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Abstract

Models have been used in various engineering fields to

help managing complexity and represent information in dif-

ferent abstraction levels, according to specific notations

and stakeholder’s viewpoints. Model-Driven Engineering

(MDE) gives the basic principles for the use of models

as primary artefacts throughout the software development

phases and presents characteristics that simplify the engi-

neering of software in various domains, such as Enterprise

Computing Systems. Hence, for its successful application,

MDE processes must consider traceability practices. They

help the understanding, capturing, tracking and verifica-

tion of software artefacts and their relationships and depen-

dencies with other artefacts during the software life-cycle.

In this survey, we discuss the state-of-the-art in traceabil-

ity approaches in MDE and assess them with respect to

five general comparison criteria: representation, mapping,

scalability, change impact analysis and tool support. As a

complementary result, we have identified some open issues

that can be better explored by traceability in MDE.

1 Introduction

Models have been used in various engineering fields to

help managing complexity and represent information in dif-

ferent abstraction levels, according to specific notations and

stakeholder’s viewpoints. A model is a symbolic system

expressed in a language [22]. Each kind of model is repre-

sented by an appropriated modelling language and can be

applied to certain purposes [25]. In Software Engineering,

various models can be used for representing software arte-

facts, according to the diverse development paradigms.

Model-Driven Engineering (MDE) gives the basic prin-

ciples for the use of models as primary engineering artefacts

throughout the software development life-cycle [3, 19]. A

software system is specified as a set of models that are re-

peatedly refined until a model with enough details to imple-

ment the system is obtained [1]. Figure 1 illustrates model

refinement steps in MDE, in which more abstract models

are transformed into more detailed ones. Since all models

are representations of the same system, every transforma-

tion step should preserve the intended meaning of the source

model and eventually bring new details.

When applied in practice, the general outline of the MDE

process should follow and address some stable general prin-

ciples and scenarios of software development, such as sep-

aration of concerns, iterative development, refactoring or

reverse engineering. Moreover, since the system is devel-

oped as a series of transformations over models, a change in

one model must be propagated through the rest. The prop-

agation may be in two directions: to models derived from

the changed model and to models from which the changed

model is derived.
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Figure 1. Refinement of models in MDE

Traceability is a necessary system characteristic as it

supports software management, software evolution, and

validation [24]. It is also fundamental on the definition of

the results of change impacts. Traceability practices help

on the understanding, capturing, tracking and verification

of software artefacts and their relationships and dependen-

cies with other artefacts during the software life-cycle. We
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believe that the established use of MDE approaches should

explicitly include traceability support to provide more ben-

efits on developing software for domains such as Enterprise

Computing Systems.

An interesting related work is presented by Aizenbud-

Reshef et al. in [1], where the authors review the most re-

cent advances on technologies to automate traceability and

discuss the potential role that model-driven development

can play in this field. In addition, a survey on tracing ap-

proaches in traditional software engineering, and the elabo-

ration of a traceability taxonomy, is presented in [26].

In this survey, we discuss the state-of-the-art in traceabil-

ity approaches in MDE and appraise them with respect to

five general comparison criteria: representation, mapping,

scalability, change impact analysis and tool support. The

evaluated approaches are distributed into three categories

that range from the use of requirements as non-formal mod-

els to approaches that utilize models and metamodels ac-

cording to the MDE paradigm. This research is meant as a

starting point for identifying open issues that can be better

explored by traceability in MDE.

The remainder of this paper is organized as follows. In

Section 2, we present an overview of the traceability ap-

proaches in MDE. In Section 3, we present an evaluation of

the approaches according to the five criteria. In Section 4,

we discuss some open issues on the development of model

traceability frameworks. Finally in Section 5, we describe

the conclusions of the paper.

2 Traceability Approaches in MDE

Traceability is the ability to establish degrees of rela-

tionship between two or more products of a development

process, especially products having a predecessor-successor

or master-subordinate relationship to one another [13]. In

practice, traceability mechanisms help to identify the origin

and rationale of software artefacts [27], as well as they pro-

vide essential assistance in understanding the relationships

between these artefacts within and across software develop-

ment stages.

For example, a Java class may be traced back to its de-

sign class, analysis class, and ultimately to the requirement

that motivates its presence in the system. In the case of

model transformations in model-driven development pro-

cesses, a trace would relate elements in a source model to

the generated elements in a target model. MDE provides

new promising ways to automate the discovery and the gen-

eration of trace relationships [1], such as to trace artefacts

over a chain of model transformations.

The traceability approaches that will be considered for

analysis in this paper were classified into three categories:

requirements-driven approaches, modeling approaches and

transformation approaches. The requirements-driven ap-

proaches use requirements models as abstractions to guide

their traceability methods. The modeling approaches are

interested in how metamodels, models and/or conceptual

frameworks are involved in tracing processes. Finally,

transformation approaches make use of model transforma-

tion mechanisms for generating trace information.

2.1 Requirements-Driven Approaches

In the field of Requirements Engineering, Gotel and

Finkelstein [14] define traceability as ”the ability to de-

scribe and follow the life of a requirement, in both forward

and backward specification, to its subsequent deployment

and use, and through periods of ongoing refinement and it-

eration in any of these phases”. Tracing requirements in

both forward and backward directions helps stakeholders

and developers to understand the semantics of requirements

in more detail.

The following subsections present five approaches which

use requirements models as important abstractions to guide

their traceability methods.

2.1.1 Requirements Traceability and Transformation

Conformance (RTTC)

In [4], Almeida et al. aim at simplifying the management of

relationships between requirements and various design arte-

facts. They propose a framework which is a basis for tracing

requirements, assessing the quality of model transformation

specifications, metamodels, models and realizations. The

authors state that the most suitable traceability definition for

their work is that ”the means whereby software producers

can ’prove’ to their client that: the requirements have been

understood; the product will fully comply with the require-

ments; and the product does not exhibit any unnecessary

feature or functionality”. The methodological framework

they propose allows designers to relate the requirements in

the early stage of the development to the various products

of the model-driven design process.

Traceability cross-tables are used for representing re-

lationships between application requirements and mod-

els, considering different model granularities and also the

identification of conformant transformation specifications.

Since model-driven techniques consist of different ab-

straction levels, like platform-independence and platform-

specific, they propose a notion of conformance between

models to trace requirements throughout these different lev-

els. They also formulate the notion of satisfaction of re-

quirements by models that are produced by transformation

chains but they deferred the change impact analysis of re-

quirements over these models to future work.



2.1.2 Event Based Traceability (EBT)

Event-Based Traceability (EBT) is a method for automat-

ing trace link generation and maintenance. Cleland-Huang,

Chang and Christensen [5] present an interesting study for

requirements traceability, which uses EBT for managing

evolutionary change. In this method, requirements and

other traceable artefacts, such as design models, are no

longer directly related, but linked through publish-subscribe

relationships. This mechanism is based on the Observer de-

sign pattern [12]. Instead of establishing direct and tight

coupled links between requirements and dependent entities,

links are established through an event service. First, all arte-

facts are registered to the event server by their subscriber

manager. The requirements manager uses its event recog-

nition algorithm to handle the updates in the requirements

document and to publish these changes as event to the event

server. The event server manages some links between the

requirement and its dependent artefacts by using some in-

formation retrieval algorithms.

The main components of the system are the event server,

the requirements manager and the subscriber manager. The

requirements manager handles the requirements and is re-

sponsible for triggering change events as they occur. The

event server is primarily responsible for handling subscrip-

tions, receiving change notifications, and forwarding cus-

tomized event messages to the subscriber managers of de-

pendent artefacts. The subscriber manager is responsible

for receiving event notifications and handling them in a

manner appropriate to both the artefact being managed and

the type of message received. These messages carry struc-

tural and semantic information concerning the change con-

text.

2.1.3 Goal Centric Traceability (GCT)

In [7], Cleland-Huang et al. introduce a goal-centric ap-

proach for managing the impact of change upon the non-

functional requirements of a software system. Goal Centric

Traceability (GCT) models non-functional requirements

and their dependencies using a Softgoal Interdependency

Graph (SIG). GCT enables developers to understand and as-

sess the impact of functional changes upon non-functional

requirements to maintain the quality of the system.

The process has four phases to analyze and to update

the changes on dependent artefacts: goal modeling, impact

detection, goal analysis, and decision making. In goal mod-

eling, goals are decomposed into subgoals to reflect the fact

that extensive interdependencies exist between various non-

functional requirements (represented by softgoals). To un-

derstand the trade-offs among non-functional requirements,

the subgoals are decomposed into operationalizations which

provide candidate solutions for the goal.

During the impact detection phase, when a change oc-

curs in non-functional requirements, a probabilistic re-

trieval algorithm dynamically returns links between im-

pacted classes and elements in the SIG. In the goal analysis

phase the user modifies the contributions, from the impacted

goal elements to their parents. For each impacted element,

changes are propagated throughout the SIG to identify po-

tentially impacted goals. In the decision making phase it

is decided to proceed with which proposed change. Stake-

holders evaluate the impact of the proposed change upon

non-functional requirement goals and manage risks.

2.1.4 Event Based Traceability with Design Patterns

(EBT-DP)

In [6], Cleland-Huang and Schmelzer introduce another

requirements-driven traceability approach. Their work

builds on EBT [5] but describes a different process for

dynamically tracing non-functional requirements to design

patterns. This process is divided into two phases.

During the initial phase, user-defined traceability links

are established. Instead of linking every model element

in the design model to a non-functional requirement in a

SIG, the elements are linked to a cluster which defines the

design pattern. Then, a traceability link is established be-

tween the non-functional requirement and the cluster. This

decreases the number of links established between design

artefacts and non-functional requirements. In the second

phase, the well established descriptions and invariant rules

of a design pattern permit the automatic and dynamic gen-

eration of code during runtime (from the pattern to specific

class implementations). As a consequence, implicit fine-

grained links can be generated automatically. This charac-

teristic increases the maintainability and the expressiveness

of the method.

The authors explore the use of both dynamic and static

generated traceability links, as well as the use of design pat-

terns as intermediary models, to facilitate the traceability

of non-functional requirements across the software devel-

opment life-cycle. Therefore, the determination of when a

non-functional requirement might be fulfilled by means of

a design pattern is a non-trivial task which requires a good

identification method.

2.1.5 Reference Models for Requirements Traceability

(RMRT)

Ramesh and Jarke [28] follow an empirical approach and

focus interviews conducted in software organizations to

study a wide range of traceability practices. As a result

of this work, the authors constitute reference models that

include the most important kinds of traceability links for

various software development elements. The trace entities

and links for these models reflect the needs of real users.



One of the main motivations behind this study is to cap-

ture traceability needs of different stakeholders and present

different reference models for these different needs. Their

empirical study characterizes the participants as high-end

and low-end users of traceability practices. The authors

present trace models to reflect the trace entities captured by

high-end and low-end users, and then customize a set of five

reference models. Requirements are considered as traceable

entities in all these reference models.

The reference model for low-end users is composed of

four elements (requirements, compliance verification proce-

dures, system components and external systems) which are

interrelated by links that describe satisfaction, derivation,

dependencies, and so on. The high-end use of traceability

employs richer models. Four reference models were iden-

tified for this case: a requirements management submodel,

a rationale submodel, a design allocation submodel and a

compliance verification submodel.

2.2 Modelling Approaches

In MDE, trace metamodels are crucial to store and rep-

resent trace information, derived from the relations between

source and target elements, explicitly as trace models. As

an instance, the UML profile mechanism gives a solution

to store and represent trace data. There is also a standard

stereotype for traceability in UML [25]. It specifies a trace

relationship between model elements or sets of model ele-

ments that represent the same concept in different models.

The modeling approaches we discuss in this section are

interested in how metamodels, models and/or conceptual

frameworks are involved in tracing processes.

2.2.1 Scenario Driven approach to Trace Dependency

Analysis (SDTDA)

In Egyed [10], development artefacts are highly cou-

pled and trace dependencies characterize the relationships

among them abstractly. This study presents an automated

approach for generating and validating trace dependencies.

The main elements considered for the traceability analy-

sis are: test scenarios, model elements (data-flow, use case

and class diagrams) and implementation classes. These el-

ements can be interrelated by different types of trace de-

pendencies. The approach requires: an observable and ex-

ecutable software system; some list of development arte-

facts; scenarios describing test cases or usage scenarios for

those development artefacts; and a set of initial hypothe-

sized traces linking artefacts and scenarios. The main steps

of the approach are trace generation and trace validation.

The behaviour of the system is observed using test sce-

narios. Executing those scenarios in the running system

leads to observable traces that link scenarios to implemen-

tation classes or source code. The path between model el-

ements and scenarios is reasoned in finding hypothesized

traces. A footprint graph is built and manipulated via a set

of rules in the automated trace analysis. The footprint graph

is interpreted by traversing its nodes to elicit new trace in-

formation or to find contradictions in the result interpreta-

tion.

This study addresses the problem that the absence of

trace information or the uncertainty of its correctness lim-

its the usefulness of software models during software de-

velopment. The proposed approach reduces the complexity

of trace generation and validation by a set of test scenar-

ios and hypothesized traces between the test scenarios and

model elements. The runtime behaviour of these scenarios

is translated into a footprint graph. The algorithm generates

traces by using the rules that characterize how this graph re-

lates to the existing hypothesized traces and the artefacts to

which they are linked.

2.2.2 Operational Semantics for Traceability (OST)

Different types and representations of traceability exist with

different characteristics and properties. Aizenbud-Reshef et

al. [2] present an approach which defines an operational se-

mantics for traceability in UML to capture different types

of traceability and use a common notation in all situations.

This also intends to provide a richer tool support for man-

aging and monitoring traceability.

Three main issues for traceability are stated: querying

(e.g. impact analysis, coverage queries); following links

along the life-cycle of a project; and keeping the system

and its documentation up to date. They define two types of

semantics based on these issues: the preventative semantics

and the reactive semantics. While preventative semantics

describes things that should not happen, reactive semantics

describes what should be triggered when something hap-

pens to one or more of the related elements or to the rela-

tionship itself.

The authors state that the operational semantics of a

traceability relationship is defined by a set of one or more

semantic properties. A semantic property of a relationship

is a triplet event, condition, actions, where event involves an

element of a relationship, condition is a logical constraint

and actions can be either preventative or reactive actions.

One of the observations of this study is that the notion of

traceability that is of interest to a modeller should be cap-

tured using a set of semantic properties.

2.2.3 Unifiying Traceability Specification Scheme

(UTSS)

Limon and Garbajosa [23] analyze several current trace-

ability schemes and prove an initial approach for a trace-

ability specification scheme based on this analysis to fa-



cilitate traceability specification for a given project, to im-

prove traceability management, and to help automating

some trace management processes. The following features

are the starting point for the analysis and assessment done

by these authors: process-related or product-related links;

pre-requirements and post-requirements traceability rela-

tions categories; the traceability link purpose; and the items

or objects to which the traceability link will relate.

The authors state that it is necessary to define an Unify-

ing Traceability Specification Scheme, which contains the

common features according to the analysis of the above

listed features. According to the initial proposal presented

by the authors for a Traceability Scheme Specification, the

scheme should include the following items: a Traceability

Link Dataset that will provide a wide basis to define trace-

ability links; a Traceability Link Type Set; a minimal Set of

Traceability Links; and a Metrics Set for the Minimal Set of

Traceability Links.

2.2.4 Precise Transformation Traceability Metadata

(PTTM)

Vanhooff and Berbers [31] define a UML profile based on a

metamodel that gives support to transformation traceability

links. Their approach allows the addition of semantically

rich transformation traceability links into UML models,

while keeping its consistency. These links enable transfor-

mation programs to explore the UML models and perform

richer transformations. They may provide a better under-

standing on the effects of the model transformations. Such

kind of information could be the history of model changes

caused by transformations which were executed taking into

consideration the model. As an instance, traces saved into

the UML models can be used by future transformations to

help on their own executions.

The authors list four important requirements that their

transformation mechanism attend to. At first, the transfor-

mation traceability information should be left behind by all

transformation units. Secondly, traceability links should be

extended with transformation unit specific information. An-

other requirement is that all information should be kept in

the UML model itself and, at last, it should be possible to

easily add trace links manually for non-automatic transfor-

mations.

The main elements of their metamodel are transforma-

tion units, input and output elements, and element map-

pings. In this way, the profile conceptualizes dependencies

between source and target elements, dependencies between

a mapping and the transformation unit that created it, and

the identification of deleted elements. Using this profile en-

ables one to keep some traceability information in UML

models. The profile can be extended to attend the needs

of different transformation units and this approach does not

require transformation languages to be extended, since they

only need to handle standard UML profile elements.

2.3 Transformation Approaches

Since MDE supports automating both the creation and

the discovery of relationships among models, model trans-

formations can be considered as a mechanism to generate

trace links. Hence, most of the transformation languages

support automatic creation and usage of trace links between

models, but this facility alone does not guarantee that the

transformations are will be well explored to help on trace-

ability practices.

This section discusses approaches which consider model

transformations as a mechanism to collaborate with trace-

ability in MDE.

2.3.1 Loosely Coupled Traceability (LCT)

Jouault [17] shows how traceability can be added to pro-

grams written in the ATLAS Transformation Language

(ATL) [18] in order to achieve the limits of implicit trace-

ability. ATL is a model transformation language that sup-

ports dedicated support for traceability but its trace genera-

tion mechanism is implicit. ATL has a built-in support for

traceability. Such a form of traceability need not persist af-

ter executing a transformation. The author states that a sin-

gle transformation program can be used in several contexts

and consequently, such a program may need to be able to

generate different kinds of traceability information.

The author considers the traceability information as a

model, more precisely as an additional target model of a

transformation program. This approach allows creating

traceability elements in the same way other target model

elements are created. To integrate traceability in transfor-

mation programs, transformation developers should add a

target pattern element to generate an external trace link in

the trace model. This, however, required manually adding

the pieces of ATL code.

Since transformation programs are models, an ATL pro-

gram can be transformed into another ATL program to au-

tomate this manual step. An ATL program named TraceAd-

der [17] automatically inserts the traceability creation code.

TraceAdder operates in ATL refining mode which ATL pro-

vides as a replacement mechanism and is therefore a kind of

in-place transformation. Since it is used just before actual

ATL compilation, it is considered as a precompiler. One

of the advantages of this solution is that traceability gen-

erating code is explicit, but not tightly coupled to program

logic. From a tool support perspective, the ATL engine is a

plug-in for the Eclipse and supports EMF [9] and MOF [29]

models.



2.3.2 On Demand Merging of Traceability (ODMT)

Kolovos et al. [20] present an approach for merging primary

models with their correspondent trace models and gener-

ate annotated models on-demand, which contain traceabil-

ity information useful for inspection purposes. Generated

traceability links can be stored and managed by using two

different approaches. In the first approach, named embed-

ded traceability, links are embedded inside the target mod-

els they refer to in the form of new model elements. Using

this approach makes defining and understanding traceabil-

ity links much easier, but it creates many model elements

that do not belong to the model. In the second approach,

these links are stored in separate models.

The on-demand merging of traceability links with mod-

els requires elements of the related models having a per-

sistent identification feature and this makes the traces be-

tween model elements hard to understand. The authors sug-

gest that traceability information should be maintained in

separate models, which can be merged with the primary

model(s) on demand to produce annotated models for in-

spection purposes. The authors also present a concrete ex-

ample to automate this merging process. They produce

models annotated with traceability elements on-demand to

overcome the primary problem of external traceability, the

lack of human-friendliness. They have two suggestions for

their solutions: (a) the solution they propose must apply

to all possible traceability metamodels because there is no

consensus on a global traceability metamodel, (b) it must

not be limited to the context of a single modelling language

such as UML.

The Epsilon Merging Language (EML) [20] is used to

implement the merging of models with traceability infor-

mation. Model merging is completed in two phases: match-

ing and merging. The correspondences between elements

of the source models are established in the matching phase.

Later, the elements identified are merged in the merging

phase. From a tool support perspective, EML is a plug-in

for the Eclipse and supports managing EMF [9] and MOF

[29] models as well as XML documents.

2.3.3 Traceability Framework for Model Transforma-

tions (TFMT)

Falleri et al. [11] define a traceability framework for facili-

tating the trace of model transformations. Their framework

is inspired by Jouault [17] and implemented in the model

oriented language Kermeta [30]. The framework allows

tracing transformation chains within Kermeta, by means of

the specification and implementation (also in Kermeta) of

a language independent trace metamodel. This metamodel

defines a model transformation trace as a bipartite graph on

which nodes are source nodes and target nodes.

In the metamodel, a transformation chain trace is repre-

sented by a trace. Every trace is an ordered set of trace steps,

each of which represents a single transformation (from a

source model to a target model). A step is composed of

several links and these links relate target and source ob-

jects. Objects can represent every type of model element,

in different granularity levels (such as classes or class prop-

erties). Composing steps under the aggregation of traces

enables developers to trace model elements in a transforma-

tion chain.

The authors have implemented the following features of

the traceability framework [11]: generic traceability items;

trace serialization; and a simple transformation for trace vi-

sualization using Graphviz [15] (in order to visualize the

resulted transformation trace chain). Despite the frame-

work implements only a basic metamodel for transforma-

tion chain trace, the trace generating code is tangled with

the transformation code on the definition of a tracing oper-

ation.

3 Evaluation of the approaches

In this section we present a comparative analysis of

traceability approaches for MDE with respect to the fol-

lowing comparison criteria: representation of traceability

information, mapping between models, scalability, change

impact analysis, and tool support. These are general criteria

that could also be used to evaluate any traceability approach

in traditional software engineering. Other evaluation crite-

ria, such as the support of rationale and alternatives at each

level, are also feasible to evaluate traceability in MDE, as

well as specific criteria to judge MDE particularities. There-

fore, due to our aim is to identify open issues in traceability

in MDE that are new or still remain with respect to tradi-

tional methods, we decided to explore in this first evaluation

only some general criteria.

The representation criterion compares the approach’s ca-

pability to represent traceability information. The map-

ping criterion analyzes whether the approach is capable

of generating traces among the models at different levels

of abstraction. The scalability criterion analyses whether

the approach can be efficiently applied to large systems.

The change impact analysis criterion evaluates whether

the approach provides support for determining the impact

of changes on the artefacts across the software develop-

ment lifecycle. At last, the tool support criterion evaluates

whether the approach provides any tool support for facili-

tating traceability.

3.1 Representation

The representation criterion observes the main structures

that are used for representing traceability information by the



approaches discussed in Section 2. Table 1 relates the ap-

proaches according to this criterion.

RTTC: Almeida et al. [4] represent traceability informa-

tion using traceability cross-tables. These models are used

to show the trace relationships associated to the application

requirements. Assessment activities or conformant transfor-

mations between models are necessary to justify the check

marks in positions of the cross-table.

EBT and EBT-DP: Event-based subscriptions are used

to represent traceability information in EBT [5] and EBT-

DP [6]. The notification of these events carries structural

and semantic information concerning a change context.

As the EBT-DP [6] considers SIG models, traceability

information is also represented by interdependencies among

softgoals (non-functional requirements) and operationaliza-

tions (representing design patterns).

GCT: The Goal-Centric Traceability approach [7] uses

softgoal interdependency graphs and makes the tracing be-

tween requirements connecting its elements (goals and op-

erationalizations) using explicit and implicit interdepen-

dency links. A traceability matrix is also constructed to

relate SIG elements with classes.

RTTC

EBT

GCT

EBT-DP

RMRT

SDTDA

OST

UTSS

PTTM

LCT

ODMT

TFMT

Kermeta models (the proposed 

metamodel) and XMI (the serialized 

instances of transformation trace chain)

Traceability Scheme (TS)

UML models

Trace model encoded in ATL

EML (the metamodel) and UML (the 

trace model)

SIG graph and event-based 

subscriptions

Traceability metamodels

Footprint graphs

Rules, conditions and actions

Representation

Traceability cross-table (requirements X 

models)

Event-based subscriptions

SIG graph (goals, operationalizations 

and contribution links) and traceability 

matrix

R
e
q

u
ir

e
m

e
n

ts
-D

ri
v
e
n

 A
p

p
ro

a
c
h

e
s

M
o

d
e
ll
in

g
 A

p
p

ro
a
c
h

e
s

T
ra

n
s
fo

rm
a
ti

o
n

A
p

p
ro

a
c
h

e
s

Table 1. Representation of trace information

in traceability approaches in MDE

RMRT: Ramesh and Jarke [28] use traceability refer-

ence models to represent different levels of traceability in-

formation and links. The granularity of the representation

of traces depends on the expectations of the stakeholders.

Their approach supports simple or more detailed traceabil-

ity information representation across the low-use and high-

use reference models. Implementations of these reference

models present distinct ways to embody the traceability in-

formation.

SDTDA: In [10], traceability information is represented

in a graph structure called a footprint graph.

OST: Aizenbud-Reshef et al. [2] outline an operational

semantics of traceability relationships that capture and rep-

resent traceability information by using a set of semantic

properties, composed of events, condition and actions.

UTSS: In [23], the authors analyse several traceability

approaches and propose a unified Traceability Scheme (TS)

specification. The TS is composed of a traceability link

dataset, a traceability link type set, a minimal set of trace-

ability links, and a metrics set for the minimal set of trace-

ability links.

PTTM: Vanhooff and Berbers [31] have defined a UML

profile that represents and supports transformation trace-

ability links.

LCT: Trace models generated by ATL transformation

programs are used in [17] to trace other models. The au-

thor considers traceability information as a model, and ex-

tends ATL programs for supporting the generation of traces

during model transformations.

ODMT: Kolovos et al. [20] use external traceability

links and adopt EML as a merging language for generat-

ing annotated models with traceability information. The

authors use an EML trace metamodel in the merging pro-

cess, which is compliant with MOF. The annotated trace-

ability model conforms to the trace metamodel. UML class

diagrams are used as an example of models that can be ma-

nipulated by their approach.

TFMT: Falleri et al. [11] represent traceability infor-

mation using Kermeta models for implementing the trace

metamodel of the framework and generates serialized in-

stances of resulting transformation trace chains in XMI.

3.2 Mapping

The mapping criterion evaluates whether the approach

supports traceability of model elements at different levels

of abstraction. We have observed the support to intra-level

relationships (traces among artefacts of the same abstrac-

tion level), inter-level relationships (traces among artefacts

of different abstraction levels), or both intra and inter-level

relationships. Table 2 shows the comparison of the ap-

proaches according to the mapping criterion.



RTTC: Almeida et al. [4] represent the tracing of con-

secutive models using a traceability cross-table. This table

shows the trace relations from requirements to other models

at different development phases.

EBT and EBT-DP: Both EBT [5] and EBT-DP [7] sup-

port the indirect mapping from requirements to other arte-

facts, using event-based mechanisms. In addition, the EBT-

DP approach [7], also supports traces between softgoals

when relating non-functional requirements to design pat-

terns.

GCT: Cleland-Huang et al. [5] provide traces between

softgoals (non-functional requirements) and operationaliza-

tions (functional requirements) at requirements level, us-

ing the interdependency links of a softgoal interdependency

graph. Requirements and classes are related using traceabil-

ity matrix.

RMRT: Ramesh and Jarke [28] focus on requirements

traceability which is intended to ensure continued align-

ment between stakeholder requirements and system evolu-

tion. They provide reference models for representing the

traceable entities and relationships. Intra-level and inter-

level traceability are supported by the low and high-use

metamodels, which provides mappings between require-

ments and many other elements (system objectives, system

components, functions, etc).

SDTDA: The trace types in Egyed [10] suggest the pos-

sibility to realize both intra-level and inter-level mapping.

Observable traces relate test scenarios and classes. Gener-

ated traces can relate model elements with other models,

test scenarios or classes. Finally, test scenarios can also re-

late to model elements through hypothesized or validated

traces. In addition, this approach supports both forward and

reverse engineering.

OST: Aizenbud-Reshef et al. [2] propose to add oper-

ational semantics entities to the traceability metamodels to

more precisely capture and represent the intended meaning

of different types of traceability. The unifying traceability

scheme is an interesting proposal for representing different

types of traceability links in different domains and mapping

the artefacts across the software development lifecycle.

UTSS: In [23], the authors propose that the minimal set

of traceability links of their traceability schema must con-

sider the links among artefacts themselves, as well as the

links among a set of artefacts and the artefacts of a previous

(or next) development phase.

PTTM: Vanhooff and Berbers [31] extend the seman-

tics of UML to add traceability support to the language. A

transformation traceability metamodel is mapped to UML

profiles, which can be extended. Links among various UML

model element can be traced.

LCT: The simple trace metamodel presented in [17] al-

lows the establishment of trace links between any type of

source and target model elements. The traces can refer to el-

ements of the same development phase or different phases.

ODMT: In [20] traceability information is stored in sep-

arate trace models which can be merged with a correspon-

dent primary model (from which the trace model was gen-

erated). This approach only presents a traceability method

for unidirectional and inter-level traces.

TFMT: The proposed transformation trace metamodel

by [11] enables the automatic tracing of model transforma-

tions. The implementation of the framework permits its ap-

plication for constructing transformation chains of differ-

ent sizes and in different directions. In this sense, it allows

the forward, backward, intra-level and inter-level traces of

transformations, depending on the definition of source and

target models.

3.3 Scalability

Since real software projects become naturally larger dur-

ing their development, and the software specification in-

volves heterogeneous artefacts and presents highly complex

structures, scalability is an important criterion to be consid-

ered when evaluating the usage of traceability approaches.

A scalable traceability practice is applicable for large

projects as it is for small projects. We present a brief discus-

sion on whether the approaches may be efficiently applied

to large projects, under the perspective of their processes,

the visualization of trace information, and their application

to a larger amount of elements (broader spectrum of meta-

models and models). A comparison of the approaches from

the perspective of scalability is presented in Table 2.

RTTC: Almeida et al. [4] suggest that it could be possi-

ble to cluster parts of application models and generate dif-

ferent visualizations on a cross-table, making the approach

scalable. Therefore, the absence of tool support makes the

application of this approach to medium size projects diffi-

cult.

GCT: The approach presented by Cleland-Huang et al.

in [5] may be capable of supporting larger projects. One

possible way of performing with larger systems, is to ex-

plore the possibility of considering subgraphs of the general

SIG of the system-to-be.

EBT and EBT-DP: For the Event-Based Traceability

approaches [7, 6], scalability is a problem when maintain-

ing the dynamicity of the system traceability. As the project

grows, the most difficult problem is to maintain a good per-

formance of the EBT event server.

The scalability of the EBT-DP approach [6] is question-

able also, because there is no evidence that the method can

be applied with success to support a more complete set of

design patterns.

RMRT: The reference models (both low-use and high-

use metamodels) described in [28] may be scalable due to

its possible use for traceability activities in different com-



plexity levels. Therefore, we cannot affirm whether this

approach lacks scalability with respect to tool support for

large-scale projects or not. The efficiency of the tools which

have implemented these metamodels was not evaluated and

the tools are not the focus of the approach.

SDTDA: Egyed [10] have applied the scenario-based ap-

proach for trace dependency analysis to some large-scale

projects with satisfactory quality of results. The author

could observe that this approach does not request a large

set of input data, as well as the complexity of trace analysis

is not computationally expensive.

OST: Aizenbud-Reshef et al. [2] do not present a practi-

cal application of their approach. Therefore, it may be scal-

able since it is associated with the UML (largely accepted

and used).

UTSS: The Traceability Schema [23] is not scalable in

its current form. Therefore, Limon and Garbajosa outline a

strategy that may contribute to its scalability: to include in

the traceability schema a set of metrics that can be applied

for monitoring and verifying the correctness of traces and

their management.
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Table 2. Mapping, scalability, change impact

analysis and tool support in traceability ap-

proaches in MDE

PTTM: In [31] the UML profile mechanism is explored

and traceability information can be incorporated into UML

models. The scalability of this approach is limited to the

scalability of UML.

LCT: Jouault [17] claims that his approach is scal-

able for different transformation projects in ATL. Therefore

there is no evidence of the efficiency of this approach with

relation to larger projects. In addition, the manipulation of

traceability in model transformations in this approach re-

quires the manual addition of code.

ODMT: Kolovos et al. [20] propose an approach which

permits the merging of a model with its correspondent trace

model on-demand. Traceability information is maintained

in a separate model and a generic trace metamodel is used

for flexibility reasons. The on-demand merging of trace-

ability links with models may be a scalable approach due to

these characteristics.

TFMT: In [11] the scalability is compromised since the

authors’ implementation of trace generating code is tangled

with the transformation code on the definition of a trac-

ing operation. This makes the traceability framework less

reusable, the transformation rules not clear and the trace-

ability process less transparent. There is no evidence of the

efficiency of this approach with relation to larger projects

(or with longer transformation trace chains). Despite of

that, the metamodel may be extendable and scalable.

3.4 Change Impact Analysis

The change impact analysis criterion checks whether an

approach determines the effect of change on the entire sys-

tem and on the artefacts across the software development

lifecycle. Table 2 shows the coverage of change impact

analysis mechanisms by the approaches.

RTTC: Almeida et al. [4] postpone the investigation

traceability of requirements in face of changes in require-

ments specification to a future work. The authors do not

address the issues regarding the changes in requirements

and their effects in the detailed design documents or source

code.

EBT: The event-based traceability approach by Cleland-

Huang et al. [5] supports change impact analysis. During

the management of evolutionary change, a set of standard

change events is defined and a method for monitoring user’s

actions and the recognition and publication of change events

is proposed.

GCT: The GCT model [7] provides change impact anal-

ysis among functional and non-functional requirements,

represented using softgoal interdependency graphs.

EBT-DP: Cleland-Huang and Schmelzer [6] present a

mechanism for manipulating dynamic generated traceabil-

ity links. They consider a change impact analysis and the

use of regression tests. As an instance, the approach sup-



ports the identification of critical elements that should re-

main in the system for keeping the integrity of a traceable

non-functional requirement.

RMRT: Ramesh and Jarke [28] provide means of an-

alyzing change impact according to the description of the

rationale submodel.

SDTDA: Egyed [10] presents an iterative approach to

trace dependency analysis which characterizes highly in-

terrelated relations among test scenarios, implementation

classes and model elements. The interpretation of these re-

lational dependencies is subjective, since the representation

of trace links does not supply the semantic meaning of a

trace. However, this approach is capable of providing the

means for the analysis of change impacts.

The other evaluated approaches do not provide any

mechanisms for performing change impact analysis [2, 11,

23, 17, 20, 31].

3.5 Tool Support

Tool support is fundamental for a good application of a

traceability method, not only for visualization and manage-

ment of manually or automatically generated traces among

software artefacts, but also for the proper support for rea-

soning on this information. Approaches are compared from

the perspective of the provisioning of any tool support in

Table 2.

RTTC: Tool support is envisioned as future work by

Almeida et al. [4]. They plan to consider transformation

of models and conformance as traceability relationships.

EBT: The components of the event-based traceability

approach [5] were implemented as client-server architecture

based on the observer design pattern. Especially, the event

trigger was implemented on top of the DOORS require-

ments management system to manually capture change

events as they occurred.

GCT: The GCT model [7] has partial tool support. Dur-

ing change impact analysis, despite of the fact that the re-

trieval algorithm uses probability to return links between

impacted requirements (elements in a SIG) and classes,

user’s appraisal is required to manage the traceability links.

EBT-DP: Cleland-Huang and Schmelzer [6] support the

static and dynamic generation of traceability links across

the development phases, although only a few characteristics

of their approach are fully implemented.

RMRT: The reference metamodels for traceability by

Ramesh and Jarke [28] were encoded in a knowledge-based

meta database management system called ConceptBase.

Later, they were adopted in several commercial traceabil-

ity tools, such as SLATE and Tracenet.

SDTDA: In the scenario-driven approach by Egyed [10],

the activities for scenario-testing and finding hypothesized

traces are manual, while trace analysis and result interpre-

tation are automated.

OST: In [2] the authors present an approach for consider-

ing operational semantics of traceability in UML and claim

that their work can be applied to MOF, but no implementa-

tion or tool support is given.

UTSS: Limon and Garbajosa [23] propose a traceability

schema, but there is no tool support yet for the employment

of their approach.

PTTM: The approach presented in [31] represents a

traceability link using stereotype specifications and is in-

dependent on model transformation languages. The authors

do not relate the existence of a tool that gives support to

their approach.

LCT: Tool support and scalability are the key criteria for

transformation approaches. Jouault’s traceability study was

implemented in ATL [17, 18] and this language is supported

by Eclipse.

ODMT: In Kolovos et al. [20], EML [21] is used to

implement the merging of models with traceability links.

EML specifications can be managed by plug-ins for Eclipse.

TFMT: Falleri et al. [11] have implemented the trans-

formation chain trace metamodel in a model-oriented lan-

guage compatible with EMF [9] called Kermeta [30], and

some graphical visualization of the trace in Graphviz [15].

4 Open issues

From the comparative analysis of the approaches for

model traceability we identify the following open issues:

• In the early development stages in MDE, less automa-

tion is found to cope with traceability. The degree

of automation of traceability practices, mainly in the

early stages of software development in MDE, is an

open issue due to the fact that there is the need of more

appropriate models (for requirements, features, goals,

etc) in early stages. Depending on the way MDE is

applied, as the structure of models is well defined, the

capture of trace information in trace models may be

facilitated and automated due to the knowledge about

models which conform to metamodels.

• Building better trace metamodels for enabling trace-

ability and make use of the facilities provided by

model-driven techniques should be better explored by

traceability approaches in MDE. The semantics of

traceability models and their structure is an open is-

sue. Although this aspect is absolutely independent of

MDE processes or other development processes, MDE

may help on the automatic creation of traceability links

on the basis of a metamodel that presents a good tax-

onomy of trace dependencies and that expresses tran-

sitivity of trace dependencies.



• In traditional approaches, the variety of models used

for describing different artefacts (which usually do not

conform to any metamodel) makes it difficult to man-

age fine grained trace links due to the heterogeneity

of the models. Moreover, since different tools are

used during the various traceability steps throughout

the software development stages, traditional traceabil-

ity processes have more troubles to collect and manage

trace information, as well as to keep it consistent. In

MDE, if the metamodels can be described using com-

patible modelling languages one can create more uni-

form manners to perform automated traceability man-

agement during the development stages. Work should

be done in this direction.

• The issue on enabling the connection between trans-

formation programs and traceability mechanisms and

provide the automated update of target models in the

case of changes in source models deserves more at-

tention. The tool support offered by the approaches

was somehow incomplete, as the models are not traced

throughout the complete software life-cycle. Transfor-

mation engines and transformation languages should

address this issue more explicitly.

• It is still unknown whether trace models and incremen-

tal model transformation [16] can support each other

efficiently. For instance, trace models should consider

information (e.g. constraints) about a certain transfor-

mation. If we do not want to execute the complete

transformation again, how do we cope with the update

of the target model using a less costly procedure?

• Another open issue is the discovery of traces between

model elements when these traces are not described

explicitly. How to deal with the implicit relationships

between models? What kinds of trace information a

model brings from its own sources to its targets? The

evaluated traceability approaches do not explore mech-

anisms for discovering important implicit traces.

• Mechanisms for the evolution of trace links are not

explored by the majority of the observed approaches.

Our viewpoint is that the automatic update of trace

models by using model transformations (or not) should

be considered as a way to keep the consistency of the

traceability information and then achieve a high qual-

ity traceability process. Traces should evolve as mod-

els and transformations evolve.

5 Conclusions

In this paper we have built on the evaluation of traceabil-

ity approaches for identifying the open issues on tracing re-

quirements and model elements in MDE. We have discussed

the state-of-the-art in traceability approaches in MDE and

evaluated them according to five general comparison cri-

teria for traceability: representation, mapping, scalability,

change impact analysis and tool support. Based on our ob-

servations, we have presented a set of open issues that pro-

pose a better exploration of MDE characteristics and some

ways on which it can cope better with traceability.

This survey shows that tool support is crucial to auto-

mate the traceability in MDE. The automation of traceabil-

ity mechanisms can be simplified in MDE by considering

conformant transformation specifications as a way to pro-

vide traceability information [1]. In addition, the represen-

tation of trace information plays a crucial role in achieving

the benefits of applying traceability techniques. The taxon-

omy of trace links is independent on the MDE paradigm,

therefore the model-driven techniques can help on the spec-

ification of good trace metamodels that will cover specific

needs. Some factors that inhibit the automation of traceabil-

ity practices in MDE are the absence, impreciseness or in-

consistence of information concerning model elements and

trace links.

In addition, traceability support may not be a property of

a transformation language. It may be provided by the trans-

formation engine or the developer may take care of creating

and using traces. A promising direction is the use of hy-

brid approaches (with static and dynamic generated trace-

ability links) [8] and metamodels for external traceability

links [20]. Moreover, the dynamic trace generation is fun-

damental in MDE for supporting chains of model transfor-

mations [11].

We also observed that the representation of external

traceability links, stored in separate models that can be com-

bined with the primary models they refer to, facilitates the

loose coupling between models and traceability informa-

tion. As a consequence, a more flexible traceability mecha-

nism can be created to allow inspection and decision mak-

ing during MDE processes.
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