

Survey on Agile and Lean Usage in Finnish Software Industry

Authors: Pilar Rodriguez, Jouni Markkula, Markku Oivo, Kimmo Turula

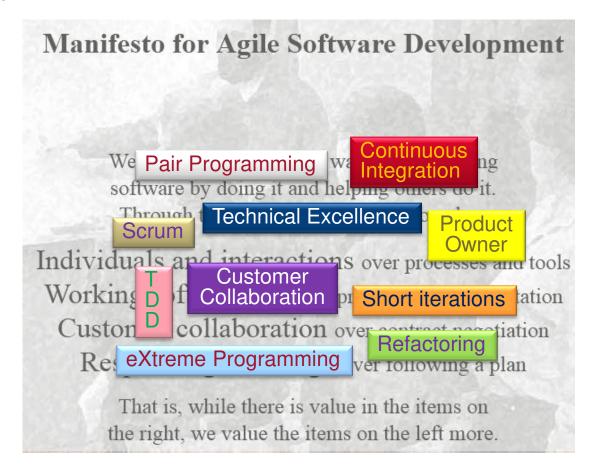
Presentation @ ESEM 2012 6th International Symposium on Empirical Software Engineering and Measurement – IndustryTrack September 19, Lund University, Sweden

Presentation contents

- 1. Introduction to Agile and Lean Software Development
- 2. Study design
- 3. Results
- 4. Conclusions, Limitations and Future work

Agile Software Development

2001


Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work

Source: Agile Manifesto, 2001 http://agilemanifesto.org/

Agile Software Development

Agile and Lean
Software
Development

Study Design

Results

Conclusions,
Limitations and
Future work

Traditional approach

FLEXIBILITY Customer and value oriented development In Source: The essence of agile. Keynote, Agile Spain Conference 2010 Henrik Kniberg That is, while there is value in the items on

Agile methods aim to provide

the right, we value the items on the left more.

Scaling Agile Software Development

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work Synchronizing teams

Customer feedback

Why Learn from Lean Thinking?

Study Design

Results

Conclusions, Limitations and Future work

- Improved profitability and productivity. Toyota cut \$2.6 billion out of \$113 billion manufacturing costs, without closing a single plant in 2002. Toyota led in global automobile sales until 2011.
- Faster time-to-market. Zara reduced lead time via a business model based on Lean. It delivers new items 12 times faster than its competitors and launches 30000 designs each year (as opposed to 2000–4000 introduced by competitors)
- Improved product quality and customer satisfaction.

 Toyota Lexus CT200h recently received the maximum rating under the Japanese overall safety assessment (Source: 2011 Japan New Car Assessment Program)

Lean Paradigm

Shift From Mass-production to Lean-production

Agile and Lean Software Development Lean is based on fundamental industrial engineering principles and a philosophy of maximizing value and minimizing waste

Study Design

Results

Conclusions, Limitations and Future work Value is everything for which a customer is willing to pay.

 Waste is everything that absorbs resources but outputs no value THE FIVE PRINCIPLES OF LEAN

Identify

Value Map the

optimized end-toend collection of value-creating steps

Value Stream is an

Perfection, continuous improvement and learning

Let customers **pull**value from the
next upstream

activity

Seek

Perfection

Maximizing Customer Value While Minimizing Waste

Establish

Pull

Create Flow

Value Stream

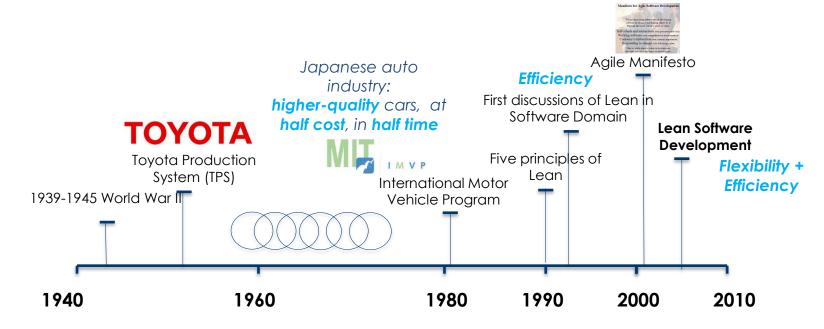
Value-creating steps are organized as a continuous flow

toward customer

Source: The Machine that Changed the World: The Story of Lean Production. Harper Perennial, New York (1990) Womack et al. (1990) Womack, J.P., Jones. D.T., Roos. D.:

CLOUD SOFTWARE FINLAND

Lean Software Development


Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work "If Lean is thought of as a set of principles rather than practices, then applying lean concepts to product development and software engineering makes more sense and can lead to process and quality improvements."

(Source: Poppendieck M, Cusumano MA. Lean software development: a tutorial, Software, IEEE, 29(5): 26-32, Sept.-Oct. 2012)

8/22

Research on Agile and Lean Software Development

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work

- The relationship between ASD and LSD has not been clearly defined, limiting the current comprehension of the phenomenon
- To our best knowledge, there are not studies exploring the level of Lean adoption in software development

Research Objectives and Questions

Study Design

Results

Conclusions, Limitations and Future work

- 1. To provides more generalizable and up-to-date results on the state of ASD and LSD usage in the real-world industry
- To identify most applied methods and practices as well as most experienced benefits and challenges on using ASD and LSD
 - RQ1: What is the **current state of adoption** and usage of ASD and LSD methods and practices in the software industry?
 - RQ2: What are the **reasons why ASD and LSD are being adopted** in some software development organizations?
 - RQ3: Which are the impacts, in terms of benefits, of using ASD and LSD?
 - RQ4: Which are the **limitations and factors that can challenge** the usage of ASD and LSD?
 - RQ5: Which are the **reasons of some organizations for not using** ASD and LSD?

Study Design

Extensive exploratory web survey study, including almost fifty questions

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work

- Conducted among Finnish software practitioners in 2011
 - Finland takes up the second position in the IT Industry Competitiveness Index 2011 of the BSA/Economist's report¹
- Sampling frame: Finnish Information Processing Association (FIPA)

¹Source: Business Software Alliance. 2011. Investment for the Future Benchmarking IT Industry Competitiveness Report.

408 responses from 200 companies collected (response rate: 9%)

Background information of the participants

Agile and Lean Software Development

Study Design

Results

Limitations and **Future** work

Positions in organization									
	Position	n	Position						
	Developer	113		Scrum master	33				
	Project manager	99		Process manager	31				
	IT staff	79		Product owner	25				
	Architect	63		Product manager	23				
	Consultant/Trainer	52	Presi	dent/VP/CEO/COO/CIO/CTO	22				
	Quality assurance/Tester	38		Sales/Marketing personnel	10				
	Operations/Support staff	35		Other	48				

Experience in software development

Years of experience	n	%
None	42	10,3
Less than 2	31	7,6
2-5	56	13,7
5-10	80	19,6
10-20	144	35,3
More than 20	55	13,5
Total	408	100,0

The respondents belonged to **200 different organizations**.

Size of the organizational unit								
	Employees	n	%	Cumulative %				
	1-10	93	23,8	23,4				
	11-50	141	35,4	58,8				
	51-100	66	16,6	75,4				
	101-200	44	11,1	86,4				
	201-500	28	7,0	93,5				
	501-1000	16	4,0	97,5				
	More than 1000	10	2,5	100,0				
	Total	398	100,0					

- Respondents mainly were developers project and managers
- Quite experienced in software development
- Organizational unit size rather small

Level of Agile and Lean usage

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work Usage of Agile and Lean Methods

Agile and Lean usage	n	%
Only Agile	137	33,6
Agile and Lean	88	21,6
Only Lean	11	2,7
No Agile or Lean	172	42,2
Total	408	100,0

Strong position that Agile methods in software development

Lean appears as a new player being used by 24% of respondents, mainly in combination with Agile (21%)

Earlier studies have reported much lower levels of Lean usage (around 2%)

icsuits

U	sage	of	S	pecif	ic	agil	e	met	h	od	S

esuge of specime ugite interneting		
Methods	n	%
Scrum	196	83,1
Extreme Programming (XP)	43	18,1
Agile Modeling	27	11,4
Feature-Driven Development (FDD)	21	8,9
Kanban	11	4,7
Adaptive Software Development	10	4,2
Dynamic Systems Development Method (DSDM)	6	2,5
TDD	4	1,7
Crystal Methods	2	0,8
Other	18	7,6

- Scrum clearly the most widely used method
- Kanban and TDD reported as methods by the respondents
- Results of Agile practices in use well aligned with earlier studies

Usage of specific Agile methods and practices

Usage of specific agile practices

Usage of specific ague practices								
Practices	n	Mean	Median					
Prioritized work list	204	4,2	4					
Iteration/sprint planning	203	4,1	4					
Daily stand-up meetings	209	3,7	4					
Unit testing	199	3,7	4					
Release planning	196	3,9	4					
Active customer participation	196	3,5	4					
Self-organizing teams	194	3,5	4					
Frequent and incremental delivery of working software	189	4,1	4					
Automated builds	185	3,5	4					
Continuous integration	182	3,8	4					
Test-driven development (TDD)	179	2,7	3					
Retrospectives	177	3,6	4					
Burn-down charts	174	3,2	3					
Pair programming	174	2,4	2					
Refactoring	163	3,4	3					
Collective code ownership	159	3,3	3					
Other	9	1,8	1					

Agile and Lean Software Development

Study Design

Results

Usage of Lean principles

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work

Usage of specific lean principles

esige of specific fear principles								
	Principles	n	Mean	Median				
	Focus on creating customer value	209	3,9	4				
	Eliminate waste and excess activities	199	3,4	3				
	Create a culture of continuous	198	3,5	4				
	improvement							
	Do it right the first time	196	3,4	3				
	Respect and empower people	190	3,8	4				
	Minimize inventory or work in progress	189	3,2	3				
	Pull from demand	184	3,6	4				
	Focus on optimizing the whole system and	181	3,3	3				
	not only local optimizations							
	Continuous flow of small batches in the development process	179	3,5	4				
	Make decisions as late as possible	175	3,0	3				
	Root source analysis is done after	174	3,2	3				
	problems are discovered							
	Look simultaneously for multiple	174	3,2	3				
	solutions							
	Create trusted relationships with suppliers	165	3,6	4				
	Create cadence	147	2,9	3				

ESEM 2012, September 19-20, Lund University, Sweden

"Whether the component comes from an in-house Toyota factory or a supplier makes no difference. Toyota engineers are responsible."

Agile and Lean
Software
Development

Study Design

Results

Conclusions, Limitations and Future work

Goals in agile and lean adoption								
Goals	n	%						
To increase productivity	158	66,9						
To improve product and service quality	145	61,4						
To reduce development cycle times and time-to-market	137	58,1						
To improve process quality	113	47,9						
To increase the ability to adapt to changes in the business environment	110	46,6						
To improve team communication	100	42,4						
To improve development flow	99	41,9						
To reduce risks	86	36,4						
To remove waste and excess activities	75	31,8						
To decrease development costs	75	31,8						
To improve customer understanding	65	27,5						
To create transparency within the organization	63	26,7						
To improve stakeholders' satisfaction	57	24,2						
To improve organizational learning	45	19,1						
To improve the management of business/product value	42	17,8						
To establish team-wide project comprehension	33	14,0						
To improve our understanding of the whole value stream	31	13,1						
To achieve success others have achieved using lean methods	27	11,4						
Other	6	2,5						

Companies' goals in adopting Agile and Lean and effects of its usage

Effects of adoption of agile and lean

Lifetts of acopti	on or ugue			
Effect	n	Mean	Median	
Improved team communication	204	4,0	4	
Enhanced ability to adapt to	203	3,9	4	
changes				
Increased productivity	201	3,8	4	
Enhanced process quality	198	3,7	4	
Improved learning and	197	3,7	4	
knowledge creation				
Enhanced software quality	196	3,8	4	
Accelerated time-to-	192	3,7	4	
market/cycle time				
Reduced waste and excess	190	3,5	4	
activities				
Improved customer	190	3,7	4	
collaboration				
Improved organizational	187	3,5	4	
transparency				
Improved customer	188	3,7	4	
understanding			_	
Reduced risks	184	3,4	3	
Improved alignment between IT	180	3,4	3	
and business objectives				
Enhanced value creation	178	3,6	4	
Improved stakeholder	169	3,6	4	
satisfaction				
Reduced costs	163	3,2	3	
Other	13	3,8	4	

17/22

Agile and Lean	
Software	
Development	

Study Design

Results

Challenges in agile and lean adoptipn					
Challenges	n	Mean	Median		
Top management commitment	201	4,0	4		
Customer/supplier collaboration	192	3,9	4		
Cultural change/translating agile/lean principles from development teams to the rest of the business	190	3,8	4		
Measuring agile/lean success	190	3,6	4		
Resistance to change	186	3,6	4		
Defining business value	184	3,9	4		
Need for specialized skills	183	3,1	3		
Tailoring agile/lean practices	182	3,5	4		
Lack of formal guidelines	176	2,8	3		
Inadequate documentation	175	3,2	3		
Scalability of agile/lean methods	174	3,6	4		
Inadequate training	174	3,3	3		
Synchronizing activities	172	3,4	4		
Synchronizing activities	168	3,5	4		
Loss of management control	168	2,8	3		
Lack of big design up front	167	3,0	3		
Fixed price contracts	161	3,3	3		
Steep learning curve	159	3,1	3		
Inappropriateness of existing technologies/tools	158	3,1	3		
Achieving flow	157	3,5	4		
Decreased predictability	155	3,1	3		
Other	12	3,2	3		

Challenges and limitations in the usage of Agile and Lean

Limitations in agile and lean adoption

Limitations in agne and lean adoption				
Limitations	n	Mean	Median	
Limited support for developing large, complex software	189	3,3	3	
Limited support for development involving large teams	185	3,1	3	
Limited support for sub- contracting	181	2,8	3	
Limited support for development involving legacy systems	179	3,1	3	
Limited support for distributed development environments	178	2,9	3	
Limited support for building reusable artifacts	176	3,0	3	
Limited support for developing safety/mission-critical software	174	2,9	3	
Other	16	3,3	3	

Top challenges

- Top management commitment
- **Customer/supplier collaboration**
- **Cultural change**
- **Measuring Agile/Lean success**

Non-adopter's reasons and plans to adopt agile and lean methods

Agile and Lean Software Development

Study Design

Results

Conclusions, Limitations and Future work The survey responses included also 137 practitioners in whose organizational units agile or lean methods were not in use

Why did they not consider these methods appropriated for their software development?

Reasons for not adopting	n	%
Lack of knowledge and training	64	46,7
Too traditional organizational culture	59	43,1
Lack of support or commitment from the management	28	20,4
Fixed price contracts	25	18,2
Customers are not ready for agile/lean methods	22	16,1
Resistance to change	18	13,1
Inappropriate technology and tools	17	12,4
Incompatible business domain (please specify your business domain)	12	8,8
The burden of changing to agile/lean methods	10	7,3
Lack of quality assurance procedures	10	7,3
Unstable project requirements	9	6,6
Lack of progress-tracking mechanism	9	6,6
Our organization lacks customer understanding	7	5,1
Lack of scalability	6	4,4
Lack of support for reward system	6	4,4
Lack of big design up front	6	4,4
Limited support for building reusable artifacts	3	2,2
Limited support for distributed development environments	3	2,2
Decreasing predictability	2	1,5
Other	27	19,7

Do they have plans for adopt agile or lean in the near future?

Planned adoption	n	%
Within a year	14	10,2
Within two years	8	5,8
Not planned	52	38,0
Don't know	63	46,0
Total	137	100,0

What methods do they plan to adopt?

Planned methods	n	%
Scrum	19	90
Lean Software Development	3	14
Agile Modeling	2	10
Extreme Programming (XP)	1	5
Dynamic Systems Development Method (DSDM)	0	0
Feature Driven Development (FDD)	0	0
Crystal Methods	0	0
Adaptive Software Development	0	0
Other	3	14

Conclusions

Study Design

Results

Conclusions, Limitations and Future work

- The majority of respondents' organizational units are using Agile and/or Lean methods (58%).
- There is an interest of combining Agile and Lean approaches
 - Agile is not abandoned when Lean is adopted
 - The transformation is being actually conducted as a single trip where the borders between agile and lean are not clearly defined
- Main Lean principles in usage:
 - Focus on customer value
 - Eliminate waste
 - Continuous improvement
- Main practices in usage:
 - Prioritized work list
 - Iteration/sprint planning
 - Daily stand-up meetings

- Main benefits:
 - Improved team communication
 - Enhanced ability to adapt to changes
 - Increased productivity
- Challenges and limitation were also identified
 - Challenges: obtaining management support
 - Limitations: developing large and complex software

20/22

Limitations and Future work

Study Design

Results

Conclusions, Limitations and Future work

LIMITATIONS

- Although we consider the Finnish Software industry as a suitable population for the study the generalization of the results is still limited
- The confusion and inconsistency in how agile and lean are understood can impact the results of the study

FUTURE WORK

- To replicate the study using other samples (for example from other countries)
- To conduct case studies that allow a deeper understanding of the phenomenon of agile and lean transformation in software intensive companies

 - Value and waste in software development Measuring Lean and Agile 's impacts Software lean enterprise including suppliers and customers
 - Cultural and organizational change

http://www.cloudsoftwareprogram.org/

http://www.oulu.fi/mgroup/

http://www.oulu.fi/yliopisto/

