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Chip multicore processors (CMPs) have emerged as the dominant architecture choice for modern comput-
ing platforms and will most likely continue to be dominant well into the foreseeable future. As with any
system, CMPs offer a unique set of challenges. Chief among them is the shared resource contention that
results because CMP cores are not independent processors but rather share common resources among cores
such as the last level cache (LLC). Shared resource contention can lead to severe and unpredictable perfor-
mance impact on the threads running on the CMP. Conversely, CMPs offer tremendous opportunities for
mulithreaded applications, which can take advantage of simultaneous thread execution as well as fast inter
thread data sharing. Many solutions have been proposed to deal with the negative aspects of CMPs and
take advantage of the positive. This survey focuses on the subset of these solutions that exclusively make
use of OS thread-level scheduling to achieve their goals. These solutions are particularly attractive as they
require no changes to hardware and minimal or no changes to the OS. The OS scheduler has expanded well
beyond its original role of time-multiplexing threads on a single core into a complex and effective resource
manager. This article surveys a multitude of new and exciting work that explores the diverse new roles the
OS scheduler can successfully take on.
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1. INTRODUCTION

Since the dawn of multiprogramming the scheduler has been an essential part of the
operating system. Tasked with distributing the limited CPU time among threads,
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over the years the scheduler has evolved into a highly efficient and highly effective
resource-manager. Significant research efforts, both academic and industrial, have
lead to OS schedulers that enforce fairness, respect priority, facilitate real-time
applications and ensure that all threads make progress. OS schedulers for single pro-
cessor architectures had become so optimized that the need for further improvements
dramatically subsided, thereby diminishing interest in this research topic. In the late
90s, the scheduling problem was considered solved; at least it appeared that way
until the advent and subsequent near ubiquitous proliferation of chip multiprocessors
(CMP).

CMP architectures, consisting of multiple processing cores on a single die added new
dimensions to the scheduler’s role. In addition to multiplexing a single processor in
time, for example, time-sharing it among the threads, it became necessary to also space-
share cores among the threads. Space-sharing is about deciding on which core each
thread chosen to run at a given time interval will be assigned to run. This is a traditional
responsibility of the OS scheduler. While on older systems space-sharing was not very
important, with the advent of CMPs space sharing took on a very important role.

When CMPs first appeared, they ran unmodified schedulers that were designed for
older symmetric multiprocessor (SMP) systems. Each core was exposed to the OS as
an isolated processor, and so an SMP scheduler could be used without modifications
on CMP systems. For the OS scheduler, this created the illusion that each core in a
CMP was an independent processor. This convenient but overly optimistic abstraction
caused a lot of problems.

The fact that CMP cores are not fully independent processors but share resources
such as caches and memory controllers with neighboring cores results in performance
degradation due to competition for shared resources. Some researchers observed that
an application can slow down by hundreds of percent if it shares resources with pro-
cesses running on neighboring cores relative to running alone.

Thread-level schedulers have been shown to be very effective at helping mitigate
the performance losses due to shared-resource contention. Different combinations of
threads compete for shared resources to different extents and as such suffer differ-
ent levels of performance loss. Contention-aware schedulers determine which threads
are scheduled close together (sharing many resources) and which are scheduled far
apart (sharing minimal resources) in such a way as to minimize the negative effects of
shared resource contention. Using thread-level schedulers to address shared resource
contention is particularly attractive because the solution requires no changes to the
hardware and minimal changes to the operating system itself. This is in sharp con-
trast to orthogonal CMP-contention minimization techniques, such as last-level-cache
partitioning and DRAM-controller scheduling, that require substantial changes to the
hardware and/or the OS to enforce physical partitioning of resources among threads.
The simplicity of implementation makes a contention-mitigation solution based on
thread-level scheduling the most likely solution to be adopted into commercial systems
in the near future.

In contrast to the negative aspects of CMPs discussed so far, CMP architectures offer
tremendous opportunities for speeding up multi-threaded applications by allowing
multiple threads to run at once. While threads from different applications typically
compete for shared resources, threads of the same application can share these resources
constructively, and actually benefit from sharing. Threads that share data can do so
more productively if they also share the same LLC. Similarly, such threads can share
the prefetching logic and bring data into the cache for each other. Much like in the case
of avoiding shared resource contention, facilitating cooperative data sharing can also
be handled by a smart thread-level scheduler. Such a solution is attractive and likely to
be commercially implemented for the same reason the contention-aware scheduler is.
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The rest of the survey is organized as follows. Section 2 focuses on using scheduling
to deal with the challenges created by CMP architectures. It describes how scheduling
algorithms can be used to detect and avoid thread-to-core mappings that aggravate
shared resource contention and degrade performance. Section 3 discusses the use of
scheduling to better utilize the opportunities of CMPs specifically using schedulers as a
tool to aid cooperate memory sharing among multiple threads of the same application.
Section 4 provides an overview of current state-of-the art OS schedulers to show the
current scheduling solutions and contrast them with the “smart” schedulers proposed.
Section 5 concludes with a discussion of how we see the future of scheduling research.

2. CONTENTION-AWARE SCHEDULING

2.1. Introduction

Cores found on CMPs are not completely independent processors but rather share
certain on- and off-chip resources. The most common shared resources in today’s CMPs
are the last level cache (L2 or L3), the memory bus or interconnects, DRAM controllers
and pre-fetchers. These shared resources are managed exclusively in hardware and
are thread-unaware; they treat requests from different threads running on different
cores as if they were all requests from one single source. This means that they do not
enforce any kind of fairness or partitioning when different threads use the resources.
Thread-agnostic shared resource management can lead to poor system throughput as
well as highly variable and workload-dependent performance for threads running on
the CMP.

There has been significant interest in the research community in addressing shared
resource contention on CMPs. The majority of work required modifications to hardware
and falls into one of two camps: performance aware cache modification (most commonly
cache-partitioning) [Srikantaiah et al. 2008, 2009; Qureshi et al. 2006; Gordon-Ross
et al. 2007; Chang and Sohi 2007; Kotera et al. 2007; Viana et al. 2008; Jaleel et al.
2008; Iyer 2004; Guo and Solihin 2006; Rafique et al. 2006; Liang and Mitra 2008a;
Zhao et al. 2007; Shi et al. 2007; Hsu et al. 2006; Suh et al. 2004; Reddy and Petrov
2007; Lin et al. 2009; Kim et al. 2004; Lin et al. 2008; Cho and Jin 2006; Lee et al. 2009;
Balasubramonian et al. 2000; Kotera et al. 2008; Stone et al. 1992; Chishti et al. 2005;
Liu et al. 2004; Liedtke et al. 1997; Xie and Loh 2009; Chandra et al. 2005; Soares
et al. 2008; Albonesi 1999; Berg and Hagersten 2004; Liang and Mitra 2008b; Zhang
et al. 2009; Qureshi and Patt 2006; Nesbit et al. 2007] or performance-aware DRAM
controller memory scheduling [Loh 2008; Suh et al. 2002; Hur and Lin 2004; Nesbit
et al. 2006; Rixner et al. 2000; Koukis and Koziris 2005; Burger et al. 1996; Mutlu
and Moscibroda 2007, 2008; Delaluz et al. 2002; Ipek et al. 2008; Wang and Wang
2006]. The proposed solutions require changes to the hardware, major changes to the
operating system (OS), or both. As such, the majority of these techniques have only
been evaluated in simulation and, as of this writing, none of these promising solutions
have yet been implemented in commercial systems.

Orthogonal to cache partitioning or DRAM controller scheduling, another research
trend is emerging to deal with CMP shared resource contention on the level of thread
scheduling [Zhuravlev et al. 2010; Knauerhase et al. 2008; Banikazemi et al. 2008;
Jiang et al. 2008; Tian et al. 2009; Merkel et al. 2010]. In this context, thread scheduling
refers to mapping threads to the cores of the CMP. Different mappings result in different
combinations of threads competing for shared resources. Some thread combinations
compete less aggressively for shared resources than others. Contention mitigation via
thread scheduling aims to find the thread mappings that lead to the best possible
performance.
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In this section, we provide background on CMP shared-resource contention. We
discuss at length the research on mitigating this contention via thread-level scheduling.
We then outline several other complementary techniques that are worth mentioning
in the context of this survey. Finally, we conclude with a discussion of how thread-
scheduling-based solutions fit together in the larger scheme of things and enumerate
some possible directions going forward for mitigating shared-resource contention in
CMPs.

2.2. Background

One of the clearest points of contention in the CMP is the shared last-level cache (LLC).
The effect of simultaneously executing threads competing for space in the LLC has been
explored extensively by many different researchers [Srikantaiah et al. 2009; Qureshi
et al. 2006; Gordon-Ross et al. 2007; Chang and Sohi 2007; Kotera et al. 2007; Viana
et al. 2008; Jaleel et al. 2008; Srikantaiah et al. 2008; Iyer 2004; Guo and Solihin 2006;
Rafique et al. 2006; Liang and Mitra 2008a, 2008b; Zhao et al. 2007; Shi et al. 2007;
Hsu et al. 2006; Suh et al. 2004; Reddy and Petrov 2007; Lin et al. 2008, 2009; Kim
et al. 2004; Cho and Jin 2006; Lee et al. 2009; Balasubramonian et al. 2000; Kotera
et al. 2008; Stone et al. 1992; Chishti et al. 2005; Liu et al. 2004; Liedtke et al. 1997;
Xie and Loh 2009; Chandra et al. 2005; Soares et al. 2008; Albonesi 1999; Berg and
Hagersten 2004; Zhang et al. 2009; Qureshi and Patt 2006; Nesbit et al. 2007].

The most common replacement policy used in caches is Least Recently Used
(LRU) [Suh et al. 2004; Kim et al. 2004]. LRU, when used with a single application,
is designed to take advantage of temporal locality by keeping in cache the most re-
cently accessed data. However, when the LLC is shared by multiple threads, the LRU
replacement policy treats misses from all competing threads uniformly and allocates
cache resources based on their rate of demand1 [Jaleel et al. 2008]. As a result, the
performance benefit that a thread receives from having greater cache space depends
on its memory access pattern and thus varies greatly from thread to thread. Further-
more, it can be the case that the thread that allocates the most cache space for itself is
not the one that will benefit the most from this space, and by forcing other threads to
have less space it can adversely affect their performance [Qureshi and Patt 2006; Suh
et al. 2004]. Kim et al. [2004] and Chandra et al. [2005] both demonstrate the dramatic
effects of this phenomenon. They show that the cache miss rate of a thread can signif-
icantly vary depending on the co-runner (the thread that runs on the neighboring core
and shares the LLC). The increase in the miss rate, caused by cache contention, leads
to a corresponding decrease in performance, which also varies greatly depending on
which threads share the LLC. [Kim et al. 2004] shows up to a nine-fold increase in LLC
misses for the SPEC benchmark GCC when it shares the LLC as compared to when it
runs alone. The corresponding performance of GCC as measured by Instructions per
Cycle (IPC) drops to less than 40% of its solo performance. Chandra et al. [2005] shows
an almost four-fold increase in the LLC miss rate for the SPEC benchmark MCF when
it shares the LCC as compared to running alone. The corresponding performance of
MCF is around 30% of its solo execution.

On Uniform Memory Access (UMA) Architectures with multiple LLCs, the LLCs are
usually connected via a shared bus to the DRAM controller. This memory bus is another
point of contention for threads running simultaneously on the CMP. Kondo et al. [2007]
used a simulator to evaluate the effect that the shared memory bus by itself can have
on the performance of threads in a CMP. Their experiments demonstrate that the
reduction in IPC (normalized to solo performance) when two applications compete for
the shared memory bus varies dramatically depending on which applications are used

1Demand is determined by the number of unique cache blocks accessed in a given interval [Denning 1968].
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and can lead to a performance degradation of as much as 60% compared to running
solo.

The other crucial shared resource and major source of contention in the CMP is
the DRAM controller. The DRAM controller services memory requests that missed in
the LLC. Like LRU for caches, existing high-performance DRAM memory controllers
were optimized for single-threaded access and these controllers were designed to max-
imize the overall data throughput [Rixner et al. 2000]. However, they do not take into
account the interference between different threads when making scheduling decisions
on CMP systems. Therefore, when multiple threads compete for the DRAM controller,
these conventional policies can result in unpredictable and poor performance [Mutlu
and Moscibroda 2007].

Nesbit et al. [2006] show that the memory latency, measured as the number of stall
cycles per memory request that an application experiences can increase up to ten-fold
when competing for the DRAM controller with another application as compared to
running solo. They also demonstrate that the IPC of the application can fall to about
40% of its solo rate when sharing the DRAM controller. Mutlu and Moscibroda [2007]
show the high variability in memory latency that arises for different applications when
they share the DRAM controller. The authors demonstrate that for four applications
running on a four-core CMP the memory stall time for an individual application can
increase eight-fold. For eight applications running on an eight-core CMP the increase
in memory stall time can be as high as twelve-fold.

In the last few years, major processor manufacturers have gradually abandoned2

UMA architectures in favor of Non-Uniform Memory Access (NUMA) designs. For ex-
ample, in the latest Intel and AMD products, processors and other system components
such as memory banks and I/O devices, are connected via high-speed point-to-point
interconnects. Instead of using a single shared pool of memory connected to all the pro-
cessors through a shared bus and memory controller hubs, each processor has its own
dedicated memory bank that it accesses directly through an on-chip memory controller.

Although NUMA architectures improve scalability by eliminating the competition
between processors for bus bandwidth, recent work has demonstrated that the negative
effect due to shared-resource contention is still significant on these systems [Zhuravlev
et al. 2010; Blagodurov et al. 2011]. The authors show that on a multiprocessor NUMA
system consisting of AMD “Barcelona” quad-core processors, an application’s comple-
tion time when running simultaneously with others can increase by up to a factor of
2.75 compared to running alone. Several other researchers highlight additional chal-
lenges that multiprocessor NUMA systems give rise to, such as an increased overhead
of interprocessor thread migrations [Li et al. 2007; Blagodurov et al. 2011] and the
necessity for effective memory access scheduling algorithms specifically designed for
these systems, which include per-chip memory controllers [Kim et al. 2010].

The studies presented so far show that competition for shared resources can lead
to severe performance degradation (up to 70% reduction in IPC), but they also allude
to another major problem: the reduction in IPC is not uniform and depends on the
threads that compete for these shared resources. Some thread combinations experi-
ence minimal slowdown when sharing resources, other combinations lead to severe
slowdowns, and still other are somewhere in between. The fact that a thread’s instruc-
tion retirement rate depends on the other threads in the workload makes performance
on CMPs unpredictable which can be an even bigger problem than reduced through-
put [Moreto et al. 2009; Guo et al. 2007; Iyer et al. 2007; Nesbit et al. 2007; Iyer
2004]. Unpredictable/workload-dependent performance means that Quality of Service

2Although this is the dominant trend in most desktop and server products, NUMA designs currently coexist
with more modest, low-power UMA solutions (e.g., the Intel Atom processor).
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(QoS) guarantees cannot be provided to threads and hence Service Level Agreements
(SLAs) are very difficult to enforce. Furthermore, the OS scheduler, which relies on
priority enforcement via timeslice allocation, becomes significantly less effective as the
actual progress a thread makes during a given timeslice is highly variable. Contention
for shared resources can lead to priority inversion as low-priority threads impede the
progress of high-priority threads. In certain cases, it may also lead to thread starvation
as certain threads fail to make adequate progress [Mutlu and Moscibroda 2007]. The
current shared-resource management techniques often lead to unfair distribution of
resources among competing threads and hence some threads gain unfair advantages
at the expense of other threads.

The problem of shared resource contention and the resultant reduction in through-
put, fairness, and predictability is further complicated by two other issues. First,
the three main sources of contention—the LLC, the memory bus, and the DRAM
controller—all contribute to the overall performance degradation of a system and a
comprehensive solution is needed to address all these factors simultaneously. This is
demonstrated by Zhuravlev et al. [2010] where the authors quantify the percent con-
tribution of each type of shared resource to the overall performance degradation. They
show that in the majority of cases there is no single dominant contributing factor and
everything plays an important role [Zhuravlev et al. 2010]. Second, these contention
factors interact in complex and intertwined ways and hence attempts to deal with only
a subset of the contention issues can exacerbate the other contention factors leading to
poor performance [Bitirgen et al. 2008].

The research presented previously makes it clear that shared resource contention
is a serious problem that leads to poor and unpredictable performance. Furthermore,
as previous research shows, a comprehensive solution is necessary to deal with this
problem. However, the question remains what exactly is the desired outcome of a “good”
solution. Hsu et al. [2006] brings to the forefront the discrepancy between “communist”
solutions (those where the goal is to even out performance degradation among all
the threads) and “utilitarian” solutions (those where the goal is to optimize overall
throughput). They show that solutions that maximize fairness are not necessarily good
for overall throughput and vice-versa. However, they do show that, in all cases, both
the “communist” and “utilitarian” solutions are better than the current free-for-all
“capitalist” system.

Contention-aware thread scheduling is emerging as a promising solution to shared
resource contention on CMPs. Several studies [Zhuravlev et al. 2010; Knauerhase et al.
2008; Banikazemi et al. 2008; McGregor et al. 2005; Snavely et al. 2002; Merkel et al.
2010; Fedorova et al. 2007; Jiang et al. 2008; Tian et al. 2009] have shown signifi-
cant improvement in throughput, fairness, and predictability over contention-unaware
schedulers. Moreover, the simplicity of implementation, requiring no changes to the
hardware and few changes to the OS,3 makes the solution very attractive for the near
term. Conceptually, contention-aware schedulers map threads to cores in such a way as
to minimize shared resource contention amongst the threads and improve performance.
In this section, we discuss the currently proposed contention-aware schedulers. We be-
gin by explicitly stating the assumptions that contention-aware schedulers often take
for granted. We then outline the four building blocks common to all contention-aware
schedulers.

2.3. Assumptions Used by Contention-Aware Schedulers

Assumption One. A contention-aware scheduler space-shares the machine rather than
time-shares it. Space sharing refers to deciding how the runnable threads will be

3Some contention-aware thread schedulers were implemented entirely at user level.
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Fig. 1. Examples of thread-to-core mappings in two CMP configurations.

distributed on the machine in a given time interval: which threads will be scheduled
to neighboring cores and which will be scheduled to distant cores. Time sharing, on
the other hand, refers to multiplexing time on a single CPU among multiple threads.
Contention-aware schedulers typically do not interfere with the traditional OS time
sharing scheduler. One notable exception is the work by Merkel et al. [2010], which is
discussed later.

Assumption Two. In order for contention-aware schedulers to be effective, the
underlying CMP architecture must consist of multiple cores, where subsets of cores
share different resources. Figure 1(a) shows a CMP architecture where all four cores
share the same resources. As such, the fact that the threads are mapped differently
in the left instance than they are in the right instance will not make any difference
on performance. In contrast, Figure 1(b) shows a CMP architecture where every pair
of cores shares a different LLC. Thus, the different thread-to-core mapping of the left
and right instances may result in different performance. Given that contention-aware
schedulers focus on space sharing, they will only be effective on architectures like
those in Figure 1(b), where subsets of cores share different resources, and not on
architectures like in Figure 1(a).

It is worth highlighting at this point that most existing contention-aware schedulers
assume that all subsets of cores share equally sized last-level caches, so in this survey
we focus on schedulers that rely on this assumption. Recent work [Jiang et al. 2011],
however, has demonstrated that asymmetric-cache CMP designs coupled with effective
asymmetry-aware and contention-aware scheduling support, make it possible to deliver
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higher performance-per-watt than their symmetric-cache counterparts. As a result,
next-generation contention-aware schedulers may also have to deal with this source of
asymmetry in the future.

Assumption Three. All resource sharing is destructive interference. This weeds out
the cases where two threads from the same application can share resources such as
the LLC constructively, (i.e., in such a way, as the performance of the two threads
is higher when the resource is shared as compared to when it is not). Contention-
aware schedulers view all sharing as purely destructive. The degree of destructive
interference can vary greatly from negligible to significant but it will never be negative.
This assumption holds for the developers of contention-aware schedulers [Zhuravlev
et al. 2010; Knauerhase et al. 2008; Banikazemi et al. 2008; Jiang et al. 2008] because
all experimented with workloads consisting of only single-threaded applications that
cannot share data or interfere constructively.4

Constructive interference for multithreaded applications where data sharing is
present is discussed in depth in Section 3. However, as will be discussed in that sec-
tion, evidence indicates that because modern programming/compilation techniques try
to purposely minimize inter-thread sharing the effects of cooperative sharing are often
overshadowed by the magnitude of destructive interference even for multithreaded
applications.

2.4. The Building Blocks of a Contention-Aware Scheduler

A major commonality across all contention-aware schedulers is that they can be re-
garded as consisting of four building blocks: the objective, the prediction, the decision,
and the enforcement.

2.4.1. The Objective. The objective describes the metric that the scheduler is trying
to optimize. The most common objectives optimized by contention-aware hardware
and software solutions are overall throughput and fairness/QoS. Contention-aware
schedulers almost exclusively focus on optimizing overall throughput. These schedulers
typicaly strive to protect threads that “suffer” the most from contention and thus
lower the overall performance degradation for the workload. A pleasant side effect
is that these strategies yield performance stability when compared to the default OS
scheduler [Zhuravlev et al. 2010].

Default OS schedulers, which are contention unaware at the time of this writing,
are primarily tasked with balancing the run queues across cores. Since the number of
ways to map threads to cores in a given time interval is combinatorial in the number
of cores, the actual mappings of threads to cores can vary dramatically from run to run
of the same workload under the default scheduler. Some of these mappings will offer
low contention and high performance. Others will offer high contention and low perfor-
mance. As such, the performance of workloads under the default OS scheduler can be
varied and unpredictable [Zhuravlev et al. 2010]. Contention-aware schedulers, on the
other hand, have a policy in place regarding which threads should be mapped closer
together and which should be mapped further apart. As such, the mappings that these
schedulers produce are similar if not identical from run to run. Predictable mappings
mean predictable and stable performance. Although, so far there have been no explicit
solutions offering QoS via contention-aware scheduling alone, the predictability and
repeatability provided by such scheduling algorithms makes it a clear possibility for
the future.

4It has been shown that under certain circumstances even different applications may experience a small
performance improvement (a few percent) due to shared cache effects. It is believed that this improvement
results from the applications using shared libraries.
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2.4.2. The Prediction. Having established an objective (in this case, improved overall
throughput), one now needs to find a thread-to-core mapping that will facilitate this
objective. The search space is too vast for a dynamic trial and error exploration. Con-
sider a machine with 8 cores where every pair of cores shares the LLC. There are 8! =
40,320 ways to map 8 threads onto the 8 available cores. A lot of these mapping are
redundant, for example if cores 0 and 1 share an LLC then the mapping (A to 0 and B
to 1) or (A to 1 and B to 0) are equivalent in terms of performance. Nevertheless, there
are still 105 performance-unique mappings to explore. Furthermore, 8-core machines
are now on the lower end of server capabilities. Machines with 16, 32, and even 64 cores
are becoming available with 100+ cores expected in the near future. The sheer number
of mappings makes trial and error infeasible. As such, it becomes necessary to be able
to predict the performance of different mappings without actually trying them.

The prediction is the second building block common to all contention-aware sched-
ulers. The prediction problem can be best illustrated with a simple example. Consider
a machine with 4 cores where each pair of cores shares the LLC, like the machine
pictured in Figure 1(b). There are three performance-unique ways to map four threads
A, B, C, and D onto this system: (AB CD), (AC BD), and (AD BC). The prediction model
should be able to predict the relative “goodness” of each of the three mappings so that
the scheduler can choose the one that will result in the best performance.

Many different techniques have been proposed for modeling how performance of
applications degrades as they share resources on multicore systems [Weinberg and
Snavely 2008; Cascaval et al. 2000; Zhou et al. 2004; Azimi et al. 2007, 2009; Hoste
and Eeckhout 2007; Zhong et al. 2009]. The majority focus on sharing the LLC, which
many researchers believed was the primary source of contention. The best known
techniques use Stack Distance Profiles (SDP) and Miss Rate Curves (MRC) to predict
the performance of multiple threads sharing the LLC. SDPs were first proposed by
Mattson et al. [1970] and first used for prediction purposes by Chandra et al. [2005].
They are a concise description of the memory reuse patterns of an application and a
measure of the benefit derived from additional cache space.

The caches used on modern machines are set-associative, often with a pseudo-LRU
replacement policy. An SDP shows the distribution of cache hits among the different
positions in the LRU stack. In other words, it is a histogram depicting the number of
cache hits that were satisfied from the Most Recently Used (MRU) position, the number
satisfied from the Least Recently Used (LRU) position and each of the positions in-
between. If an SDP was obtained for an N-way set associate cache then it can be used
to estimate the extra misses that an application would incur if running on an (N-1)
set associate cache by counting the hits to the LRU position on an N-way associative
cache as misses on an (N-1)-way associative cache. Thus, it is possible to calculate the
extra misses a thread will encounter on a variety of different cache architectures using
SDPs. The resultant curves depicting miss rate as a function of cache size are known
as Miss Rate Curves (MRC).

It is more challenging to predict how two threads sharing a cache will perform than
it is to predict performance based on cache size, because in the case of sharing it is not
clear how much space each thread will obtain for itself. Nevertheless there are models
that predict the resultant miss rate when sharing the LLC based on the applications’
SDP or MRC. The best-known such model is called Stack Distance Competition and
comes from Chandra et al. [2005]. They use an algorithm to merge two SDPs into a
single profile and estimate the resultant extra misses for each application. The model
has been extensively evaluated on a cycle-accurate simulator and shown to be very
precise [Chandra et al. 2005].

While SDPs and MRCs were shown to be an effective tool for modeling contention
in the LLC (and so they could help contention-aware schedulers to significantly
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improve the accuracy of the prediction), their main limitation is that they are difficult
to obtain online on current systems. Existing hardware counters do not provide
sufficient data to obtain an SDP and the required changes to the hardware [Qureshi
and Patt 2006], though simple enough to be implemented, have not yet been adopted
by commercial systems. Similarly, the methods proposed so far for generating MRCs
(e.g., RapidMRC [Tam et al. 2009]) rely on certain hardware counters that are only
available on some platforms.5

One approach to get around the need to use SDP is to approximate cache occu-
pancy of competing threads using simple performance metrics (such as the LLC miss
and access rate) that be easily collected using the hardware performance monitoring
infrastructure available in most modern processors. Banikazemi et al. [2008], for in-
stance, predict the performance of a particular thread in a particular mapping by first
calculating the cache occupancy ratio, which is the ratio of the LLC access rate of the
thread of interest to the LLC access rate of all the threads that share a cache in the
mapping. Next, they calculate the would-be LLC miss rate that this thread should ex-
perience given its currently measured LLC miss rate, the calculated cache occupancy
ratio, and a rule of thumb heuristic. Finally, they use a linear regression model to
convert the predicted LLC miss rate as well as the currently measured L1 miss rate
into a predicted CPI for the thread, which directly represents the thread’s predicted
performance in the proposed mapping. Performing this calculation for all the threads
in the proposed mapping allows the authors to predict the performance of the entire
workload given that mapping.

The method proposed by Banikazemi et al. [2008] is rather complex, but fortunately
the most recently proposed contention-aware schedulers are able to avoid this
complexity. Schedulers proposed by Knauerhase et al. [2008], Zhuravlev et al. [2010],
and Merkel et al. [2010] approximate contention with one simple heuristic: the LLC
miss rate (with small differences in how they measure it). Based on observation and
experiments, these researchers concluded that applications that frequently miss in
the LLC will stress the entire memory hierarchy for which they are competing; as
such, these applications should be kept apart. Their prediction model can be summed
up as follows: putting applications with numerous LLC misses together leads to
poor performance. They do not attempt to convert this intuition into a numerical
prediction for the resultant CPI. Instead they develop concepts like cache light/heavy
threads [Knauerhase et al. 2008] and turtles/devils [Zhuravlev et al. 2010] to repre-
sent low-miss and high-miss applications respectively. The terminology devil/turtle
is borrowed from Xie and Loh [2008], in which the authors divided applications
into categories that were assigned animal names. The intention is that pairing light
and heavy users of the memory hierarchy (i.e., turtles and devils) yields the best
performance. Similarly, McGregor et al. [2005] use the concept of high-pressure and
low-pressure threads based on the number of bus transactions that they complete and
attempt to schedule high- and low-pressure threads together.

The fact that such a simple and coarse heuristic works well to approximate contention
(Zhuravlev et al. [2010] showed that a scheduler based on this heuristic performs
within 3% of the optimal “oracular” scheduler) seems at a first glance very surprising.
Indeed, the LLC miss rate is a very coarse heuristic for approximating cache contention,
because it does not reflect key factors like cache locality or reuse. The reason why it
does work is that it captures contention for the other parts of the memory hierarchy,
such as memory controllers and interconnects. Intuitively, a thread with a high LLC
miss rate will put pressure on memory controllers and interconnects and will thus

5The IBM Power V processor is the exception which offers facilities to dynamically collect the SDP. However,
Intel and AMD processors, which constitute the majority of the market, do not.
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suffer from contention for these resources and cause interference with other threads.
The key to this puzzle is that contention for memory controllers and interconnects is
dominant on existing systems. Zhuravlev et al. [2010] and Blagodurov et al. [2011]
performed experiments that demonstrated this fact on two different AMD and Intel
platforms. As a result, a simple and easy-to-obtain LLC miss rate heuristic provides
sufficient information to predict contention on existing multicore systems.

Taking advantage of this result, the most recently proposed schedulers (and those
that were also implemented and evaluated on real hardware) use very simple prediction
algorithms as previously described [Knauerhase et al. 2008; Zhuravlev et al. 2010;
Merkel et al. 2010]. Should cache contention become more dominant in future systems,
a combination of techniques relying on LLC miss rates and on heuristics approximating
cache contention will be needed to implement a successful contention-aware scheduler.

2.4.3. The Decision. Once a prediction model is developed, the scheduler must select the
actual thread mapping that will be used. This task is handled by the third building block
of the scheduler: the decision. One might imagine that if the prediction mechanism
did its job well then it should be trivial to pick the best solution among the possible
choices. However, as Jiang et al. [2008] and Tian et al. [2009] show that even if the
exact performance for every possible mapping is known it is still a challenging task
(NP-complete in the general case) to find a good, let alone the best possible mapping.

Jiang et al. [2008] and Tian et al. [2009] address the contention-aware scheduling
problem exclusively from the perspective of making the scheduling decision. They
assume that the exact performance degradations of any subset of threads co-scheduled
on the same LLC are known. Going back to our earlier example of mapping four threads
A, B, C, and D to a system with 4 cores where each pair of cores share the LLC, Jiang
et al. [2008] and Tian et al. [2009] assume that they have the performance degradations
for every possible thread pairing sharing the LLC: AB, AC, AD, BC, BD, and CD.

Assuming that this performance degradation information is known, they represent
the problem in graph-theoretical form. The nodes of the graph are the threads to be
scheduled. The edges between them have weights equal to the performance degradation
that would be incurred if the applications were scheduled to the same LLC. Since all
pairings are possible this is a complete graph. They show that the optimal solution to
this scheduling problem is a minimum weight perfect matching of the graph.

For systems where caches are only shared by two cores the problem has many well-
known graph theoretical polynomial-time solutions, such as the Blossom algorithm.
However, if more than two cores share an LLC, the problem is NP-complete as proven
by Jiang et al. [2008]. This means that even from a strictly theoretical perspective
an exact solution cannot realistically be found online for systems with more than two
cores per cache. Yet, machines with four and six cores per cache are already widely
available. Jiang et al. [2008] and Tian et al. [2009] present a series of polynomial
time approximation algorithms, which they show can result in solutions very near to
optimal.

The scheduler presented by Banikazemi et al. [2008] (as previously discussed) uses
a complex model that predicts the performance of each thread in a given schedule
and hence presents the decision mechanism with the kind of input assumed by Jiang
et al. [2008] and Tian et al. [2009]. They, however, use a very rudimentary technique
of enumerating all possible mappings and selecting the one with the best performance.
Although, guaranteed to be the optimal solution there are major scalability issues
with such an approach when one attempts to go to a machine that is larger than that
which was used by the authors (8 cores and 4 shared caches). As pointed out by Jiang
et al. [2008], the number of choices explodes as the number of cores sharing the LLC
increases.
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Zhuravlev et al. [2010], Knauerhase et al. [2008], McGregor et al. [2005], and Merkel
et al. [2010] put more stress on their decision mechanism because the prediction mech-
anism used was rather simple and never predicted direct performance of threads but
rather provided metrics that hint at the relative performance of each schedule.

The major decision mechanism proposed by Zhuravlev et al. [2010] is called dis-
tributed intensity (DI). It sorts all threads to be scheduled based on their miss rate.
It then begins pairing applications from opposite ends of the list. The most intense
application is paired with the least intense. The second most intense is paired with the
second least intense, and so forth. This is done every time a new thread is spawned, a
thread terminates, and every predefined time period.

The decision mechanisms proposed in Knauerhase et al. [2008] are threefold OBS-L,
OBS-X, and OBS-C. The OBS-L attempts to reduce cache interference by spreading the
total misses across all cache groups (a cache group consists of the shared LLC and the
cores attached to it). Whenever a core becomes available, it selects a thread whose miss
rate is most complementary to the other threads sharing this cache. The OBS-X at-
tempts to spread the miss rate even more by adding new threads to the cache-group that
has the smallest total miss rate. Furthermore, periodically the thread with the highest
miss rate is moved from the cache-group with the highest total miss rate to the group
with the lowest miss rate. Finally, based on the observation that their decision mecha-
nism pairs cache-heavy and cache-light threads and that the cache-light threads tend
to suffer slightly due to this pairing, the OBS-C compensates the light weight threads
by extending their time slices, similarly to an idea proposed by Fedorova et al. [2007].

The decision mechanism in Merkel et al. [2010] is based on the so-called activity vec-
tors. A thread’s activity vector records its usage of system resources during the previous
time slice; mainly the memory-bus, the LLC, and the rest of the core; normalized to the
theoretical maximum usage. The proposed OS-level scheduler exploits thread migra-
tions to enforce co-scheduling of threads with complementary activity vectors. They for-
malize this concept by measuring the variability of the activity vectors of threads within
the run queue of a given core. Higher variability is an indication that the current sub-
set of threads will yield high performance if co-scheduled. They also introduce a more
involved decision technique called sorted co-scheduling which groups cores into pairs
and attempts to schedule only complementary threads on each core within the pair. The
sorted co-scheduling technique requires focusing on only one parameter of the activity
vector that is deemed most important. It then involves keeping the run queues sorted
based on that parameter; one core in the pair has the threads sorted in ascending order
while the other in descending. In order to ensure synchronized scheduling of threads,
this technique requires manipulating the time slice mechanism of the OS scheduler.

The decision mechanism in McGregor et al. [2005] is more complex because it deals
with multithreaded applications that provide resource requests to the OS. A complete
discussion of such a scheduler is well outside the scope of this work; however, we
note that the contention avoidance mechanism used is similar to the other schedulers
that combined threads with complementary resource usage [Zhuravlev et al. 2010;
Knauerhase et al. 2008; Merkel et al. 2010]. Once a job has been selected the remaining
cores are filled with threads that will be the most complementary to this job. In other
words, threads with a high memory bus usage are combined with those with a low
memory bus usage.

2.4.4. The Enforcement. Once the decision mechanism has settled on a thread place-
ment, this placement must be enforced by binding or migrating the threads to the
cores specified in the placement. Modern operating systems provide functionality
that allows the binding of threads to cores from the user level via system calls with
no modification to the kernel. Zhuravlev et al. [2010], Banikazemi et al. [2008], and
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McGregor et al. [2005] all go this route making a scheduler that runs as a user-level
process and enforces its decisions via Linux system calls.

The enforcement mechanism of Zhuravlev et al. [2010] binds every thread to a specific
core while Banikazemi et al. [2008] uses a more flexible mechanism of CPU-sets. They
bind a thread to a set of CPUs; for example, the set of CPUs that do not share an
LLC. The enforcement mechanism is a design choice that determines how much of
the onus for thread scheduling is moved into the contention-aware scheduler and how
much remains inside the traditional OS scheduler. The CPU-set version chosen by
Banikazemi et al. [2008] allows the OS scheduler to retain more control as it is still
able to move threads within the CPU-sets to enforce load balance. The direct thread-to-
core mapping technique employed by Zhuravlev et al. [2010] places all load balancing
responsibilities with the contention aware scheduler leaving the OS scheduler only the
time domain.

The schedulers proposed by Knauerhase et al. [2008] and Merkel et al. [2010] were
directly integrated into the kernel. They enforce scheduling decisions by directly ma-
nipulating the run queues. Such an approach is more suited for situations where the
number of threads exceeds the number of cores, as was the case only in experimentation
performed by Knauerhase et al. [2008] and Merkel et al. [2010].

2.5. Discussion of Complementary Techniques

Two techniques related to the management of shared-resource contention are worth
mentioning in the context of this survey: DRAM controller scheduling and cache parti-
tioning. Although these techniques do not fall under the category of thread scheduling
algorithms, they can certainly help contention-aware scheduling algorithms accomplish
their goals.

2.5.1. DRAM Controller Scheduling. One of the most critical shared resources in a chip
multiprocessor is the DRAM memory. The DRAM memory system in modern comput-
ing platforms is organized into multiple banks. Because of this organization, DRAM
systems are not truly random access devices (equal access time to all locations) but
rather are three-dimensional memory devices with dimensions of bank, row, and col-
umn. While accesses to different banks can be serviced in parallel, sequential accesses
to different rows within one bank have high latency and cannot be pipelined.

Existing controllers for DRAM memory systems typically implement variants of the
first-ready-first-come-first-serve (FR-FCFS) policy [Rixner et al. 2000]. FR-FCFS pri-
oritizes memory requests that hit in the row-buffers associated with DRAM banks
(a.k.a. row-buffer hits) over other requests, including older ones. If no request is a
row-buffer hit, then FR-FCFS prioritizes older requests over younger ones. This policy
has been shown to significantly improve the system throughput in single-core sys-
tems [Rixner et al. 2000]. However, other authors [Moscibroda and Mutlu 2007; Mutlu
and Moscibroda 2007] have shown that the fact that memory accesses requested by all
cores are treated uniformly by FR-FCFS leads this policy to poor system throughput
in CMPs and to potential starvation of threads with low row-buffer locality.

There have been several recently proposed memory aware schedulers for CMP
systems that aim to “equalize” the DRAM-related slowdown experienced by each
thread due to interference from other threads, and at the same time avoid degrading
the overall system performance. Inspired by the fair queuing algorithms widely
used in computing networks, Nesbit et al. [2007] proposed the fair queuing memory
scheduler (FQM). For each thread, in each bank, FQM keeps a counter called virtual
runtime; the scheduler increases this counter when a memory request of the thread is
serviced. FQM prioritizes the thread with the earliest virtual time, trying to balance
the progress of each thread in each bank.
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Another algorithm that deserves special attention is the parallelism-aware batch
scheduling algorithm (PAR-BS) [Mutlu and Moscibroda 2008], which delivers higher
memory throughput and exploits per-thread bank-level parallelism more effectively
than FQM. To make this possible, the PAR-BS scheduler attempts to minimize the
average stall time by giving a higher priority to requests from the thread with the
shortest stall time at a given instant. This scheduling algorithm relies on the concept
of batches. The idea of batching is to coalesce the oldest k outstanding requests from
a thread in a bank request buffer into units called batches. When a batch is formed,
PAR-BS builds a ranking of threads based on their estimated stall time. The thread
with the shortest queue of memory requests (number of requests to any bank) is
heuristically considered to be the thread with the shortest stall time and its requests
are serviced preferentially by PAR-BS.

Although PAR-BS is currently the best known scheduling algorithm in terms of
memory throughput for systems with a centric DRAM controller, recent research has
highlighted that it does not have good scalability properties, so it does not turn out
suitable for systems with multiple6 DRAM controlers [Kim et al. 2010]. To the best of
our knowledge, ATLAS (Adaptive per-Thread Least-Attained-Service) [Kim et al. 2010]
is the first memory scheduling algorithm specifically designed for systems with multi-
ple DRAM controllers. In order to reduce the coordination between memory controllers,
ATLAS divides execution time into long time intervals or quanta, during which each
controller makes scheduling decisions locally based on a system-wide thread ranking.
At the beginning of each quantum, a new system-wide ranking is generated by exchang-
ing information across memory controllers. Such a ranking dictates that requests from
threads that received the least service so far from the memory controllers will be ser-
viced first. These working principles enable ATLAS to provide superior scalability and
throughput than PAR-BS on systems with multiple memory controllers.

2.5.2. Cache Partitioning. As we stated earlier, the LRU replacement policy, which is
typically used in existing caches, does not always guarantee an efficient distribution of
the shared last-level cache resources across applications on CMPs. Some researchers
[Suh et al. 2002, 2004, Chandra et al. 2005, and Qureshi and Patt 2006] proposed
solutions to address this problem by explicitly partitioning the cache space based on
how much applications are likely to benefit from the cache, rather than based on their
rate of demand.

In the work on Utility Cache Partitioning [Qureshi and Patt 2006], a custom mon-
itoring circuit is designed to estimate an application’s number of hits and misses for
all possible number of ways allocated to the application in the cache (the technique is
based on stack-distance profiles (SDPs)). The cache is then partitioned so as to mini-
mize the number of cache misses for the co-running applications. UCP minimizes cache
contention given a particular set of co-runners.

Tam et al. [2009] similarly to other researchers [Cho and Jin 2006; Lin et al. 2008;
Zhang et al. 2009] address cache contention via software-based cache partitioning. The
cache is partitioned among applications using page coloring. A portion of the cache
is reserved for each application, and the physical memory is allocated such that the
application’s cache lines map only into that reserved portion. The size of the allocated
cache portion is determined based on the marginal utility of allocating additional
cache lines for that application. Marginal utility is estimated via an application’s reuse
distance profile, which is approximated online using hardware counters [Tam et al.

6As we mentioned earlier, cutting-edge processors from main hardware manufacturers integrate on-chip
memory controllers and so multiprocessor systems based on these processors include multiple DRAM con-
trollers, each controlling requests to a different portion of main memory.
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2009]. Software cache partitioning, like hardware cache partitioning, is used to isolate
threads that degrade each other’s performance. While this solution delivers promising
results, it has two important limitations. First, it requires nontrivial changes to the
virtual memory system, a complex component of the OS. Second, it may require copying
of physical memory if the application’s cache portion must be reduced or reallocated.
Although smarter implementations can in part overcome the latter limitation by
tracking and coloring only frequently used “hot” pages, these work well only when
recoloring is performed infrequently [Zhang et al. 2009]. Given these limitations, it is
desirable to explore options like scheduling, which are not subject to these drawbacks.

It is also worth highlighting that solutions based exclusively on cache partitioning
only help alleviate LLC contention, but not memory controller and interconnect con-
tention, which were shown to be the dominant on modern systems [Zhuravlev et al.
2010; Blagodurov et al. 2011]. As a result, these solutions cannot replace contention-
aware schedulers, which usually approximate contention for memory controllers and
interconnects, but not for the LLC. Cache partitioning, however, can be complementary
to thread scheduling.

Beyond exploiting cache partitioning to mitigate contention on CMPs, other re-
searchers have demonstrated the potential of cache partitioning to make effective
utilization of Non-Uniform Cache Access (NUCA) designs [Dybdahl and Stenstrom
2007; Hardavellas et al. 2009; Awasthi et al. 2009; Chaudhuri 2009]. Recent research
has highlighted that the increase of the number of cores and cache banks, coupled with
the increase of global wire delays across the chip in future manufacturing technolo-
gies, make current on-chip last-level-cache designs (centric caches with single, discrete
latency) undesirable for upcoming systems [Kim et al. 2002]. In NUCA designs, the
shared cache is statically organized into private per-core partitions, but partitions can
keep blocks requested by other cores (this usually happens when cores run out of
cache space on its private partition). Although this cache organization promises lower
access latencies than centric designs, making effective use of upcoming NUCA archi-
tectures is a challenging task. Recent research has proposed promising solutions to
address this problem using novel cache-partitioning schemes, either purely hardware-
based solutions [Dybdahl and Stenstrom 2007; Hardavellas et al. 2009] or OS-assisted
ones [Awasthi et al. 2009; Chaudhuri 2009].

2.6. Discussion and Conclusions

Shared resource contention on CMPs is a serious problem that leads to overall per-
formance degradation as well as makes it difficult if not impossible to provide QoS to
individual applications. A significant amount of work has been done exploring poten-
tial solutions to this problem with the two main directions focusing on either shared
cache partitioning or modifications to the DRAM controller’s request scheduling sys-
tem. Although these solutions seem promising they require significant changes to the
underlying hardware and the operating system. Research on contention-aware sched-
uler has emerged as a simpler alternative for mitigating shared resource contention.

There are several contention-aware schedulers in existence today. Even though
they approach the problem in different ways, use different prediction, decision, and
enforcement mechanisms, the end result is very similar. A contention-aware scheduler
lives either in user or kernel space and it augments the decisions taken by the
tradition OS scheduler to find thread-to-core mappings that result in less-shared
resource contention. Existing contention-aware schedulers can be separated into
two categories: those that focus on modeling cache contention (using stack-distance
profiles or miss rate curves, or by approximating cache space occupancy using simple
hardware performance counters) and those that approximate contention for the entire
memory hierarchy using a simple heuristic: the last-level cache miss rate. The latter
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algorithms have a much simpler implementation, do not require additional hardware
support and are readily portable to different systems.7 The former algorithms, while
being more complex, do model contention for the last-level cache, and so might
become more relevant if cache contention takes on a higher importance than memory
controller and interconnect contention.

The contention-aware schedulers have been shown to be effective at mitigating
shared resource contention and improving performance as well as predictability, how-
ever schedulers do not solve shared resource contention but rather try to avoid it.
As such, there are limitations to what schedulers can accomplish. Schedulers rely on
the heterogeneity of workloads. To be truly effective, they require a workload that
consists of both memory-intensive as well as compute-intensive threads; that way, by
co-scheduling threads with complementary resource usage, they are able to avoid con-
tention as compared to contention-unaware schedulers. A contention-aware scheduler
becomes less effective as the workload becomes more homogeneous, becoming com-
pletely pointless if all the threads are the same. Furthermore, as contention-aware
schedulers are not able to actually eliminate shared resource contention in any way,
even the best possible thread-to-core mapping may result in high overall contention
and performance degradation.

It is therefore unrealistic to believe that contention-aware thread schedulers will
solve the problem of shared resource contention on CMPs by themselves. To solve
this problem, we need a truly comprehensive solution that addresses all the bot-
tlenecks in the memory hierarchy and most likely involves hardware techniques to
which we alluded in the beginning of this section. Considering the ease with which
contention-aware schedulers can be implemented and their demonstrated effective-
ness, makes us believe that any comprehensive contention-mitigating solution should
involve contention-aware schedulers. Using a contention-aware scheduler as the start-
ing point means having to run a race not from the beginning but rather from half-way.
Contention-aware schedulers will avoid as much unnecessary contention as possible.
Only what cannot be avoided needs to be solved by other means.

3. COOPERATIVE RESOURCE SHARING

Cooperative sharing becomes important primarily for multithreaded applications,
where threads share data. Threads may be concurrently updating the same data or
simply reading the same data either concurrently or one after another. Another popular
pattern is producer-consumer, where one thread writes some data, and then another
thread reads it. In this scenario, it may be beneficial to co-schedule threads on cores
that share a part of the memory hierarchy (e.g., a last-level cache), so as to minimize the
cost of inter-core data exchange and take advantage of data pre-fetching that threads
can do for each other.

Since data sharing occurs primarily in multithreaded applications, a lot of sharing-
aware scheduling algorithms where built in parallel runtime libraries, such as Phoenix
MapReduce [Chen et al. 2010]. We omit discussing this vast area of research, in the
interest of staying true to our focus on operating system schedulers.

The main difference between schedulers implemented in parallel runtime libraries
and OS schedulers is that the former typically have a lot of information about how
threads or tasks in the application share data, while the latter sees threads as black
boxes and has no information about inter-thread data sharing. The main challenge for
the OS scheduler, therefore, is to detect whether threads share data and whether the
degree of sharing warrants changing thread-to-core mappings.

7For instance, an algorithm implemented on Linux by Blagodurov et al. [2011] was ported to Solaris by
Kumar et al. [2011].

ACM Computing Surveys, Vol. 45, No. 1, Article 4, Publication date: November 2012.



Scheduling Techniques for Addressing Shared Resources in Multicore Processors 4:17

The first research in this area was done long before multicore systems became
mainstream [Thekkath and Eggers 1994]. They examined parallel scientific applica-
tions on a multithreaded system, where like on multicore systems thread contexts
share portions of the memory hierarchy. To their surprise they discovered that
sharing-aware co-scheduling of threads—for example, placing threads that share data
on thread context that share a cache—did not yield performance benefits. When they
investigated the cause for this surprising finding they discovered that the culprit was
the pattern in which the threads shared the data. It turns out that the applications
that they examined (they used the SPLASH benchmark suite) exhibit the so-called
coarse-grained sharing. That is, they do not ping-pong data back and forth, but rather
there is a relatively long period where one thread accesses the data followed by a long
period where another thread accesses the same data. As a result, the cost associated
with bringing the data into the cache of another processor when threads are not
co-scheduled is amortized over a long period during which this data is accessed.

This finding becomes less surprising when one puts into perspective the environ-
ment for which SPLASH (and other scientific applications of that time) were created.
They were designed for the most part by experienced programmers for multiprocessor
systems, where cross-chip data sharing was extremely expensive. Therefore, these ap-
plications were optimized to avoid fine-grained sharing—exactly the kind of sharing
that would benefit from sharing-aware co-scheduling.

More than a decade later, a study by Zhang et al. [2010] arrived at a similar finding,
upon examining a more “modern” PARSEC benchmark suite: these applications are
simply not designed to share data in a way that sharing-aware co-scheduling would
make a difference. Although PARSEC is a relatively recent benchmark suite, it is based
on scientific applications similar to those used in SPLASH. Zhang’s study presented
another interesting observation: if applications were specifically redesigned with the
assumption that they would run on a multicore machine with a shared memory hier-
archy and that threads sharing data would be co-scheduled on cores sharing a cache,
the application can run faster than the original version that tried to avoid sharing. The
key is to redesign data access patterns such that threads pre-fetch data for each other.
A sharing-aware scheduler is crucial for such applications, because threads that share
data must be co-scheduled to run on cores sharing a cache.

From this research, we can conclude that for older scientific applications, sharing-
aware schedulers are not likely to bring any performance benefits because of the nature
of sharing among the application threads. However, as parallel computing enters the
mainstream and new kinds of parallel applications emerge, this could change. Sharing-
aware schedulers could be important for other types of applications.

As a confirmation of this possibility, Tam et al. [2007] looked at database and server
applications, such as SPEC JBB and VolanoMark. They found that sharing-aware
thread placement did have an effect on these applications, and so the sharing-aware
scheduler they proposed (described here) did yield performance improvement, albeit
only as much as 7%. In a similar note, recent work on multicore operating systems and
on multicore profilers (e.g., Corey [Boyd-Wickizer et al. 2008], Barrelfish [Baumann
et al. 2009], DProf [Pesterev et al. 2010]) demonstrated examples of applications, in-
cluding the OS kernel itself, where cross-cache sharing of data is extremely expensive
due to the overhead of coherency protocols. In these cases, co-scheduling applications
threads that share data on cores that share a cache can eliminate that overhead. For
example, Kamali [2010], in his work on sharing-aware scheduling, demonstrated that
memcached, which is one of the applications used in the DProf study, experienced a
performance improvement of 28% when managed by a sharing-aware scheduler.

We now describe two sharing-aware thread schedulers implemented for modern mul-
ticore systems. Recall that we are focusing on schedulers that see threads as “black
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boxes” in a sense that they do not assume any knowledge about how threads share
data. One such scheduler was designed by Tam et al. [2007]. Their scheduler relied on
hardware performance counters specific to the IBM Power processors to detect when
threads running on different cores satisfy last-level cache misses from a remote cache.
The scheduler profiled this data and analyzed the intensity of remote cache accesses.
If remote accesses were deemed to be sufficiently frequent the threads that were con-
sidered to be the cause of remote misses were co-scheduled to run on cores that share a
last-level cache. The benefits of this approach is that it assumed no advance knowledge
about sharing patterns in the application and could adapt if sharing patterns changed
over the lifetime of the application. The downside is that this algorithm could only be
implemented on IBM Power processors.

Kamali [2010] attempted to implement a similar algorithm such that it would rely
only on hardware counters that are available on most modern server processors. How-
ever, like Tam, he found this challenging and ended up implementing an algorithm that
worked only on the latest Intel processors. His algorithm needed hardware counters
that measured cross-cache coherency misses, and they were not available on AMD sys-
tems. Contrary to Tam, however, Kamali went further and developed a highly accurate
performance model that could predict how much performance improvement an applica-
tion would experience if its threads were co-scheduled on cores that share a cache. The
model could be used online, without any prior knowledge of applications and without
imposing any measurable overhead on application runtime. It relied on a simple linear
regression and required simpler data analysis than that used by Tam in his algorithm.
Armed with this model, a sharing-aware scheduler could be implemented very simply.
It could simply examine sharing among all pairs of caches, run the model to predict
the effects of co-scheduling threads running on cores sharing those caches, and decide
whether migrating threads is worthwhile based on those predictions.

Another benefit of having an accurate model that estimates benefits of sharing is
that a scheduler that uses this model could be combined with a contention-aware
scheduler—something that has not yet been done in any scheduling algorithm and
is a major shortcoming of existing contention-aware and sharing-aware algorithms.
In particular, a scheduler could estimate the benefit of sharing-based co-scheduling
as well as assess the degradation from resource contention if the threads were
co-scheduled. Based on these two estimates, it could then make a decision whether
or not the benefits of co-scheduling (cooperative data sharing) outweigh its costs
(contention for shared resources).

3.1. Summary

In summary, while sharing-aware scheduling was shown to have little impact on
older applications created for multiprocessor systems, this may change as new
multithreaded applications are emerging. Sharing-aware schedulers that would
benefit these applications do exist, but on some systems they are limited by the
lack of hardware performance counters that would help the operating system detect
inter-thread sharing. So the importance and effectiveness of sharing-aware OS
scheduling on future systems will be determined by the kinds of sharing patterns
found in future multithreaded applications, by the availability of certain hardware
performance counters, and whether or not the task of sharing-aware scheduling will
be taken over by application runtime libraries.

4. STATE-OF-THE-ART SCHEDULING TECHNIQUES IN LINUX AND SOLARIS

In this section, we discuss the state-of-the-art scheduler implementations available in
the latest releases of two popular operating systems: Linux and Solaris. It is important
to note that the main goal of these schedulers on multicore systems is load balancing
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across cores. Hence, the strategies employed to place threads on cores aim to balance
the runnable threads across the available resources to ensure fair distribution of CPU
time and minimize the idling of cores.

Schedulers built with primarily load balancing in mind are very different from those
surveyed in this work. These load-balancing schedulers do not take advantage of the
available hardware performance counters, they do not construct performance-models,
or in any other way attempt to characterize the runnable threads to determine more
effective thread-to-core mappings. With the exception of balancing threads across
caches when the load is light, they do not strive to avoid shared resource contention
or conversely take advantage of cooperative interthread sharing. The primary goal is
to fairly distribute the workload across the available cores. As discussed in Section 2,
such a rudimentary approach has the potential to lead to poor and unpredictabe
thread performance.

This section is organized into two subsections. The first discusses the Linux scheduler
and the latter focuses on the Solaris scheduler. Each subsection is further divided into
three parts. The first part answers the question: given several threads mapped to a
core how does the scheduler decide which thread to run next? The second discusses
how the scheduler decides on the thread-to-core-mappings. The final part addresses
how the schedulers incorporate the actual physical layout of the machine, particularly
in regards to NUMA architecture, when making scheduling decisions.

4.1. The Linux Scheduler

Contemporary multiprocessor operating systems, such as Linux 2.6 (but also Solaris 10,
Windows Server, and FreeBSD 7.2), use a two-level scheduling approach to enable effi-
cient resource sharing. The first level uses a distributed run queue model with per core
queues and fair scheduling policies to manage each core. The second level is a load bal-
ancer that redistributes tasks across cores. The first level schedules in time, the second
schedules in space. We discuss each level independently in the subsections that follow.

4.1.1. Run Queue Management. The default scheduler in Linux is the Completely Fair
Scheduler (CFS), which was merged into mainline Linux version 2.6.23. Since then,
there have been some minor improvements made to CFS scheduler. We will focus on
the CFS scheduler in Linux kernel 2.6.32.

The threads that are currently mapped to a core are stored in the core’s run queue;
a run queue is created for each core. Task scheduling (deciding which thread from the
run queue will run next) is achieved via CFS run queue management. A novel feature
of the CFS scheduler is that it does not require the concept of time slices. Classical
schedulers compute time slices for each process in the system and allow them to run
until their time slice is used up. CFS, in contrast, considers only the waiting time of a
process (how long it has been in the run queue and was ready to be executed). The task
with the gravest need for CPU time is always scheduled next.

This is why the scheduler is called completely fair: the general principle is to provide
maximum fairness to each task in the system in terms of the computational power
it is given. Or, put differently, it tries to ensure that no task is treated unfairly. The
unfairness is directly proportional to the waiting time. Every time the scheduler is
called, it picks the task with the highest waiting time and assigns it to the processor.
If this happens often enough, no large unfairness will accumulate for tasks, and the
unfairness will be evenly distributed among all tasks in the system.

Also unique to the CFS is that unlike other OS schedulers or even prior Linux
implementations it does not maintain an array with run queues for each priority
level. Instead the CFS maintains a time-ordered red-black tree (a self-balancing data
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structure, with the property that no path in the tree will ever be more than twice as
long as any other).

Different priority levels for tasks must be taken into account when considering which
task should run next, as more important processes must get a higher share of CPU
time than less important ones. CFS does not use priorities directly but instead uses
them as a decay factor for the time a task is permitted to execute. Lower-priority tasks
have higher factors of decay, while higher-priority tasks have lower factors of delay.
This means that the time a task is permitted to execute dissipates more quickly for a
lower-priority task than for a higher-priority task.

4.1.2. The Load Balancer. In the CMP environment, each CPU has its own run queue. As
a result of uneven blocking intervals and completion times among threads some queues
may run out of work, leaving the corresponding processors idle, while other processors
would have threads waiting in their run queues. This is called load imbalance, and the
load balancer is designed to address this issue. The “load” on each core is defined as
the number of tasks in the per-core run queue. Linux attempts to balance the queue
lengths system wide by periodically invoking the load balancing algorithm on every
core to migrate tasks from the busiest CPU to less-loaded CPUs.

When selecting potential migration candidates, the kernel ensures that the candidate
thread is not running at the moment or has not been running on a CPU recently (so as
not to lose its cache affinity). Another consideration is that the candidate process must
be permitted to execute on the destination CPU (i.e., CPU affinity has not been set to
prohibit that).

4.1.3. Topology and Locality Awareness. The Linux scheduler has topology awareness
which is captured by organizing all run queues into a hierarchy of scheduling domains.
The scheduling domains hierarchy reflects the way hardware resources are shared:
Simultaneous Multithreading (SMT) contexts, last-level caches, socket and NUMA
domains [Hofmeyr et al. 2010].

Balancing is done progressing up the hierarchy. At each level the load balancer
determines how many tasks need to be moved between two groups to balance the
cumulative loads in those groups. If the balance cannot be improved (e.g., one group
has 3 tasks and the other 2 tasks), no threads will be migrated. The frequency with
which the load balancer is invoked is dependent on both the scheduling domain kernel
settings and the instantaneous load.

The default parameter settings are established such that the frequency of balancing
and the number of migrations decreases as the level in the scheduling domain hierarchy
increases. This is based on the idea that migrations between domains further up on
the hierarchy, such as between two different NUMA banks, are more costly than those
between domains lower down, such as between SMT contexts.

4.2. The Solaris Scheduler

In some respects, the Solaris scheduler is similar to the Linux scheduler. They both
make distributed per-core decisions as well as global load-balancing decisions, and
both support topology and locality awareness. There are, however, stark differences
between the two. For example, in Solaris, a thread’s priority exclusively determines
how soon it will run.

The Solaris scheduler has a modular design and consists of two components: the
scheduling classes and the dispatcher. While the dispatcher is in charge of key tasks
such as load balancing and global run queue management, the scheduling classes
handle CPU accounting, time-slice expiration and priority boosting. Every thread in
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the system is in one of several possible scheduling classes8; this arrangement deter-
mines the range of priorities for the thread, as well as which class-specific scheduling
algorithms that will be applied as the thread runs.

4.2.1. Run Queue Management. The Solaris kernel implements a global priority scheme,
which guarantees that a runnable thread’s global priority solely determines how soon
it will be selected to run. The dispatcher makes this possible by enforcing that threads
with the highest priorities run first than other threads at any time.

Runnable threads are assigned a global priority ranging from 0 to 169. The global
priority range is divided into several priority subranges associated with the different
scheduling classes. Solaris’s per-core run queues are organized as an array, where a
separate linked list of threads is maintained for each global priority.

4.2.2. The Load Balancer. Apart from being in charge of finding the highest-priority
runnable thread and dispatching it onto the target CPU, the Solaris dispatcher is also
responsible for making load balancing decisions. These decisions are performed based
on the topology of the platform. For example, on a two-core chip, even if only one of
the two cores is busy, it is still better to try to find a chip where both CPUs are idle.
Otherwise, we could end up having a chip with two busy cores and another chip on the
same system with two idle cores. More succinctly, for systems with multicore chips, the
scheduler tries to load-balance across physical chips, spreading the workload across
CPUs on physical chips rather than filling up cores on chip 0, then the cores on chip
1, and so on. This is the case on Uniform Memory Access (UMA) systems. On NUMA
systems, topology-aware load-balancing is based on the MPO framework, described in
the next section.

4.2.3. Topology and Locality Awareness. In addition to priority, other conditions and con-
figuration parameters factor into scheduling decisions on Solaris. A good example of
this is the Memory Placement Optimization (MPO) framework [Chew 2006]. MPO mit-
igates the effects of systems with non-uniform memory access latencies by scheduling
threads onto processors that are close to the thread’s allocated physical memory. MPO
uses the abstraction of locality groups (lgroups) that represent the set of CPU-like and
memory-like hardware resources that are within some latency of each other. A hier-
archy of lgroups is used to represent multiple levels of locality. On Uniform Memory
Access (UMA) machines, there is only one level of locality represented by one lgroup
since the latency between all CPUs and all memory is the same. On NUMA systems
there are at least two levels of locality. On such systems the child lgroups capture CPUs
and memory within same latency of each other while the root (parent) lgroup contains
CPUs and memory within remote latency (e.g., all CPUs and memory).

Solaris uses lgroups to enforce topology awareness in the following way:

—Each thread is assigned a home lgroup upon creation.
—The kernel always tries to get memory and processing resources from its home locality

group and then, if this fails, from the parent lgroup(s).
—The load balancing is performed across CPUs in the same lgroup.

5. CONCLUSIONS AND FUTURE DIRECTIONS OF SCHEDULING RESEARCH

The advent of the multicore era has compelled us to reconsider the role of scheduling.
On the one hand, multicore architectures introduce tightly coupled resources sharing,
which the scheduler can manage. On the other hand, abundance of cores makes one
wonder: is thread scheduling as important as it used to be in the past, when CPU

8Solaris supports several scheduling classes: time-share, fair-share, real-time, fixed-priority and interactive.
The scheduling classes are implemented as separate, dynamically loadable scheduling modules.
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resources were scarce and expensive? Indeed, with the growing abundance of cores on
a single chip, we may be able to assign a dedicated core to each thread, and then there
is not much left for the scheduler to do; at least not for the traditional time-sharing
schedulers. However, as the research surveyed in this work shows shared-resource-
aware schedulers can play a tremendous role in this situation by selecting thread-to-
core mappings that either facilitate cooperative inter-thread data sharing or mitigate
shared resource contention between competing threads. Dealing with shared resources
in CMPs is just one of the many roles future schedulers will take on.

In the rest of this section, we look ahead at what scheduling challenges lie just beyond
the horizon as well as highlight some of the most recent research on future scheduling
architectures.

While schedulers have traditionally managed individual threads, in the future sched-
ulers will have to manage application containers. The drive towards increased paral-
lelism and the advent of new parallel programming environments, as well as “mod-
ernization” of the old ones, will create a large class of applications that “schedule
themselves”. In particular, applications will run on top of runtimes that have their
own thread or task schedulers. Many established parallel programming frameworks
already perform their own thread scheduling (OpenMP [Chandra et al. 2001], MPI,
Cilk [Blumofe et al. 1995]), and new parallel libraries certainly follow suit (e.g., Intel
TBB [Reinders 2007], CnC [Knobe 2009], Serialization Sets [Allen et al. 2009], Cas-
cade [Best et al. 2011], Galois [Kulkarni et al. 2007], Dryad [Isard et al. 2007], job
managers in commercial game engines [Leonard 2007]).

We have already seen a trend that is somewhat similar to management of application
containers in the virtual machine domain, where a hypervisor manages virtual ma-
chines as independent entities. It assigns to them a fixed amount of CPU and memory
resources, which the VM then manages on its own. A similar kind of framework will
have to be adopted at the level of individual applications. Tessellation [Colmenares
et al. 2010] and ROS [Klues et al. 2010] are two emerging scheduling infrastructures
whose primary schedulable entities are application containers.

For example, Colmenares et al. [2010] proposed the Cell Model as the basis for
scheduling. A Cell is a container for parallel applications that provides guaranteed
access to resources, i.e., the performance and behavior close to an isolated machine.
Resources are guaranteed as space-time quantities, such as “4 processors for 10% of
the time” or “2 GB/sec of bandwidth”. Although Cells may be time-multiplexed, hard-
ware thread contexts and resources are gang-scheduled such that Cells are unaware of
this multiplexing. Resources allocated to a Cell are owned by that Cell until explicitly
revoked. Once the Cell is mapped, a user-level scheduler is responsible for schedul-
ing hardware contexts and other resources within Cells. Inter-cell communication is
possible and occurs through special channels.

If the future is about managing application containers, then what must be done to
manage these containers effectively? The first and obvious challenge is to slice machine
resources such that the demands of individual containers are satisfied, while avoiding
resource waste and internal fragmentation. The need to satisfy resource demands of
multiple application containers implies the need to perform some kind of admission
control, which means that an application must be able to assess its resource require-
ments a priori and present them to the scheduler. Building such applications is going
to be a challenge.

As researchers from ETH Zurich and Microsoft Research point out in their position
paper Design Principles for End-to-End Multicore Schedulers [Peter et al. 2010], future
systems will run a very dynamic mix of interactive real-time applications. Satisfying
performance goals of these applications will demand new schedulers.
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In traditional scheduling infrastructures, the way for an application to ask for more
resources was to increase its priority. This is a very coarse and inexpressive mechanism
that does nothing to guarantee that the application will meet its quality-of-service
goals. While some of the recent research attempted to move beyond this simplistic
mechanism and suggested that an application should inform the scheduler of its target
instruction throughput, we believe that this mechanism is still very rudimentary.
First of all, instruction throughput is a machine-dependent metric, so an application
attempting to specify its target throughput will not be portable across a large number of
systems. Second, it is very difficult for the programmer to determine the target through-
put, because an average programmer is not trained to understand performance at such
a fine level of detail. Finally, if performance of the application is limited by bottlenecks
other than instruction throughput (e.g., if the application is I/O- or synchronization-
bound), specifying performance goals in terms of instructions becomes useless.

We believe that the scheduler should demand from the application no more than to
specify its QoS goals in terms of high-level metrics that make sense for the application
developer (e.g., frames per second, response time or transactions per second). The
scheduler would then attempt to satisfy the application performance goal by monitoring
how its actual performance deviates from the target and by providing to the application
more of a bottleneck resource if its performance is below the target.

Putting everything together both from the works surveyed and looking forward, this
is how we view the ideal scheduler in future systems: it is a scheduler that balances
system resources among application containers while satisfying applications’ individ-
ual performance goals and at the same time considering global system constraints
such as thermal envelope and power budget. If we are to succeed in designing such a
scheduler, we need to address not only the scheduling algorithms themselves, but also
design new interfaces between application runtimes and the scheduler, create better
performance monitoring infrastructures (both in hardware and in software) that will
permit better “observability” of what is happening inside the system, as well as create
better mechanisms for fine-grained resource allocation in hardware. Addressing these
problems will require interdisciplinary effort of operating system designers, hardware
architects and application developers.
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