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Abstract

Road crashes are a growing concern of governments and is rising to become one of the leading preventable
causes of death, especially in developing countries. The ubiquitous presence of smartphones provides a
new platform on which to implement sensor networks and driver assistance systems, as well as other ITS
applications. In this paper, existing approaches of using smartphones for ITS applications are analyzed and
compared. Particular focus is placed on vehicle-based monitoring systems, such as driving behavior and
style recognition, accident detection and road condition monitoring systems. Further opportunities for use
of smartphones in ITS systems are highlighted, and remaining challenges in this emerging field of research
are identified.

Keywords: Vehicle safety, driving behavior, remote monitoring, wireless sensor networks, event detection,
pattern recognition, reckless driving detection, vehicle telematics, insurance telematics.

1. Introduction

Most modern smartphones have a variety of embedded sensors — typically an accelerometer, gyroscope,
light, proximity and magnetic sensor — as well as a Global Positioning System (GPS). These sensors can
further be augmented by processing data from the camera and microphone. This richness in sensors enable
support for a multitude of sensing applications. An example of such an application is gesture recognition,
which is used to answer a call when bringing the phone to one’s ear, or paging through a document by the
wave of a hand [1, 2]. In a similar way, different activities such as walking, running, cycling and driving can
be detected and classified using the inertial sensors of a phone that is carried in a user’s pocket [3].

Worldwide more than a million deaths are caused by road accidents per year. The World Health Organi-
zation predicts that road fatalities will rise to become the fifth leading cause of death by 2030 [4]. Research
done in the United States shows that, in more than 50% of fatal road accidents, unsafe driving behaviors
were involved [5]. Although road accidents can be attributed to a variety of factors, reckless driving is one
of the major preventable causes.

In the last decade, various vehicle manufacturers and other companies have been developing solutions to
monitor a vehicle and its driver’s behavior [6, 7, 8]. A problem with these solutions is that they are expensive
and there is little incentive for individuals to buy them. These systems are mostly used for vehicle fleets.
However, the increasingly ubiquitous presence of smartphones – with their variety of sensors – presents the
opportunity to easily implement vehicle monitoring systems on a large scale.

Vehicle monitoring is an attractive sensing application for smartphones. For instance, drivers can be
monitored to make them aware of their potentially dangerous driving behavior. Anonymous participatory
sensing could also enable identifying areas where accidents are more likely to occur [9]. The authorities
could also be notified to investigate extreme cases of aggressive driving.

The omnipresent connectivity of smartphones also allows the implementation of other vehicle monitoring
features, such as traffic monitoring, traffic re-routing and accident reporting. Accident detection is possible
using only the sensors in a modern smartphone, as shown by White et al. [10]. The swift automatic reporting
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of road accidents to authorities can prevent fatalities by minimizing the response time of emergency services.
Additionally, using a machine-to-machine (M2M) communication platform would allow the redirection of
other drivers away from an accident. Notifying drivers that they are approaching an accident scene could
also increase their alertness and warn them to slow down, thereby preventing further accidents.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of the current
literature on smartphone sensing in vehicles; in Section 3, the limited number of available papers specifically
describing vehicle monitoring systems that are entirely implemented on a smartphone are analyzed, reviewed
and compared; Section 4 discusses the challenges facing the progress and adoption of vehicle monitoring
systems; and Section 5 presents the concluding remarks.

2. Smartphone sensing in vehicles

Machine-to-machine (M2M) communications describes a system where multiple electronic devices com-
municate autonomously to enable the sharing of information [11]. Among the millions of M2M devices
that will be deployed world-wide in the coming years, smartphones will be the most mobile, versatile and
powerful devices that can be used as sensors and M2M gateways [12]. Therefore much research has been
done on smartphone sensing applications in recent years [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In this section, a brief overview is given of the current literature on smartphone sensing in vehicles. The
existing literature on vehicle sensing can be categorized according to the four types of information that is
captured, which is then disseminated in various ways for different applications. The types of data are

• Traffic information, such as the location and movements of other vehicles or pedestrians

• Vehicle information, for example vehicle health telematics

• Environmental information, such as road conditions and weather conditions

• Driver behaviour information, including insurance telematics

The features and goals of the recent projects are listed in Table 1 to provide context of the systems
discussed in the rest of this paper.

2.1. Traffic information

M2M platforms have been developed where smartphones are used as sensor gateways in vehicles to
support traffic management applications such as detecting congestion and rerouting traffic [24, 25, 26]. The
platform described by Ali et al. serves the same purpose, but information is manually entered by users on
their smartphones [27].

SignalGuru [29, 13] is a service that uses smartphones to opportunistically detect traffic signals with
their cameras and collaboratively share and learn traffic signal schedules. This enables Green Light Optimal
Speed Advisory (GLOSA) applications which provide drivers with the schedule of forward traffic signals,
allowing them to avoid coming to a complete halt and thereby lowering their fuel consumption. Jam Eyes [28]
is an application that uses a smartphone’s camera and wifi to detect vehicles around it in a traffic jam, in
order to collaboratively calculate the length of a traffic queue.

2.2. Vehicle information

Zaldivar et al. [38] proposed using smartphones as an alternative on-board unit (OBU) in vehicles to
access information in the vehicle’s electronic control unit (ECU) wirelessly. An ECU is typically accessed
through an industry-standard on-board diagnostic connector, known as OBD-II. By connecting an OBD-
II-to-bluetooth adapter to the vehicle’s controller area network (CAN) bus, a smartphone can gain access
to the bus via bluetooth. Automatic accident detection is accomplished by using data obtained from the
CAN bus together with the smartphone’s GPS and accelerometer. Similarly, Yang et al. [37] developed
a smartphone-based diagnostic system for hybrid electric vehicles that also accesses a vehicle’s CAN bus
through OBD-II.
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Table 1: Literature relevant to smartphone sensing in vehicles.

Ref. Year Technology Category Goal

[12] 2007
mobile
phone

traffic information mobile phones as sensor gateways

[24] 2012
smartphone,
external
sensors

vehicle information
engine parameters collection from exter-
nal sensors

[25] 2013

smartphone,
external
sensors,
vehicle ECU

vehicle information
opportunistic transfer of external
sensor- and CAN bus data

[26] 2011 smartphone traffic information intelligent driver guidance tool

[27] 2012 smartphone traffic information road incident and traffic crowd-sourcing

[28] 2012 smartphone traffic information traffic queue length detection

[13]
[29]

2011 smartphone traffic information traffic signal detection and learning

[30] 2009 smartphone driver behavior information lane departure warning system

[9] 2011 smartphone driver behavior information aggressive driving detection

[31] 2012 smartphone driver behavior information driving style characterization

[32] 2010 smartphone driver behavior information drunk driving detection

[33] 2012 smartphone
driver behavior information, envi-
ronmental information

advanced driver-assistance system

[34] 2008 smartphone
traffic information, driver behav-
ior information, environmental in-
formation

road and traffic condition monitoring

[35] 2012 smartphone
traffic information, environmental
information

pothole detection and notification

[36] 2011 smartphone
traffic information, environmental
information

pothole detection and notification

[37] 2013 smartphone vehicle information hybrid electric vehicle diagnostics

[38] 2011
smartphone,
vehicle ECU

vehicle information accident detection and notification

[10]
[39]

2010 smartphone vehicle information accident detection and notification

[40] 2011 smartphone driver behavior information eco-driving assistant

[41] 2012 smartphone traffic information eco-driving assistant

[22] 2014 smartphone driver behavior information dangerous cornering detection

[21] 2014 smartphone driver behavior information dangerous cornering detection

[42] 2014 smartphone driver behavior information
driving risk level scoring and driver
feedback

[23] 2015 smartphone driver behavior information
fuzzy logic based driving risk level scor-
ing
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The WreckWatch [10] accident detection system developed by White et al. differs from the one developed
by Zaldivar et al. [38] in that it detects accidents using only the accelerometer values from a smartphone, and
not the values from a vehicle’s electronic control unit (ECU). In addition to the advantage of not requiring
additional hardware, WreckWatch also requires no permanent GPS-connection, which dramatically reduces
power consumption.

Vehicle insurance telematics aids insurance companies in quantifying the actuarial risk associated with a
vehicle. Händel et al. [42] provides a detailed investigation into the necessary characteristics of a smartphone-
based insurance telematics system.

Wahlström et al.[21, 22], developed two systems that detect and quantify the risk level of cornering
events using GPS measurements. These risk classifications are used for data driven insurance telematics.

2.3. Environmental information

Eriksson et al. [43] developed one of the first road condition monitoring systems that detects and maps
road anomalies, such as potholes, using an accelerometer and GPS. Mednis et al. [36] and Ghose et al. [35]
later both developed road condition monitoring applications for a smartphone which sends sensor data to a
remote server and alerts drivers of potholes in the road.

Mohan et al. [34] developed a road and traffic monitoring system, named Nericell, which also employs
smartphone sensors to detect certain conditions. In addition to the driver behavior monitoring feature,
Fazeen et al. [33] also added a road condition characterization and mapping feature to their system that
uses a smartphone’s GPS and accelerometer.

2.4. Driver behavior information

Johnson and Trivedi [9] developed one of the first complete driver behavior monitoring systems on
a smartphone. Their system can detect and classify a number of aggressive and non-aggressive driving
maneuvers when placed in a vehicle, by only using the internal accelerometer, gyroscope, magnetometer
and GPS of a smartphone. Other driver behavior monitoring systems similar to the work in [9] has also
been developed. Eren et al. [31] used a similar approach based on the same algorithms, but expanded their
system by adding a driving style classification feature. Dai et al. [32] developed a system that specifically
detects drunk driving. Fazeen et al. [33] developed a driver behavior monitoring system that advises a driver
on dangerous vehicle maneuvers.

SmartLDWS [30] is a vision-based lane departure warning system developed for a smartphone. It employs
a novel lane detection algorithm that provides satisfactory performance with the poor cameras typically
found on older smartphones — while also being scalable to available computing power.

Eco-driving applications for smartphones aim to increase a driver’s fuel efficiency by evaluating their
driving and providing constructive feedback. Artemisa [40] is one such application which uses a smartphone’s
accelerometer to model a person’s driving style and provides eco-driving tips to correct bad driving habits.

Castignani et al. [23] proposed the SenseFleet system for driver behavior monitoring. A novel, vehicle
specific calibration procedure is used to determine fuzzy logic sets that enable the distinction between calm
and aggressive driving to be made. Driver behavior is therefore identified independent of the vehicle’s
charecteristics.

3. Entirely smartphone-based vehicle monitoring systems

The advent of mobile technology has meant that many of the driver behavioral applications mentioned
in Section 2 can use smartphone-based sensors. The use of smartphone-based sensing as opposed to sensing
from a fixed installation in a vehicle, has certain advantages that include

• links behavior to an individual, rather than to a vehicle of which the driver might be unknown

• decouples the vehicle’s age, technology, make, type, and interfaces from the sensing solution

• provides connectivity without any additional equipment
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Figure 1: Smartphone and vehicle coordinate system used in analysis.

• negates installation costs

• enables the detection of phone usage while driving.

Despite these benefits, the use of only smartphone-based sensing introduces many challenges too, including

• sensor and algorithm complexity vs. limited battery power

• the changing orientation of the devices which makes vehicle acceleration sensing cumbersome

• broad range of smartphones

• inaccuracies in cost-effective sensors used in smartphones.

These challenges will be analysed in more detail through the paper, but demonstrates why the focus of
this paper is purely smartphone-based solutions. The vehicle monitoring systems cataloged in Section 2
that solely rely on the embedded sensors of a smartphone are therefore further analyzed in this section.
Only systems that use a smartphone’s embedded sensors in an unobtrusive and energy-efficient manner are
considered. For instance, systems using image processing techniques on a smartphone’s camera are not
considered, as it is processing and power intensive, as well as requiring the smartphone to be mounted on
the dashboard. The most relevant published papers that are analyzed are listed in Table 2.

In the rest of the paper, readings from an accelerometer’s three axes (x, y, z) are denoted as ax, ay and
az. Readings from a gyroscope’s three axes are denoted as ωx, ωy and ωz. A vehicle’s axes are denoted as
x′, y′ and z′. Accelerometer readings are expressed in terms of the acceleration from gravity, g (9.8 m/s2),
and gyroscope readings in terms of rotation rate (rad/s). Acceleration vector components are denoted as
ax, ax′ , etc. As shown in Figure 1, the axes of a smartphone are defined as x pointing towards the right
and y to the top from the phone’s front, while z points out orthogonal to the screen. A vehicle’s axes are
defined as x′ pointing towards the right and y′ to the front of the vehicle, while z′ points up towards the
roof.

3.1. Nericell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones — Mohan et al.

Nericell [34] is a smartphone-based system designed to detect certain conditions pertaining to vehicles
such as braking, bumps in the road, honking and stop-and-go traffic. It uses a smartphone’s accelerometer,
microphone, GSM communications and GPS for this purpose. Nericell aggregates sensed data from multiple
participating smartphones on a centralized server. Mohan et al. envisages the system being used to annotate
existing traffic maps with information such as the condition of road surfaces and the level of chaotic traffic.

Nericell strives to use the sensors in a power-efficient manner. Only the accelerometer is sampled con-
tinuously with the GSM radio kept active, which is needed for communication anyway. The system relies
on input from these devices to turn on the microphone or GPS only when they are needed in order to
conserve energy. Data is filtered and processed locally on each smartphone before sending it to a server for
aggregation.
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Table 2: Summary of techniques, hardware, software, and sensors used by smartphone-based vehicle monitoring systems.

Reference Hardware Software
Detection tech-
nique

Sensors used

Mohan [34]

HP iPAQ hw6965
PDA, HTC Ty-
phoon smartphone,
Sparkfun WiTilt
accelerometer

Windows Mo-
bile 5.0 and
2003

pattern matching,
orientation calibra-
tion

accelerometer, mi-
crophone, GPS

Dai [32]
HTC Dream (G1)
smartphone

Android 1.6
pattern matching,
orientation calibra-
tion

accelerometer, gyro-
scope

Johnson [9] iPhone 4 iOS 4
endpoint detection,
DTW

accelerometer,
gyroscope, magne-
tometer, GPS

Eren [31] iPhone 4 iOS 4
endpoint detection,
DTW, Bayesian
classifier

accelerometer, gyro-
scope, magnetometer

Fazeen [33]
HTC Google Nexus
One smartphone

Android 2.1 pattern recognition accelerometer, GPS

White [10]
HTC Magic (Google
ION) smartphone

Android 1.5 pattern matching
accelerometer, mi-
crophone, GPS

Wahlström
[21]

Samsung Galaxy S3,
Galaxy Xcover 2, and
Galaxy S4

unspecified
theoretical tire slip
threshold detection

GPS

Wahlström
[22]

iPhone 4, iPhone 5
and Samsung Galaxy
S5

unspecified
theoretical tire slip
threshold detection

GPS

Handel [42]

HTC Desire HD,
iPhone 4, iPhone 5
and Samsung Galaxy
S3

unspecified
multiple FoMs
threshold detection

GPS

Castignani
[23]

Samsung Galaxy
Gio and a Samsung
Galaxy S3

unspecified fuzzy logic
GPS, accelerome-
ter, magnetometer,
weather, time of day
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3.1.1. Virtual reorientation procedure

The accelerometer is the key sensor of the system, as it is used for braking, pothole and bump detection.
However, the orientation of its axes in relation to the vehicle in which it is, must be known. Therefore, an
algorithm was developed to virtually reorientate the smartphone’s accelerometer to the vehicle’s frame of
reference.

An accelerometer measures the acceleration associated with the weight experienced by any mass —
therefore, if the accelerometer is aligned correctly, it will measure az = −1g. The framework used for
the reorientation of the accelerometer is based on Euler angles, which simplifies comprehension, but is
computationally inefficient and presents problems with singularities and gimbal-lock. The orientation of
the accelerometer can be described as a pre-rotation about z′, a tilt about y′ and a post-rotation about z′,
denoted as θpre, θtilt and θpost respectively. Only the tilt operation changes the angle of z with respect to
z′, and since |az′ | = 1 when assuming the vehicle is on flat ground,

θtilt = cos−1
(
az
az′

)
= cos−1(az) (1)

Also, since |az′ | = 1, pre-rotation followed by tilt would result in non-zero ax and ay. Therefore

θpre = tan−1
(
ay
ax

)
(2)

To estimate θtilt and θpre using equations 1 and 2, periods when the vehicle is stationary or in steady
motion have to be identified. However, a simpler method that proved to work well was to use the median
values of ax, ay and az over a 10 second window. As long as no high-speed sharp turns are performed during
the window, the values are notably stable, even on a bumpy road. Lastly, the post-rotation about z′ has no
influence on the forces experienced due to gravity, therefore another force is needed in order to estimate the
angle of rotation.

The acceleration and deceleration of a vehicle in a straight line provides a force in the positive and
negative y′ direction respectively. Deceleration (braking) tends to induce a stronger force than acceleration
and is therefore used for the estimation procedure. The GPS trace is used to monitor the vehicle for a sharp
deceleration event in a more or less straight line. As explained in the paper [34], a maximization procedure
yields an equation for θpost dependent on θtilt and θpre. Therefore, to estimate θpost, θtilt and θpre must first
be estimated using equations 1 and 2. The GPS trace is then evaluated for a braking event and during the
transient surge the mean of ax, ay and az are recorded. This is done to account for the time delay in the
speed estimate received from the GPS.

The effectiveness of the virtual reorientation procedure was validated through testing. Values from a
separate, well-oriented accelerometer, was recorded simultaneously with accelerometer values from a smart-
phone running Nericell, during numerous drives. The cross-correlation between the data was calculated to
quantify the results, which are shown in Table 3. The cross-correlation is far from perfect, but this is mostly
due to sensor noise and the fact that no two accelerometers will give the exact same values. In general,
the cross-correlation between a well-oriented accelerometer and a disoriented smartphone accelerometer,
improves substantially when the latter has been virtually reoriented.

The process can be streamlined and the computational efficiency significantly improved by implementing
rotation matrices or quaternions instead of Euler angles.

3.1.2. Driving event detection

After a smartphone’s accelerometer has been successfully reoriented, it can be used to detect certain
events from which road and traffic conditions can be deduced. The first problem pertains to detecting
braking events. A high occurrence of braking on a stretch of road could indicate poor road conditions or
heavy traffic. Braking causes a surge in the negative y′ direction acceleration. Detecting a braking event is
fairly easy, since the surge typically spans more than a second. The mean of ay′ is calculated over a sliding
window of N seconds, and if it exceeds the threshold λ, a braking event is assumed. The GPS could also
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Table 3: Cross-correlation between two well-oriented (f , g), a disoriented (h) and a virtually reoriented (h′) accelerometer. [34]

f ? g θpre/θtilt/θpost h ? f h′ ? f h ? g h′ ? g

0.90 7◦/38◦/106◦ 0.30 0.88 0.20 0.91

0.75 174◦/34◦/-107◦ 0.43 0.72 0.54 0.87

0.94 174◦/34◦/-107◦ 0.59 0.84 0.67 0.90

0.74 4◦/42◦/12◦ 0.65 0.72 0.63 0.68

0.76 3◦/44◦/-1◦ 0.62 0.71 0.69 0.79

0.78 -80◦/42◦/121◦ 0.65 0.73 0.64 0.73

be used to detect braking, as with the orientation procedure, but it uses more power and it is susceptible to
the GPS localization error.

Detecting a bump or pothole in a road is the second problem for which the accelerometer is used. This is
more challenging to accomplish, since the accelerometer’s signal can vary considerably when driving over a
bump, depending on the size of the bump and the vehicle’s speed. The duration of such events are typically
also very short (in the order of milliseconds). Nericell uses two methods for bump detection — one for
low speeds and one for high speeds. When a vehicle’s wheel hits the bottom of a pothole, a sharp force is
induced which causes a distinct spike in the curve of az′ . Therefore, a surge in az′ greater than a threshold
is recognized as a bump. However, at low speeds (<25 km/h) the spike is not distinct enough from noise.
The sustained crossing of a threshold for at least 20 ms is indicative of a bump at low speeds, while at high
speeds slight unevenness also causes sustained peaks and dips. Monitoring for a peak in az′ is therefore
appropriate for high speeds (z-peak); while evaluating for a short sustained rise or dip in az′ is appropriate
for low speeds (z-sus). Lastly, the coarse estimate of speed obtained from GSM-localization is sufficient to
govern which method to apply.

Nericell also uses a smartphone’s microphone for horn detection. Although audio recording and process-
ing consumes a considerable amount of power, it is only triggered when frequent braking is detected. To
protect user privacy, only anonymous information obtained after processing is sent to the server. The goal of
horn detection is to conjecture chaotic traffic conditions in some places, such as at unregulated intersections.
The discrete Fourier transform is performed on short audio samples to be able to detect significant energy
spikes in the frequency domain. The detection algorithm is based on empirical observations: if at least
two spikes (harmonics) are detected, with one in the 2.5 to 4 kHz range, the audio sample is classified as
containing the sound of a horn.

Braking detection was tested during a 35 km drive with varied traffic conditions. The detection per-
formance is measured in terms of false positives (FP) and false negatives (FN). For the ground truth, 45
braking events were identified from the GPS trace with a threshold of λ = 0.1g that must be exceeded for
at least 4 seconds. A 4 second window and threshold values of λ = 0.11g and λ = 0.12g were used for
the accelerometer braking detection algorithm. For λ = 0.11g, a FN and FP rate of 4.4% and 31.1% was
obtained respectively. While for λ = 0.12g, a FN and FP rate of 11.1% and 17.7% was obtained respectively.

Bump detection was tested by manually annotating bumps on a route to use as the ground truth. To
lessen subjectivity, a route was repeated a few times and a consensus was reached between two or three
people. On a 30 km route of mixed road conditions, a total of 101 bumps or potholes were noted. At low
speed, FN and FP rates of 37% and 14%, respectively, were obtained by z-sus. At high speed, FN and FP
rates of 41% and 8%, respectively, were obtained by z-peak.

The horn detector was tested simultaneously on four phones at a chaotic intersection. The ground truth
was establish by listening to an audio recording and manually noting the time when a horn is heard. With
a high enough threshold to avoid false positives, FN rates of 0% to 50% was obtained between the different
phones while placed inside and outside of an enclosed vehicle.

The virtual reorientation algorithm implemented does not account for the vehicle being on an incline.
If the vehicle is on a steep incline when the reorientation procedure is started, the accuracy of the system
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could be considerably reduced.

3.2. Mobile Phone-Based Drunk Driving Detection — Dai et al.

Dai et al. [32] developed a system which can detect drunk driving by solely using a smartphone’s ac-
celerometer. As far as is known, they were the first to develop a system that uses smartphone sensors for
driver behavior recognition. Their motivation for designing such a system is the fact that most of the time
drunk driving goes unnoticed by the authorities, which puts many people’s safety at risk.

They summarized drunk driving related behaviors from a study done by the Unites States National High-
way Traffic Safety Administration (NHTSA). There are two categories of behavioral cues which correspond
to a high probability of drunk driving. The first category is related to lane positioning problems such as
drifting and swerving. The second category is related to speed control problems such as sudden acceleration
or erratic braking. Both these categories of cues can be detected by using an accelerometer to map these
cues into the lateral and longitudinal acceleration of a vehicle.

The system is designed with four software components: a monitoring daemon module, calibration module,
pattern matching module and an alert module. The calibration module determines the orientation of the
smartphone within a moving vehicle. This enables the system to function irrespective of where and how the
smartphone is placed in a vehicle. The monitoring daemon continuously examines accelerometer samples in
order to start the calibration module when vehicle movement is detected. The initial acceleration of a vehicle
induces a continuous longitudinal force on the accelerometer in either the forward or backward direction.
This acceleration is denoted as vector al. It was determined empirically that al must exceed 0.265g for
several seconds before the calibration module is started.

3.2.1. Calibration Procedure

When the calibration module is started, the virtual orientation sensor of the smartphone is first used to
obtain its yaw, pitch and roll — denoted as θz, θx and θy, respectively.

The orientation sensor [44] is a virtual sensor programmed into certain smarphones’ operating systems.
It uses proprietary algorithms to estimate a device’s orientation with respect to gravity and magnetic north,
usually from accelerometer- and magnetometer—in some cases gyroscopic– readings.

The horizontal acceleration components of the smartphone’s x and y-axis, denoted as axh and ayh, are
then obtained from

axh = ax cos(θy)
ayh = ay cos(θx)

(3)

Next, the magnitude of al is obtained by

|al| =
√
|axh|2 + |ayh|2 (4)

The angle between vector axh and al is denoted as α, while the angle between vector ayh and al is
denoted as β. These angles are obtained from

α = arccos(axh/|al|)
β = arccos(ayh/|al|)

(5)

Lastly, the lateral acceleration vector ax′ and longitudinal acceleration vector ay′ of the vehicle is obtained
from the equations in 6.

ax′ = axh sinα+ ayh sinβ
ay′ = axh cosα+ ayh cosβ

(6)
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3.2.2. Pattern Matching

The pattern matching module is only activated once the calibration procedure is done. It evaluates the
difference between the maximum and minimum value of lateral acceleration (ax′) within a pattern checking
time window. If the difference exceeds a set threshold, the module reports that an abnormal curvilinear
movement has occurred. The module also checks whether the longitudinal acceleration (ay′) exceeds fixed
positive or negative thresholds at any given time, indicating a speed control problem. Multiple rounds of
pattern matching are performed on both the detection algorithms, which is necessary in order to detect
drunk driving with a high degree of certainty.

Tests were conducted to obtain a total of 72 sets of data for drunk driving related behaviors and 22
sets of data for regular driving. The time window for lateral acceleration was set to 5 seconds, as most
acceleration patterns happen within this period. The threshold values were set to achieve a low number of
FN and a sensible FP probability. The approach achieved a FN rate of 0% for both lateral and longitudinal
driving events, and a FP rate of 0.5% and 2.4% for lateral and longitudinal driving respectively. Testing
also showed that the system has tolerable power consumption. Initially with a fully charged battery, the
smartphone’s battery level was at 78% after 7 hours of operation — compared to 92% when the smartphone
and system was idle for 7 hours.

The system assumes the accuracy of the virtual orientation sensor, this sensor, however cannot correctly
determine device orientation relative to earth when the device experiences a significant acceleration [45]
and a significant acceleration is required to determine the front of the vehicle. Secondly, only the horizontal
components of acceleration are used by the system, therefore any incline encountered during operation would
result in inaccurate accelerometer readings. The orientation of the device relative to the vehicle must also
remain constant throughout operation, as calibration is only performed once at startup.

Another limitation of the system is that it cannot determine the speed of the vehicle, which would improve
the ability of the system to identify dangerous driving patterns. The smartphone’s GPS can provide the
speed of the vehicle, but at the expense of increased power consumption. The system could also be improved
by using the GPS to match the movement of the vehicle to road maps.

3.3. Driving Style Recognition Using a Smartphone as a Sensor Platform — Johnson and Trivedi

The driver behavior monitoring system developed by Johnson and Trivedi [9], named MIROAD, solely
relies on the internal accelerometer, gyroscope, magnetometer and GPS of a smartphone. They were the first
to develop a more complex pattern recognition approach. They also argue that anonymous participatory
sensing would allow the number of aggressive drivers in an area to be established. This gives foresight into
where accidents may possibly occur.

A smartphone running MIROAD can detect and classify a number of aggressive and non-aggressive
driving maneuvers. However, unlike in [34] and [32], the smartphone has to be mounted on the dashboard
of the vehicle. The system assumes the smartphone’s axes are orientated with x, y and z in the direction
of the top (z′), left side (−x′) and back (−y′) of the vehicle respectively. Output from the accelerometer,
gyroscope and magnetometer of the smartphone is used for maneuver recognition. With the magnetometer,
corrections are made with respect to magnetic north. The Euler rotation, also used in [34], can therefore be
determined more accurately from a reference attitude.

The maneuvers associated with aggressive driving are hard left and right turns, swerving, and sudden
braking and acceleration patterns. For the detection of longitudinal movements, the rotation rate ω′x and
the a′y acceleration are used. For lateral movements, the a′x acceleration and rotation rate ω′z, as well as
the Euler angle about y′ is used. The accelerometer and gyroscope are continuously sampled at a rate of 25
Hz. In order to detect maneuvers, the start and end of driving events are determined by using the endpoint
detection algorithm. For lateral maneuvers, a simple moving average (SMA) of ω′z is continuously calculated
for a short window of k samples. From the current sample i, we have

SMA(i) =
ω′z(i)2 + ω′z(i− 1)2 + ...+ ω′z(i− k − 1)2

k
(7)
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The beginning of an event is detected if the SMA goes above a set upper threshold. The succeeding
gyroscope values are concatenated until the SMA falls below a bottom threshold, signifying the end of the
event. The event is dismissed if it exceeds 375 samples, or 15 seconds.

When a valid driving event has been detected, the signals recorded during the event are compared to a set
of template events using the Dynamic Time Warping (DTW) algorithm. DTW finds an optimal alignment
between two signal vectors with different lengths. Consider a matrix of the Euclidean distance between
each point of two signal vectors. Both vectors start at the bottom left corner. An optimal warping path
constitutes the minimum sum of distances, or cost, while adhering to monotonicity, boundary and step size
conditions. The template event with the lowest warping path cost is the closest match to the detected event.

Video footage is continuously recorded by the rear camera of the smartphone facing towards the front
of the vehicle, but no image processing is performed. MIROAD is able to playback video and sensor data
synchronously to provide a recreation of an incident. To limit memory usage, all data is recorded in five
minute intervals and if it is not flagged for any detected events, it is deleted. The system audibly alerts
drivers of aggressive driving events through a software speech synthesizer. Alerts are also sent with the
vehicle’s location to external systems via the GSM internet connection.

MIROAD was tested in three different vehicles, with three different drivers. They collectively accumu-
lated 201 driving events on highways, urban and rural roads, of which about 50 were considered possibly
aggressive. While the detection rates vary for different events, in total, 97% of all the aggressive driving
events were correctly identified by die DTW algorithm.

The system does not, however allow the labeling of driving styles, only the detection of maneuvers.
Another limitation of the system is that the smartphone has to be kept in a fixed position within the
vehicle, as no reorientation algorithm is implemented. The system also consumes more power than the other
systems, due to the computationally intensive DTW algorithm and the GPS. The tests show only a slightly
higher detection accuracy than the more efficient systems.

3.4. Estimating Driver Behavior by a Smartphone — Eren et al.

The system developed by Eren et al. [31] characterizes a person’s driving as either safe or risky. Sudden
maneuvers, turns, lane departures, braking and acceleration are seen as risky events. These events are
detected by only using the accelerometer, gyroscope and magnetometer of a smartphone.

The system detects driving events similar to [9]. Moving average filters are applied to the raw sensor data
to eliminate noise. Likewise, the endpoint detection algorithm is used to identify events, and the dynamic
time warping algorithm is also used to compare input data to template events. However, another layer is
added to the system that Johnson and Trivedi’s system lacks — labeling of the driver behavior, as can be
seen in Figure 2.

A Bayesian classifier is used to label a driver’s behavior as either safe or risky according to a calculated
probability. The existence of two classes, r1 and r2, related to safe and risky driving is assumed. The
calculation is based on the number of occurrences of different driving events (s) over time. The mathematical
expression for determining the probabilities is given by

P (r1|s) =
P (r1)P (s|r1)

P (s)
=

P (r1)P (s|r1)

P (r1)P (s|r1) + ...+ P (rn)P (s|rn)
(8)

The classification is made by comparing the calculated probabilities

P (r1|s) > P (r2|s)⇒ Safe
P (r1|s) ≤ P (r2|s)⇒ Risky

(9)

The driving patterns of a selected group of drivers were analyzed. The group consisted of five experienced,
five novice and five randomly chosen drivers. Two tests were done with each driver in different weather
conditions in order to evaluate the reliability of the system. Two other experienced drivers were also
selected to sit in the passenger sides of the vehicles while the tests were performed. They were required to
fill in a short survey after each test. The Bayesian classifier correctly identified the driving style as safe or
risky, as well as driving event types, for 14 out of the 15 drivers. However, the accuracy of the classifier
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Figure 2: Block diagram illustrating the extra layer of Eren et al.’s system over Johnson’s and Trivedi’s system.

is based on completed surveys by test participants — therefore the results could have been influenced by
subjectivity. Having to place the smartphone in a fixed position within the vehicle is also a limitation of the
system. No data is provided regarding the power usage of the system, but the lack of GPS sampling and
the simple Bayesian classifier used is indicative of a slightly lower power consumption than the MIROAD
[9] system .

3.5. Safe Driving Using Mobile Phones — Fazeen et al.

Fazeen et al. [33] envisages implementing an advanced driver-assistance system (ADAS) on a smart-
phone. Such a system advises a driver on dangerous situations that emerge from vehicle maneuvers and
environmental factors. The system uses the accelerometer and GPS of a smartphone to enable typical fea-
tures found in ADAS-equipped vehicles. The aim of the system is to recognize and classify driving behavior
and to map road surface conditions.

Data identified as part of a driving event or road anomaly is stored on the phone and the user has full
control over it. Any data that is sent to a server for mapping and machine learning techniques is kept
anonymous. Drivers are audibly alerted by the system of dangerous situations.

Road anomalies can be detected because of the vibrations experienced by a vehicle when driving on a
rough road. When a vehicle drives over a bump, it ascends onto it, resulting in a sharp rise in the z-axis
value of the accelerometer. An increase in the y-axis value is also observed, depending on the shape of the
bump, because of the longitudinal force exerted on the vehicle’s wheels. The difference between successive
accelerometer readings is continuously evaluated. A bump in the road is presumed if the difference exceeds
a dynamic threshold, which is dependent on the speed of the vehicle. The height of a bump can be roughly
calculated by using dynamics equations. The accuracy of the approximation could be improved if the
dynamics of the vehicle’s suspension is known.

When a road anomaly is detected, the current GPS coordinates are saved with a corresponding value
indicating the condition of the road. The system classifies a section of a road as either smooth, rough,
uneven, or as containing a bump or pothole. The data can then be used to map the condition of entire
stretches of road.

During testing, an overall accuracy of 85.6% was achieved by the road condition classification system.
It was determined empirically that safe acceleration and deceleration never exceeds ±0.3g, while sudden
maneuvers approaches, but does not exceed ±0.5g. A gradual lane change, in comparison, exerts an average
lateral acceleration of only ±0.1g. It is therefore possible to differentiate between safe and unsafe driving
maneuvers. It was also found that recognizing gear shifts is possible, which would enable the system to
advise a driver when to shift gears in order to achieve efficient fuel usage.

The system relies on the GPS for calculation of the vehicle’s velocity, consuming power additional to the
sampling of the accelerometer. To overcome this limitation, the vehicle’s velocity could rather be calculated
by integrating the sampled acceleration curve between each gear shift, thereby easing battery usage.

The accuracy of a Nexus One smartphone’s accelerometer was tested by comparing it to calculated data
from dynamics equations. The system requires the smartphone to be orientated with the top facing to the
front of the vehicle and the screen facing upwards. Tests were conducted with the smartphone placed in
different locations in the vehicle. The results showed that placement in the center of the vehicle is the best
location for monitoring driving behavior. The required fixed orientation of the smartphone in the vehicle is
also a limitation of the system.
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3.6. WreckWatch: Automatic Traffic Accident Detection and Notification with Smartphones — White et al.

The WreckWatch [10] system detects accidents using only the sensors from a smartphone, as opposed to
similar original equipment manufacturer systems which use values from a vehicle’s electronic control unit
(ECU). White et al. argue that it is unrealistic to expect drivers to connect their smartphones to the ECU
for every journey. Another concern is that older vehicles do not have ECUs, therefore, an accident detection
system that is not dependent on an ECU is advantageous.

WreckWatch uses a soft real-time (close to real-time) approach sampling the accelerometer, microphone
and GPS of a smartphone. An accident is detected by threshold filtering the sensor readings. Data recorded
preceding and during an accident is sent via GSM to a centralized server. Important information about an
accident can then be relayed to the relevant authorities from a stored database on the server.

False positives are more likely to occur with a system using only smartphone sensor data. Dropping the
phone on the floor or making a sudden stop may be detected as an accident. Therefore, context information
obtained from filters must be used to prevent false positives. Firstly, the determined acceleration is filtered
by ignoring any values below 4g. Secondly, a user is assumed to be in a vehicle if they are moving faster than
25 km/h. The smartphone’s GPS is used to determine the speed of the user. Accelerometer information
is only evaluated when the user is traveling faster than 25 km/h. This reduces power consumption and
prevents false alerts from occurring if the phone is accidentally dropped while being outside a vehicle.

The WreckWatch system has been developed further to improve low-speed collision detection by adding
acoustic data analysis. The microphone of the smartphone is used to listen for high-decibel sounds such as
impact noise, car horns or airbag deployment (170 dB peak).

If an accident is detected, emergency responders are automatically notified by the system. Situational
awareness is provided to the first responders to enable them to assess the severity of the accident. The GPS
coordinates of the accident is immediately sent to the server with other accident characteristics. Thereafter,
bystanders and uninjured victims can provide critical information through the WreckWatch application.
For instance, pictures of the accident can be taken with the smartphone’s camera and shared with the first
responders.

A few different tests were performed to evaluate the possibility of false positives occurring. The empirical
results demonstrate that dropping the smartphone in a moving vehicle is not likely to cause a false positive.
The filter threshold of 4g on accelerometer readings are sufficient to prevent it. Furthermore, it was found
that threshold filtering can not be used for acoustic detection of airbag deployment. Playing music at
full volume or people shouting in the vehicle causes sound signal clipping at 145 dB on the smartphone.
Therefore, the system relies on the acoustic signature of a detected event as a secondary indicator of an
accident. As with the systems of Sections 3.3, 3.4 and 3.5, the required fixed orientation of the smartphone
in the vehicle is also a limitation of the system.

3.7. Detection of Dangerous Cornering in GNSS Data Driven Insurance Telematics – Wahlström et al.

3.7.1. Quantifying Dangerous Cornering

The two main dangers presented during harsh cornering are tire slippage(slipping) and vehicle rollover.
With this in mind, Wahlström et al.[21] defined a dangerous cornering event relative to the thresholds where
slipping or vehicle rollover are theoretically likely to occur. The theoretical slipping threshold is defined with
respect to the tangential velocity(v), rotational velocity (w) and tangential acceleration(a) of the vehicle as
well as the coefficient of friction (µ) between the vehicle’s tires and the road. To avoid slipping, inequality
11 must hold. A function T (v, a, w) is defined as the ratio between the horizontal Fh and normal Fn forces
exerted by the road on the vehicle.

T (v, a, w) =
Fh

Fn
=

1

g

√
v2w2 + a2 (10)

T (v, a, w) ≤ c1µ (11)

c1µ = γns (12)
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Where c1 is a constant safety factor chosen empirically and γns is the adjusted no slip threshold.
For the theoretical rollover threshold, the torque around the vehicle’s center of gravity(CG) must be

considered. The vehicle’s track width (l) as well as the height of the CG (h) need also be taken into account.
It can then be proven that, to avoid rollover, inequality 13 must hold.

T (v, 0, w) ≤ c2 l

2h
(13)

c2
l

2h
= γnr (14)

Where c2 is a constant safety factor chosen empirically and γnr is the adjusted no roll threshold.
Evaluating these equations for various vehicles it can be shown that, for a typical case with no additional

roof loads, zero road pitch- and roll angles and no tripped rollovers, the no-slip threshold will be reached
before the no-rollover threshold. Wahlström et al defines a single cornering event from the moment where
T (v, a, w) ≥ γns to the moment where T (v, a, w) ≤ γns. However, when T (v, a, w) ≥ 0.35 (0.35 being
empirically chosen) between two events, they are combined as a single cornering event. The risk level of the
event is defined as the maximum value of T(v,a,w) during the event.

3.7.2. Filtering of GNSS Measurements

A number of input variables are needed to enable the use of the methods in section 3.7.1. These variables
need to be obtained from Global Navigation Satellite System (GNSS) measurements, according to Wahlström
et al. however, the GNSS receivers found in smartphones are not of very high quality and the data they
provide is prone to errors. The variables are therefore estimated using a Kalman Filter.

Most mobile phone based GNSS systems supply at least the two dimensional coordinate position as well
as the Doppler-based heading and velocity of the device. To improve the accuracy of the estimated variables,
the position measurement is modeled as a combination of discrete, zero-mean white noise as well as a slowly
varying bias caused by clock errors and atmospheric effects. The slow moving bias is effectively removed by
using

∆pn = pn − pn−1 (15)

instead of the position measurement for calculations. Due to the non-linear nature of the equations gov-
erning the system’s dynamics and its ability to apply constraints to individual sigma points, an Unscented
Kalman Filter is used to estimate the required variables. The filter’s parameters such as system and mea-
surement noise covariances are chosen to correspond to typical vehicle dynamics as well as expected GNSS
error magnitudes.

A framework for parameter tuning and performance evaluation is described, where events detected by
the system are mapped to events provided by a reference system. Various options for loss functions based
on the number of missed and false detections are given and certain parameters can be modified to minimize
the loss function.

3.7.3. Testing and Results

The system was field tested using 31 minutes of aggressive driving data. A Microstrain 3DM-GX3-35
was used to collect reference data using it’s IMU and GNSS sensors. The IMU and GNSS sensor data was
combined to provide a reverence value for T (v, a, w). Data was simultaneously collected from three different
android smartphones. Thresholds for γSL were chosen between 0.5 and 0.75, according to Wahlström et al.
these values correspond to what should intuitively be labeled as aggressive cornering.

For thresholds in the range of 0.5 ≤ γSL ≤ 0.6 The system showed a average 40% missed detection
and false alarm rate over the three phones used. This percentage deteriorates for higher thresholds. The
estimator is also less effective when dealing with high g-force cornering, due to these events typically having
a shorter duration and the GNSS update rate being too slow.

The novel and useful framework for parameter tuning can be better utilized by applying large amounts
of driving data, as the 31 minutes of driving data used cannot be seen as a fully representative sample. The
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advantage of using only GNSS data is that it is independent of device orientation and movement relative to
the vehicle. GNSS on a smartphone, however, has a high power consumption, slow update rate (typically
around 1Hz, but 4Hz in this case) and is often unreliable in terms of satellite signal and accuracy.

Fusing readily available smartphone IMU data with GNSS data could increase system reliability and the
higher update rate of the IMU sensors could aid in detecting shorter high g-force events.

3.8. Risk Assessment of Vehicle Cornering Events in GNSS Data Driven Insurance Telematics – Wahlström
et al.

Similar to the other paper presented by Wahlström et al.[21], theoretical thresholds for rollover and slip
are calculated and used as a reference for assessing the risk level of cornering events, but instead of T (v, a, w)
in equation 10, T (v, a, r) is used, where r is the radius of the specified turn. This leads to equation 16.

T (v, a, r) =
Fh

Fn
=

1

g

√
v4

r2
+ a2 (16)

The radius r is estimated using a circle fitting technique to fit circles to position measurements. The velocity
(v) and acceleration (a) parameters are estimated from the GNSS measurements using a Rauch-Tung-Striebel
(RTS) Kalman smoother.

The system functionality was first demonstrated by simulation with generated data. A field study
was then conducted with three smartphones (iPhone 4,iPhone 5 and Galaxy S5) collecting GNSS data
simultaneously. The differences in smartphone position measurements was expected to have a limited effect
on the radius estimates, but the one smartphone(iPhone 5) produced a outlier datapoint resulting in a false
radius estimation and increased risk. No attempt was made to compare the smartphone data with data
from a reference system, therefore, despite the theoretical merit of the system no comparison in terms of
accuracy can be made.

3.9. Insurance Telematics: Opportunities and Challenges with the Smartphone Solution – Händel et al.

The article presented by Händel et al. [42] does not aim at the development and testing of a complete
smartphone-based reckless driving detection system, but rather discusses the technological aspects of vehicle
insurance telematics and the use of smartphones as a platform for vehicle insurance telematics.

Eight of the most common Figure of Merits (FoMs) that can be used for insurance telematics are identified
and characterized in terms of a number of quality measures, namely: observability, event stationarity,
actuarial relevance and driver influence. Observability indicates how accurately the figure of merit can be
derived from the sensor measurements. Stationarity is defined as the time length in which the measurements
that relate to a FoM can be measured. Actuarial relevance indicates how indicative the event is of the risk-
level of insuring the driver. Driver influence indicates to what degree the driver has an effect on the FoM.
The characterization of the 8 FoMs, if obtained from GNSS-measurements, are shown in table 4.

An alternative method to direct differentiation(which amplifies high frequency noise) of GNSS speed
data is proposed, to obtain ”clean” acceleration data as well as a quality index indicating the quality of the
calculated data. A test of the percentage GNSS coverage and harsh breaking detection ability of 7 popular
smartphones was done by using a vehicle’s OBD data as a reference. The test confirmed the unreliability of
the directly differentiated smartphone data and showed that the low-level data cleansing routine decreased
false detections.

A scoring system for individual FoMs is developed. A score between 0 (bad) and 1 (good) is allocated
using equation 17.

S =
1

1 + αf
(17)

With f denoting the number of detected events and α being a chosen constant. Given a statistical distri-
bution of f , modeled using the information in table 4 one can calculate an appropriate value of α for each
FoM.

To combine scores for all FoMs, the scores can be scaled according to their actuarial relevance. A trade
off has to be made between a reliable system which places less weight on FoMs with low observability and
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Table 4: Characterization of foms in insurance telematics when calculated using gnss-data. [42]

FoM Description Observability Stationarity
Driver-
Influence

Actuarial
Relevance

Acceleration
Number of rapid acceleration
events and their harshness

Medium Low High Medium

Braking
Number of harsh braking events
and their harshness

Medium Low Medium High

Speeding
(Absolute)

Amount of absolute speeding High High High Medium

Speeding
(Relative)

Amount of speeding relative a lo-
cation dependent limit

Medium High High High

Smoothness
Long-term speed variations around
a nominal speed

High High Medium Low

Swerving
Number of abrupt steering maneu-
vers and their harshness

Low Low Medium Low

Cornering
Number of events when turning at
too high speed and their harshness

Medium Medium High Medium

Eco-ness
Instantaneous or trip-based energy
consumption or carbon footprint

Low Medium High Low

Elapsed
time

Time duration of the trip High High Low Low

Elapsed
distance

Distance of the trip High High Low High

Time of
day

Actual time of day when making
the trip

High High Low High

Location Geographical location of the trip High High Low Medium

stationarity versus placing emphasis on actuarially relevant FoMs. The relevance of the scoring feedback
to the driver must also be carefully evaluated, because actuarially relevant data such as day or nighttime
driving is out of the drivers control and low scores due to such FoMs could cause drivers to lose confidence
in the system.

3.10. Driver Behavior Profiling Using Smartphones – Castignani et al.

The SenseFleet [23] system proposed by Castignani et al. uses smartphone based accelerometer, magne-
tometer and GPS sensors to identify and rate the riskiness of driving events. This is done by defining Fuzzy
logic sets for each parameter after a calibration phase in a specific vehicle. The relevant parameters cho-
sen are the standard deviation of the Jerk(derivative of accelerometer measurement), mean yaw rate(using
orientation sensors) as well as the speed and bearing variations(from GPS measurements). Calibration is
vehicle-specific, as different vehicles have unique driving characteristics. Low, medium high and very-high
values are calibrated for all parameters except speed variation, for which HIGH-DEC, LOW-DEC, STA-
BLE, LOW-ACC and HIGH-ACC values are defined. Detection can be done using a basic fuzzy inference
system. Weather and time of day data are also gathered for each event so driver scoring can be adjusted
accordingly. A simple scoring system is implemented where a driver starts a trip with 100 points and a
predefined amount of points are subtracted for each type of event and the conditions during which the event
takes place(i.e. more points will be subtracted for an event happening at night in snow than in the daylight
in sunny weather.). Points are added when no events are detected for a set interval.

The calibration method proposed, requires the user to drive the vehicle while a set amount of samples are
collected within each of three speed intervals. The necessity of this cumbersome vehicle specific calibration
is a notable disadvantage of the system.

To experimentally test the system, ten drivers were asked to, after the calibration phase, drive a prede-
fined route twice. The first lap was driven calmly and the second lap aggressively. The results showed an
average driver score of 74.4 for the calm lap and 20.3 for the aggressive lap. A Principle Component Analysis
(PCA) was done on the data and the resulting data could easily be clustered according to the aggressive and
calm laps. The system therefore allows clear distinctions to be made between aggressive and calm driving
behavior. A test was also executed using a high end and entry level android smartphone mounted in a
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similar way within the vehicle. The two phones showed similar results, demonstrating the compatibility of
the system with different smartphone models.

3.11. Review and comparison of the summarized papers

In this section, the detection techniques, hardware, software and objectives of the different systems are
compared. Although the sensors and detection techniques used by the different systems are similar, as can
be seen in Table 2, their objectives differ slightly.

3.11.1. Driving maneuver recognition versus driving behavior classification

The system of Dai et al. [32] explicitly attempts to determine whether a driver is drunk. This is achieved
by detecting and positively identifying a combination of dangerous driving maneuvers associated with drunk
driving. Johnson and Trivedi’s [9] system can detect and identify a number of different driving maneuvers,
but does not draw any conclusions from them. Their intent is to use the system to support a holistic
driver assistance system (DAS) by providing it with additional information. The system of Eren et al. [31]
also detects driving maneuvers, but incorporates another layer where a person’s driving style is labeled as
either safe or unsafe with a given probability. Fazeen et al. [33] aims to implement an ADAS entirely on a
smartphone. Their system records and analyses various driver behaviors and external road conditions.

It is important to note the difference between driving maneuver recognition and driving behavior classi-
fication. A system could detect various maneuvers, but not necessarily infer anything from them, whereas
another system may be able to deduce and classify a driver’s behavior from detected driving maneuvers.
These different systems demonstrate the variety of driving behavior classifications that can be made. A
person’s normal driving style can be classified as safe or risky, fuel-efficient or inefficient, skilled or unskilled
— and recommendations can be given accordingly to improve their driving. On the other hand, a person’s
driving behavior can sometimes differ from normal due to certain circumstances. A person could be driving
under the influence of alcohol, drugs or other sensory impairments. In such situations a driver could be
warned of their dangerous behavior or the relevant authorities could even be notified of the driver’s behavior
and location.

3.11.2. Accuracy versus simplicity

It is difficult to quantitatively compare the performance and power consumption of the different systems.
All of the systems were implemented on different smartphones that have varied sensors and computing
power. The test studies were performed in various countries with different road and traffic conditions. Their
methods of establishing the ground truth for tests were not necessarily the same and could vary due to
subjectivity.

Figure 3 shows a qualitative comparison of the accuracy versus simplicity of the different systems. A
system that achieves high detection accuracy with a simple algorithm is considered superior. The assumption
is made that a simpler system uses less resources and therefore consumes less power, which is a critical aspect
of a successful system. The experimental and empirical test results of the systems as given in each paper was
used to compare detection accuracy, although the testing procedures differed as mentioned. The perceived
simplicity of each system is based on what each system is trying to detect, what sensors its using and how
its algorithms function.

WreckWatch of White et al. [10] is empirically proven to be 100% accurate and is the simplest system,
because it only detects accidents and nothing else. The road condition monitoring feature of Mohan et al.
[34] is more accurate than that of Fazeen et al. [33], and its implementation is simpler. Regarding driver
behavior monitoring — the drunk driving detection system of Dai et al. [32] is the most accurate, achieving
a FN rate of 0%.

Dai et al. [32] implemented a simple yet effective pattern matching approach that requires very little
computation. Essentially, only the difference in subsequent values on the relative longitudinal and latitudinal
axes are calculated. If the difference exceeds a certain threshold, an aggressive driving maneuver is assumed.
The algorithm used by Nericell of Mohan et al. [34] works in a similar manner. Both systems have satisfactory
performance and consume minimal power. In contrast, Johnson and Trivedi [9], as well as Eren et al. [31],
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Figure 3: Qualitative comparison of accuracy versus simplicity of the different systems.

implemented a more complex pattern recognition approach derived from speech recognition techniques.
Their systems also perform well and do not consume an overly large amount of power. Although it can
not be explicitly proven here, the simpler approaches probably consumes less power while achieving similar
performance to the more complex approaches. Arguably Dai et al. [32] accomplished the same functionality
as Eren et al. [31] with a simpler algorithm, as both systems can infer a certain aspect of a driver’s behavior
from detected driving maneuvers.

In Table 2 the hardware and software on which each system was developed can be seen. The systems
of Mohan et al., Dai et al. and White et al. [34, 32, 10] were all developed on hardware and software that
is now considered obsolete, yet their systems were simple and accurate. This suggests the performance of
embedded sensors used in smartphones has not improved significantly in the last decade. The computing
power and efficiency of modern smartphones, however, has increased dramatically, which provides headroom
for more complex solutions. Therefore there is still merit in implementing a more complex approach as used
by Johnson and Trivedi [9] — if the accuracy could be improved to such an extent as to have no false
negatives or positives whatsoever.

3.11.3. Contributions and best practices

In terms of contributions made, Dai et al. and Mohan et al. [32, 34] were the only authors to implement
a procedure to calibrate the system to any arbitrary orientation of the smartphone. All of the other systems
assume that the smartphone is placed in a fixed position within a vehicle. Automatic virtual reorientation
of a smartphone’s axes to a vehicle’s axes is considered a best practice for any smartphone-based vehicle
monitoring system. Ideally, the reorientation should take place each time the device is moved within the
vehicle.

4. Challenges facing vehicle monitoring systems

In this section, a number of remaining challenges facing the future progress of vehicle monitoring systems
are discussed.

4.1. Algorithm performance

There is currently no one accepted algorithm that stands out in terms of performance. It is difficult
to compare the accuracy and performance of the different implemented algorithms. The algorithms must
each be tested using the same hardware and ground truth before the distinction between them can be fully
appreciated. A study that compares various algorithms’ performance would help to establish best practices
on which to base further development.
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4.2. Data aggregation

The collection and aggregation of data is a key component of intelligent transportation systems (ITS).
The utility of vehicle monitoring systems could be substantially improved with effective participatory sensing.
Sharing data with aggregation servers would allow providing additional services, such as warning users of
accidents and heavy traffic. Aggregated data could also be classified and used for machine learning based
algorithm training and parameter tuning in other systems. An unified framework for participatory vehicle
sensing and data aggregation must be developed.

4.3. Wide-scale deployment

A key challenge facing vehicle monitoring systems is accomplishing wide-scale deployment and use.
Few individuals are willing to buy expensive dedicated hardware systems. Additional hardware not only
increases costs, but also makes acquisition and installation cumbersome and inefficient, while a mobile
phone application can be downloaded within seconds and with no cost to the user. It is for that reason
that implementing such systems on smartphones is an attractive solution. There are no associated hardware
costs, and smartphones as well as their communications infrastructure are prevalent, even in developing
countries. In fact, Booysen et al. [46] expects ITS to be mobile-phone based in the developing world. To
facilitate adoption by road users, insurance companies [47] have begun to provide discounts on premiums
for users who allow themselves to be monitored. The monitoring allows the companies to adjust premiums
according to the actuarial risk associated with a driver or vehicle.

4.4. Automation

The operation of the smartphone application must be fully automatic and unobtrusive. Cumbersome
calibration routines should therefore be avoided. It is necessary that during driving, user interaction with
the smartphone is minimized — in order to keep the driver’s focus on the road.

4.5. Safe Feedback

Alerting drivers of notifications and warnings received from aggregation servers or tips on driving tech-
nique must not take their focus off the road. It must also not require any distracting interaction with the
smartphone. Careful consideration must be given to the interface between a smartphone and driver. In
most cases simple synthesized speech should be considered.

4.6. Power consumption

The power consumption of such applications running on a smartphone must be minimized so that it will
not affect a user’s normal smartphone usage habits. The power consumption could be decreased by develop-
ing computationally efficient algorithms and minimizing the use of GPS or the processing of microphone or
image data. Thus far, not much thought has been given to the effective power consumption of monitoring
systems on a smartphone.

4.7. Multi-platform

For a smartphone-based vehicle monitoring system to become widely used, it must work on a wide
variety of smartphones. Another challenge is therefore to develop a multi- and cross-platform solution,
and obtaining consistent performance between different smartphone hardware and software. The amount of
noise in sensor readings can vary between different smartphones, for example. Typically, access to sensors
are limited by the firmware and operating system of a smartphone. Therefore, techniques to standardize
sensor readings on different smartphones through software must be investigated.
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5. Conclusion

This paper provides an analysis of the use of smartphones to support novel ITS applications. Existing
approaches are categorised as collaborative driving, vehicle telematics as well as driver behavior -, and road
condition monitoring. Existing systems that solely depend on smartphones are analysed and compared.
Weaknesses of each of the approaches are identified and where possible, improvements are suggested. The
hardware and software platforms of each of the existing approaches are compared, and the complexity vs.
accuracy qualitatively evaluated. From the review it is clearly possible to implement a complete vehicle mon-
itoring system, and even a driver assistance system (DAS), on a smartphone, with acceptable performance.
However, there are still a number of challenges facing the future progress of such systems. A key issue is
accomplishing wide-scale deployment and use. In many cases these systems require many users before they
become useful, and since there is in some cases little incentive for individuals to use them, adoption will be
slow. If the majority of drivers on the road can be alerted of dangerous behavior, - situations and - road
conditions, there would consequently be fewer road accidents and fatalities. Such systems could also help
lower traffic congestion by informing drivers of optimal routes to their destinations and alerting relevant
authorities to problems causing congestion. We envisage that smartphone-based vehicle monitoring and
driver assistance systems will be a crucial part of ITS in the future, especially in developing countries.
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