The SPF computation

at one node never learns of the results of the SPF

computation at any other node. In this way, the new

algorithm keeps the advantages of distributed routing while

dispensing with the disadvantages of distributed

computation. For this reason, the new algorithm is also

viewed as "partially centralized" method by Schwartz in

[73].

32

Finally# it should be noted that the new algorithm

does take about three times the memory as the old one/ but

this point does not alter the conclusion that the new

algorithm is indeed a good improvement.

33

B. CHU; ALGORITHM FOR TOPOLOGY UPDATE PROBLEM

The old ARPANET algorithm and all others of its type

— built on repeated distributed minimization or

maximization — share a flaw: They have the property that

the reachability algorithm reacts very quickly to "good

news" but very slowly to "bad news". Take the old ARPANET

algorithm for example. If the number of hops to a given

node decreases, the nodes soon all agree on the new, lower

number. If the hop count increases, however, the nodes

will not take action on the reports of higher counts while

they still have neighbors with the old, lower values. They

simply increase their hop counts by two in each update

cycle.

One early solution to this adaptivity problem is the

"hold down" method [51]. It works by "purging" the

surrounding nodes of any out-of-date information before the

nodes will accept any new information. Because the entire

hold down mechanism is rather ad hoc, researchers have been

looking for better ways to propagate information about

changes in the topology. Among several algorithms which

make explicit use of the concept of sink tree, Chu's

research report [183 is a good representative, and will be

reviewed in this section.

A sink tree is a tree rooted at the destination with

all the other nodes connected on their shortest paths to

the root. Based on the optimality principle*, the set of

optimal paths from all sources to a given destination form

one sink tree [86]. Figure 8 illustrates a network with

* The optimality principle of dynamic programming states

that the optimal path between two points in a network is

the sum of optimal subpaths. To put it another way, if

node J is on the optimal path from node I to node K,

then the optimal path from J to K also falls along the

same route.

34

Figure 8. Sink tree for destination node D

35

nine nodes and the sink tree for destination node D. Since

a tree does not contain any loops/ each packet will be

delivered within a bounded number of hops.

Chu's algorithm makes particular efforts to recognize

interdependent relations from the information exchanged

among neighboring nodes. For each destination/ a sink tree

(also called shortest path spanning tree here) is

established to identify its downstream neighbor and

upstream neighbors. Such trees are implemented by means of

"flow labels" used in each node's "critical distance

table"/ in which the current distances estimates to each of

its possible destinations over each of its outgoing lines

are recorded. The under-bar flow label for the entry at row

D/ column B implies that node I has chosen node B as its

downstream neighbor in the sink tree for node D. The

upper-bar flow labels for the entries at row D, columns F

and G imply that node I realizes that it is the downstream

neighbor of node F and of node G in the sink tree for node

D. The distance is measured in terms of hop count. For a

network with N nodes/ the longest path can be no longer

than (N —1) hops. If the path is selected by the shortest

distance and the downstream-upstream relations are

consistently designated for all nodes/ there should be a

sink tree rooted from each destination node. Figure 9

shows the critical distance table at node I for destination

D/ corresponding to part of the sink tree in Figure 8.

Let the shortest distance from node I to node J be

denoted by d(I,J)/ so that all the adjacent nodes of J

should have their distances from I as d(I/J)+l. As Chu

noted in [18j/ the following rules hold for the above

structure.

1) There can be only one downstream node J for a given

node I in its sink tree for a particular destination D, so

that the shortest distance from node I to destination D/

d(I/D) should be the entry at row D and column J in the

table at node I.

Neighbor

A B C E F

Destination 4 4

Figure 9. Critical distance table at node I

ô

37

2) The distance from node I via any upstream node to

destination D should be d(I/D)+2.

3) All the distances from node I to destination D via

other neighboring nodes should be either d(I,D), d(I,D)+l,

or d (I, D)+ 2.

A set of procedures are designed to deal with various

situations of topology changes. If there are any

inconsistencies according to the rules, certain procedures

will be activated to make them consistent while exchanging

messages about topology information. Each such messages

includes a bit, telling whether or not the sending node

desires to take the receiving node as its downstream node

in the sink tree for a particular destination.

If a node detects a failure from its downstream line,

it chooses a new downstream node from the set of unlabelled

neighbors. If there are no unlabelled neighbors, the

former upstream node is chosen to be the new downstream

node. If the failure detected is not from its downstream

lines, the node simply erases the corresponding column in

the table.

If a node detects the coming—up of a new line, it adds

a new corresponding entry in its table and sends the

information around for choosing new possible paths.

If node A receives a topology message from a neighbor,

say B, and B did not request to have A as downstream node,

A will update its table, choose a new downstream node and

propagate the news to its neighbors.

If node A receives a message from its former

downstream node B and B did request to have A as a

downstream node, A will seek a way to alter the direction

of traffic flow as in the case of downstream line failure.

If the distance of the new path is larger than the number

of nodes in the network, the procedure will quit. The

updating is stopped until some new change happens.

Chu’s algorithm provides a good way to solve the so

called topology update problem or adaptivity problem, but

38

it is only concerned about topology changes. For the

purpose of adapting the sink tree to changes in traffic as

well as in topology, some other algorithms were developed.

Segal 1 et at devised a number of failsafe algorithms, which

will appear in next section. Some of them use the concept

of sink tree [59], [76], [77] to maintain loop-free

routing.

39

C. GALLAGER: MINIMUM DELAY ALGORITHM

AND SEGALL ET AL: FAILSAFE ALGORITHMS

In 1981/ Segall and Sidi published a protocol [81]

possessing the following features:

1) Distributed computation.

2) Loop free routing for each destination at all

times.

3) Adaptability to slow load changes.

4) For stationary input traffic and fixed topology/

the protocol reduces network delay during each cycle/ and

minimum average delay is obtained in steady state.

5) After arbitrary number/ location and sequence of

topology changes/ the network recovers in finite time in

the sense of providing routing paths between all connected

nodes. In addition/ nodes that are not affected by the

topology change continue the algorithm and adapt to the new

load pattern in a smooth way.

This algorithm is designed after some early ones such

as minimum delay algorithm [29]/ optimal distributed

algorithm [75]/ recoverable algorithm [80] and failsafe

distributed algorithms [24]/ [59]/ [76]/ [77]. It will be

helpful to first review the minimum delay algorithm due to

Gallager.

In 1977/ Gallager proposed a minimum delay routing

algorithm using distributed computation. It is an

algorithm for a quasistatic environment/ where the traffic

statistics for each source-destination pair change slowly

over time and furthermore individual traffic samples do not

frequently exhibit large and persistent deviations from

their averages. The algorithm was defined for establishing

routing tables in the individual nodes of a network. The

routing table at a node i specifies/ for each other node j/

what fraction of the traffic destined for node j should

leave node i on each of the outgoing lines of node i. The

algorithm is applied independently at each node. It

40

successively updates the routing table at that node/

calculates the marginal delay (incremental delay estimated

by means of partial derivative with respect to traffic

flow) of each outgoing line based on information exchanged

between adjacent nodes/ reduces the fraction of traffic

sent on nonoptimal lines/ and increases the fraction on the

best line by some small quantities properly selected. Such

flow deviation will produce a net delay saving. For

stationary input traffic the average delay per message

through the network converges/ with successive updates of

the routing tables/ to the minimum average delay over all

routing assignments.

In order to guarantee the traffic to each destination

to be loop free at each iteration of the algorithm/ some

rules are enforced that the updating must start from the

destination node and propagate back to the source node,

i.e. a node cannot update its tables until it has received

the delay information from all its downstream neighbors.

After a node has completed the update, it will broadcast

its delay information to all its neighbors. This is

different from the old ARPANET algorithm where the

transmissions of updates are unordered.

Comparison between this algorithm and the ARPANET

algorithm also shows some other differences. Gal lager's

algorithm is intended for static or quasistatic

environments, where the time required to converge to the

optimal solution is not critical. Topological changes are

not successfully coped with by this algorithm. The ARPANET

algorithm, on the other hand, is adaptive in the sense that

it takes into account all the above factors. Besides, the

ARPANET algorithm attempts to send each packet over a route

that minimizes that packet's delay with no regard to delay

of other packets, while with Gallager's algorithm, the

packets are sent over routes to minimize the overall delay

of all messages. This is a difference between the "user

optimization" and "system optimization". Another point is

41

that the ARPANET algorithm uses actual delay/ and the

transmissions of delay are unordered/ so that many updates

are required for changes to propagate through the network,

but Gallager's algorithm uses marginal delay of each line,

and changes are propagated completely in one update.

Gallager's algorithm, as he claimed, is the first one

possessing the property of being loop free at each

iteration. After this, Segall, Merlin and Gallager jointly

developed, in 1978, a recoverable loopfree distributed

routing protocol, which extended Gallager's minimum delay

algorithm into one insuring recovery from arbitrary

topology changes [80]. At about the same time, Segall

published an optimal distributed algorithm [75]. Segall's

later extensions are called failsafe distributed

algorithms, with improvements and increments made time and

again until the latest version mentioned at the beginning

of this section [81].

The failsafe algorithm is run for each destination

independently, updating the routes from all nodes to that

destination. When an update cycle is triggered by a

destination node, it will change the routes to that

destination according to the new weights of lines. The

partial ordering of updates is insured by defining a sink

tree for each destination. Each cycle can be viewed as

proceeding in two phases. In Phase 1, control messages

propagate upstream from destination to the leaves of the

current tree, while updating the line weights. In Phase 2,

control messages propagate downstream to the destination,

each node selecting its "preferred neighbor" (downstream

node), thereby updating the tree. The path through the

preferred neighbor to the destination provides the minimum

distance.

In the latest version [81], the failsafe protocol is

applied to minimum delay routing, i.e. it uses marginal

delay as line weight. Multiple paths, instead of single

path, are used. Each node may have a number of "sons",

42

rather than only one preferred neighbor, for routing

traffic to a destination. In Phase 2 of each cycle,

routing table at each node is updated as increasing traffic

flow to its "preferred son" and decreasing traffic flows to

other sons.

Update cycles corresponding to a given destination are

nondecreasingly numbered. During normal operation, a cycle

started will be properly completed within finite time, and

the destination can start a new cycle with the same number

as the previous cycle. When a failure or a recovery of

lines or nodes happens, however, the destination will have

to be informed not to wait for the completion of the

current cycle and to immediately start a cycle with a

higher number in order to propagate the news throughout the

network. The cycle number is carried by the control

messages belonging to that cycle. Each node, say i, keeps

track of the highest cycle number it has known. This

number is denoted by mx^. Except for messages indicating

failures, all control messages with cycle numbers strictly

lower than mx^ are discarded. Node i participates in Phase

1 of a cycle after receiving control messages with cycle

number mx̂ ̂ from all its current sons. It goes from an "idle

state" to a "waiting state" after updating its incremental

delay coefficient and its blocking status and sending the

results to all its neighbors except its sons. The node

will stay in waiting state until it receives control

messages with cycle number equal to mx^ from all its

current neighbors. At this time, it performs its part of

Phase 2 by sending control messages to all sons, updating

routes, and going back to idle state in order to wait for

the next cycle.

If the failure is on a line carrying traffic flow, the

node immediately upstream from the failure has to

redistribute the traffic flow among its remaining sons, if

any, without waiting for control messages on this line.

The redistribution is arbitrary, since later cycles will

43

improve the routing until a new optimum is reached. If

there are no other sons to which the traffic can be

redistributed, the node, and then possibly other nodes

upstream, have to consider that they have lost all their

current paths to the destination.

The failsafe quality is guaranteed by the special

request message REQ generated by nodes adjacent to the

topological change. The REQ carries the number of the last

cycle handled by this node and is forwarded towards the

destination. Whenever a failure or recovery occurs, the

destination will be notified so as to be able to start a

new cycle to cope with the situation. The REQ is forwarded

by the node to its preferred son if it has one. If the

line to its preferred son has previously failed and the

node has lines to other sons, it sends the REQ to one of

the other sons. If the node has no sons (because of

previous failures), it discards REQ. Since the failure

that causes the discarding of a REQ will induce generation

of another REQ, it is guaranteed that at least one of all

the REQs carrying a given cycle number will indeed arrive

at the destination.

When a failure is detected on an adjacent line, the

corresponding node is deleted from the list of neighbors,

and from the list of sons, if appropriate. Each node that

has lost one of its sons stops the flow to that son,

redistributes it among its remaining sons, if it still has

any, and modifies its routing variables correspondingly.

The redistribution is arbitrary, since later cycles will

improve the routing until the new optimum is reached. The

nodes at the ends of a line that is ready to be added to

the network due to recovery or initialization have to

coordinate their operations for bringing the line up. The

coordination is achieved by having both nodes bring the

line up as soon as they start to perform their part of the

same new cycle.

Details of this algorithm described as a finite state

machine can be found in [81].

As Segall et al claimed,

44

this latest version extends

and improves the previous ones in the sense that it adapts

to both slow load changes and arbitrary topology changes,

and the adaptability to the new load pattern is smooth for

nodes that are not affected by topology changes.

The failsafe minimum delay algorithms are presented in

separate papers for the cases of circuit switching networks

and packet (or message) switching networks. The former

case is dealt with in [81], the latter in [82]. The

difference lies in that in circuit switching networks, the

quantities to be controlled are the total flows between

source-destination pairs, while in packet (or message)

switching networks, they are fractions of the flows

corresponding to packets (or messages) from their sources

to destinations.

45

D. OTHER ALGORITHMS FOR QUASISTATIC ROUTING

In addition to the ones discussed in the last section,

some other quasistatic routing algorithms are to be

reviewed here.

In 1979, Bertsekas et al first generalized Gallager's

algorithm into a nonlinear multicommodity network flow

problem [3] and conducted an extensive numerical study of

five distributed routing algorithms of this type and their

properties [8]. One year later, he published a new optimal

algorithm of this type [5]. In his algorithm, each node

maintains a list of paths along which it sends traffic to

each destination together with a list of fractions of total

traffic that are sent along these paths. At each

iteration, a minimum marginal delay path to each

destination is computed and added to the current list, if

it is not already there. The corresponding fractions are

thus updated in a way that reduces average delay per

message.

The algorithm is similar to Gallager’s method and its

generalization in that it relates to the gradient

projection method for nonlinear programming. The new

points, however, are that it operates in the space of path

flows rather than in the space of line flows, and therefore

is also well suited for virtual circuit networks, and that

it utilizes a shortest path computation to obtain a search

direction rather than an upstream summation of line

marginal delays, hence the smaller amount of computation

per iteration.

It is possible to distribute the computation involved

in each iteration among the nodes of the network,

resembling the new ARPANET algorithm in that information

providing length for each line is propagated throughout the

network, each node computes shortest path from itself to

its destination on the basis of these lengths, and shifts

flow to the shortest path. While ARPANET type algorithms

46

cannot provide optimal routing because of their inability

to send data along more than one path for any one source-

destination pair, Bertsekas' algorithm retains a portion of

flow in previous shortest path, resulting in asymptotic

convergence of flow pattern into optimal without

oscillations.

Bertsekas et al also found it possible to employ

second derivatives of line delay functions within the

context of this method, thereby providing automatic

stepsize scaling with respect to traffic input level. In

1984, they jointly published a paper [7] elaborating on

such second derivative algorithms. The advantages of

employing second derivatives are of crucial importance for

the practical implementation of the algorithms using

distributed computation in a quasistatic environment.

Another algorithm designed by Chen and Meditch [13] is

also related to the theoretical work of Gallager [28].

This is a distributed adaptive algorithm, comprising two

separate but coordinating processes, termed NUP (Normal

Updating Process) and DAP (Disturbance Adaptive Process),

respectively.

The NUP is an iterative process that updates the flow

for one destination at a cycle, providing minimum average

delay given an initial loop-free routing assignment. For

the flow to each destination, say j, NUP starts at node j

and is followed successively by its upstream nodes with

respect to destination j. After each node has received the

information about delay and flow computed from all of its

immediately downstream nodes, it does its own computation

and propagates the result to all of its adjacent nodes.

When all nodes involved in the j-destination flow have

completed the update, a cycle is completed. The cycles are

initialized by the destination nodes, either on some

prespecified timing basis, or whenever a destination node

determines it necessary on account of its average delay

estimates of its traffic flow. The computational process

47

is essentially the same as Algorithm 1 in [8] except for

the formula used in calculating the line delay. Details of

the derivation of these formulas appear in the appendix of

[13].

The second part, DAP, is activated when network

disturbances (changes in traffic load or topology) occur.

It generates a new loop free routing assignment subject to

the new constraints arising from the disturbances. Upon

achieving the new assignment/ control is tranferred back to

NUP. For the coming-up of lines or nodes, some protocols

are used to inform all the relevant nodes of such changes

so as to make new assignments respectively. For the case

of line failure, the affected node first tries to find an

alternative outgoing line to accommodate the flow

originally routed over the failed line. If that is

possible, the newly adjusted assignment is established, and

control reverts from DAP to NUP to reduce the delay as much

as possible. If no alternative lines can be found, the

information of failure is propagated to all of its

immediately upstream nodes and they try in the same way as

the previous node. In this manner the trial is made in the

upstream direction until some node finds some alternative

lines, then the flow on the failed line is turned back onto

the newly chosen alternative route. As long as there is at

least one upstream node having alternative lines, DAP will

succeed.

Now we turn to algorithms using another type of

distance computation — minimum hop algorithms. With this

method, the distance between any pair of adjacent nodes is

one hop. The weight (or length) of a path is evaluated as

the number of hops between the source-destination pair.

Minimum hop computation finds its important

application in reachability detection. When the hop

distance to a destination exceeds (N-l), where N is the

number of nodes in the network, that destination is

unreachable, since no path without loops in an N-node

48

network can be longer than (N-l) hops. The ARPANET

algorithm is an example of such an application.

In addition, minimum hop computation is also used in

route selection. The effect of minimizing the number of

hops that messages make in proceeding from source to

destination is to minimize the number of times that a given

message must undergo nodal processing, which involves

buffering, error detection, line control, acknowledgement

and routing decisions. It is particularly useful in those

environments, where nodes are very vulnerable (as in the

case of some military applications). As an alternative to

minimum delay computation, this is conceptually simple and

computationally efficient.

In 1980 and 1981, Meditch and Gorecki developed a

theory and procedures for constrained minimum hop routing

in message switching networks, particularly the centralized

minimum hop routing algorithm in which one or more end-to-

end average delays serve as a constraint set [56], [37].

Another distributed algorithm which achieves the same

result was presented by the same authors in 1981 [57].

The use of a set of end-to-end average delay

constraints will serve to meet user requirements for timely

delivery of messages, particularly important where critical

source-destination pairs are involved.

This distributed algorithm is composed of two parts,

the first part providing unconstrained minimum hop routing

and the second adjusting this routing to satisfy the end-

to-end delay constraints.

The first part first determines the lengths (in hop

count) of all source-destination paths and assigns routing

variables to them. Then it calculates all the line flows

of the network to minimize the average path length subject

to the capacity constraints and the conservation of flow,

and uses the line flows to calculate the routing variables

assigned to all the paths. These routing variables now

indicate the fractions of flow for the paths of each

49

source-destination pair.

The second part iteratively calculates the path

delays, compares them with the end-to-end delay constraints

and recalculates the lengths and flows for those paths

violating the constraints, until all are satisfied.

Both parts are implemented distributive1y by each

node, requiring information only from adjacent nodes.

Operations can be carried out either synchronously or

asynchronously. The present algorithm minimizes the

average path length with respect to a set of paths.

Investigations are under way of algorithms that minimize

the average path length over the entire network. Further

efforts are also made by Meditch and Gorecki to develop

such algorithms by incorporating the two parts into one.

50

E. JAFFE ET AL: RESPONSIVE ALGORITHM

The idea of using sink trees to define the partial

ordering of routing updates among nodes is, as discussed in

Chu's algorithm and Segall et al's failsafe algorithms, a

significant step towards resolving the adaptivity problem.

This has been used by Jaffe and Moss as a criterion to

classify the distributed algorithms into two generations

£39], As they noted, the old ARPANET algorithm and the

MERIT algorithm (to be mentioned later) belongs to the

first generation, where no control of update ordering is

exercised, and adaptation to line/node failure is slow. On

the other hand, the second generation ones, such as the

failsafe algorithms, can deal better with those problems by

using sink trees.

To add to the second generation ones, Jaffe and Moss

developed a responsive distributed algorithm, as they named

it, in 1982. While it is similar in many respects to

failsafe algorithms, its major contribution is that the

control of update ordering is only exercised over the cases

where line weights increase, rather than over all kinds of

line weight changes. Moreover, coordination in those

instances need only occur among a subset of the nodes,

instead of the whole tree. Also after a failure,

coordination is only needed briefly, not for all subsequent

updates. As they observed, this can result in improvement

in computational complexity for failure recovery, so that

the algorithm can be very responsive, ideal for situations

where changes in line weights are relatively infrequent and

yet fast recovery is needed upon changes.

The above design philosophy is based on a fact,

pointed out by McQuillan [51] and Stern [84], that the

first generation algorithms maintain loop free paths in the

presence of static or decreasing line weights. In [39],

Jaffe and Moss presented their algorithm in two parts. The

first part, named IUP (Independent Update Procedure) is one

51

common to first generation algorithms. As they proved, IUP

is capable of maintaining loop free paths in the presence

of nondecreasing line weights.

Each node maintains a routing table. Figure 10 is the

routing table at a node, say A, with K adjacent nodes B2 ,

B2 , ..., Br. Entry CCA/DES/B^) is the estimated minimum

weight from A to DES via B^. HOP (A , DES, B ̂) is the hop

number of that path. NN(A,DES) is the adjacent node on the

path that provides minimum estimated weight. C (A,DES) =

C(A,DES,NN(A,DES)). d (A , B) is the weight of the line from

A to B.

Initially, each C(A,DES,B2) is set to infinity, and

each HOP (A , DES , B^) t o zero, except for B^DES, in which

case, C(A,DES,Bi) = d ^ B ^ and HOP (A, DES ,) = 1.
When C (A,DES) changes, node A sends an update message

MSG(DES,C, h) to all its neighbors, where C = C*(A,DES).

Upon receiving such a message, a node, say B, updates its

table by setting C(B,DES,A) = C + d(B,A) and HOP(B,DES,A) =

h + 1. Any message of the form MSG (DES, C , N-l) , where N is

the number of nodes in the network, is ignored- The other

items in the table are accordingly reevaluated before node

B, in turn, sends the MSGs to its neighbors. If line

weights change, the table at each node is also updated and

the update messages sent to neighbors.

While the above mentioned IUP deals with cases of

nonincreasingly changing line weights, the second part, CUP

(Coordinated Update Procedure), will take care of cases of

increased line weights.

A sink tree is defined. When a weight increase occurs

on a line, all nodes upstream of this line are

progressively "frozen" starting at the node adjacent to the

line and proceeding upstream. The "freeze state" for node

A is with respect to a particular destination, DES, and

means that A may update its weight entries to DES but may

not change NN(A ,DES). Node A is not "unfrozen" until all

upstream nodes have increased their costs and sent back

Figure 10. Routing table at node A

Ln

to

53

their acknowledgements. A single bit added to the update

message can indicate whether or not the line weight

increases. In this fashion, node A never causes a loop to

form by choosing an upstream node, because the only time an

upstream node may have lower cost is when the downstream

node is in freeze state. This is in distinction to IUP,

where an upstream node may have lower cost due to the fact

that the news of the increase has yet to propagate

upstream.

In order to discuss the speed of recovery, Jaffe and

Moss assumed a hypothetical synchronization of the

algorithm, so that every node executes a "step" of the

algorithm simultaneously at fixed points in time. At each

step a node may receive and process one message from each

neighbor. The question of "how fast?" is then equivalent

to "how many steps?"

Their analysis showed that the algorithm has worst

case speed of recovery of O(X) where X is the number of

nodes affected by the failure. This is favorable in

comparison with the first generation algorithms and with

the failsafe algorithms. In terms of the same assumption,

the number of steps required for the first generation

algorithms to recover is O(N) where N is the number of

nodes in the network, and the failsafe algorithms take

0(h2) steps where h is the height of the shortest path tree

at the start of a cycle.

54

F. CHIN ET AL: PPD ALGORITHM

According to Davis and Barber [21], most existing

distributed routing algorithms are "branch-directed", which

means that the routing decision of a packet is determined

from node to node, i.e. each node selects an outgoing line

to be the next branch to route a packet toward its

destination. Another method, "path-directed", on the other

hand, predetermines the entire path of each packet at its

source node. Usually, path-directed routing is applied in

centra 1ized-contro1 networks [73]. To simplify packet

routing in distributed-control networks, an algorithm using

path-directed method was proposed by Chin and Hwang in 1983

[14].

This algorithm is named as PPD (Probabilistic Path-

Directed). Probabilistic indicates that for routing a

packet, one out of multiple paths is chosen, instead of a

single path. Each path is an entry in the routing table

associated with the source node- Paths to the same

destination are grouped into a subtable. The use of each

path is periodically checked and recorded in the subtables.

A source node distributes packets among selected paths to

achieve balanced and nearly minimum-delay performance. To

allow immediate routing at intermediate nodes, each packet

being transmitted is tagged with a particular "path code".

The key parameter used in the computation of this

algorithm is the "effective capacity", which is defined

together with a set of other terms and notations by the

authors as follows.

The packet generation rate rg is measured on the

packets that are generated (enters the network) at node i

(source), destined for node j, and routed via path g. Both

the generation rate ri k and passing rate si k are measured

on {i,k}, which is the set of all possible paths from node

i to node k. r(i,k) and s(i,k) are subterms of ri,k and

si,k' respectively, if there exists a line (i,k). =

55

r g / r ^ ^ is the assignment probability of path g =

(i,j,...,k) in set {i,k}, 0g >_ 0 a n d Z gc{i/kj 0g = 1. Each

packet/ generated at any node/ is preassigned with a path

by examining the 0g 's of all paths in {i,k}. The line

capacity is an undirected quantity/ i.e. c (f) ~

C (k/i). Assume the exponential packet length with an

average 1/L bits and the Poisson distribution of packet

generation. If the traffic is light/ the packet arrival

rate at each node will not be affected by those at other

nodes/ thus the arrival rate at each node can also assume a

Poisson distribution. The average line delay per packet

transmitted from node i along line (i/k) is denoted by

D(i,k) in sec/packet/ and Dg is the average path delay

along path g = (i/j/.../k). Since each line (i/k) can be

considered as an M/M/l queueing model/ the effective line

capacity of (i/k) at node i can be defined as

E(i,k) L C(i,k) s(i,k) r(k,i) s(k,i)’

In other words/ the effective line capacity is the service

rate of that line dealing with r(i,k)' and Eg is the

effective path capacity of path g = (i/j,.../k) at node i.

The line (i/k) is considered as an M/M/l queueing model,

and the path queue is also approximated as an M/M/l model.

Thus, the average line delay per packet

D(i,k) = lŷ E (i,k) “ r(i,k))

and the average path delay per packet

D
g

1/E, r
g*

From the latter equation, the effective path capacity is

calculated with Dg measured by each packet routed via path

g and sent back with the acknowledgement packet.

The PPD algorithm is described in the following two

56

parts.

The first part is its routing scheme. To expedite the

routing process, they use trunk numbers to encode the

paths. The outgoing lines of a node are called trunks of

that node. All the trunks of a node are numbered as 1, 2,

3, The encoding scheme finds every outgoing trunk

number of the desired path in the order from its source to

destination and concatenates these numbers from right to

left.

Each node maintains a routing table, which contains a

number of subtables, one for each of the other nodes in the

network as the possible destination. All possible paths to

the same destination have entries in the same subtable.

Recorded in the subtable are the path code, the packet

generation rate, the path delay, the path capacity and the

assignment probability for each path.

After a packet destined for node k has been generated

at node i, the source node probabilistically assigns a path

code according to the assignment probabilities in the

corresponding subtable. The probabilistic distribution can

be implemented by either software or hardware mechanisms.

Once a path code is assigned, the packet carrying its path

code can be routed through the network by a simple

algorithm at each of the intermediate nodes. The node

simply checks the path code. If the path code is zero,

then the destination is reached. Otherwise, it updates the

path code by right-shifting out one trunk number, and

transmits the packet through the outgoing line having the

shifted out trunk number.

Upon receiving a packet, the destination node sends

back an acknowledgement to the source node through the same

path in the reverse direction. The acknowledgement enjoys

the highest priority to pass through the network, so that

the source node can quickly receive it and record the path

delay information.

The second part of PPD algorithm is the routing table

57

update policies. The routing table is updated at each node

locally# and different subtables do not have to be updated

at the same time.

For a source node i to update its subtable for

destination node k, it first calculates every effective

path capacity Eg for all g in {i/k}/ and finds out their

maximum E__ It then calculates F/ v., the total of the

effective path capacities for all paths that are in the set

S/ which includes every path g that Eg/En,ax exceeds a

threshold. Finally/ the assignment probability is set as

Eg/Fi,k f°r paths in S, and as zero for all paths not

in S.

The update period for the subtable is adjusted by

r ^ ^ , the packet generation rate for this source-

destination pair. The greater the r^ ŷ, the shorter the

interval. Since the subtable is updated individually/ among

the newly generated packets/ only those destined for the

node corresponding to the subtable being updated will be

blocked for a short time.

In [21]/ they gave some analysis/ which shows the

saving of search time at each intermediate node by using

this path-directed method. The worst time complexity for

routing a packet is 0[s+(n-l)c]/ while for branch-directed

methods it is 0[(n-1)(s + c)] # where s is the worst routing

table search time/ and c is the execution time for the

routing algorithm. If binary search is used, this time

complexity for PPD method can be improved to O[log n + (n-

1)c] .

Simulation results of the PPD algorithm were also

given in [21]. They show a favorable comparison with the

new ARPANET algorithm with respect to delay performance.

The ARPANET algorithm uses global line delay information to

find the shortest path trees. The PPD algorithm uses the

path capacities to determine the assignment probability of

each path. The ARPANET algorithm has higher average delay

than the PPD algorithm. Under heavy traffic condition, PPD

58

algorithm can handle the traffic better than ARPANET

algorithm.

According to Chin and Hwang, the superiority of the

PPD algorithm over the new ARPANET algorithm is due to the

probabilistic nature in routing a packet. Inspired by the

result/ they proposed/ in the same paper/ a PPD-

generalization of the new ARPANET algorithm. This

generalized algorithm uses the same delay measurement and

update method as the ARPANET algorithm/ i.e. periodically

updating all routing tables at the same time based on the

same delay information. Instead of a single shortest path/

m shortest paths from one node to any other node are

selected during the table update process. The packet

destined for the same node are probabilistically

distributed among the m paths/ based on the path assignment

probabilities. The entire routing path of a packet is

determined by its source node. The assignment

probabilities are determined in proportion to the inverse

of the corresponding path delays. Hopefully/ the proposed

method will be capable of balancing the load among multiple

paths and reducing congestion in heavy traffic/ thus giving

better delay performance than the ARPANET algorithm.

Yet/ everything has its pros and cons. Like other

multiple path routing algorithms, it could suffer from

increased complexity for keeping information. The multiple

paths may also affect stability. And for making routing

decisions, the path-directed approach will take more time

to collect information about the whole network, thus it may

be less responsive than branch-directed approaches. If the

paths are very long, it will be very probable that

topological change will occur while packets are in transit.

Then, there could be more problems in rerouting these

packets. All these defects may not be compensated for by

the delay performance improvement. Therefore, whether or

not the generalized algorithm is feasible is a question

still open to discussion.

59

G. RUDIN: DELTA ROUTING AND OTHER SIMILAR ALGORITHMS

While centralized and decentralized methods have their

respective advantages/ they both have their drawbacks. In

1976/ Rudin described an interesting hybrid algorithm,

Delta routing, combining the strengths of the centralized

and distributed classes of algorithms [67]. The

centralized portion of it can keep track of the global

state of the network in a relatively lethargic way based on

average values of past performance and use this information

to ensure all overall, consonant routing strategy for the

entire network. Within this overall strategy established

by the centralized NRC (Network Routing Center), further

decisions could be delegated to the individual nodes which

could react instantaneous1y and in a distributed manner,

responding even to the absence and presence of single

packets on the lines to which they are attached. The past

global information and instantaneous local information

could thus be used to best advantage.

This algorithm was named after the parameter Delta,

which regulates the relative amount of decision making

authority the NRC delegates to the nodes. Using the

information sent to it from nodes, the NRC computes the K

best paths from node i to node j, for all i and all j (only

the paths that differ in their initial lines are

considered). Let Ĉ _j be the total cost of the best i-j

path. If c"j - C^j <6 , path n is considered as equivalent

to path 1. Upon finishing the computation, the NRC sends

each node a list of all the equivalent paths for each of

its possible destinations. The node is thus free to choose

any of the equivalent paths to do actual routing, basing

its decision on various methods such as at random or use

the current measured value of the line costs, etc.

By adjusting K and 6 , the authority can be transferred

between the NRC and the nodes. As 6 approaches to zero,

the NRC makes all the decisions, since all other paths are

60

deemed inferior to the best path. As <5 approaches

infinity, however, all the paths will be considered

equivalent, and the decisions are made by the node based on

local information only.

By simulations, Rudin showed that 6 could be adjusted

to provide better performance than either pure centralized

routing or pure decentralized routing. Hence the name

"ultra dynamic" or "super adaptive" routing. As for

whether or not the improvement justifies the complexity,

the choice of routing strategy may depend on the cost

efficiency, delay or availability of lines. Anyway, it was

a thought provoking idea. The French public packet

switching network, Transpac, uses Delta routing [20], [73].

A similar idea has been applied to some other routing

algorithms designed later. We next describe one of them,

JBQ-BS routing by Yum and Schwartz [93].

Before talking about the JBQ-BS routing, the concepts

of JBQ rule and BS rule should be introduced. According to

Yum and Schwartz [90], [92], [93], the routing rules can be

classified as fixed and adaptive. The simple SP (Shortest

Path) rule is a fixed one. A more sophisticated one is the

BS (Best Stochastic) rule which allocates traffic flows

stochastically (i.e. by fixed probability assignment)

through the network so as to minimize the overall average

delay. Better overall delay performance can be obtained by

bifurcating the flow adaptively. One way to do this is the

JBQ (Join-Biased-Queue) rule, in which a biased term is

used in comparing the queue lengths. By adjusting the

biased term, the proportions of traffic bifurcation can be

regulated at will. The difference between the BS rule and

the JBQ rule lies in their message arrival processes. For

the BS rule, the message arrival process of each queue

remains Poisson distributed because random bifurcation of

Poisson processes remains Poisson. For the JBQ rule, on

the other hand, the message arrivals are state dependent

because traffic bifurcation is based on the instantaneous

61

queue lengths/ so the queue length distribution is not

analytically known.

The essence of JBQ-BS routing is to superimpose local

JBQ adaptivity on the fixed BS rule base. As the

centralized portion of Delta routing, the BS rule

determines the traffic flow on each line based on the

global traffic input rate information. Like the local

portion of Delta routing, the JBQ rule, with its inherent

bifurcation ability, determines the instantaneous traffic

flow in the local environments.

Details of the JBQ-BS routing can be found in [93],

Also discussed there are three problems that remain

unsolved in the analysis of JBQ-BS rule.

The concept of bifurcation of traffic flow mentioned

above deserves a few words of comment here. Interestingly,

single paths turn out not to be the optimum if the long

term average delay of the whole network is to be minimized.

On this account, arised the bifurcation — packets at a

node are assigned to one of several outgoing lines on a

probabilistic basis [27]. A weighting system is used to

determine, on topological grounds, the proportion of

traffic to use the respective routes. Using a random

number generator a node can distribute its traffic

according to the ratio of the weights. Price gave a good

discussion on bifurcation [64]. The factors to be taken

into account are the length of queue for each outgoing line

as well as the topology. Furthermore, as Price maintained,

it is possible to increase the amount of information

available by making the routing decision depend not only on

outgoing queue lengths, but also on the number of packets

already transmitted but as yet unacknowledged. He gave an

account of the experimental work using simulation to

investigate the performance of such bifurcated routing

algorithms. Definite benefit was detected in the case where

a very heavy stream of traffic needs to pass between a

particular source and destination, while the rest of the

62

network carries a moderately heavy general load.

In his analysis. Price noted that the ability to split

loads is inherent in many of the routing strategies used in

practice today/ but in many cases/ load splitting, though

theoretically possible, does not in fact take place to any

useful degree. He also found from simulation results that

successful bifurcation can be carried out using only local

information.

Before finishing this section, another adaptive

routing technique proposed by Boorstyn and Livne [9] is to

be reviewed. It is a two-level scheme. In some sense, it

bears strong resemblance to Delta routing.

At each node, a subset of the outgoing lines is

specified as allowable for each message with a certain

destination, and the message may use any allowable lines

according to some discipline. Each message appearing at

the node has its own allowable set of lines. The

assignment of allowable lines at each node for each message

is one level of the routing scheme. These assignments are

based essentially on global information of topology,

traffic flows and long-term average delays, and may be

adaptive in a quasistatic way, responding to average

statistics of congestion and traffic and alarms due to line

failures, onset of congestion, new traffic, etc. Some

mechanism is assumed to exist for making adjustments, and

that these will be made relatively infrequent compared to

the rate of second level adaptivity.

The second level, on the other hand, is truely dynamic

and local, involving queue disciplines at each node. It is

the task for the second level to choose among the set of

allowable paths of the same or similar quality. At this

level, several strategies for the multiple server queueing

system were suggested. The more alternative paths, the

better the second level may contribute to the average delay

performance.

Some analytic approximations to estimate the

63

performance improvement of this technique over nonadaptive

routing were given that, in heavy traffic, it could improve

almost by a factor on the order of k, where k is the number

of outgoing lines a node has, and for moderate traffic,

good improvement could still be achieved.

Described in this section are three routing

algorithms. All of them share a common essence, i.e. their

local adaptability coupled with a globally quasistatic

scheme considerably improve the delay performance. Of the

two-level hierarchy, the lower level is the locally

adaptive decision making as to which outgoing line to

select for waiting packets with alternate routing options.

The optimal local policies were analyzed and compared with

a newly proposed one by Marglaris [46], which can hopefully

improve the delay performance for such two-level routing.

64

H. MURALIDHAR ET AL: HIERARCHICAL ALGORITHMS

As is seen in the last section, for networks of large

size, the overhead for distributed adaptive routing can

become quite excessive. This is due to the fact that the

memory and updating cost of such routing procedures

increase with the number of nodes, since the size of the

routing table to be maintained at each node becomes very

large. Furthermore, the computation of routing updates

needs to be done at each node and the required exchange of

status information conducted on an adjacent node basis

might take considerable time to reach certain nodes. One

way to mitigate this problem is to reduce the imformation

costs by requiring the updates to be computed with only a

subset of the global network information at the price of a

degradation of overall performance. This trade-off between

information requirements and routing efficiency can be used

to design hierarchical structures for routing.

The basic idea of hierarchical routing is to partition

the nodes into clusters, with each node knowing all the

details about how to route packets to destinations within

its own cluster, but knowing nothing about the internal

structure of other clusters. When different networks are

connected together, it is natural to regard each one as a

separate cluster in order to free the nodes in one network

from having to know the topological structure of the other

ones. For huge networks, more than two levels of hierarchy

may be needed. For example, the clusters may be grouped

into regions, the regions into zones, and so on. That is

multilevel hierarchy.

An early attempt at the design of hierarchical routing

schemes is due to Kleinrock and Kamoun [42], [45]. They

employed a hierarchical clustering of nodes to reduce the

length of the routing table. The basic idea used is that

the node maintains a detailed routing information for these

nodes close to it and coarse aggregated information for

65

those nodes located farther. The network nodes are

partitioned into m levels, where any level, say k-th level,

is defined in terms of the clusters at the (k-l)th level.

This scheme results in a reduction of the cost of nodal

storage and processing capacity. As they found, the

optimal number of levels for an N-node network is ln(N),

requiring a total of e’ln(N) table entries per node (e is

the base of natural logarithm). Also discovered was that

the increase in effective message path length caused by

hierarchical routing is fairly small and that it is

tolerable in most cases.

The above scheme, in some cases, still suffers from

the increase in the message path length. In attempt to

overcome this limitation, Muralidhar and Sundareshan

propostd a different approach recently [60]. In this

scheme, a part of the overall decision-making is done at

the lower level of network nodes where nominal routing

tables, which provide satisfactory routing under nominal

load and network conditions, are established, and another

part at the higher level of "supervisors" (or

"coordinators") who provide the control of updates to

account for variations in traffic load and topology.

Specific optimization problems are formulated. Solutions

to them at different hierarchical levels comprise the

overall control scheme.

As they noted, one of the major merits of this scheme

is that it permits consideration of multiple objective

functions (throughput, delay, hop count, etc.) in

performance optimization, and that it provides a mechanism

for integrating routing and flow control functions for

efficient control of traffic congestion. The traditional

development of routing schemes within an optimization

framework is with respect to a single performance

objective, with a few exceptions such as those techniques

that use the "generalized power" as a performance measure

which attempts to provide a compromise between maximizing

66

the throughput and minimizing the delay [36], [44]. Studies

of flow control and routing are traditionally conducted

independent of each other. Not until 1979/ had the

interrelations existing between the two been identified

[53]/ [29]. Methods for designing efficient control

algorithms that take into consideration the coupling of

routing and flow control are being investigated only

currently.

For the lower level decision-making/ any kind of

optimal routing algorithms available in the literature such

as the Dijkstra algorithm [22]/ the flow deviation method

[27]/ etc. can be used, since this computation is only done

once. They can be selected based on specific performance

criterion to be optimized at this level.

The two modes of action for the supervisor to provide

the required updates are identified as "periodic mode" and

"interrupt mode". In the periodic mode of operation, the

supervisor for each cluster attempts to solve the higher

level problem to improve the network throughput and

utilization at periodic intervals of time. From the global

congestion measure for the cluster, the supervisor is able

to deviate the line flows to permit the routing of any

increased traffic load at a source node within its cluster.

If the destination is also in that cluster, this can be

done simply by a depth-first search, which identifies all

the paths between that source-destination pair and

determines the "capacity slackness" in them (The capacity

slackness of a line is the difference between the line

capacity and the sum of the average flows on that line

towards various destination). If the destination is in a

different cluster, the congestion measure in that cluster

as well as in the intermediate clusters through which this

traffic needs to pass must be broadcast to each supervisor

periodically.

The interrupt mode of operation of the supervisor is

similar to that of periodic mode, except for two

67

differences. The first point is that the supervisor action

is initiated by an interrupt from a node when the traffic

load at that node increases considerably above the nominal

value. Secondly, instead of broadcasting the congestion

tables, the interrupted supervisor identifies the paths

from the source to the destination and requests the updated

congestion tables from the supervisors of clusters through

which these paths pass.

Unlike some other hierarchical schemes, this scheme

requires the supervisors to participate only in making

routing decisions by computation of updates while not

necessarily getting involved in the actual routing of data

messages, thus avoiding the chances of routing the messages

on possibly longer paths via supervisors.

68

I. BRAYER: SURVIVABLB ALGORITHM

In 1982 Brayer proposed a survivable routing algorithm

with autonomous decentralized control [10], [11]. This

routing strategy was based on the mathematical algorithm

for finding shortest paths between node pairs due to Chyung

and Reddy [19] and its implementation [12]. As he

introduced/ the algorithm is characterized by the property

that it permits nodal computers to autonomously create a

network and then continue to adapt to changes in network

topology/ i.e. changes in the interconnections between

nodes and changes in the sign-on of addressees* of various

nodes. No routing center is used to centrally control the

network. No overhead traffic for nodes to exchange routing

table is required/ either. Instead/ a small amount of

information about the path is appended to each packet as it

is going through that path in the network. This

information is what the nodes use to continually recompute

the nature/ shape and topology of the network and the

location of addressees.

Brayer designed the algorithm as containing two major

parts/ addressee finding and packet routing.

When a node is to send a packet/ it must first know to

which node the target addressee is signed on. The

addressee finding part serves this purpose. Before a

packet is actually transmitted, a separate "header” is

generated by the source node, and sent to any one of its

adjacent nodes. If the receiving node does not have the

addressee, it appends its own identification to the header

and sends the header to another node. Headers are sent

from node to node in this fashion until the addressee is

found. As the node having the addressee receives the

* A user on a terminal signed on to a nodal computer is

the addressee of a packet if the packet is meant to be

destined to that user.

69

header, an end-to-end acknowledgement is sent back to the

source node through the path on which the header was sent,

thus every node on the path can update its own addressee

table. Upon receiving the acknowledgement to the header,

the source node proceeds to forward the packet. If no

acknowledgement is received and the addressee is not

located after a specified number of retransmissions of

header upon time-out, the source node will stop looking for

the addressee.

After the network has run for a period of time, most

nodes will have built up their full addressee tables, and

headers will appear occasionally only when new addressees

sign on. In the event that an addressee changes from one

node to another, the latter will generate an "update" and

send it to the former. Again, all the nodes on the way the

update is passing can update their addressee tables.

The second part, packet routing, allows the packets to

be forwarded in two fashions: one is via the routing

algorithms, the other random. A routing table is

maintained by each node, containing shortest paths. If

paths can be found in the routing table, the packet is sent

to the next node on such path, and the next node repeats

the same process, and so on. Otherwise, the source node

randomly sends the packet to an adjacent node in the hope

of finding a path. Node-by-node acknowledgements are given

as the packet goes down its path, and end-to-end

acknowledgement is given when it reaches the destination

node. Time-out is also used for retransmission in case the

packet is not acknowledged.

As with the header, when a packet, acknowledgement, or

update goes through its path, the identification of each

node on the path is appended to it, and the nodes being

passed can update their routing tables to reflect the

current connectivity. As traffic passes through the

network, the nodes learn better and better about the

network's connectivity, and the connectivity is defined in

70

terms of unidirectional paths.

Alternate paths are used/ instead of single path, for

retransmission. Over time, the nodes keep track of which

nodes repeatedly fail to give acknowledgement. Eventually,

a node will simply determine that a line has failed,

depending on some specified parameters. The alternate path

is also applied to random routing mode.

Many other routing algorithms for packet switching

networks depend on some form of routing information

exchange or a central-control node. Neither of these occur

in this algorithm. Therefore, the network does not have to

suffer from the vulnerability due to the failure of a

central-control node, or the performance degradation of

other nodes if one fails to propagate its current routing

table. Such adaptive learning without overhead results in

the most important characteristic of this algorithm --

survivability, though it does not seek to provide minimum

delay or maximum throughput.

With this survivable algorithm, a "cold start" with no

prior knowledge can be assumed for the network system. At

start up, each node has a set of lines connecting to its

adjacent nodes, and transmits a "start-up" message to its

neighbors identifying itself. After a few seconds, all

nodes know their own neighbors, and get ready to accept

traffic. Packets addressed to specific users come into the

nodes. If the node knows to which node the target

addressee has signed on, it directly goes to execute the

packet routing part of the algorithm. Otherwise it first

resorts to the addressee finding part. After going through

its learning stage, the algorithm can stablized if the

connectivity of network and signing on of addressees are

not changing continually.

The way the algorithm deals with failure of lines or

nodes is using a "node-1 ink-out" message being sent node by

node just like the header. As for the coming-up of lines

or nodes, no special message needs to be sent, because the

71

routing algorithm's se 1 f- 1 earning mechanism will become

aware of this after a little while.

For networks of large scale, there is one problem with

appending a semi-infinite path to every packet. The way

out is to divide the network into smaller subsets organized

with multiple gateways in between. When a message passes

through a gateway, the previous subnet's paths are replaced

by the previous subnet name. In order to prevent the

subsets from being disjoined from the network by gateway

failure, they suggested to have topologies such that all

nodes of a subset are gateways to another subset.

This algorithm was not tested by simulation. Instead,

actual implementation on physical computers helped

demonstrate the performance in real world.

Since the algorithm is oriented for survivability, it

is best suited for situations such as airborne or

spaceborne relay systems and mobile ground systems.

Another adaptive routing algorithm of similar

characteristics was proposed by Meketon and Topkis [58],

It also emphasizes recoverability from damage, i.e. it only

adapts to topology changes. The major part of this

algorithm is a learning mechanism that reorders the routing

tables of all nodes in real-time, which guarantees the

network to work well even when the network configuration is

not fully known. Messages can find their paths to

destinations through the learning experience in past

routing. Three possible strategies for the learning

mechanism were suggested. They are "success-to-top",

"failure-to-bottom", and "success-up-one".

72

J. GERLA ET AL: UNIDIRECTIONAL ALGORITHM

The survivable routing algorithm due to Brayer

described in the last section is good for unidirectional

networks [11]. In this section/ another distributed

routing algorithm for unidirectional network due to Gerla

et al [34] is introduced.

A unidirectional communication network is one in which

some (or all) of the lines are unidirectional (simplex) as

opposed to bidirectional (full duplex). In other words,

the presence of a channel from node A to node E does not

necessarily imply the presence of another channel from node

B to node A. A subsequent constraint in distributed

routing algorithms is that the routing updates can be

transmitted only to downstream nodes. Because of this

fact, conventional distributed routing algorithms thus

cannot be generally applied to unidirectional network,

special routing algorithms must be developed.

This algorithm evaluates the distances of paths in

terms of hop count between "two-way connected" node pairs

in a unidirectional network. Maintained at each node, say

v, is a list of nodes with which v is two-way connected,

i.e. node v has both a directed path to and a directed path

from which. The knowledge of two-way connectivity here is

essential to determining if two-way communication is

possible between node pairs in a unidirectional network.

Every node participates in the routing computation and

periodically propagates its routing and distance

information to its adjacent nodes. Stored at each node is

the local topology information, instead of the global one.

In this respect, the algorithm is reminiscent of the old

ARPANET routing algorithm. The reason this algorithm does

not follow the new ARPANET algorithm is that the procedure

for keeping and flooding the global information is too

complicated and storage consuming, and the entire network

topology is vulnerable to intruders.

73

The algorithm consists of two phases. In the first

phase/ each node constructs its sink tree, represented by

the "PDL" table. In the PDL table/ P(i) denotes the ID of

"parent"/ the immediately upstream node in the path from

node i/ D(i) denotes the path length in hop count from node

iz and L(i) denotes the ID of the line from its parent of

node i. In Figure 11 is a sample network configuration.

The thick lines define the sink tree for node 1/ as is

denoted in the corresponding PDL table.

Initially, the D(s) is set to positive infinity for

all s^i.

The PDL table are periodically transmitted by each

node on each of its outgoing lines. When node i receives

the PDL tables from all its immediately upstream nodes/ it

updates each entry, say for node s, of its PDL table as

follows.

D(s) = min [D^sJ + l] for all k

L(s) = Lm (s) where m is the immediately upstream node

yielding the minimum distance

P(s) = Pk(s) if s / m
= i if s = m

The second phase uses the standard minimum hop routing

algorithm [31]/ in which each node propagates to its

immediately upstream nodes its minimum hop estimates to all

two-way connected destinations.

Upon receiving the PDL table from node k, node i also

proceeds to inspect Dj^i). If D^(i) < N, where N is the

total number of nodes in the network/ node i concludes that

it has a directed path to k as well as one from k. Node i

then determines the "shortest cycle" through k and the

sequence of lines associated with the cycle by simply

tracing the parents through the PDL table received from k.

At Node 1:

P D L

1 0 0 0

2 1 1 1

3 2 2 2

4 2 2 1

5 1 1 1

Figure 11. PDL table for a sample network configuration

75

In the example of Figure 12, node 1 just received a PDL

table from node 2 , it generates the cycle from 1 through 2

(5/4,2) and the line sequence for this cycle (1,1,2,1).

Node K is called a two-way connected neighbor of node I.

Then the equivalent of the old ARPANET algorithm can be

carried out in the unidirectional network. Namely, the

routing table and distance table are computed

distributively with each node updating its tables using the

information received from its immediately upstream nodes

and propagating its tables to its immediately downstream

nodes. The distance table is sent from each node to its

two-way connected destination using the line sequence for

the cycle kept in message header to direct the

transmission. This is called "path driven" routing.

Besides the transmission of distance tables, other

information (including data packets) is transmitted by

means of "destination driven" routing, as is done in the

old ARPANET algorithm.

Their analysis shows that when this unidirectional

algorithm is applied to a bidirectional network, it

converges in the same number of steps as the bidirectional

algorithm, and produces twice the overhead of the latter

(the additional overhead being mainly for processing the

PDL tables). These results are comparable to that of

conventional, bidirectional algorithms. Thus, the

unidirectional algorithm can be efficiently applied to

networks with a mix of unidirectional and bidirectional

channels.

Research on the unidirectional algorithms is still

under way. Several extensions to the algorithm described

above were suggested by the same authors. One possible way

is the incremental table updating as soon as a table is

received instead of waiting until all the tables have been

received from all upstream neighbors. Also possible is to

use more general measurement for line distance changing

this minimum hop routing into minimum delay routing.

Cycle from Node 1 through Node 2: (5,4,2)

Line sequence for this cycle: (1,1,2,1)

Figure 12. Path tracing to upstream neighbors

Node 2 sends to Node 1

the PDL table below:

P D L

1 5 3 1

2 0 0 0

3 2 1 1

4 2 1 2

5 4 2 1

•v]

O '

77

K- SNA AND TYMNET ALGORITHMS

Although distributed dynamic routing seems superior to

static or centralized ones in many aspects, the latter is

not without value. Due to their simplicity in

implementation and some historical reason, many of the

commerically available networks or network architectures

have adopted static or centralized semidynamic routing

methods. In this section, two representives among them,

i.e. SNA and TYMNET, will be described for the convenience

of comparison.

SNA (Systems Network Architecture) is a network

architecture intended to allow IBM customers to construct

their own private networks, both hosts and subnet [1], [2],

[40], [47], [48]. Among the seven layers of SNA, the path

control layer provides virtual circuit service to its

higher layer, transmission control layer. Not exactly

corresponding to ISO's OSI model, the path control layer

encompasses some functions of transport layer as well as

the network layer in the OSI model. This goal is

accomplished by using end-to-end session routing (a route

remains in force for an entire user session), with an

elaborate system of alternate routes and backup routes. In

essence, the network dynamically chooses from among the

static routes, which are prepared by the network manager a

priori.

Jaffe et al in [40] gave a comprehensive review of the

evolution of SNA. As they noted in that paper, SNA s ene

to-end static routing mechanism has evolved from

initial anouncement in 1974 through the present

routing structure utilizes two physical addresses, called

the origin and destination addresses, each containing two

parts, the "subarea" (major node) and the "element" (minor

node) fields. The address is contained within t e

"transmission header" preceding the user message, and

remains unchanged from the beginning to the end of a

78

session. Routing was based only on the destination subarea

field regardless of the origin. The routing table was

organized by destination subarea number and indicated the

"next leg of the journey” on the way to the destination

subarea. Each of the subarea routing tables was statically

created by the system administrator or system programmer

via a system generation process on a node—by—node basis.

The routing was nonadaptive to topology changes. Topology

changes required regeneration of the routing table and

reloading of subarea nodes.

This kind of routing remained until 1978 when the

capability to establish multiple or alternate paths between

two subarea nodes was announced. This support satisfied

several requirements such as load distribution, better path

selection for better service needs, and circumvention of

network component failures. The path between two subarea

nodes was called "explicit route", defining an ordered set

of nodes and "transmission groups" (A transmission group is

a user designated set of parallel lines between two subarea

nodes) from one subarea to another. During system

generation, eight explicit routes were allowed to be

defined between two subarea nodes. The explicit route

identifier was added to the routing table and the

transmission header to be used in conjunction

destination subarea number as an index. A virtual

was used to manage a source-destination subarea protoco

without being concerned with the explicit route in

The virtual route number was mapped at activation

explicit route number. Multiple virtual routes could e

-r -f a i 7 the lines xn amapped to the same explicit route. I f a l l t h

transmission group fail, all the explicit routes usingI tha

group must be rerouted using another exp ici

corresponding to the same virtual route. n°n«

found, another virtual route must be chosen. If no

route is available, the session must be abor e .

multiple route function reduced but did not eliminate

79

problem of network availability. The mathematical

algorithm for selecting the optimal route was elaborated on

by G'avish et al in [30]. The way the routing tables are

generated and three associated problems were addressed in

detail by Maruyama in [47].

To satisfy the need for greater network availability,

the SNA Network Interconnection technique was announced in

1983. This allows SNA sessions to be established between

resources that could span multiple SNA networks. Routing

for these internetwork sessions still utilizes the

destination subarea and explicit route number, except that

they are changed in the gateway nodes as an internetwork

session proceeds from network to network. Thus a large

number of network interconnections are permitted. They

include two networks interconnected at one or multiple

gateway nodes, two or more networks interconnected to the

same gateway nodes, and cascaded interconnected networks.

Each individual network generates its own static routing

table. Changes to one network can be masked from changes

in other networks.

According to Jaffe et al [40], in addition to the

configurations for larger networks, one potential evolution

for SNA routing is to provide dynamicity while preserv g

predictability, controllability and integrity of having

sessions assigned to end-to-end routes which do not change

during the lifetime of the session. This way would

problems often related to dynamic routing, such as mes g

looping, lost messages, and ping-ponging of traffic, w i e

allowing automatic on-line generation of end-to end

overcoming problems of system generation burden and poor

network availability often associated with static

schemes. , . . _ ,R
The following are the ways conceived y

feasible to realize the dynamicity.

One possible approach under consideration x. the use

ROUTE-SETUP, which traverses the
of a control message,

80

path calculated by an "oracle”/ allowing each node along

the path to make an entry in its routing table to represent

the explicit route being established. A reply to the

ROUTE-SETUP message is sent back by the destination along

the reverse of the path. When the reply reaches the

source/ the explicit route becomes active. After the

virtual route is also established/ message flow can begin

on the new session between the source—destination pair.

As for the placement, form and function of the oracle,

many alternatives are feasible. One way is centralized,

like that of TYMNET (to be described shortly). A data base

of global topological information is maintained and

continually updated by the centralized oracle. The oracle

calculates for a source-destination pair the path of

minimum cost. This information, along with an explicit

route number, will then be given to the source node and

inserted into its ROUTE-SETUP message.

The oracle can also be distributed. Again, several

forms are possible. One is similar to that of the

ARPANET in that each node keeps the identical glo

topology data base. With this data base, the source node

calculates the best path by itself before the route setup

(Note that in ARPANET, the oracles are used not on Y

calculate the best paths, but also to rou

packets directly without route setup.) oracles
. i _ l ,,,d distributed oracies

Another possibility is t t
. „ fnr. eaCh destination the next

with local information, i.e. for alona with

transmission group to be taken on the bes P ^

the cost of the path. The ROUTE-SETUP trav ^

node as each of them consuits its on

appropiate transmission group an ^ otsclea are

the path. Algorithms for thi VP ^ J#ff. and

represented by the responsive algor

Boss described in section F. evolution

Tanenbaum had an interesting comment on

processes of ARPANET and ENA tael- »*• *«* "*>°C M t '°

81

originally with radically different routing algorithms/

have moved closer in the course of time. The original

ARPANET algorithm was completely dynamic/ but later revised

to base the routing on explicit knowledge of topology (see

Section A). The original SNA algorithm/ on the other hand/

was completely static/ but has been moving in the direction

toward more dynamicity. This somehow indicates that "good

routing algorithms should be dynamic and based on knowledge

of global topology."

TYMNET is a commercial value added network. It has

been in operation since 1971. Like SNA/ it is also a

session-based network, but it does differ from SNA in that

it uses dynamic routing [65], [73], [87].

In TYMNET, all complexity that could be centralized,

such as routing control, was put into a supervisor program,

which maintained an image of the internal routing tables of

all the nodes and explicitly read and wrote the tables in

the nodes. This was the original version, TYMNET I. As

design considerations changed over time, TYMNET II came

into use, gradually displacing TYMNET I, first in high-

density areas and new installations. In TYMNET II, the

tables are maintained by the nodes, and there is much less

interaction between the node and supervisor.

The virtual circuit in TYMNET is defined as full

duple* data path between two nodes In the network. All

routing is done by the "supervisor". when a user requests

building of a virtual circuit, the supervisor hashes the

user name into the "master user directory" to get access

control and accounting information, and then ass^ n s a

"cost” to each line in the network. This cost reflects the

desirability of including a certain line in the *“ *■“*

circuit. Assigning costs is mostly a matter of indexing

into correct tables. After that assignment, the path of

lowest cost is to be found by an algorithm similar t

Dijkstra [22]. Details of the specific algorithm appeared

J •, ... ot-h defined by backward pointers. If
in [65]. This path is aeuneo j

82

the cost of the chosen path is too high/ the supervisor may

choose to reject the user rather than tax the network to

provide poor service. Whenever the network conditions

change/ e.g. line failure or overload/ the supervisor is

notified and ready to take this into account for the next

virtual circuit to be built. The next step is to send to

the source node a "needle"/ which contains the routing

information and threads its way through the network/

building the virtual circuit as it goes, with the user data

following behind.

SNA and TYMNET are both session-based networks using

virtual circuits. A good classification of route selection

algorithms for session-based networks, both static and

dynamic, was proposed by Maruyama and Shorter [49]. Their

work is based on the network work-load information

available for making decisions. A reliable distributed

route set-up procedure using LPID (local path identifiers)

itroduced by Segall and Jaffe [79].was mi

83

L. OTHER PRACTICAL EXAMPLES

In this section, routing algorithms of some other

practical networks are introduced.

Digital Equipment Corporation's Digital Network

Architecture (DNA) is the standard structure for DECNET

network products first introduced in 1973. In its Phase

III implementation, the transport layer of DECNET,

corresponding to the network layer of ISO's OSI model,

provides pure datagram service to its higher layer, network

services layer. Packets may be delivered out of sequence,

may loop, may be duplicated, and may be discarded by the

congestion control mechanism. All these problems are taken

care of by the network services layer [73], [8 8].

The routing algorithm used in DECNET is essentially a

copy of the original ARPANET algorithm, i.e. it is a

distributed adaptive algorithm. Routing tables kept at

each node contains two matrices, HOPS and COST, HOPS(i,j)

denoting the path length to node i via line j, and

COST (i, j) the path cost to node i via line j. From these

can be calculated the existence of a path to a given

destination i if there are "reachable values" (to be

explained below) in some entry in row i of HOPS, and the

best next hop to that destination, i.e. the line

corresponding to the minimum value in row i of COST with a

reachable value for that entry in HOPS. Each individual

node thus knows the best next hop to each of the

destinations. Data messages are delivered along such

lines, which constitute the best path from source to

destination.

The path lengths and costs are exchanged among

adjacent nodes as "routing messages." whenever an event

that potentially changes paths occurs (e.g. a line or

going down or coming up, or the reception of new path

information from adjacent nodes), a node determines if fts

paths have changed, or if its HOPS and COST matrices should

84

be updated. If anything changed/ the node sends its new

routing message to all its adjacent nodes. The routing

messages are exchanged either upon such changes or at

periodic time intervals. Figure 13 shows a typical routing

data base.

Another usage of the path length information/ HOPS, is

to detect routing loops computed by routing algorithm.

Such loops may take place when, in reality, the destination

is unreachable. They may also be due to the time delay in

transmitting HOPS and COST and the subsequent improper

sequence in which they are received. When the hop count

exceeds the longest possible nonredundant path length in

the network, the algorithm stops circulating routing

messages, marking the node unreachable in the HOPS matrix.

Though the routing matrices are updated in much the

same way as the original ARPANET algorithm, DECNET only

attempts to adapt to topology changes, not to traffic

fluctuations. Instead of delay, the inverse of the line

bandwidth is used as cost metric. Because of the use of

additional event-driven updating process (triggered by line

or node coming-up or going-down), the frequency of the

periodic updates can be much less than that of ARPANET (15

seconds). Another difference is that each node in ARPANET

maintains estimated delay and hop count only for the best

line, while nodes in DECNET maintain the information for

every outgoing line, thus allowing the possibility of

bifurcation, if desired, or if necessary.

Packets for an unreachable destination are discarded.

If a line fails, packets queued on that line are discarded.

To maintain end-to-end integrity, acknowldgements and time

outs are employed by the higher level network . « « « •

layer. The lower level data link layer provides line (or

node-to-node) error control. .

HOW does a node know if a line has failed? This is

based on the na.b.r of retransmissions of P-kets ne«dea.

in addition, if a neighboring node has not been heard

85

Node D, HOPS=2, COST=c+d

Figure 13. DEC N E T routing database and routing message

86

for a while, a low-priority "Hello" message is sent to it.

If there is no acknowledgement, this node is considered to

have failed.

The actual implementation of the routing involves

three parts: a "decision process" which receives routing

messages, an "update process" which updates the routing

tables, and a "forwarding process" which routes the packets

on minimum cost paths. The first two are run only when

changes in network topology dictates changes in routing

tables. Only the third one is used normally.

The Canadian public network DATAPAC began commercial

service in 1977. It employs a distributed adaptive routing

algorithm [83j. Based on Northern Telecom SL-10 Packet

Switching System, DATAPAC has its communication facilities

in three layers. At the core, the datagram subnet layer

provides a basic internodal communication facility. On top

of that layer, a virtual circuit (VC) communications layer

is built to provide the basic DATAPAC VC service. Customer

access to VC service is provided by the network access

layer.

For routing in subnet, a routing vector table (RVT) is

maintained by a global routing information procesa at each

node. This process communicates with similar processes at

each of its neighboring nodes by means of "routing

updates"/ which provide information about what nodes can be

reached by the neighboring nodes and the delay estimates

reaching them/ based on the number and speed of

traversed to get to the destination. This information is

used to build up another table giving the delay estimate

for each trunk group (TG) (collection of all trunks tha

connects to the same adjacent node) on the node to reach

each of the nodes when using that TG. Then the TG of

minimum delay estimate is selected for reaching -ch of t

possible destinations, and this information is used

update the RVT. This method of selecting routing upd.t.

delay estimates is called the "split-horizon" method.

87

is intended to minimizing routing loops.

The VC routing relies primarily on the lower level

subnet routing. Once the destination VC process is

established and the addresses exchanged, the two VC

processes can communicate directly through the subnet. If

intermediate trunks or nodes fail during a call and an

alternate path is available, the subnet can automatically

adapt to the topology change without affecting the

established VC.

Another higher level of internetwork routing is

performed using an adjacent network routing table (RT) at

each node to route to the nearest gateway serving the

network. The process maintaining the adjacent network RT

is the same as that controls the RVT.

Both internodal and internetwork routing are "topology

adaptive", i.e. the selected route will not be altered

until there is a topology change. This is similar to

DECNET. The French public packet switching network

TRANSPAC began operation in 1978. It is a virtual circuit

oriented system [20], [73]. As mentioned in Section G, it

is similar to Delta routing due to Rudin. It is partially

decentralized through six local control points which handle

a certain amount of statistics gathering and perform test

and reinitialization procedures in case of node or line

failures. The general network supervision, including the

bulk of routing computation, is exercised through a single

Network Management Center (NMC).

The algorithm assigns the routes on a single-path-per-

VC basis. To establish a VC, a call request in the form of

"call packet" is emitted by the source node, requesting

connection to a specified destination. The path that

eventually will be retained by the switched VC is identical

to that taken by the call packet as it is forwarded through

the network. Routing of the call packet is directed by

each node's routing table, which contains a unique outgoing

line for each destination node.

88

The routing tables are constructed in an essentially

centralized fashion, using a minimum cost criterion. Line

costs are defined in terms of line resource utilization (a

function of line capacity and line buffers) evaluated both

by estimation and by measurement. Thus the cost of line

varies dynamically with network load.

The major part of routing computation takes place at

the NMC, but some local information is used at each node.

The procedure can be illustrated by an example in Figure

14. A call packet arriving at node 1 is to be forwarded

through one of the adjacent nodes 2, 3, 4 to node 5.

Consider a full duplex line k connecting nodes m and n.

Let Cm(k)/ Cn(k) be the cost of line k as perceived by node

m and node n, respectively. Let C(k) - Max[Cm(k) ,Cn(k)],

and let C(k,n) (computed by NMC) be the total cost

associated with the minimum cost path between nodes k and

n. Node 1 determines the best path to node 5 by choosing

the value of k which minimizes C(k,5) + MaxtC^k) ,C(k)]

where k - 2. 3, 4. In this way, the final routing decision

is made locally, rather than using purely centralized

procedure.

some other networks are briefly mentioned below

Telenet [38] initially duplicated ARPANET technology and

later modified its internal transport technology

similar to that used in TYMNET. The small Pt-ate network,

MERIT, connecting three Michigan universi ies

distributed adaptive shortest path routing algon ,

similar to that used in the old ARPANET e x c e p t h a
_ it-s hop number. a n *

measures the distance of a path by

~ err.".
alternate paths for eac Cyclades

routing separate from the failure recover" #lly with

network in France [63], [95] was designe abpanET-

static routing, but was subseguently changed to an

like algorithm.

89

Figure 14. TRANSPAC routing example

90

XII. OTHER RESEARCH IN THIS AREA

Packet switching networks are an efficient means for

transmitting bursty traffic, because extensive resource

sharing is allowed through routing and flow control.

Flow control is the mechanism for regulating the rate

at which the sender generates messages so that the receiver

can process them. From the network user's point of view,

flow control prevents those messages that cannot be

delivered in a predefined time from entering the network.

When messages from the sender exceed the capacity of the

receiver to process or forward, congestion arises. In this

respect, flow control is a mechanism for preventing

congestion. Many authors do not distinguish flow control

from congestion control, though the two terms are

differently defined by some [86].

In most of the available literature, routing and flow

control have been studied as separate problems.

Consequently, routing procedures have been designed

independently of flow control schemes. As a result, when a

packet is submitted to a network, the flow control

procedure will first determine whether or not to accept it,

generally based on the buffer availability. If the packet

is accepted, it is then the task of the routing procedure

to find a path to deliver the packet to its destination.

This path, however, will not always exist.

 ̂ be to combine the routing and
approach would, therefore, d , .

. • 4 ^ ascertain that a feasible
flow control decisions, i.e. to ascerc

path does exist before accepts a pacbet into the network

The interactions between routing and flow control

j_a i with in dept h
(congestion control) has been _

McQuillan [53] and Gerla et al [35].
c0uld be misleading to try to

also pointed out that isoaated mechanisms [68],

study routing and flow contro . towards

[69]. A number of contributions control [6],

achieving the integration of routing an

91

[29], [31]/ [33]/ [35].

A new scheme was proposed by Gerla et al [32] as

another step in the direction of that goal. One feature of

this proposal is that the fairness issue is also included

in the problem. As pointed out in this paper, efficiency

of routing and flow control algorithms in sharing resources

does not always imply fairness, because the network may

favor some users over the others in order to achieve better

overall efficiency. Unfairness is undesirable especially

in public networks where users pay the same tariff,

supposedly, for equal services. In this sense, the new

solution has considerable significance.

As Gerla et al reported, work is now under way on the

implementation of the integrated routing and flow control

algorithm in actual networks, both centralized and

distributed solutions being considered. Another issue

under investigation is to find and use different fairness

as objective functions in the optimization [32]»

Although nonadaptive routing does not seem to be as

much preferred in present and future networks, it is not

without value. Some authors have argued that only

nonadaptive (or semidynamic) routing will be effective

the future environment of very large networks, because

fully dynamic approach may require enormous overhead.

Traditionally, nonadaptive routing is associated with

_ i jf «a»irh studies include tne
centralized routing. Examples o

paper by Pesic and Lewis [62], in which three heuristxcs

for improving centralized routing m large long

networks have been developed and applied

construction of fast routing algorithms. . f

The basic problem of routing analysis is the fact that

the adaptive routing involves the time-varying b.ta»«r •

a set of interactive queues. Examples of theoreti

carried out in the last few years are as follows. ^

yum et al studied the design an ana

semidynamic routing rules C90J. These rules were

92

studied as the load balancing problem in the queueing

s ystem perspective [91]/ which is useful in

multidestination routing algorithms. Research on networks

with multiple destinations also includes analysis of the

dynamic behavior of shortest path algorithms for such

networks by Bertsekas [4],

In 1977/ Segall introduced a new model for dynamic and

quasistatic routing [74]. In 1983. he presented a unified

approach to the formal description and validation of

several distributed protocols [78].

Foschini et al analyzed a basic dynamic routing

strategy using diffusion theory. A heavy traffic diffusion

method and the limitations of an ad hoc approach to

applying diffusion were explored in [25]/ [26].

Schoute et al approached the problem of distributed

routing by separating the information problem from

control problem [71]. As they noted, under the assumption

of perfect information, the control problem has a simple

solution, which is optimal with respect to minimizing delay

for individual packets. Perfect information, however, is

not possible, because the actual values of delay change

rapidly. For finding a good practical information policy,

, •, _ i asses of information policies
they examined several classe

,. _ „.ccade of stochastic processes,
corresponding to a cascade circuit networks

A problem that may occur in virtu
if the rerouting of virtual

is routing instability/ i
r , „ investigated/ ana a

circuits is allowed. *•>»<jro rat„ ^ propo8ed

method for achieving a stable

by Wunderlich et al in [89]. et al that the

It was recognized by Ry c Y long-

integration of circuit and packet switching may

term objective. The implementation of

circuit/packet switching networks by

likely some years in the ^ w i t c M n ,

integrated voice/data acces T ^ interworking

networks exist today.

93

between packet networks and various integrated voice/data

access systems and demonstrated that the provision of

integrated voice/data access systems to packet switching

networks is an important step towards the integration of

circuit and packet switching technologies.

Routing in integrated voice/data networks has also

been investigated. A strategy to handle adaptive routing,

flow control and buffer allocation as a whole in the

integrated voice/data networks has been proposed by Nassehi

et al [61]. A distributed' algorithm similar to one

proposed by Bertsekas [5] is used to implement this optimum

strategy.

94

XIII. CONCLUSION

A brief discussion of routing for computer networks in

general was given, followed by an overview of the typical

routing algorithms reported or used in the past few years.

Although the algorithms were oriented towards a broad

spectrum of operational characteristics and optimization

criteria, it is interesting to note that there are many

similarities in them. At the same time, there is a great

deal of diversity in the manner in which these algorithms

are designed or implemented. The author's point of view is

biased towards distributed adaptive algorithms.

Generally speaking, distributed adaptive routing

procedures perform the following five functions in one way

or another.

1) Measurement or estimation of network parameters

pertinent to routing strategy, including traffic load,

states of lines, line weights, available resources (line

capacity, nodal buffer), etc.

2) Forwarding of the measured or estimated information

to the nodes where routing computation takes place.

3) Computation of routing tables.

* nn table information into packet
4) Conversion of routing taoie

routing decisions.

5) Transmission of packets.
~ t h e bare mimimum

The adaptability ranges from the .

necessary to react to line failures to .ore .ophx.txc.. eO

procedures sensing and responding to gueuerng «

rates and line loading. A still larger
. £ fprnative schemes ror

represented by the rich se packet

information gathering, touting co.p-t.ti on -

forwarding. One oan conclude *«- ‘ - •“ J
the routing function as essential ^ desecve the

smooth operation of networks, n

name as "best". survey that the problem
It is also evident from this surv y

95

of designing good routing algorithms is an active research

area. On the one hand, many new algorithms have achieved

various improvements over their predecessors. On the other

hand, they still have inefficiencies, limitations, and

undesirable properties. In the future, it seems that much

more attention should be focused on topics such as

— accurate routing and correct adaptation based on

uncertain and imprecise traffic information,

— routing in multidestination networks,

— routing in large networks,

_ routing in heterogeneous network environments,

combining different types of traffic, differenttransport

mechanisms and different media,

— internetwork routing,

— integration of routing with flow control.

Above all, there is a need for convincing methods of

proving the effectiveness of routing algorithms. All too

often, analytic and simulation work relies on simplifying

assumptions which weaken the applicability of the results.

96

BIBLIOGRAPHY

[13

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A hu j a, V.: "Routing and Flow Control in Systems

Network Architecture", IBM Systems Journal, Vol. 18,

No. 2, 1979, pp. 298-314

Atkins, J. D.: "Path Control: The Transport Network of

SNA", IEEE Transactions on Communications, Vol. COM-

28, No. 4, April 1980, pp. 527-538

Bertsekas, D. P.: "Algorithms for Nonlinear

Multicommodity Network Flow Problems", Proceedings of

International Symposium of System Optimization and

Analysis, 1979, pp. 210-224

Bertsekas, D. P.: "Dynamic Models of Shortest Path

Routing Algorithms for Communication Networks with

Multiple Destinations", Proceedings of 18th IEEE

Conference on Decision and Control, 1979, pp. 127-133

Bertsekas, D. P. : "A Class of Optimal Routing

Algorithms for Communication Networks", Proceedings of

International Conference on Computer Communications,

October 1980, pp. 71-75

Bertsekas, D. P.: "Optimal Routing and Flow Control

Methods for Communication Networks", Proceedings of

5th International Conference, 1982, pp. 615-621

, , n p Gafni, E. and Gallager, R. G.:
Bertsekas, D. P., Garni,

. . „ sinnrtthms for Minimum Delay
"Second Derivative Algoritnms

• u tfee Transactions on
Distributed Routing m Networks , IE

v . -i roM-32, No. 4, August 1984, pp.
Communications, Vol. com j z ,

911-919 , „ c .
1-1 r = ; e> and Vostola, K. s..

Bertsekas, D. P., Gafni, .
 ̂ sm nrUhms for Optimal Routing of Flow

"Validation of Algorithms ro f

in Networks", Proceedings of 17th IEEE ̂ onfe^enCe °n

Decision and control, January 1979. PP- 22°-227

Boorstyn, R. and Livne, A.: "A Technique tor Adapt
. „ TEEE Transactions on

Routing in Networks , IEEE
• vol COM-29, No. 4, April 1981, PP-

Communications, Vol. uun

474-480

97

[10] Brayer, K.: "Implementing Computer Communications with

OEM Microprocessors: Survivable Network Routing

System", IEEE GLOBCOM, November 1982, pp. 1166-1170

[11] Brayer, K.: "Implementation and Performance of

Suvivable Computer Communication with Autonomous

Decentralized Control", IEEE Communications Magazine,

July 1983, pp. 34-41

[12] Brayer, K. and Lafleur, V. S.: "A Testbed Approach to

the Design of a Computer Communication Networks",

Computer, No. 10, Octobet 1982

[13] Chen, M. S. and Meditch, J. S. : "A Distributed

Adaptive Routing Algorithm", Proceedings of IEEE

International Communications Conference, 1983, pp.

484-492

[14] Chin, C. and Hwang, K.: "A New Probabilistic Routing

Algorithm for Packet-Switched Computer Networks",

Proceedings of AFIPS National Computer Comference, May

1983, pp. 705-719

[15] Chou, W., Bragg, A. W. and Nilsson A. A.: "The Need

for Adaptive Routing in the Chaotic and Unbalanced

Traffic Environment", IEEE Transactions on

roM-29, No. 4, April 1981, pp.
Communications, Vol. COM zy,

[16]

481-490

Chou, W., Nilsson, A.

for Dynamic Routing in

Zones", IEEE Communic

A. and Bragg, A. W.: "The

a Network Spanning Several

ations Magazine, July 1982

Need

Time

/ PP-

13 17 . , i d and Bragg, Jr. A. W.:
[17] Chou, W., Powell/ J- D* , tive

, . • _ Deterministic and Adaptive
"Comparative Evaluatio p

i ; ~ mmnuter Networks, IFIP,
Routing", Flow Control m ComPute 9
North Holland Publishing Company, 1979, pp*
North-Hoilana pu Protocol for Updating

[18] Chu, K. C.: "A Distribu Rep0rt RC 7235

Network Topology I n f o r m a l < *” ° rt 19?8

(.31163), IBM T. 3. Watson Research Center, duly

98

[19] Chyung, D. H. and Reddy, S. M.: "A Routing Algorithm

for Computer Communication Networks", IEEE

Transactions on Communications, Vol. COM-23, No. 11,

November 1975

[20] Danet, A., Despres, R., LaRest, A., Pichon, G. and

Ritzenthaler, S.: "The French Public Packet Switching

Service: The Transpac Network", Proceedings of 3rd

International Conference on Computer Communications,

August 1976, pp. 251-260

[21] Davis, D. W. and Barber, D. L.: Computer Networks and

Their Protocols, Wiley, 1979, pp. 89—107

[22] Dijkstra, E. W.: "A Note on Two Problems in Connection

with Graphs", Numerical Mathematics, Vol. 1, 1959, pp.

269-271

[23] Dowdy, L. W. and Tripathi, S. K.: "Routing Strategies:

Classification and Comparison". Technical Report TR-

798, Department of Computer Science, University of

Maryland, College Park, August 1979

[24] Finn, G.: "Resynch Procedures and a Fail-Safe Network

Protocol", IEEE Transactions on Communications, Vol.

COM-27, No. 6, June 1979, pp. 840-845

[25] Foschini, G. J.: "on Heavy Traffic Diffusion Analysis

and Dynamic Routing in Packet Switched Networks",

Computer Performance, North Holland Publishing

Company, 1977, pp. 499-513
. , . _ T j : "A Basic Dynamic Routing

[26] Foschini, G. J. and Salz, o..
- n-i f f„ = ion" , IEEE Transactions on Problem and D i ff u si o n ,

p o m -26 , No. 3, March 1978, pp.
Communications, Vol. COM /t>,

[27]

320-327

Fratta, L., Gerla, M.

Deviation Method: An

Communication Network

and Kleinrock, L.: "The Flow

Approach to Store-and-Forward

Design", Networks, No. 3, 1973,

97-133pp.

99

[28] Gallager# R. G.: "A Minimum Delay Routing Algorithm

Using Distributed Computation", IEEE Transactiocs on

Communications, Vol. COM-25, No. 1, January 1977, pp.

73-85

[29] Gallager, R. G. and Golestaani, S. J.: "Flow Control

and Routing Algorithms for Data Networks", Proceedings

of 5th International Conference on Computer

Communications, October 1980, pp. 779-784

[30] Gavish, B. and Hantler, S. L.: "An Algorithm for

Optimal Route Selection in SNA Networks", IEEE

Transactions on Communications, Vol. COM-31, No. 10,

October 1983, pp. 1154-1160

[31] Gerla, M.: "Routing and Flow Control", Protocols and

Techniques for Data Communications Networks, Prentice

Hall, 1981, pp. 122-174

[32] Gerla, M., Chan, H. W. and DeMarca, J. R. B.:

"Routing, Flow Control and Fairness in Computer

Networks", Proceedings of IEEE International

Conference on Communications, May 1984

[33] Gerla, M. and Kleinrock, L.: "Flow Control: A

Comparative Survey", IEEE Transactions on

Communications, Vol. COM-28, No. 4, April 1980, pp.

553-574

[34] Gerla, M., Kleinrock, L. and A£ek, V.: "A Distributed

Routing Algorithm for unidirectional Networks", IEEE

GLOBCOM 1983, pp. 654-658

[35] Gerla, M. and Nilsson, P. 0.: "Routing and Flow

Control Interplay in Computer Networks", Proceedings

of 5th International Conference on Computer

Communications, October 1980, pp- 84 8 ^

[36] Giessler, A., Hanle, J./ Koing, A. and Pad®' *

Buffer Allocation - An Investigation by Srmulatron ,

Computer Networks, Vol. 2, 1978, pp. 191

100

[37] Gorecki, F. D. and Meditch, J. S.: "On Minimum Hop

Flow Assignment in Message-Switched Telecommunication

Networks", Proceedings of 8th Triennial World Congress

of the International Federation of Automatic Control,

August 1981, pp. 1727-1732

[38] Hovey, R. B.: "The User's Role in Connecting to a

Value-Added Network", Data Communication, May/June

[39]

[40]

[41]

[42]

[43]

[44]

[45]

1974

Jaffe, J. M . and Moss, D. H. : "A Responsive

Distributed Routing Algorithm for Computer Networks",

IEEE Transactions on Communications, Vol. COM-30, No.

7, July 1982, pp. 1758-1762

Jaffe, J- M., Moss, F. h. and Weingarten, R. A.: "SNA

Rotuing: Past, Present and Possible Future", IBM

Systems Journal, Vol. 22, No. 4, 1983, pp. 417-434

Kaliszewski, J. M.: "Routing Algorithm and Route

Optimization on SITA Data Transport Network", IEEE

GLOBECOM 1983, pp. 892-897

Kamoun, P. and Kleinrock, L.: "Stochastic Performance

Evaluation of Hierarchical Routing for Lange

Networks”, computer Networks, Vol. 3, 1979, pp. 337-

353
ewct-om Vol. 2, Computer

Kleinrock, L.: Queueing System,

Application, Wiley, 1976
. . . L . "power and Deterministic Rules of Ihumb

Kleinrock, L.. ^owet
, h i l i s t ic p r o blems in C o m puterfor probabilistic #

u p r o c e e d i n g s of International
Communications t
ronference on Communications, June 1979
Conference -Hierarchical Routing
Kleinrock, L. and Kamoun, F- J977,

for Large Networks", computer Networ s,

PP- ,155:174B s • optimal Local Policy for Two-
Mag 1 a r l s , B. S.. P Networks",
Level Adaptive Routing in Compu

Proceedings of ILEE JNPOCON 1984, pp. 384-290

[46]

101

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Maruyama, K. : "Defining Routing Tables for SNA

Networks"/ IBM Systems Journal/ Vol- 22/ No. 4, 1983/

pp. 435-450

Maruyama/ K. and Markowsky/ G.: "On the Generation of

Explicit Routing Tables", Proceedings of 5th

International Conference on Computer Communications,

October 1980, pp. 90-95

Maruyama, K. and Shorter, D.: "Dynamic Route Selection

Algorithms for Session Based Communication Networks",

ACM SIGCOMM Computer Communication Review, Vol. 13,

No. 2, 1983, pp. 162-169

McQuillan, J. M.: "Design Considerations for Routing

Algorithms in Computer Networks", Proceedings of 7th

Hawaii International Conference System Science,

January 1974, pp. 22-24

McQuillan, J. M.: "Adaptive Routing Algorithms for

Distributed Computer Networks", Bolt Bernek and Newman

Inc., Report-2831, May 1974

McQuillan, J. M.: "Routing Algorithms for Computer

Networks — A Survey", Conference Record of National

Telecommunications Conference, 1977, Vol. 2

McQuillan, J. M.: "Interactions between Routing and

Congestion Control in Computer Networks", Flow Control

in Computer Networks, IFIP, North-Hoi land Publishing

Company, 1979, pp* 63-75

HcQui 1 1 an, a. r.lk. «. •»- *" * "* R*VleV
of Development and Performance of the ARPANET Routing

Algorithm", IEEE Transactions on communications, Vol.

CON-26, NO. 12, December 1978, pp. 1802-1810
• , t Rosen/ E. C.: "The New

McQuillan, J- M./Richer, - .-ions

Routing Algorithm for the ARPANET", IEEE Transact
Routing 9 c o n -28, No . 5, Nay 1980, pp. 711-
Communications Vol. uun

719

102

[56] Meditch, J. S. and Gorecki, F. D.: "Minimum Hop Flow

Assignment and Routing in Computer-Communication

Networks"/ Proceedings of 19th IEEE Conference on

Decision and Control, December 1980, pp. 634-636

[57] Meditch, J. S. and Gorecki, F. D.: "A Distributed

Minimum Hop Routing Algorithm", Proceedings of 20th

IEEE Conference on Decision and Control, December

1981, pp. 392-397

[58] Meketon, M. S. and Topkis, D. M.: "Adaptive Routing

for Damaged Networks", Proceedings of IEEE Military

Communications Conference, October 1983, pp. 282-288

[59] Merlin, P. and Segall, A. : "A Failsafe Distributed

Routing Protocol", IEEE Transactions on

Communications, Vol. COM-27, No. 9, September 1979,

pp. 1280-1287

[60] Muralidhar, K. H. and Sundareshan, M. K.: "Adaptive

Routing and Flow Control in Large Communication

Networks", Proceedings of IEEE INF0C0M 1984, pp. 299-

[61]

[62]

[63]

[64]

[65]

assehi, M. M. and Hayes, J. F.: "On Routing, Flow

ontrol and Buffer Allocation in Integrated Voice-Data

etworks", Proceedings of Canadian Communications and

nergy Conference, October 1982, pp. 291-294

esic, I. M. and Lewis, D. W.: "Three Heuristics for

mproving Centralized Routing in Large Long-Haul

omputer Communication Networks, Proceedings of AFIPS

ational Computer Conference, May 1983, pp. 694-701

ouzin, L.J "Cigale, The Packet Switching Machine of

he Cyclades Computer Network", Proceedings of

ongress, 1974, North Holland, pp. 155-159

.ice, w. L.: "Adaptive Routing in Store-and-Forward

,etworks and the Importance of Load-Splitting ,

reformation P r o c e s s i n g 77, North Holland, PP. 309-313

l a jaraman, A.: "Routing in TYMNET", European Computing

inference, London, England, May 1978

103

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[66] Rosen, E. C.: "The Updating Protocol of ARPRNET’s New

Routing Algorithm", Computer Networks, Vol. 4, 1980,

pp. 11-19

Rudin, H.: "On Routing and ’Delta Routing’: A Taxonomy

and Performance Comparison of Techniques for Packet-

S witched Networks", IEEE Transactions on

Communications, Vol. COM-24, No. 1, January 1976, pp.

43-59

Rudin, H. and Muller, H.: "On Routing and Flow

Control", Flow Control in Computer Network, IFIP,

North Holland Publishing Company, 1979, pp. 241-255

Rudin, H. and Mueller, H.: ’’Dynamic Routing and Flow

Control", IEEE Transactions on Communications, Vol.

COM-28, No. 7, July 1980, pp. 1030-1039

Rybczynski, A. M., Shechtman, G. I. and Kayser, L. S.:

"Interworking between Packet Networks and Integrated

Voice/Data Access Systems", Proceedings of IEEE

International Conference on Communications, May 1984

Schoute, F. C. and MqQuillan, J. M.: "A Comparison of

information Policies for Minimum Delay Routing

Algorithms", IEEE Transactions on Communications, Vol.

COM-26, No. 8, August 1978, pp. 1266-1270

Schwartz, M. and Cheung, C. K.: "The Gradient

Projection Algorithm for Multiple Routing in Message

Switched N e t w o r k s ”, IEEE Transactions on

Communications, Vol. COM-24, No. 4, April 1976

Schwartz, M. and Stern, T. E.: ’’Routing Techniques

Used in Computer Communication Networks", IEEE

Transactions on Communications, Vol. COM-28, No. 4,

April 1980, pp. 539-552 .

Segal 1 , A. : "The Modeling of Adaptive Routing in Data

i. „« , IEEE Transactions on
Communication Networks ,

Communication, January 1977, pp* 85 9

segall, A. : "Optimal Distributed Routing for Virtual

Line-switched Data Network", » * « Transactions on

Communication, January 1979, PP- 201-208

104

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Segall/ A. : "Failsafe Distributed Algorithm for

Routing in Communication Networks", Flow Control in

Computer Networks, IFXP, North Holland Publishing

Company, 1979, pp. 235-240

Segall, A. : "Advances in Varifiable Failsafe Routing

Procedures", IEEE Transactions on Communications, Vol.

COM-29, No. 4, April 1981, pp. 491-497

Segall, A: "Distributed Network Protocols", IEEE

Transactions on Information Theory, Vol. IT-29, No. 1,

January 1983, pp. 23-35

Segall, A. and Jaffe, J. M.: "A Reliable Distributed

Route Set-Up Procedure", IEEE GLOBCOM 1983, pp. 644-

648

Segall, A., Merlin, P. M. and Gallager, R. G.: "A

Recoverable Protocol for Loop—Free Distributed

Routing", Proceedings of IEEE International Conference

on Communications, 1978, pp. 3.5.1.-3.5.5.

Segall, A. and Sidi, M.: "A Failsafe Distributed

Protocol for Minimum Delay Routing", IEEE Transactions

on Communications, Vol. COM —29, No. 5, May 1981, pp.

689-695

Sidi, M. and Segall, A: "Failsafe Distributed Optimal

Routing in Data Communication Networks", Dept, of

Electrical Engineering, Technion, Haifa, EE Pub. 342,

december 1978

Sproule, D. E. and Mellor, F.: "Routing, Flow and

Congestion Control in the Datapac Network", IEEE

Transactions on Communication, Vol. COM-29, No. 4,

April 1981, pp* 386—391

Stern, T. E.: "An Improved Routing Algorithm for

Distributed Computer Networks", ICCAS/80 Workshop on

Large Scale Systems, 1980

Tajibnapis, W. D.: "A Correctness Proof of a Topology

Maintenance Protocol for a Distributed Computer

Network", Communications of the ACM, July 1977, pp-

477-485

105

[86] Tanenbaum, A. S.: Computer Networks, Prentice-Hall,

1981

[87] Tymes, L. R- W.: ’‘Routing and Flow Control in TYMNET”,

IEEE Transactions on Communications Vol. COM-29, No.

4, April 1981, pp. 392-398

[88] Wecker, S.: "DNA — The Digital Network Architecture",

Computer Network Architectures and Protocols, Plenum

Publishers, 1982, pp. 249-296

[89] Wunderlich, E. F. and Printis, R. S.: "Rerouting

Stability in Virtual Circuit Data Networks",

Proceedings of International Conference on

Communications, June 1980, pp. 13.5.1.-13.5.5.

[90] Yum, T. P.: "The Design and Analysis of a Semidynamic

Deterministic Routing Rule", IEEE Transactions on

Communications, Vol. COM-29, No. 4, April 1981, pp.

[91]

[92]

[93]

[94]

[95]

498-504

Yum, T. P. and Lin, H. C.: "Adaptive Load Balancing

for Parallel Queues", Proceedings of IEEE

International Conference on Communications, May 1984

Yum, T. P. and Schwartz, M.: "Comparison of Adaptive

Algorithms for Computer Communication Networks",

Proceedings of National Telecommunications Conference,

December 1978, pp. 4.1.1.-4.1.4.

Yum, T. P. and Schwartz, M.: "The Join-Biased-Queue

Rule and Its Application to Routing in Computer

Communication Networks", IEEE Transactions on

. . . _ i rn m - ? 9 j No. 4, April 1981, PP«Communications, Vol. COM zy, o v
505-511
Zimmermann/ H.= "OSI Reference Model", IEEE

Transactions on Communications, Vol. COM-28, No. 4,

April 1980, pp. 425-432

Zimmermann, H.= "The Cyclades Experience - Results

and impacts", I U P Information Processing 77, North

Holland, pp. 465-469

	Survey of Routing Algorithms for Computer Networks
	Recommended Citation

	tmp.1606749734.pdf.i3fUe

