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1 Introduction

The Standard Model (SM) of particle physics is a chiral theory under the electroweak gauge

symmetries, SU(2)L×U(1)Y . It is for this reason that a condensing Higgs boson is needed to

generate elementary particle masses. Non-chiral pairs of fermions, or mirror pairs fq and fq̄
are able to achieve mass explicitly through the gauge-invariant bilinear interaction mff

†
q fq̄.

There is no reason why such pairs of vector-like fermions do not exist. The only question is

what is their mass, since it is in this case not tied at all to electroweak symmetry breaking.

In the literature there are numerous examples of theories that require vector-like

fermions in the spectrum. As with all cases, the mass scale is uncertain. In supersymmetric

theories we know that there must be vector-like fermions in the spectrum, namely the Hig-

gsinos. The Higgsinos form a vector-like pair of fermions with the same quantum numbers

as the left-handed leptons and its conjugate. Naturalness requires the Higgsinos to be near

the weak scale, although the precise mechanism that achieves this is the subject of rich

theoretical analysis — one that we do not traverse here. A general thought does rise with

this observation, and that is why not vector-like complements of all the other SM fermions?

Indeed, more fundamental theories, such as string theories and D-brane theories, often

do give rise generically to vector-like states. For example, Dijkstra et al. [1] search the

landscape of orientifolds of Gepner models for Standard Model-like vacua of three gener-

ations and find a plethora of models with vector-like complements of the Standard Model

states. In D-brane constructions it is generic to get these extra vector-like states since the

computation for chiral fermion representations involves identifying topological intersection

numbers, whereas the vector-like states multiplicity is not confined to that, and there can

be many more. The chiral content is the “left over” chiral fermions that are necessarily

lighter because they cannot be paired up to receive mass without the Higgs boson.

Since all string theories can be related through dualities, it is not surprising, although

not a priori necessary, that there would be generic presence of vector-like states in other

constructions. Indeed, there are additional cases. For example, the ubiquity of vector-like

states is manifest also in orbifold constructions of heterotic string compactifications [2]. In

this case, more realistic models tend to produce vector-like complements of the down-type

fermions, 5+ 5̄ in SU(5) language.

Both string examples discussed may also give rise to vector-like states of other rep-

resentations, and even ones of fractional electric charge (see e.g., [3]). Vector-like families

are not motivated only by string theory considerations, but also lower energy constructions

such as top-quark seesaw models [4–6], warped extra dimensions (see for example ref. [7]

and references therein), composite Higgs [8–13], little Higgs theories [14–17], and low-scale

supersymmetry [18–26]. Ref. [19] shows that the Higgs mass can be raised in supersym-

metry by the addition of vector-like matter. Ref. [20] considers the addition of vector-like

matter to improve the little hierarchy problem in the Minimal Supersymmetric Standard
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Model (MSSM). Refs. [22–26] consider the implications of gauge mediated supersymmetry

breaking with vector-like matter. Refs. [27–30] also deal with various aspects of vector-like

fermions. There is also interest in vector-like states from a purely agnostic phenomeno-

logical inquiry to potentially better fit Higgs boson data [31, 32]. Again, these ideas give

rise to vector-like SM complements and also new representations. The implications and

phenomenology of these latter states is qualitatively different than vector-like complements

of the SM states, and will be discussed elsewhere.

There have been many works that have appeared since the discovery of the Higgs at-

tempting to explain the preliminary discrepancies. An example is the “simplified models”

approach of ref. [34]. Ref. [31] attempted to explain the discrepancies in the Higgs data

(with limited statistics) prevailing then with vector-like fermions having non-standard hy-

percharge assignments. Ref. [32], with a similar goal, introduces only vector-like leptons

with SM hypercharge assignment. Refs. [35, 36] considers a vector-like lepton generation

(including new SU(2) singlets) and the possibility of the electromagnetic charge neutral

vector-like lepton being a dark matter candidate. They analyze precision electroweak

bounds, modifications to Higgs observables and vacuum stability bounds for this exten-

sion. Ref. [36] also investigates baryogenesis and vacuum stability in this context.

More recently, ref. [37] considers vector-like quarks with SM EM charges. Their anal-

ysis of the SU(2) doublet case differs from ours in the following respects: (a) we add new

SU(2) singlet vector-like quarks motivated by replicating the SM structure, while they do

not. The constraints from shifts to Zbb̄ couplings on their model is very tight, while this

will not apply in our case since we do not allow any significant Yukawa coupling between

the new SU(2) vector-like doublet and SM singlets; (b) they only consider quarks while we

include leptons also; (c) we include the recent LHC Higgs data while their study was done

before the Higgs discovery. Refs. [38, 39] also have SM singlets only, not new vector-like

singlets like we consider. Ref. [40] considers the modification to double Higgs production

due to vector-like fermions in such a model.

Ref. [41] performs a model-independent analysis of the recent Higgs data, obtains

preferred regions of the effective couplings, and interprets this in the context of vector-like

fermions. Since the SU(2) representations of the fermions are left unspecified, electroweak

precision constraints have not been applied. In our work we consider a few concrete SU(2)

representations and do apply electroweak precision constraints. Refs. [42] also perform

an effective operator analysis of the Higgs data. Refs. [19, 20, 23, 37] discuss collider

searches after taking into account precision electroweak constraints. Ref. [43] takes into

account precision electroweak constraints and considers the t′ pair production followed by

the t′ → th, h → γγ, ZZ decay modes, while ref. [44] considers t′ → th in the multi-b-jets

channel. Refs. [45–48] evaluates precision electroweak and flavor constraints on top-partner

vector-like quarks, and studies direct LHC signatures.

In the following sections of this paper, we shall not discuss further the underlying

motivations, but study carefully the theory construction and phenomenological implications

of vector-like SM complement states. The masses and couplings will be free parameters for

us, except that we will generally confine ourselves to the case of vector-like states mixing

weakly with SM states. This is not absolutely required, but we do it so as not to complicate
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our work with detailed flavor physics. The high-energy manifestations and searchers are our

primary consideration, including the impact of vector-like states on the Higgs branching

fractions, particularly into two photons. Since the mass of the vector-like fermions are

not generated through the Yukawa couplings, the loop contributions involving the Higgs

decouple faster than for chiral fermions. Hence the constraints from the current Higgs

data, precision electroweak observables and direct searches are less severe for vector-like

fermions than for chiral fermions.

To begin we develop a formalism for vector-like fermion models. In this work we

identify properties of vector-like fermions that are consistent with the recently measured

Higgs production cross-section and its decay branching ratios at the LHC. In particular,

we analyze vector-like extensions of the Standard Model (VSM), with vector-like quarks

and leptons. We investigate the precision electroweak constraints from their presence and

then the direct collider constraints from LHC searches. We present many numerical results,

which will have implications for future vector-like fermion searches. And we conclude with

a brief discussion on the meaning of the results in the context of some theories of physics be-

yond the SM, and also discuss what the future may hold in our search for vector-like states.

2 Vector-like-fermion models

We add to the SM a vector-like pair of SU(2) doublets and some number of vector-like

pair of SU(2) singlets. We assume all these fields to be charged under U(1)Y . Consider

the vector-like doublets as two Weyl spinors χα and χc
α, that transform as conjugates

with respect to SU(2)L and U(1)Y , namely χ = (2, Yχ), χ
c = (2̄,−Yχ). Although we are

considering only one such doublet pair, one can add any number of such pairs and our

statements below can be extended to include this case. The theory can equivalently be

written in terms of a Dirac fermion

X ≡
(

χα

χcα̇

)

,

where we follow the usual Lorentz index conventions α, α̇. Thus the Dirac spinor X
transforms the same way as χ under SU(2)L and U(1)Y . A vector-like mass term can

always be added

L = −Mχχχ
c + h.c. = −MχX̄X . (2.1)

Let us consider a vector-like pair of Weyl spinors χ = (2, Yχ), χ
c = (2̄,−Yχ). Expanding

the SU(2) structure we can write

χ =

(

χ1

χ2

)

, or equivalently, X =

(

X1

X2

)

,

where X , X1 and X2 are Dirac fermions.

The W 3 and B interactions to new vector-like fermions have the structure

L ⊃
∑

i

[

gW 3
µ(T

3
ii) + g′BµY

i
] [

X̄ i
Lγ

µX i
L + X̄ i

Rγ
µX i

R

]

, (2.2)
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with the W 3 also coupling to XR. The vector-like nature is exhibited by the L,R chiralities

having the same T 3 and Y couplings. Furthermore, SU(2)L invariance requires Y i
L = Y i

R =

Y for the SU(2)L component fields. The W 1 interactions to new fermions are given by

L ⊃ g

2
W 1

µ(X̄1Lγ
µX2L + X̄1Rγ

µX2R) + h.c. . (2.3)

At this level, the X1 and X2 are degenerate owing to the SU(2)L symmetry. By intro-

ducing Yukawa couplings to the SM Higgs, this degeneracy can be broken. In order to write

down Yukawa couplings with the SM Higgs and the X , we can introduce two SU(2)L singlet

vector-like fermions ξ = (1, Yχ + 1/2) and Υ = (1, Yχ − 1/2), written as Dirac fermions.

In this case we can write the Yukawa couplings

LYuk ⊃ −λξX̄ ·H∗ξ − λΥX̄HΥ+ h.c. , (2.4)

where the “dot” represents the antisymmetric product. EWSB will then mix these new

fermions and will split the X1 and X2 masses. The sign of λ is not physical, since in

the change λξ,Υ → −λξ,Υ, the sign can be absorbed away by a redefinition ξ → −ξ and

Υ → −Υ without affecting anything else.

The only gauge interactions that the vector-like singlets have is the hypercharge Bµ

interactions given by

L ⊃
∑

i

g′Bµ

[

ξ̄γµYξ ξ + ῩγµYΥΥ
]

. (2.5)

Next we comment on possible mixing terms for the SM hypercharge assignments Yχ =

1/6 or Yχ = −1/2. With only the X added without the Υ and ξ, for the SM Yχ assignment

Yχ = 1/6, we can write the additional terms

L ⊃ −Mqχq̄X − λ′
uX̄ ·H∗uR − λ′

dX̄HdR + h.c. , (2.6)

where q is the SM quark doublet, and uR, dR are SM SU(2) singlets. Alternately, if Yχ =

−1/2, then we can write the additional terms

L ⊃ −Mℓχℓ̄X − λ′
νX̄ ·H∗νR − λ′

eX̄HeR + h.c. , (2.7)

where ℓ is the SM lepton doublet, and νR, eR are SM SU(2) singlets. After EWSB the

Yukawa couplings will split the X1 and X2 masses, and will also mix the new vector-like

fermions with either the uL and dL in the first case, or with νL and eL in the latter case.

In addition to the X , with the ξ, Υ also added, for Yχ = 1/6, we can also write the terms

L ⊃ −MuξūRξ −MdΥd̄RΥ− λ′
qξ q̄ ·H∗ξ − λ′

qΥ q̄HΥ+ h.c. . (2.8)

Alternately, if Yχ = −1/2, then we can also write the terms

L ⊃ −Mνξ ν̄Rξ −MeΥēRΥ− λ′
ℓξ ℓ̄ ·H∗ξ − λ′

ℓΥ ℓ̄HΥ+ h.c. . (2.9)

Above, the M and λ′ are 3 × 3 Hermitian matrices but the generation indices have been

suppressed. If lepton-number is not a good symmetry, and if ξ is a gauge singlet, one can

in addition write a Majorana mass term1

L ⊃ −M̄ξ ξcξ − (M̄νξ ν
c
Rξ + h.c.) , (2.10)

1We thank Pedro Schwaller for reminding us of this possibility.
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where ξc is the charge conjugated field of the 4-component spinor ξ, and similarly for νcR.

With the mixing M and λ′ terms added, there is no longer freedom to rotate away

the sign of the λ, λ′, and therefore the sign becomes physical. Since in this work, to be

safe from flavor constraints, we take the MSM−V L ≪ MV L, and λ′ ≪ 1, these physical

effects will be suppressed, and we therefore do not investigate it further.2 We will comment

further about these possibilities later.

X c equivalence: since we are dealing with a vector-like theory, it should not matter

whether we write the theory in terms of X with hypercharge Yχ or in terms of X c ≡ −iγ2X ∗

with hypercharge −Yχ. To show this, let us rewrite the theory in terms of X c. To relate

conjugated and unconjugated terms, we use the relations Ψ̄cX c = X̄Ψ, Ψ̄cγµX c = −X̄γµΨ.

Using these identities we can write the Yukawa term either as λΥX̄HΥ or as λΥῩ
cHTX c.

The mass terms, their diagonalization, mass eigenvalues are all identical whether written

in terms of X or X c. The gauge interactions on the other hand are opposite in sign, which

we understand to mean that the conjugated fields have opposite “charge”.

In the theoretical structure just described, we consider in the next few subsections

various models.

2.1 The 11̄ model

For SM-like hypercharge assignments, these vector-like SU(2) singlets can mix with the SM

SU(2) singlets and will alter Higgs, electroweak, and flavor observables. If such mixing is

sizable, the constraints from flavor observables can be rather strong, due to which we will

not consider this possibility here. Ref. [53] discusses the Higgs phenomenology of vector-like

leptons with mixing to SM singlets.

For non-SM-like hypercharge assignments with vector-like pairs of SU(2) singlet

fermions added, no new (renormalizable) interactions involving the Higgs field can be writ-

ten down. Thus, there is no modification to Higgs observables, to electroweak precision, or

to flavor observables. This will therefore be uninteresting in the present context.

2.2 The 22̄ model

For SM Yχ assignments, as mentioned earlier, Yukawa couplings can be written down

between the χ and the SM right-handed singlets. We do not analyze in much detail the

situation when sizable Yukawa couplings with SM SU(2) singlets are allowed as constraints

on this (for example, coming from shifts in Zbb̄ coupling, FCNC, etc.) are quite severe.

This is discussed for instance in ref. [37], where it is argued that after imposing constraints,

the deviation from the SM case of the Higgs observables are at most a few percent.

For non-SM-like hypercharge assignments, with only a vector-like pair of SU(2)-

doublets added-in with no singlets, no new (renormalizable) interactions can be written

down involving the Higgs field. Such an extension will therefore not lead to any new con-

tributions to Higgs boson phenomenology that are significant. So this will be uninteresting

in the present context, and we will move to discussing in the following subsections, models

with one or more singlets added.

2Refs. [49, 50] consider models with mixing terms present in the context of the muon (g−2). Refs. [51, 52]

obtains the FCNC constraints due to mixing with a down-type singlet vector-like quark.
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2.3 The 22̄(11̄)1 model

To understand the nature of this model, we consider in turn the model with only one singlet

field present at a time in addition to the X , namely, first with only the Υ present and then

with only the ξ.

2.3.1 Υ model

In addition to the SU(2)L multiplet X , lets consider only one vector-like SU(2) singlet pair

in the theory, namely the Υ (without the ξ) with only the λΥ term present in eq. (2.4).

This, as we will see, is sufficient to split the X1 and X2 masses. Since YH = 1/2 as usual,

for U(1)Y invariance we need

YΥ = Yχ − 1/2 .

Consistent with all the SM gauge symmetries we can write a vector-like mass term as

shown in eq. (2.1), which is

L ⊃ −MχX̄X = −Mχ

(

X̄1X1 + X̄2X2

)

. (2.11)

After EWSB by 〈H〉 = (0 v)T /
√
2, we have the mass matrix

Lmass ⊃ −MχX̄1X1 −
(

X̄2 Ῡ
)

(

Mχ m

m MΥ

)(

X2

Υ

)

, (2.12)

where m ≡ λΥv/
√
2, which we will assume to be real for simplicity. The above mass matrix

is diagonalized by an O(2) rotation

(

X2

Υ

)

=

(

cV −sV

sV cV

)(

X ′
2

X ′
3

)

, (2.13)

where {X ′
i} denote the mass eigenstates, and, cV ≡ cos θV , sV ≡ sin θV , with the mixing

angle given by

tan 2θV =
2m

(Mχ −MΥ)
. (2.14)

The mass eigenvalues Mi are

M1 = Mχ ; M2,3 =
1

2

[

Mχ +MΥ ±
√

(Mχ −MΥ)2 + 4m2

]

, (2.15)

which can also be written as

M1 = Mχ ; M2 = Mχc
2
V +MΥs

2
V +2msV cV ; M3 = Mχs

2
V +MΥc

2
V − 2msV cV . (2.16)

To have non-negative M2 one requires MχMΥ − m2 ≥ 0. In figure 1 we show the mass

eigenvalues Mi as a function of MΥ taking Mχ = 1000GeV and λΥ = 1. Henceforth we

drop the primes on the mass eigenstate fields for notational ease. Taking the EM charges

of the mass eigenstates Xi as Qi, we have, Q1 = Yχ + 1/2, Q2 = Q3 = Yχ − 1/2. We show

– 7 –
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Figure 1. The mass eigenvalues mi as a function of the SU(2) singlet mass taking the SU(2)

doublet mass Mχ = 1000GeV, and λΥ,ξ = 1, in the Υ model (left) and ξ model (right).

in table 1 the Qi for various choices of Yχ in the Υ model, and Q4 should be ignored for

this model.

The W 1
µ , W

3
µ and Bµ interaction terms in eqs. (2.2), (2.3) and (2.5) in the fermion

mass basis become

L ⊃ +
g

2
W 3

µ

[

X̄1γ
µX1 −

(

c2V X̄2γ
µX2 − cV sV X̄2γ

µX3 − cV sV X̄3γ
µX2 + s2V X̄3γ

µX3

)]

+
g

2
W 1

µ

[

cV X̄2γ
µX1 − sV X̄3γ

µX1 + cV X̄1γ
µX2 − sV X̄1γ

µX3

]

+ g′Bµ

[

YX X̄1γ
µX1 + (YX c

2
V + YΥs

2
V )X̄2γ

µX2

+(−YX + YΥ)sV cV (X̄2γ
µX3 + h.c.) + (YX s

2
V + YΥc

2
V )X̄3γ

µX3

]

. (2.17)

Writing this in the A,Z basis we have

L ⊃ e
[

X̄1Q1γ
µX1 + X̄2Q2γ

µX2 + X̄3Q3γ
µX3

]

Aµ

+gZ

[

X̄1

(

1

2
− s2WQ1

)

γµX1 + X̄2

(

−c2V
2

− s2WQ2

)

γµX2

+X̄3

(

−s2V
2

− s2WQ3

)

γµX3 +
(

X̄2
sV cV
2

X3 + h.c.
)

]

Zµ , (2.18)

where gZ = g/cW , Q1 ≡ 1/2 + YX and Q2 = Q3 = −1/2 + YX = YΥ.

The Higgs interactions are got by replacing v → v(1 + h/v) in eq. (2.12). In the mass

basis this gives

L ⊃ −λΥ√
2
h
[

sV cV X̄2X2 − sV cV X̄3X3 + (c2V − s2V )X̄3X2

]

+ h.c. . (2.19)

We commented below eqs. (2.4) and (2.9) that the sign of the Yukawa couplings can be

absorbed away by redefining the fields if the Yukawa terms mixing the X and SM fermions

are taken negligibly small. They are therefore not physical in the limit of the mixing

Yukawa couplings not present. For later use we note in this model that under λΥ → −λΥ,

we have m → −m, θV → −θV , sV → −sV . Therefore, off-diagonal (in fermion fields)

couplings of the h and Zµ change sign (i.e. the hX3X2 and ZX3X2 couplings), while all the

diagonal couplings do not change sign.

– 8 –
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2.3.2 ξ model

In addition to the SU(2)L multiplet X , lets consider only one vector-like SU(2) singlet pair

in the theory, namely the ξ (without the Υ) with only the λξ term present in eq. (2.4).

Since YH = 1/2 as usual, for U(1)Y invariance we need

Yξ = Yχ + 1/2 .

After EWSB by 〈H〉 = (0 v)T /
√
2, we have the mass matrix

Lmass ⊃ −MχX̄2X2 −
(

X̄1 ξ̄
)

(

Mχ m̃

m̃ Mξ

)(

X1

ξ

)

, (2.20)

where m̃ ≡ λξv/
√
2, which we will assume to be real for simplicity. The above mass matrix

is diagonalized by an O(2) rotation
(

X1

ξ

)

=

(

c′V −s′V
s′V c′V

)(

X ′
1

X ′
4

)

, (2.21)

where {X ′
i} denote the mass eigenstates, and, c′V ≡ cos θ′V , s

′
V ≡ sin θ′V , with the mixing

angle given by

tan 2θ′V =
2m̃

(Mχ −Mξ)
. (2.22)

The mass eigenvalues Mi are

M2 = Mχ ; M1,4 =
1

2

[

Mχ +Mξ ±
√

(Mχ −Mξ)2 + 4m̃2

]

, (2.23)

which can also be written as

M2 = Mχ ; M1 = Mχc
′2
V +Mξs

′2
V + 2m̃s′V c

′
V ; M4 = Mχs

′2
V +Mξc

′2
V − 2m̃s′V c

′
V . (2.24)

To have non-negative M1 one requires MχMξ − m̃2 ≥ 0. Henceforth we drop the primes

on the mass eigenstate fields for notational ease. Taking the EM charges of the mass

eigenstates Xi as Qi, we have, Q2 = Yχ − 1/2, Q1 = Q4 = Yχ + 1/2. We show in table 1

the Qi for various choices of Yχ in the ξ model, and Q3 should be ignored for this model.

The W 1
µ , W

3
µ and Bµ interaction terms in eqs. (2.2), (2.3) and (2.5) in the fermion

mass basis become

L ⊃ +
g

2
W 3

µ

[

c′2V X̄1γ
µX1 − c′V s

′
V X̄1γ

µX4 − c′V s
′
V X̄4γ

µX1 + s′2V X̄4γ
µX4 − X̄2γ

µX2

]

+
g

2
W 1

µ

[

c′V X̄2γ
µX1 − s′V X̄2γ

µX4 + h.c.
]

+ g′Bµ

[

(YX c
′2
V + Yξs

′2
V )X̄1γ

µX1 + (−YX + Yξ)s
′
V c

′
V (X̄1γ

µX4 + h.c.)

+(YX s
′2
V + Yξc

′2
V )X̄4γ

µX4 + YX X̄2γ
µX2

]

. (2.25)

The Higgs interactions are got by replacing v → v(1+h/v) in eq. (2.12). In the mass basis

this gives

L ⊃ − λξ√
2
h
[

s′V c
′
V X̄1X1 − s′V c

′
V X̄4X4 + (c′2V − s′2V )X̄4X1

]

+ h.c. . (2.26)
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2.3.3 Alternate Yukawa coupling

Instead of the Yukawa coupling of the Υ shown in eq. (2.4) we can alternately write

LYukAlt ⊃ λ̂Υ
¯̃X cHΥ+ h.c. , (2.27)

where we use the fact that iσ2X ∗ transforms the same way as X under SU(2) and have

defined X̃ c to mean this conjugation in gauge space and also conjugation in spinor space.

In this case we have for U(1)Y invariance, ỸΥ = −Yχ − 1/2. While we can write a similar

alternate coupling for the ξ also, we do not explicitly write it here. With the alternate

Yukawa coupling eq. (2.27) in the Υ model, the mass terms are

LΥAlt
mass ⊃ −MχX̄ c

2X c
2 −

(

X̄ c
1 Ῡ

)

(

Mχ m̂

m̂ MΥ

)(

X c
1

Υ

)

, (2.28)

where m̂ ≡ λ̂Υv/
√
2. This mass matrix is identical to that in the theory with the ξ

model shown in eq. (2.20), but now written for (X c
1 ,X c

2 ) instead of (X1,X2). So the mass

eigenvalues are the same as in the ξ model. Furthermore, due to the conjugation, all the

gauge couplings are with opposite sign to what is in the model with only the ξ.

2.4 The 22̄(11̄)2 model

Here we consider the addition of both the SU(2) singlet fields Υ and ξ, in addition to the

SU(2)L doublet field X , and turning on both Yukawa couplings in eq. (2.4), namely λΥ and

λξ. For U(1)Y invariance, we recall that Υ has hypercharge Yχ−1/2 and ξ has hypercharge

Yχ + 1/2.

After EWSB, eq. (2.4) will generate mass mixing terms

Lmass ⊃ −
(

X̄1 ξ̄
)

(

Mχ m̃

m̃ Mξ

)(

X1

ξ

)

−
(

X̄2 Ῡ
)

(

Mχ m

m MΥ

)(

X2

Υ

)

, (2.29)

where m ≡ λΥv/
√
2 and m̃ ≡ λξv/

√
2, both of which we will assume to be real for

simplicity. The above mass matrix is diagonalized by two O(2) rotations

(

X1

ξ

)

=

(

c′V −s′V
s′V c′V

)(

X ′
1

X ′
4

)

;

(

X2

Υ

)

=

(

cV −sV

sV cV

)(

X ′
2

X ′
3

)

, (2.30)

where {X ′
i} denote the mass eigenstates, and, cV ≡ cos θV , sV ≡ sin θV , with the mixing

angle given by

tan 2θ′V =
2m̃

(Mχ −Mξ)
; tan 2θV =

2m

(Mχ −MΥ)
. (2.31)

The mass eigenvalues Mi are

M1,4 =
1

2

[

Mχ +Mξ ±
√

(Mχ −Mξ)2 + 4m̃2

]

;

M2,3 =
1

2

[

Mχ +MΥ ±
√

(Mχ −MΥ)2 + 4m2

]

, (2.32)
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Yχ -1/2 -1/6 1/6 1/2

Q1, Q4 0 1/3 2/3 1

Q2, Q3 -1 -2/3 -1/3 0

Table 1. Qi for various choices of Yχ = ±YSM . Q4 should be ignored in the 22̄(11̄)1 Υ model, Q3

should be ignored in 22̄(11̄)1 ξ model, and all four states are present in the 22̄(11̄)2 model.

which can also be written as

M1 = Mχc
′2
V +Mξs

′2
V + 2m̃s′V c

′
V ; M4 = Mχs

′2
V +Mξc

′2
V − 2m̃s′V c

′
V ;

M2 = Mχc
2
V +MΥs

2
V + 2msV cV ; M3 = Mχs

2
V +MΥc

2
V − 2msV cV . (2.33)

To have non-negative M1 and M2 one requires MχMΥ − m2 ≥ 0 and MχMξ − m̃2 ≥ 0

respectively. Henceforth we drop the primes on the mass eigenstate fields for notational

ease. Taking the EM charges of the mass eigenstates Xi asQi, we have, Q1 = Q4 = Yχ+1/2,

Q2 = Q3 = Yχ − 1/2. We show in table 1 the Qi for various choices of Yχ.

The W 1
µ , W

3
µ and Bµ interaction terms in eqs. (2.2), (2.3) and (2.5) in the fermion

mass basis become

L ⊃ +
g

2
W 3

µ

[(

c′2V X̄1γ
µX1 − c′V s

′
V X̄1γ

µX4 − c′V s
′
V X̄4γ

µX1 + s′2V X̄4γ
µX4

)

−
(

c2V X̄2γ
µX2 − cV sV X̄2γ

µX3 − cV sV X̄3γ
µX2 + s2V X̄3γ

µX3

)]

(2.34)

+
g

2
W 1

µ

[

cV c
′
V X̄2γ

µX1 − cV s
′
V X̄2γ

µX4 − sV c
′
V X̄3γ

µX1 + sV s
′
V X̄3γ

µX4 + h.c.
]

+g′Bµ [(YX c
′2
V + Yξs

′2
V )X̄1γ

µX1 + (−YX + Yξ)s
′
V c

′
V (X̄1γ

µX4 + h.c.) + (YX s
′2
V + Yξc

′2
V )X̄4γ

µX4

+(YX c
2
V + YΥs

2
V )X̄2γ

µX2 + (−YX + YΥ)sV cV (X̄2γ
µX3 + h.c.) + (YX s

2
V + YΥc

2
V )X̄3γ

µX3

]

.

The Higgs interactions are got by replacing v → v(1 + h/v) in eq. (2.12), which in the

fermion mass basis is

L ⊃
{

− λξ√
2
h
[

s′V c
′
V X̄1X1 − s′V c

′
V X̄4X4 + (c′2V − s′2V )X̄4X1

]

−λΥ√
2
h
[

sV cV X̄2X2 − sV cV X̄3X3 + (c2V − s2V )X̄3X2

]

}

+ h.c. . (2.35)

2.5 Some vector-like extensions of the SM

We add to the SM some number of vector-like colored (quark) and uncolored (lepton)

doublets and singlets corresponding to the 22̄(11̄)1 or 22̄(11̄)2 framework outlined in the

previous subsection. For notational ease, we refer to the quark SU(2) doublet XQ simply

as Q, quark SU(2) singlets ξU as U and ΥD as D, and, the lepton SU(2) doublet XL as

L, SU(2) singlets ΥE as E and ξN as N . From the context it should be clear that we are

referring to the new vector-like fermions and not the SM ones. These vector-like quarks

and leptons have EM charges same as the corresponding SM quarks and leptons only for

the specific hypercharge Yχ assignments of YQ = 1/6 and YL = −1/2 respectively. We

give below the nomenclature of the models with the addition of various vector-like SU(2)

doublet and singlet quarks and leptons to the SM:
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• Minimal vector-like Quark: the 22̄(11̄)1 model in the SU(3)c fundamental represen-

tation, with an SU(2) doublet quark XQ and one SU(2) singlet quark; with only the

ΥD will be the MVQD1, while with only the ξU will be the MVQU1. n copies of

these will be called MVQDn and MVQUn.

• vector-like quark (VQ): the 22̄(11̄)2 model in the SU(3)c fundamental representation,

with an SU(2) doublet quark XQ and two SU(2) singlet quarks ΥD and ξU . n copies

of these will be called VQn.

• Minimal vector-like lepton: the 22̄(11̄)1 model which is an SU(3)c singlet, with an

SU(2) doublet lepton XL and one SU(2) singlet lepton; with only the ΥE will be the

MVLE1, while with only the ξN will be the MVLN1. n copies of these will be called

MVLEn and MVLNn.

• vector-like lepton (VL): the 22̄(11̄)2 model which is an SU(3)c singlet, with an SU(2)

doublet lepton XL and two SU(2) singlet leptons ΥE and ξN . n copies of these will

be called VLn.

• The minimal vector-like extension of the SM (MVSM): MVQ{D,U}+MV L{E,N}
forms the 1-generation MVSM{D,U,E,N}. n copies of these will form the n-generation

MVSM.

• The vector-like extension of the SM (VSM): V Q+ V L forms the 1-generation VSM

(VSM1). n copies of these will form the n-generation VSM, called here VSMn.

For some YQ and YL assignments and in some region of parameter-space it is possible

that the lightest vector-like particle is uncolored and EM neutral. Such a state, if stable,

can be a possible dark matter candidate. For example, in the MV LE model with YL = 1/2

there are two EM neutral uncolored states, and if stable, the lighter of these can be a dark

matter candidate. Alternately, if the lightest vector-like particle is colored and stable, is it

possible that a color-singlet bound-state of this (either with another vector-like particle or

with an SM quark) could be the dark matter? A detailed investigation of this possibility

is beyond the scope of this work, but such a strongly interacting dark matter (SIMP)

candidate appears to be heavily disfavored as discussed for example in refs. [54–60].

The addition of vector-like fermions changes the running of the Higgs quartic coupling

and the vacuum can become unstable at some energy scale Λ. We will treat the theory

we have written down as an effective theory valid below the scale Λ. Refs. [32, 35] derive

the vacuum stability constraint with vector-like leptons only, in a model similar to our

V Ln. Ref. [35] finds, for example for λ = 1, that Λ ≈ 2.5TeV for the lightest charged

lepton mass of 100GeV. For vector-like lepton masses of 200, 450GeV (for the two mass

eigenstates), ref. [32] finds Λ ∼ 10TeV. Since their main motivation is obtaining a large

µγγ ≈ (1.5, 2), they need large Yukawa couplings for large vector-like masses, and therefore

one would expect stronger constraints in their case than in ours. Ref. [61] analyzes the

vacuum stability issue when new physics contribution changes the sign of the ggh and γγh

effective vertices (while keeping the magnitude the same as in the SM). Ref. [62] works out

– 12 –



J
H
E
P
0
9
(
2
0
1
4
)
1
3
0

the vacuum stability constraints in the case when the vector-like fermion mass is tied to

the scale of EWSB. Ref. [63] considers the possibility of a strongly first-order electroweak

phase transition driven by heavy vector-like fermions. Working out the precise value of Λ

in our case will be taken up in future work.

We focus here on SM-like SU(3), SU(2)L and U(1)Y representations, and a more general

analysis with non-SM-like representations will be postponed to future work. Our focus in

this work will be the modifications of precision electroweak observables, and, LHC Higgs

production and decay, due to the presence of additional vector-like fermions in SM-like

representations.

3 Precision electroweak observables

One of the great successes of the SM is the near perfect agreement between the indirect con-

straints on the Higgs mass from precision electroweak observables [64–66] and the mass of

the observed state at the LHC. The precision electroweak constraints have been investigated

in the context of a chiral fourth generation elsewhere (see for example ref. [67] and references

therein). In this section, we present the oblique corrections [68–72] written in terms of the

S, T, U parameters [68, 69] due to vector-like fermions. The S, T, U parameters are given by

S = −16πΠ′
3Y (0) , (3.1)

T =
4π

s2Wm2
W

[Π11(0)−Π33(0)] , (3.2)

U = 16π
[

Π′
11(0)−Π′

33(0)
]

. (3.3)

Vector-like quark contributions to S, T and U have been presented earlier in ref. [73].

Here we derive these including contributions from vector-like quarks and leptons, and in

the following sections make contact with properties of the recently observed Higgs boson.

3.1 S, T , U constraints

The allowed regions in the S and T plane is shown for instance in refs. [74, 75]. We

take the reference Higgs mass and top mass values as mh = 125.5 GeV [76, 77] and

mt = 173.2 GeV [78–80]. We include the ∆S, ∆T and ∆U contributions due to vector-like

fermions and ascertain whether they lie within the 68 % or 95 % allowed regions.

The U parameter best-fit value is 0.08 ± 0.11 [74]. Since contributions to U are typi-

cally quite small, it does not impose any nontrivial constraints on models. It is therefore

acceptable to set U to zero and obtain constraints from S and T ; we adopt this method here.

New vector-like fermions X i will generate additional contributions to S, T and U

due to the new W 1, W 3 and B interactions going into the gauge 2-point functions Π

shown in figure 2. The detailed computation of the Π with vector-like fermions is given in

appendix A. There we define ΠLL with a chirality projector PL inserted in the first vertex

and PL in the second vertex, and similarly for ΠRR, ΠRL and ΠLR, and, Π ≡ ΠLL +ΠLR,

and also, Π{mi,mj} = Π(mimj)+Π(mjmi), Π(mi) = Π(mimi). We similarly define Π′. In terms

of these Πs computed in appendix A, we present next the S, T , and U due to vector-like

fermions in the 22̄(11̄)1 and 22̄(11̄)2 models of sections 2.3 and 2.4 respectively.
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Figure 2. The vector-like fermion contribution to the gauge 2-point function Π(mimj).

3.2 S, T , U in the 22̄(11̄)1 model

We work out in turn the S, T , U , first for the model of section 2.3.1 with only the Υ

present, and then for the model of section 2.3.2 with only the ξ present.

3.2.1 Υ model

With only the Υ present, in the 22̄(11̄)1 vector-like model described in section 2.3.1, from

the interactions in eqs. (2.2), (2.3) and (2.5) we compute the gauge boson 2-point functions

of figure 2 and then S, T and U . We compute Π′
3Y (0) and then the S parameter from

eq. (3.1) as

S = −32πd3

[

T 3
11YXΠ

′(m1)(0) + T 3
22

(

c2V (YX c
2
V + YΥs

2
V )Π

′(m2)(0)

+s2V (YX s
2
V + YΥc

2
V )Π

′(m3)(0)− c2V s
2
V (−YX + YΥ)Π

′{m2,m3}(0)
)]

, (3.4)

where d3 is the dimension of the SU(3) representation of the vector-like fermion (for ex-

ample, for a fundamental of SU(3), d3 = Nc = 3). The divergent 2/ǫ pieces (along with

the −γ + log 4π pieces) cancel leaving a finite S. We compute next the T -parameter, for

which we compute Π11(0) and Π33(0) as

Π11 = 2d3(T
1
12)

2
(

c2V Π
{m1,m2} + s2V Π

{m1,m3}
)

, (3.5)

Π33 = 2d3

{

(T 3
11)

2Π(m1) + (T 3
22)

2
[

c4V Π
(m2) + s2V c

2
V Π

{m2,m3} + s4V Π
(m3)

]}

. (3.6)

T is then given by eq. (3.2). Again, the divergent 2/ǫ pieces (along with the −γ + log 4π

pieces) cancel leaving a finite T . U is computed using eq. (3.3) for which the Π′
11(0) and

Π′
33(0) are got from equations identical to eqs. (3.5) and (3.6) except for replacing Π → Π′.

From the X c equivalence noted in section 2, we infer that the vector-like fermion contri-

butions to S and T parameters is the same whether written in terms of the X or X c. This is

because the 2-point functions shown in figure 2 have two gauge interaction vertices although

each with opposite sign compared between X and X c formulations, and the loop functions

have the same value since the mass eigenvalues are exactly the same in the two formulations.

This is not to say, however, that Yχ and −Yχ should necessarily give the same S, and

we do indeed find that S can change sign with the sign of Yχ. This is because isospin

offers a reference, i.e., in X , a given isospin component has hypercharge Yχ, while in X c it

has hypercharge −Yχ. Furthermore, the Yukawa interaction terms in eq. (2.4) couples the

vector-like sector to a chiral SM sector, in particular to the Higgs with a specific hypercharge

assignment, namely YH = +1/2. For the two cases with Yχ and −Yχ, the U(1)Y invariance
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of this Yukawa coupling implies different Υ (or ξ) hypercharges and consequently different

electromagnetic charges, and observables can be sensitive to this difference, as for instance

the S-parameter.

It is interesting that vector-like fermions can easily give a negative S-parameter. This

is unlike in the case of chiral fermions where one finds that the S-parameter is usually

positive leading to a tight constraint on dynamical EWSB BSM sectors [68, 69]. Some

examples of theories that give a negative S-parameter are also discussed in refs. [81, 82].

3.2.2 ξ model

Let us turn to the ξ model described in section 2.3.2. For obtaining the gauge 2-point func-

tions, we notice that we can take the results for the model of section 2.3.1 for the Υ model

and interchange T 3
11 ↔ T 3

22 in theW 3
µ interactions while keepingW 1

µ and Bµ interactions the

same. This implies that the S-parameter for this model will be the same as that obtained

in the model of section 2.3.1 but for opposite sign of Yχ, i.e., SξModel(Yχ) = SΥModel(−Yχ).

The T -parameter is the same in both the models of section 2.3.1 and section 2.3.2. We

have checked that our numerical results are consistent with these expectations.

3.2.3 Υ model with alternate Yukawa coupling

For the Υ model with the alternate Yukawa coupling of eq. (2.27), we noted in section 2.3.3

that the mass matrices are identical to that of the ξ model. Also, the gauge couplings are of

opposite sign, but since the vector-like fermion contributions to the gauge 2-point functions

have two such couplings, this will not affect the S and T parameters. The last change is

the different hypercharge assignment ỸΥ = −Yχ − 1/2. The S and T parameters for the

Υ coupled as in LYukAlt will in general be different when compared to the Υ model or ξ

model. For Yχ = −1/2, however, we have ỸΥ = Yχ, and we therefore have

SYukAlt
ΥModel(Yχ = −1/2) = SYuk

ξModel(Yχ = −1/2) .

3.3 S, T , U in the 22̄(11̄)2 model

In the 22̄(11̄)2 vector-like model described in section 2.4, from the interactions in

eqs. (2.2), (2.3) and (2.5) we can compute the gauge boson 2-point functions of figure 2.

We find

Π11 = 2d3(T
1
12)

2
[

c
2
V c

′2
V Π{M1,M2} + s

2
V c

′2
V Π{M1,M3} + c

2
V s

′2
V Π{M2,M4} + s

2
V s

′2
V Π{M3,M4}

]

,

Π33 = 2d3
{

(T 3
11)

2
[

c
′4
V Π(M1) + s

′2
V c

′2
V Π{M1,M4} + s

′4
V Π(M4)

]

+(T 3
22)

2
[

c
4
V Π(M2) + s

2
V c

2
V Π{M2,M3} + s

4
V Π(M3)

]}

,

Π′
3Y = 2d3

{

(T 3
11)

[

c
′2
V (Yχc

′2
V + Yξs

′2
V )Π′(M1) − c

′2
V s

′2
V (−Yχ + Yξ)Π

′{M1,M4} + s
′2
V (Yχs

′2
V + Yξc

′2
V )Π′(M4)

]

+(T 3
22)

[

c
2
V (Yχc

2
V +YΥs

2
V )Π′(M2)−c

2
V s

2
V (−Yχ+YΥ)Π

′{M2,M3}+s
2
V (Yχs

2
V +YΥc

2
V )Π′(M3)

]}

(3.7)

where the Π and Π′ are as given in eqs. (A.4) and (A.5) respectively. The S, T and U are

then given by eqs. (3.1), (3.2) and (3.3) respectively.
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3.4 Shift in the Zbb̄ coupling

For Yχ = 1/6,−1/6 there are vector-like states with EM charge −1/3, and if they also have

color, these states can mix with the SM b-quark after EWSB. This mixing will imply a shift

in the Zbb̄ coupling which is constrained by LEP. The measurements Rb = 0.21629±0.00066

and Γhadrons = 1.7444±0.0020GeV at LEP [74], imply constraints on the Zbb̄ coupling. A

Yukawa coupling between the SM b and the vector-like b′ induces a mixing, which if it’s only

in the L sector, i.e. between bL ↔ b′L only,3 the ZbLb̄L coupling shifts to −1/2(c2L)+(1/3)s2W
where cL ≡ cos θL and the mixing angle is given by tan(2θL) = (λ/

√
2)v/Mb′ . This mixing

is constrained by the above data and will imply the limit

Mb′/λ ≥ 3509 GeV at 1σ ; and Mb′/λ ≥ 2481 GeV at 2σ . (3.8)

This limit can be evaded by ensuring that the Yukawa couplings between the SM b and

b′ is not too large, as dictated by eq. (3.8). We will assume that this is the case in the

rest of our analysis. This limit will be evaded completely in the model where a custodial

symmetry protects the Zbb̄ coupling (see ref. [83]). Also, this limit will not be relevant for

Yχ assignments that do not result in a charge −1/3 vector-like state.

4 Direct collider constraints

4.1 Mass and gauge eigenstates

In order to consider the constraints from colliders, we look at the decays of the vector-like

matter. In particular, we are interested in decays via the Higgs and the electroweak gauge

bosons. We write the following Lagrangian for the mass sector of the model. We denote

the VSM quarks as TR and BR, where these are the singlet states under SU(2) that are

referred to in previous sections as ξU and ΥD. The states denoted as TR̄, BR̄ are the

left-handed projections of the vector-like singlets. We assume that we are dealing with

only one new generation of VSM quarks and leptons, i.e. the VSM1 in order to get an idea

of the constraints. For the sake of simplicity, we do not consider the effects of mixing with

the doublet under SU(2), previously denoted as XQ, as it will not substantially alter the

results. Aside from the assumption that off-diagonal couplings are small relative to the

diagonal entries, we do not make any a priori assumptions about their sizes relative to each

other, so the mixing between T and the 2nd and 3rd generations can in principle be of

similar sizes. Motivated by simplicity and data, we do not consider mixing with the first

generation, although this could be implemented, given that the off-diagonal couplings are

small. We can write the mass terms as

Lmass = mccc̄LcR +mctc̄LtR +mcT c̄LTR +mtct̄LcR +mttt̄LtR +mtT t̄LTR

+ µcT̄R̄cR + µtT̄R̄tR + µT T̄R̄TR

+ (c ↔ s, t ↔ b, T ↔ B) ,

(4.1)

where mij is used to denote a mass obtained due to the Higgs VEV in the Yukawa interac-

tions of section 2, and µi, which appeared in sections 2 and 3 as Mξ, is a vector-like mass.

3For a concrete example of a theory where this is the case, see refs. [7, 33].
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Because this produces a non-diagonal mass matrix, in order to perform decay calculations

we must diagonalise to the mass-eigenvalue basis. We write the up-type mass matrix as

follows:

Mu = M0
u + δMu ≡









mcc 0 0

0 mtt 0

0 0 µT









+









0 mct mcT

mtc 0 mtT

µc µt 0









, (4.2)

which will allow us to use a perturbative approach in moffdiag/mdiag to find the diagonal-

ising matrices. The resulting left-handed diagonalization matrix,V u
L , is given by

V u
L =











1 mctmtt+mccmct+mcTmtT

m2
tt−m2

cc

µTmcT+µcmcc+µtmct

µ2
T
−m2

cc

mctmtt+mccmct+mcTmtT

m2
cc−m2

tt

1 µTmtT+µcmct+µtmtt

µ2
T
−m2

tt

µTmcT+µcmcc+µtmct

m2
cc−µ2

T

µTmtT+µcmct+µtmtt

m2
tt−µ2

T

1











. (4.3)

Using the relation V u
L
†MuM

†
uV u

L in order to determine V u
L . Similarly, V u

R is found to be

V u
R =











1 mctmtt+mccmct+µcµt

m2
tt−m2

cc

µTµc+mcTmcc+mtTmct

µ2
T
−m2

cc

mctmtt+mccmct+µcµt

m2
cc−m2

tt

1 mctmcT+µtµT+mttmtT

µ2
T
−m2

tt

µTµc+mcTmcc+mtTmct

m2
cc−µ2

T

mctmcT+µtµT+mttmtT

m2
tt−µ2

T

1











. (4.4)

Given that V u
L
†MuV

u
R diagonalises Mu to Mdiag

u , we can look at the mass terms

Lmass =
(

c̄′L t̄′L T̄ ′
R̄

)

Mdiag









c′R
t′R
T ′
R









=
(

c̄′L t̄′L T̄ ′
R̄

)

V u
L
†MuV

u
R









c′R
t′R
T ′
R









(4.5)

such that the mass eigenstates are given by

c′L = cL +

[

mctmtt +mccmct +mcTmtT

m2
tt −m2

cc

]

tL +

[

µTmcT + µcmcc + µtmct

µ2
T −m2

cc

]

TR̄

t′L =

[

mctmtt +mccmct +mcTmtT

m2
cc −m2

tt

]

cL + tL +

[

µTmtT + µcmct + µtmtt

µ2
T −m2

tt

]

TR̄

T ′
R̄ =

[

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

]

cL +

[

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

]

tL + TR̄

(4.6)

and

c′R = cR +

[

mctmtt +mccmct + µcµt

m2
tt −m2

cc

]

tR +

[

µTµc +mcTmcc +mtTmct

µ2
T −m2

cc

]

TR

t′R =

[

mctmtt +mccmct + µcµt

m2
cc −m2

tt

]

cR + tR +

[

mctmcT + µtµT +mttmtT

µ2
T −m2

tt

]

TR

T ′
R =

[

µTµc +mcTmcc +mtTmct

m2
cc − µ2

T

]

cR +

[

mctmcT + µtµT +mttmtT

m2
tt − µ2

T

]

tR + TR

(4.7)
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The same procedure is followed for the down-type quarks, yielding the same results as

above, only with c ↔ s, t ↔ b, T ↔ B.

Higgs sector. Since the mass matrix we wrote above includes vector-like mass terms

that do not arise via interaction with the Higgs, there is a misalignment between the mass

matrix and the Yukawa interaction matrix. The Lagrangian for the Yukawa interactions

with the Higgs is given by

LHiggs = −λcchc̄LcR − λcthc̄LtR − λcThc̄LTR − λtcht̄LcR − λttht̄LtR − λtTht̄LTR

− λsshs̄LsR−λsbhs̄LbR−λsBhs̄LBR−λbshb̄LsR−λbbhb̄LbR−λbBhb̄LBR

, (4.8)

which can be written in matrix form as

LHiggs = −h
(

c̄L t̄L T̄R̄

)









λcc λct λcT

λtc λtt λtT

0 0 0

















cR

tR

TR









+ c ↔ s, t ↔ b, T ↔ B

= −h
(

c̄L t̄L T̄R̄

)

Λu









cR

tR

TR









+ c ↔ s, t ↔ b, T ↔ B .

It is clear that applying the same rotation matrices that diagonalised to the mass eigenstate

basis will not diagonalise the Yukawa interaction matrix, giving rise to non-zero off-diagonal

couplings via the Higgs.

We can write the Lagrangian in terms of the mass eigenstates as

LHiggs = −h
(

c̄′L t̄′L T̄ ′
R̄

)

Λdiag
u









c′R
t′R
T ′
R









, (4.9)

with

Λdiag
u = V u

L
†ΛuV

u
R =









αcc αct αcT

αtc αtt αtT

αTc αTt αTT









, (4.10)

which is not diagonal. The αij coefficients are listed in appendix B. They give the size of

the mixing through the Higgs between generations in the mass eigenstate basis. To make

our expressions more clear, we define quantities au,di where i = 1, . . . , 6 in the appendix,

where au,d1,2,3 correspond to the off-diagonal entries in the up (down)-type left diagonalization

matrix, and au,d4,5,6 correspond to the right diagonalization matrix.

Electroweak sector. Due to the addition of the new family of quarks, we must modify

the CKM matrix accordingly. The matrix is defined as

VCKM,(4×4) = (V u
L,(4×4))

†V d
L,(4×4) (4.11)
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with the full 4× 4 matrices approximated as

V u
L,(4×4) =















1 0 0 0

0 1 au1 au2

0 −au1 1 au3

0 −au2 −au3 1















, V d
L,(4×4) =















1 0 0 0

0 1 ad1 ad2

0 −ad1 1 ad3

0 −ad2 −ad3 1















, (4.12)

where we use the coefficients au,di defined in appendix B, and explained above, such that

the new CKM matrix is approximately given by

VCKM,(4×4) =















1 0 0 0

0 1 + au1a
d
1 + au2a

d
2 −au1 + ad1 + au2a

d
3 −au2 + ad2 − au1a

d
3

0 au1 − ad1 + au3a
d
2 1 + au1a

d
1 + au3a

d
3 −au3 + ad3 + au1a

d
2

0 au2 − ad2 − au3a
d
2 aud − ad3 + au2a

d
1 1 + au2a

d
2 + au3a

d
3















. (4.13)

Because we did not include the first generation earlier, we have approximated

Vus, Vub, Vcd, Vtd = 0, but doing a full 4 × 4 analysis would generate these properly

as required.

Flavour changing neutral currents (FCNCs) may arise through couplings to the Z boson

at tree level. The quark neutral current is given by

jµNC =
g

cos θW

∑

i

q̄iLγ
µ
[

ti3 − sin2 θWQi

]

qiL

+ q̄iRγ
µ
[

− sin2 θWQi

]

qiR .

(4.14)

The right handed current does not change with the addition of the TR state, as it carries

the same charge as the other up-type quarks. However, the addition of the TR̄ singlet to

the left handed states will result in flavour-changing neutral currents, as it does not carry

the same isospin as the other left handed quarks. This can be seen by writing down the

current in matrix form as

LNC =
g

cos θW

(

c̄L t̄L T̄R̄

)

γµZµ

{









1
2 − 2

3 sin
2 θW 0 0

0 1
2 − 2

3 sin
2 θW 0

0 0 1
2 − 2

3 sin
2 θW









+









0 0 0

0 0 0

0 0 −1
2









}









cL

tL

TR̄









.

(4.15)

This allows it to be seen that there will be a FCNC induced due to the appearance of

the −1
2 in the matrix (henceforth denoted as δgZq̄q added to the diagonal matrix, which

accounts for the isospin of the TR̄ being 0). It is then quite clear that the matrix entries

for our FCNC will be given by β = gZq̄q + V †
LδgZq̄qVL, and is found to be:

β =









β11 β12 β13

β21 β22 β23

β31 β32 β33









, (4.16)
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where the coefficients βij are defined in appendix B, and give the sizes of the modified

interactions between the Z boson and the SM and vector-like quark. Thus the interaction

Lagrangian can be written as

LNC =
g

cos θW

(

c̄′L t̄′L T̄ ′
R̄

)

γµZµβ









c′L
t′L
T ′
R̄









. (4.17)

We have shown here the analysis for the up-type sector, and a similar analysis follows for

the down-type sector.

4.2 Computation of decay widths

Having introduced these small couplings between the 3rd generation SM quarks and the

VL quarks, we now want to check that there is prompt decay via W to b, or H to t, while

also ensuring minimal effects on the gluon fusion rate and the diphoton production rate.

The Lagrangian term governing the decay of the T to a W boson and b quark is given by

L = g√
2
W+

µ T R̄γ
µVTbbL. This generates the decay partial width

Γ(T → Wb) =
g2|VTb|2M3

T

8M2
W

1

8π

(

1− M2
W

M2
T

)2(

1 +
2M2

W

M2
T

)

, (4.18)

where we can see that this will depend on |VTb|2. We denote the fermion mass eigenvalues

as Mt and MT . For the decay of the T to a Z and a SM top, the Lagrangian term is

L = g
cos θW

ZµT R̄γ
µβ32tL. This generates the decay partial width

Γ(T → Zt) =
g2|β32|2MT

4M2
Z cos2 θW

1

8π

[

(M2
T − (Mt +MZ)

2)(M2
T − (Mt −MZ)

2
]1/2

·
[

M2
Z

M2
T

(

1 +
M2

t −M2
Z

M2
T

)

+

(

1− 2M2
t

M2
T

+
M4

t −M4
Z

M4
T

)]

. (4.19)

We can see that this depend on β2
32. For a T decaying to a SM top and a Higgs, the

Lagrangian term is L = −αtTht̄LTR. This leads to the decay partial width

Γ(T → Ht) =
α2
tT

32πMT

[

(M2
T − (Mt +MH)2)(M2

T − (Mt −MH)2)
]1/2

(

1 +
M2

t −M2
H

M2
T

)

.

(4.20)

So this depends on α2
tT .

4.3 Experimental limits from VLQuark searches

In this section we review the current experimental limits from ATLAS and CMS on searches

for vector-like quarks, taking the example of a top-like quark. The decays of such a vector-

like quark have a dependence on the off-diagonal Yukawa couplings of the T to the t, as well

as the other off-diagonal couplings (see definition of αtT in appendix B). The decay of T to

tH will provide a bound on (λ2
tT ·µT ), as the decay width is Γ(T → Ht) ∼ α2

tT ·MT /(32π
2),
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and to leading order in Mt/MT , we have αtT ∼ λtT and MT ∼ µT , such that Γ(T → Ht) ∼
λ2
tT · µT /(32π

2). This approximate expression only applies for MT ≫ Mt (see eq. (4.20)),

and λij ≪ 1 for i 6= j. The condition λij ≪ 1 comes from the expression for MT as a

function of λij that can be seen from eq. (B.4), recalling that mij are the masses obtained

due to the Higgs VEV in the Yukawa interactions of section 2 such that mij = λijv/
√
2.

Depending on the decay width, the decay can either be prompt or displaced. We define

a prompt decay to be one where cτ < 100µm, such that it would be smaller than cτ for the

D0 meson [74], which requires (λ2
tT ·µT ) & 1.6×10−10GeV. Based on 19.6 fb−1, CMS studied

the properties of a possible t-like VL quark with decays into bW, tZ and tH. They find

limits of between 687 and 782GeV [84]. The search at ATLAS used 14.3 fb−1 of data, with

possible t-like decays into bW and tH. They propose limits of between 640 and 790GeV [85].

If the VL quark is long-lived such that cτ & 3m, it will decay outside the detector, which

requires (λ2
tT · µT ) . 6× 10−15GeV. Heavy charged long-lived states such as these usually

have low, but not zero, energy loss in the detector and may charge oscillate. Limits on long-

lived VL quarks can be derived from the interpretation of ATLAS and CMS searches [86].

Using CMS results [87] one can exclude mQ < 800GeV for cτ > 3m, assuming behaviour

similar to that of long-lived heavy scalar top quarks. A caveat is that these limits assume

pair-production of the VL quarks, with kinematics independent of the lifetime of the parti-

cle [86]. The MoEDAL collaboration discusses [88] in more detail the limits on production

cross-section-dependent limits for various decay lifetimes of long-lived VL quarks.

The current FCNC experimental limits also place an upper bound on the off-diagonal

Yukawa couplings. In particular, we compute the decay width of t → cX, where X =

Z,H and use that as a means of limiting the mixing between the VL generation and the

SM quarks. The current limit on FCNC top decays to a charm and Higgs are given by
√

|αtc|2 + |αct|2 < 0.14 [89]. The current limit on top decays into up-type quarks and

Z is given by BR(t → Zq) < 0.05 [90], with eventual limits expected to reach BR(t →
Zq) < 10−5 [91]. We simplify our analysis by setting all the off-diagonal Yukawa couplings

equal to each other, λij ≡ δ. We find that δ . 0.24 is required to avoid the constraint on
√

|αtc|2 + |αct|2 for µT & 600GeV. This bound comfortably avoids the current bounds set

by the decay of the top into Z and an up-type quark.

4.4 Experimental limits from VLLepton searches

We do not compute limits on vector-like leptons here, so we summarise briefly here the

results of ref. [53]. In the case of singlet vector-like leptons, the constraints are not very

tight, with Ml & 100GeV if it decays into an electron or muon, and a lower limit less than

100GeV if it decays into a tau. In the case of doublet vector-like leptons, the constraints are

more strict, with Ml & 450GeV if it decays into an electron or muon, and Ml & 300GeV if

it decays into a tau. These lower bounds motivate our choice of lightest mass eigenvalues

for the vector-like fermions in table 2.
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5 Higgs production and decay processes

In the SM, the hgg and hγγ couplings occur at loop level, the leading order being at one-

loop. If vector-like fermions couple to the Higgs boson, they could potentially contribute

in these loops and affect these amplitudes. Colored vector-like fermions that couple to the

Higgs boson contribute to the gg → h loop amplitude, and electromagnetically charged ones

to the h → γγ loop amplitude. Here we present these contributions. We use leading order

expressions since we always deal with ratios of these quantities to corresponding SM ones.

These ratios are quite insensitive to higher order corrections; for example, ref. [92] finds that

due to vector-like quarks in a composite-Higgs model, the ratios are changed by at most a

few percent. Ref. [93] computes the fermion contribution to the ggh effective coupling using

the low-energy Higgs theorem. They show the typical size of modification of this vertex in

a few models of new physics. They argue that QCD corrections should largely cancel in

the ratio Γgg/Γ
SM
gg where the numerator includes the contribution of heavy new physics.

The h → gg partial width at leading order (1-loop) in the SM is given for example

in ref. [94].vector-like fermions that carry color also contribute to the h → gg decay rate

while uncolored ones do not. We generalize this result to include the contributions due to

vector-like fermions in the fundamental representation of SU(3) (i.e. vector-like quarks),

denoted as χ, by rescaling with the Higgs coupling shown below in parenthesis (. . .) as

Γ(h → gg) =
Gµα

2
sm

3
h

36
√
2π3

∣

∣

∣

∣

∣

∣

3

4

∑

Q

(

κhQQv√
2MQ

)

Ah
1/2(τQ)

∣

∣

∣

∣

∣

∣

2

, (5.1)

where τQ = m2
h/4M

2
Q, Q now includes the SM and the new vector-like quarks, κhQQ are

the Higgs couplings to the quarks, i.e. the usual Yukawa couplings for the SM quarks and

the couplings shown in eqs. (2.19), (2.26) and (2.35) for the new vector-like quarks X . The

function A1/2 can be found in ref. [94]. The rescaling is as shown above since the SM hgg

and hγγ fermion contributions are proportional to the fermion Yukawa coupling. Also, such

a rescaling of the SM (chiral) result is applicable in the vector-like case since a vector-like

Weyl fermion pair counts as a Dirac fermion, similar to the SM situation, and the γ and

the g interactions are vector-like with respect to the corresponding unbroken gauge-group

and do not see the distinction between chiral and vector-like fermions. For our numerical

analysis, we take αs at the scale MZ . The gg → h production can be obtained from the

h → gg decay rate. At leading order this is (see for example, ref. [95])

σ(gg → h) =
8π2

m3
h

Γ(h → gg) . (5.2)

The hγγ decay rate at leading order (1-loop) in the SM is given for example in ref. [94].

All states that couple to the Higgs and have nonzero electromagnetic charge contribute

to this process. We generalize this result to include the contributions due to vector-like

fermions (i.e. vector-like quarks and leptons), denoted as χ, by rescaling with the Higgs
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Figure 3. The hgg and hγγ triangle loop quantity κhffv/(
√
2Mf ) A1/2(τf ) showing how it decou-

ples as a function of Mf , contrasting the vector-like case marked “VL” taking κhff = 1 with the

chiral case marked “Ch” taking κhff =
√
2Mf/v.

coupling shown below in parenthesis (. . .) as

Γ(h → γγ) =
Gµα

2m3
h

128
√
2π3

∣

∣

∣

∣

∣

∣

∑

f

NcQ
2
f

(

κhffv√
2Mf

)

Ah
1/2(τf ) +Ah

1(τW )

∣

∣

∣

∣

∣

∣

2

, (5.3)

where τi = m2
h/4M

2
i , f now includes the SM and the new vector-like fermions, κhff are

the Higgs couplings to fermions, i.e. the usual Yukawa couplings for the SM fermions and

the couplings shown in eqs. (2.19), (2.26) and (2.35) for the new vector-like fermions X .

The function A1/2 and A1 can be found in ref. [94]. All EM charged fermions, both colored

and uncolored, contribute here; Nc = 3 for quarks as usual, and abusing notation, Nc = 1

for uncolored fermions (leptons). It is noted there that in the hγγ amplitude, since the

photon is real, one takes αEM (q2 = 0).

To study the decoupling behavior of the fermion contributions to the ggh and γγh

loop amplitudes, we plot in figure 3 the quantity κhffv/(
√
2Mf ) A1/2(τf ) that appear in

eqs. (5.1) and (5.3) contrasting the vector-like case (marked “VL”) with the chiral case

(marked “Ch”). For the vector-like case, we fix κhff = 1 and Mf varied, while for the

chiral case we take κ =
√
2Mf/v since Mf entirely arises from the Yukawa coupling. In

fact, the existence of a chiral fourth generation increases the gg → h production rate by a

factor of 9 compared to the SM, and after including the contribution to the h → γγ BR, a

fourth generation appears to be severely disfavored [96] in a single Higgs doublet model.

Another Higgs production channel is via vector-boson fusion. Although the signal

cross-section is lower than Higgs production via gluon fusion, the presence of the forward

tagging jets help suppress background, making this mode also promising. We will sep-

arate the Higgs production in these categories by including ggh and V BF superscripts

respectively. For brevity, we denote Γh→XX as ΓXX , etc.

The “signal strength” for the h → XX decay mode is defined as

µXX ≡ [σ(pp → h) ∗BR(h → XX)]

[σ(pp → h) ∗BR(h → XX)]SM
. (5.4)
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Processes that have contributions at the tree-level are modified at loop-level by a rela-

tively small amount, and therefore the contributions of heavy vector-like fermions to such

processes can be neglected. For instance, ΓZZ ≈ ΓSM
ZZ , σV BF ≈ σV BF

SM , etc. Furthermore,

with heavy vector-like fermions present, the total Higgs decay width remains dominated by

tree-level decays as it is in the SM, and to a very good approximation, Γtot ≈ ΓSM
tot . Thus,

in the case of heavy vector-like fermion extensions of the SM, these imply the approximate

relations

µV BF
γγ ≈ Γγγ

ΓSM
γγ

; µggh
ZZ ≈ Γgg

ΓSM
gg

; µggh
γγ ≈ Γgg

ΓSM
gg

Γγγ

ΓSM
γγ

;
µggh
γγ

µggh
ZZ

≈ Γγγ

ΓSM
γγ

≈ µV BF
γγ . (5.5)

6 Numerical results for electroweak and Higgs boson observables

Here we explore the possible impact of vector-like fermions on precision electroweak ob-

servables and LHC Higgs observables. We begin with some general comments. Whenever

µZZ deviates from 1, it is entirely due to the vector-like quark contributions to the ggh

vertex as the hZZ vertex is not shifted from its tree-level value. Thus when there are no

vector-like quarks present µZZ = 1, which for instance is the case with only vector-like

leptons present. In the latter case, µγγ may be shifted. µZZ , µWW and µbb are all equal

to each other since all of them measure the ggh vertex. In the following subsections we

present some illustrative examples and show the deviations in µγγ and µZZ we find in the

various models presented.

In all the models we consider, the vector-like quark contribution adds constructively

with the SM top contribution and increases the magnitude of the ggh vertex when compared

to the SM; as a consequence, µZZ,WW,bb ≥ 1 always. The hγγ coupling receives a contribu-

tion from the W± as well which is larger and of opposite sign to the SM quark/lepton

contribution. The vector-like fermion contribution being of the same sign as the SM

quark/lepton contribution therefore decreases the magnitude of the hγγ coupling when

compared to the SM; as a consequence, µV BF
γγ ≤ 1 always. µggh

γγ being the product of the

above two (see eq. (5.5)) can be either bigger than or lesser than 1.

We argued below eqs. (2.4) and (2.9) that the sign of the Yukawa couplings are not

physical in the limit of negligibly small Yukawa couplings mixing SM fermions with vector-

like fermions, as we take here. We demonstrate this here explicitly by taking the Υ model

as an example. For this, we use the argument for how various quantities change under

λΥ → −λΥ we gave below eq. (2.19). It is easy to see that in the vector-like fermion triangle-

loop diagrams for hγγ and hgg couplings, there are either zero or two couplings that change

sign in a particular diagram, thus making the overall sign unchanged. Also, the precision

electroweak observables, S, T, U , given in terms of Π11,Π33,Π3Y (and their derivatives with

respect to p2) all depend on s2V , and thus remain unchanged under λΥ → −λΥ. Although

we explicitly demonstrate here for the Υ model, this is true for all of the models we have

discussed in section 2 due to the general arguments given below eqs. (2.4) and (2.9). We

therefore restrict ourselves to positive Yukawa couplings in the following, without loss of

generality.
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Figure 4. S, T , U for MVLE1 as a function of ML with λE = 1, ME = ML, for YL = −1/2 (solid)

and YL = 1/2 (dashed, for which −S is shown).

6.1 MVLE1 vector-like leptons model

In figure 4 we show S, T , U as a function of ML for MVLE1 with ME = ML and λE = 1.

Note that T and U are independent of YL. Furthermore, U . 0.02 forML,E > 250 GeV, and

will not place any nontrivial constraints; we therefore ignore U in the rest of our analysis.

For YL = 1/2 (−1/2), the χ2, χ3 (χ1) mass eigenstates are EM neutral (and color sin-

glet) as can be seen from table 1. These assignments of YL are therefore interesting for dark

matter if the lightest χ is stable and in regions of parameter space where it is EM neutral.

In the YL = 1/2 (−1/2) Υ (ξ) model case, the EM charged state χ1 (χ2) does not couple

to the Higgs as seen from eq. (2.19), (2.26) and thus µγγ will be 1. Since there are no new

colored fermions, the gg → h production is unchanged, and µZZ,WW,bb etc. will also be 1.

We show in figure 5 the constraint from S and T parameters and µggh
γγ . S and T are

within the 68 % CL ellipse in the light gray region, between 68 % and 95 % ellipse in the

medium gray region, and excluded worse than 95 % CL in the dark gray region. We also

show the (100, 250, 450)GeV contours (with boxed numbers) of the the minimum mass

eigenvalue, i.e. min(m1,m2,m3). It is possible that in some specially constructed models

such light masses may still be allowed; for a discussion of the limits on vector-like leptons,

see for example ref. [53]. To the left of the black solid line there is a mass eigenvalue

< 250GeV. Therefore the safest region in most models from both S and T parameters

and from direct collider constraints is the light gray region to the right of all black lines.

With only vector-like leptons added, the hgg coupling is unaltered and the deviations of

interest are all in the hγγ coupling. Thus, µggh
γγ is altered as shown, whereas µggh

ZZ,bb = 1

and Γgg = ΓSM
gg and are not shown.

6.2 MVQD1 vector-like quarks model

In figure 6 we show S, T , U as a function of MQ for MVQD1. Note that T is always positive

and independent of YQ. U . 0.003 for MQ,D > 500 GeV, and will not place any nontrivial

constraints; we therefore ignore U in the rest of our analysis. In figure 7 we show the the
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Figure 5. For the MVLE1 model with YL = −1/2, λE = 0.5 (first four figures) and λE = 1

(bottom-left), λE = 2 (bottom-right), S and T allowed regions are shown in all the plots, except

middle-right which shows the µggh
γγ (in which the values increase from bottom-left corner to top-

right). S and T are within the 68 % CL ellipse in the light gray region, between 68 % and 95 %

ellipse in the medium gray region, and excluded worse than 95 % CL in the dark gray region. The

boxed numbers label (in GeV) contours of the minimum mass eigenvalue, i.e. min(m1,m2,m3).

– 26 –



J
H
E
P
0
9
(
2
0
1
4
)
1
3
0

Figure 6. S, T , U for MVQD1 with λD = 1 and MD = MQ for YQ = 1/6 (solid) and YQ = −1/6

(dashed).

constraint from S and T parameters as shaded regions for YQ = 1/6, λD = 0.5, 1, 2, and for

YQ = −1/6, λD = 1. We also show the (500, 700)GeV contours (with boxed numbers) of

the the minimum mass eigenvalue, i.e. min(m1,m2,m3). In figure 8 we show µggh
γγ , µggh

ZZ and

µggh
γγ /µggh

ZZ for YQ = 1/6 and −1/6 for λD = 1. Keeping in mind the direct LHC limits on a

vector-like b′ and t′ we ensure that all mass eigenvalues are > 500 GeV and show them as

the colored region. The deviation in µggh
ZZ is entirely due to a change in the ggh vertex since

the hZZ vertex is unchanged, and this change is the same for either sign of YQ. In general,

in gg → h → γγ, i.e. for µggh
γγ , both production and decay vertices are shifted; the ggh

vertex is shifted due to the presence of new colored vector-like fermions, and the hγγ vertex

is shifted since these states carry EM charge as well. Interestingly, as can be seen from

eq. (2.19), the hγγ coupling shift is small in this model since X1 does not couple to the h,

while the h couplings to X2 and X3 are opposite sign and will cancel up to mass differences.

In all cases, the µ asymptote to 1 as the vector-like fermion contributions decouple.

6.3 VSM1 vector-like standard model

Keeping in mind the direct collider limits, we restrict to the parameter-space with all vector-

like quark mass eigenvalue ≥ 500GeV and lepton mass eigenvalues ≥ 250GeV. In figure 9

we show the signal strength in the VSM1 with all the vector-like quark and lepton masses

equal to the value shown in theX-axis, i.e.M{Q,U,D,L,E,N} = MV L, with YQ = 1/6 and YL =

−1/2, and all the Yukawa couplings λ = 1. All these points satisfy the S and T constraints

at or better than 2σ level. The color of the dots denote the lightest mass eigenvalue; the red,

blue and green dots respectively stand for light, medium and heavy mass categories given in

table 2. These mass eigenvalue ranges are motivated by the direct collider limits discussed

in sections 4.3 and 4.4. In figure 10 we show the µ with all the vector-like quark and lepton

masses set equal (M{Q,U,D,L,E,N} = MV L), and all the λ set equal (λ{U,D,E,N} = λV L), for

YQ = 1/6 and YL = −1/2. All these points satisfy the S and T constraints at or better

than 2σ level. The color of the dots denote the lightest mass eigenvalue; the red, blue and

green dots respectively stand for light, medium and heavy mass categories given in table 2.
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−1/6, λD = 1. S and T are within the 68 % CL ellipse in the light gray region, between 68 % and

95 % ellipse in the medium gray region, and excluded worse than 95 % CL in the dark gray region.

The boxed numbers label (in GeV) contours of the minimum mass eigenvalue, i.e.min(m1,m2,m3).

Mq(GeV) Mℓ (GeV)

Light ≤ 700 ≤ 450

Medium (700, 1000) (450, 750)

Heavy > 1000 > 750

Table 2. The three categories for the lightest mass eigenvalue of the vector-like quark and lepton.

“Light” is with either the Mq or the Ml as shown, “Medium” is with each in the interval shown,

and “Heavy” is with both above the values shown.
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Figure 8. For the MVQD1 model, µggh
γγ , µggh

ZZ and µggh
γγ /µggh

ZZ for λD = 1, YQ = 1/6 (left panel)

and YQ = −1/6 (right panel). The colored region has all mass eigenvalues > 500 GeV. In every

plot, the µ values progressively approach 1 as we go toward heavier masses (i.e. top-right corner).
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value shown in the X-axis, i.e. M{Q,U,D,L,E,N} = MV L, with YQ = 1/6 and YL = −1/2, and all the

Yukawa couplings λ = 1. All these points satisfy the S and T constraints at or better than 2σ level.

The color (or shade of gray, if viewing in gray-scale) of the dots denote the lightest mass eigenvalue;

the red (dark gray), blue and green (light gray) dots respectively stand for light, medium and heavy

mass categories given in table 2.

Next, we present some more results where we perform the scan in a more unconstrained

fashion. We show in figure 11 the signal strength µggh
γγ , in figure 12 the signal strength µV BF

γγ ,

in figure 13 the signal strength µZZ and in figure 14 the correlation between µggh,V BF
γγ and

µZZ in the VSM1 model by scanning over all the vector-like quark and lepton masses in

the range (50, 5000) GeV, for YQ = 1/6 and YL = −1/2, and the Yukawa couplings in the

range (0.1, 5). We set all the quark masses equal, i.e. M{Q,U,D} = MQ, and quark Yukawa

couplings equal, i.e. λU = λD ≡ λQ, and all the lepton masses equal, i.e. M{L,E,N} = ML

and all lepton Yukawa couplings equal, i.e. λE = λN ≡ λL. All these points satisfy the S

and T constraints at or better than 2σ level. The color of the dots denote the lightest mass

eigenvalue; the red, blue and green dots respectively stand for light, medium and heavy

mass categories given in table 2. These results indicate the sizes of the deviations one
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Figure 10. µ in the VSM1 model with all the vector-like quark and lepton masses set equal

(M{Q,U,D,L,E,N} = MV L), and all the λ set equal (λ{U,D,E,N} = λV L), for YQ = 1/6 and

YL = −1/2. All these points satisfy the S and T constraints at or better than 2σ level. The color

(or shade of gray, if viewing in gray-scale) of the dots denote the lightest mass eigenvalue; the red

(dark gray), blue and green (light gray) dots respectively stand for light, medium and heavy mass

categories given in table 2.
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Figure 11. µggh
γγ in the VSM1 model from a scan over all the vector-like quark and lepton masses in

the range (50, 5000) GeV, and the Yukawa couplings in the range (0.1, 5), with the Q,U,D,L,E,N

vector-like fermion fields all present, with MQ = MU = MD, ML = ME = MN , λU = λD ≡ λQ,

and λE = λN ≡ λL, for YQ = 1/6 and YL = −1/2. All the points satisfy the S and T constraints at

or better than 2σ level. The color (or shade of gray, if viewing in gray-scale) of the dots denote the

lightest mass eigenvalue; the red (dark gray), blue and green (light gray) dots respectively stand

for light, medium and heavy mass categories given in table 2.

Coupling ATLAS CMS

κg 1.04± 0.14 0.83± 0.11

κγ 1.2± 0.15 0.97± 0.18

Table 3. κg and κγ values from ATLAS [76] and CMS [77].

can expect in the models that we have considered. In the next subsection, we ask to what

degree such deviations are allowed by the present LHC Higgs data and the constraints on

the model parameter space.

6.4 Fit to the LHC Higgs data

The ATLAS and CMS collaborations have extracted the effective hgg and hγγ couplings

from a combined fit to the various observed diboson Higgs decay modes. We give this result

in table 3, where we quote the ATLAS result [76] directly as given, while we have translated

the CMS result [77] on the 95% C.L intervals of κg = [0.63, 1.05] and κγ = [0.59, 1.30] to

the 1σ values shown. We perform a χ2 fit of the SM plus vector-like fermions model to

these data. We treat the ATLAS and CMS channels shown in the table as independent,

implying four degrees of freedom (dof). We neglect correlations between κg and κγ , which

is a reasonable approximation.
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Figure 12. µV BF
γγ in the VSM1 model from a scan over all the vector-like quark and lepton masses in

the range (50, 5000) GeV, and the Yukawa couplings in the range (0.1, 5), with the Q,U,D,L,E,N

vector-like fermion fields all present, with MQ = MU = MD, ML = ME = MN , λU = λD ≡ λQ,

and λE = λN ≡ λL, for YQ = 1/6 and YL = −1/2. All the points satisfy the S and T constraints at

or better than 2σ level. The color (or shade of gray, if viewing in gray-scale) of the dots denote the

lightest mass eigenvalue; the red (dark gray), blue and green (light gray) dots respectively stand

for light, medium and heavy mass categories given in table 2.

We compute the χ2 function

χ2 =
4
∑

i=1

(

κExpi − κTh
i

)2
/
(

σExp
i

)2
, (6.1)

where the κTh
i = {κg, κγ} for the SM plus vector-like fermion models discussed in section 2,

and compared with the respective four κExpi ATLAS and CMS experimental values shown

in table 3. The κi are given by

κg =

√

Γgg

ΓSM
gg

; κγ =

√

Γγγ

ΓSM
γγ

. (6.2)

As is standard (see for example, ref. [97]), from the χ2 value for that model with vector-like

fermions and the above LHC data (with dof = 4), we compute Fχ2 (which is twice the

“p-value”), the fraction of times a worse fit is obtained, which is the integral of the tail

of the χ2 distribution from that χ2 value up to infinity. Roughly speaking, the regions

of parameter space where Fχ2 < 0.05 can be taken to be excluded at about 2σ Gaussian

equivalent, and regions where Fχ2 < 0.01 excluded at about 2.6σ.

For the SM alone, without the addition of vector-like fermions, we have κg,γ = 1 by

definition, and from the data in table 3 we obtain χ2/dof = 1.07 which yields Fχ2 = 0.37,
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Figure 13. µZZ in the VSM1 model from a scan over all the vector-like quark and lepton masses in

the range (50, 5000) GeV, and the Yukawa couplings in the range (0.1, 5), with the Q,U,D,L,E,N

vector-like fermion fields all present, with MQ = MU = MD, ML = ME = MN , λU = λD ≡ λQ,

and λE = λN ≡ λL, for YQ = 1/6 and YL = −1/2. All the points satisfy the S and T constraints at

or better than 2σ level. The color (or shade of gray, if viewing in gray-scale) of the dots denote the

lightest mass eigenvalue; the red (dark gray), blue and green (light gray) dots respectively stand

for light, medium and heavy mass categories given in table 2.

Figure 14. µggh,V BF
γγ –µZZ correlation in the VSM1 model from a scan over all the vector-like quark

and lepton masses in the range (50, 5000) GeV, and the Yukawa couplings in the range (0.1, 5), with

the Q,U,D,L,E,N vector-like fermion fields all present, with MQ = MU = MD, ML = ME = MN ,

λU = λD ≡ λQ, and λE = λN ≡ λL, for YQ = 1/6 and YL = −1/2. All the points satisfy the S and

T constraints at or better than 2σ level. The color (or shade of gray, if viewing in gray-scale) of

the dots denote the lightest mass eigenvalue; the red (dark gray), blue and green (light gray) dots

respectively stand for light, medium and heavy mass categories given in table 2.
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Figure 15. For the VL1 model, for YL = −1/2, λE = 1, λN = 1, ME = MN . The colored regions

are with all lepton mass eigenvalues ≥ 250 GeV, and lie within the 2 σ ellipse in S and T . In all

the plots, χ2 values decrease and F values increase as we go toward larger masses, or lower λ.

Figure 16. For the VQ1 model, for YQ = 1/6, λU = 1, λD = 1, MU = MD. The colored regions are

with all quark mass eigenvalues≥ 500 GeV, and satisfy the S and T constraints at or better than 2 σ.

In all the plots, χ2 values decrease and F values increase as we go toward larger masses, or lower λ.

an acceptable fit to the data. Next, we present χ2 and Fχ2 for the SM plus vector-like

fermions with the goal of identifying regions of vector-like fermion parameter space that

have values of Fχ2 bigger than about 0.05, which can be taken as the allowed regions for

that model, given the present data.

In figure 15 we show the χ2/dof and Fχ2 for the VL1 model with YL = −1/2, λL,N = 1,

ME = MN , i.e., the vector-like singlet masses taken equal. The parameter space shown in

color is with all lepton mass eigenvalues ≥ 250 GeV, and satisfy the S and T constraints

at or better than 2 σ.

In figure 16 we show the χ2/dof and Fχ2 for the VQ1 model with YQ = 1/6, λU,D = 1,

MU = MD, i.e., the vector-like singlet masses taken equal. The parameter space shown in

color is with all quark mass eigenvalues ≥ 500 GeV, and satisfy the S and T constraints

at or better than 2 σ.
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Figure 17. For the VSM1 model, for YQ = 1/6, YL = −1/2, λq = 1, λℓ = 1, Mq = 1000GeV and

Mℓ = 500GeV. The colored regions are with all quark mass ≥ 500 GeV, all lepton mass eigenvalues

≥ 250 GeV, and satisfy the S and T constraints at or better than 2 σ. In all the plots, χ2 values

decrease and F values increase as we go toward larger masses, or lower λ.

In figure 17 we show the χ2/dof and Fχ2 for the VSM1 model with YQ = 1/6, YL =

−1/2, λU,D ≡ λq = 1, λE,N ≡ λℓ = 1, MQ,U,D ≡ Mq = 1000GeV, ML,E,N ≡ Mℓ =

500GeV, i.e. all the vector-like quark masses are taken equal, and all the vector-like lepton

masses are taken equal (but not necessarily the same as the quark masses). The plots show

the dependence on the two parameters that are varied with the other parameters fixed

at the above mentioned values. The colored regions are with all quark mass eigenvalues

≥ 500 GeV, all lepton mass eigenvalues ≥ 250 GeV, and satisfy the S and T constraints at

or better than 2 σ. For given masses, the χ2 approaches the SM value as λ decreases; for

example, for λ = 0.5, Mq = 1000GeV, Mℓ = 500GeV we have χ2/dof = 1.26, Fχ2 = 0.28.

7 Conclusions

In this paper we have surveyed numerous vector-like fermion extensions of the SM. Our

purpose has been to illuminate the structure of the theories, detail the precision electroweak
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implications and constraints, investigate LHC direct limits, and investigate the implications

of vector-like fermions for Higgs boson production and decay.

The phenomenological implications of vector-like theories depend crucially on the de-

tails of the precise theory in question. Precision electroweak constraints depend on masses

and couplings to vector bosons, flavor constraints depend on their flavor mixings with SM

fermions, direct detection constraints depend on mass hierarchies and the size of the cou-

plings and mixings to SM states that enable prompt or non-prompt decays into various

model-specific final state ratios. In addition, the Higgs boson observables depend on over-

all mass scales and the ratios of the strongly interacting vector-like masses to electroweak

interacting states. Our aim was to demonstrate all of these features through examples and

extensive computations.

One of the recent motivations for considering vector-like states added to the SM was to

account for possible deviations in the µγγ = σ(h)B(h → γγ) rate at the LHC. As discussed

in a section 6.4, early indications from the LHC Higgs studies suggested an enhanced rate

to two photons. Presently the central values of the ATLAS data are higher than the SM

expected rates, and the central values of the CMS data are lower than the SM expected

rates, making a combined total more consistent with the SM than originally thought.

Nevertheless, it is one of the few observables that is sensitive to new physics in loops,

and the uncertainties in the experimental measurements and QCD uncertainties [98] give

plenty of room for large effects (tens of percent) from new physics. In our investigations we

have shown that the addition of vector-like fermions with vector-like masses less than a few

TeV, and with chiral couplings to the Higgs boson, leads to tens of percent shifts in Higgs

production (gg → h → XY ) and decay (h → γγ) observables. In time, measurements of

Higgs observables and direct searches for vector-like states will go far to confirm or exclude

this possibility near the weak scale.
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A Gauge boson 2-point functions with vector-like fermions

In a vector-like theory each vertex in figure 2 is proportional to PL + PR, resulting in the

total contribution ΠLL+ΠLR+ΠRL+ΠRR. A similar result holds for the derivative Π′ also,
where Π′ = dΠ/dq2. Since we have ΠLL = ΠRR and ΠLR = ΠRL, the above contribution is

2(ΠLL + ΠLR). Using dimensional regularization and continuing to d = 4− ǫ dimensions,

we have (see for example, ref. [99])

Π
(mimj)
LL (q2) = − 4

(4π)d/2

∫ 1

0
dx

Γ(2− d/2)

∆2−d/2

[

x(1−x)q2− 1

2
(xm2

j+(1−x)m2
i )

]

, (A.1)

Π
(mimj)
LR (q2) = − 2

(4π)d/2

∫ 1

0
dx

Γ(2− d/2)

∆2−d/2
mimj . (A.2)
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where ∆ = xm2
j +(1−x)m2

i −x(1−x)q2, and we have dropped terms proportional to qµqν

assuming that gauge-bosons connect to massless fermion currents giving zero. We have

lim
d→(4−ǫ)

1

(4π)d/2
Γ(2− d/2)

∆2−d/2
=

1

(4π)2

[

2

ǫ
− γ + log(4π)− log∆

]

. (A.3)

For notational ease, in the following we will define Π ≡ ΠLL + ΠLR, similarly for Π′, and
also, Π{mi,mj} = Π(mimj) + Π(mjmi), Π(mi) = Π(mimi). From eqs. (A.1), (A.2) and (A.3),

we obtain the following

Π(mimj)(0)
∣

∣

∣

mass−dep
=

1

32π2

1

(m2
j −m2

i )

{

(m2
j −m2

i )(m
2
i +m2

j − 4mimj)

−2(m4
j logm

2
j −m4

i logm
2
i ) + 4mimj(m

2
j logm

2
j −m2

i logm
2
i )
}

,

Π{mi,mj}(0)
∣

∣

∣

mass−dep
= − 1

16π2

1

(m2
j −m2

i )

{

4mimj(m
2
j −m2

i ) + 2m3
j (mj − 2mi) logm

2
j

+2m3
i (2mj −mi) logm

2
i +m4

i −m4
j

}

,

Π(mi)(0)
∣

∣

∣

mass−dep
= 0 , (A.4)

where “mass-dep” denotes mass dependent finite parts excluding the 2/ǫ− γ + 4π pieces.

Again, from eqs. (A.1), (A.2) and (A.3), we obtain

Π
′ {mi,mj}
LR (0) = −

mimj

[

m4
i −m4

j − 4m2
im

2
j tanh

−1
(

(m2
i −m2

j )/(m
2
i +m2

j )
)]

8π2(m2
i −m2

j )
3

,

Π
′ {mi,mj}
LL (0) = − 1

4π2

{

1

3

(

−1

2
+

2

ǫ
− γ + log (4π)

)

− 1

18(m2
i −m2

j )
3
(A− B)

}

A = (m2
i −m2

j )
[

−5m4
i − 5m4

j + 22m2
im

2
j + 6(m2

i −m2
j )

2 logmimj

+18(m4
i −m4

j )cosech
−1

(

2mimj

m2
i −m2

j

)]

B = 12(m2
i +m2

j )(m
4
i +m4

j −m2
im

2
j ) coth

−1

(

m2
i +m2

j

m2
i −m2

j

)

,

Π′ (m)(0) = − 2

3(4π)2

[

2

ǫ
− γ + log (4π)− logm2

]

, (A.5)

which are valid for (mi 6= mj), and we recall the definition Π′ ≡ Π′
LL + Π′

LR. The logm2

terms are understood to be log (m2/µ2) where µ is an arbitrary renormalization scale. For

our numerical computations we set µ = MZ , but we have verified that our results remain

the same even if a different value of µ is chosen.

B Explicit expressions for the mixing coefficients

This appendix contains expressions for the various coefficients that we defined in order to

simplify the formulae in section 4.
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Mixing through the Higgs boson

We give here the explicit expressions for the mixing coefficients from section 5 between the

new vector-like generation and the SM quarks through the Higgs boson.

As explained in the text, αij are the new Yukawa couplings that arise from applying the

matrices that diagonalise the mass matrix in eq. (4.1) to the matrix of Yukawa couplings

in the Lagrangian, given in eq. (4.8). In order to simplify the expressions derived for αij ,

we define the following quantities

au1 = (V u
L )12 =

mctmtt +mccmct +mcTmtT

m2
tt −m2

cc

, au4 = (V u
R )12 =

mctmtt +mccmct + µcµt

m2
tt −m2

cc

au2 = (V u
L )13 =

µTmcT + µcmcc + µtmct

µ2
T −m2

cc

, au5 = (V u
R )13 =

µTµc +mcTmcc +mtTmct

µ2
T −m2

cc

au3 = (V u
L )23 =

µTmtT+µcmct+µtmtt

µ2
T −m2

tt

, au6 =(V u
R )23=

mctmcT+µtµT+mttmtT

µ2
T −m2

tt

(B.1)

Similar quantities can be defined for the down type expressions, with

ad1 = (V d
L )

12 =
msbmbb +mssmsb +msBmbB

m2
bb −m2

ss

, ad4 = (V d
R)

12 =
msbmbb +mssmsb + µsµb

m2
bb −m2

ss

ad2 = (V d
L )

13 =
µBmsB + µsmss + µbmsb

µ2
B −m2

ss

, ad5 = (V d
R)

13 =
µBµs +msBmss +mbBmsb

µ2
B −m2

ss

ad3 = (V d
L )

23 =
µBmbB+µsmsb+µbmbb

µ2
B −m2

bb

, ad6=(V d
R)

23=
msbmsB+µbµB+mbbmbB

µ2
B −m2

bb

. (B.2)

This results in the following coefficients αij for the up-type matrix

αcc = λcc + λtc(−au1) + (−au4) (λct + λtt(−au1)) + (−au5) (λcT + λtT (−au1))

αct = λct + λtt(−au1) + au4 (λcc + λtc(−au1)) + au5 (λcT + λtT (−au1))

αcT = λcT + λtT (−au1) + au5 (λcc + λtc(−au1)) + au6 (λct + λtt(−au1))

αtc = λtc + λcca
u
1 + (−au4) (λtt + λcta

u
1) + (−au5) (λtT + λcTa

u
1)

αtt = λtt + λcta
u
1 + au4 (λtc + λcca

u
1) + (−au6) (λtT + λcTa

u
1)

αtT = λtT + λcTa
u
1 + au5 (λtc + λcca

u
1) + au6 (λtt + λcta

u
1)

αTc = λtca
u
3 + λcca

u
2 + (−au4) (λtta

u
3 + λcta

u
2) + (−au5) (λtTa

u
3 + λcTa

u
2)

αTt = λcta
u
2 + λtta

u
3 + au4 (λtca

u
3 + λcca

u
2) + (−au6) (λtTa

u
3 + λcTa

u
2)

αTT = λcTa
u
2 + λtTa

u
3 + au6 (λtta

u
3 + λcta

u
2) + au5 (λtca

u
3 + λcca

u
2) (B.3)

and similar coefficients for the down type, with c ↔ s, t ↔ b, T ↔ B.

The mass eigenvalues Mi (i = c, t, T ) are given by the following equations

Mc = mcc − au1mtc − au2µc − au4 (mct − au1mtt − au2µt)− au5 (mcT − au1mtT − au2µT )

Mt = mtt + au1mct − au3µt + au4 (mtc + au1mcc − au3µc)− au6 (mtT + au1mcT − au3µT )

MT = µT + au2mcT + au3mtT + au5 (µc + au2mcc + au3mtc) + au6 (µt + au2mct + au3mtt) (B.4)
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Mixing through the Z boson

The coefficients βij defined in the text are given here explicitly. They govern the size of

mixing between the vector-like and SM quarks via the Z boson discussed in section 5.

β11 =
1

2

[

1−
(

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

)2
]

− 2

3
sin2 θW

β12 = −1

2

(

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

)(

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

)

β13 = −1

2

(

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

)

β21 = −1

2

(

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

)(

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

)

β22 =
1

2

[

1−
(

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

)2
]

− 2

3
sin2 θW

β23 = −1

2

(

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

)

β31 = −1

2

(

µTmcT + µcmcc + µtmct

m2
cc − µ2

T

)

β32 = −1

2

(

µTmtT + µcmct + µtmtt

m2
tt − µ2

T

)

β33 = −2

3
sin2 θW (B.5)

Similar expressions can be found for the down-type quark interactions with the Z, but

are not listed here.
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