
 Open access Journal Article DOI:10.1007/S11265-006-4190-4

Survey on Block Matching Motion Estimation Algorithms and Architectures with
New Results — Source link

Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen ...+1 more authors

Institutions: National Taiwan University

Published on: 01 Mar 2006 - Signal Processing Systems

Topics: Motion estimation, Video quality, Memory bandwidth, Block (data storage) and Matching (statistics)

Related papers:

 A new diamond search algorithm for fast block-matching motion estimation

 A novel four-step search algorithm for fast block motion estimation

 A new three-step search algorithm for block motion estimation

 Motion compensated inter-frame coding for video conferencing

 Overview of the H.264/AVC video coding standard

Share this paper:

View more about this paper here: https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-
22go61s1gp

https://typeset.io/
https://www.doi.org/10.1007/S11265-006-4190-4
https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp
https://typeset.io/authors/yu-wen-huang-37d1qybbld
https://typeset.io/authors/ching-yeh-chen-rwpzz38dml
https://typeset.io/authors/chen-han-tsai-33l3k8cqlm
https://typeset.io/authors/chun-fu-shen-48r256c5i0
https://typeset.io/institutions/national-taiwan-university-2rx6qi8g
https://typeset.io/conferences/signal-processing-systems-3c8lsrea
https://typeset.io/topics/motion-estimation-3fj0tj8b
https://typeset.io/topics/video-quality-1iw6mvmz
https://typeset.io/topics/memory-bandwidth-hkfexgwk
https://typeset.io/topics/block-data-storage-13zhapsf
https://typeset.io/topics/matching-statistics-gjizva5e
https://typeset.io/papers/a-new-diamond-search-algorithm-for-fast-block-matching-2cr62kcrqh
https://typeset.io/papers/a-novel-four-step-search-algorithm-for-fast-block-motion-nrg11741z3
https://typeset.io/papers/a-new-three-step-search-algorithm-for-block-motion-1ys7sgqal7
https://typeset.io/papers/motion-compensated-inter-frame-coding-for-video-conferencing-gm2nb9f6dp
https://typeset.io/papers/overview-of-the-h-264-avc-video-coding-standard-4wlxplmuzt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp
https://twitter.com/intent/tweet?text=Survey%20on%20Block%20Matching%20Motion%20Estimation%20Algorithms%20and%20Architectures%20with%20New%20Results&url=https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp
https://typeset.io/papers/survey-on-block-matching-motion-estimation-algorithms-and-22go61s1gp

Journal of VLSI Signal Processing 42, 297–320, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11265-006-4190-4

Survey on Block Matching Motion Estimation Algorithms

and Architectures with New Results

YU-WEN HUANG, CHING-YEH CHEN, CHEN-HAN TSAI, CHUN-FU SHEN AND LIANG-GEE CHEN

DSP/IC Design Lab, Graduate Institute of Electronics Engineering and Department of Electrical Engineering,

National Taiwan University, Taipei 10617, Taiwan

Received February 11, 2005; Revised February 11, 2005; Accepted August 4, 2005

Published online: 13 February 2006

Abstract. Block matching motion estimation is the heart of video coding systems. During the last two decades,

hundreds of fast algorithms and VLSI architectures have been proposed. In this paper, we try to provide an

extensive exploration of motion estimation with our new developments. The main concepts of fast algorithms

can be classified into six categories: reduction in search positions, simplification of matching criterion, bitwidth

reduction, predictive search, hierarchical search, and fast full search. Comparisons of various algorithms in terms of

video quality and computational complexity are given as useful guidelines for software applications. As for hardware

implementations, full search architectures derived from systolic mapping are first introduced. The systolic arrays

can be divided into inter-type and intra-type with 1-D, 2-D, and tree structures. Hexagonal plots are presented for

system designers to clearly evaluate the architectures in six aspects including gate count, required frequency, hard-

ware utilization, memory bandwidth, memory bitwidth, and latency. Next, architectures supporting fast algorithms

are also reviewed. Finally, we propose our algorithmic and architectural co-development. The main idea is quick

checking of the entire search range with simplified matching criterion to globally eliminate impossible candidates,

followed by finer selection among potential best matched candidates. The operations of the two stages are mapped

to the same hardware for resource sharing. Simulation results show that our design is ten times more area-speed

efficient than full search architectures while the video quality is competitively the same.

Keywords: block matching, motion estimation, global elimination algorithm, VLSI architecture

1. Introduction

Motion compensated transform coding has been

adopted by all of the existing international video cod-

ing standards, such as the ISO MPEG series [1–3] and

the ITU-T H.26X series [4–6]. Motion estimation (ME)

removes temporal redundancy within frames and thus

provides coding systems with high compression ratio.

Since ME module is usually the most computationally

intensive part (50–90% of the entire system) in a video

encoder, efficient implementation of ME is a must.

Block matching approach is mostly selected as the ME

module in video codecs and is also adopted in all ex-

isting video coding standards because of its simplicity

and good performance. The block matching algorithm

(BMA) is described as follows. Each luma frame is

divided into blocks of size N × N, and each block in the

current frame is matched with candidate blocks of size

N × N within the search area in the reference frame.

The best matched block has the lowest distortion

among all of the candidate blocks. The displacement

of the best matched block, or namely the motion

vector (MV) of current block, will be transmitted

with prediction residues to the decoder. The distortion

is mostly evaluated by sum of absolute differences

(SAD).

298 Huang et al.

Among all the BMAs, full-search block matching

algorithm (FSBMA) is the most popular. FSBMA can

be described by:

SAD(m, n) =

N−1∑

i=0

N−1∑

j=0

|c(i, j) − s(i + m, j + n)|

(1)

MV = {(u, v) | SAD(u, v) ≤ SAD(m, n);

− p ≤ m, n ≤ p − 1} (2)

where SAD(m, n) is the distortion of the candidate

block at search position (m, n), {c(x, y) | 0 ≤ x ≤ N −

1, 0 ≤ y ≤ N −1} means current block data, {s(x, y)|

−p ≤ x ≤ p + N − 2,−p ≤ y ≤ p + N − 2}
stands for search area data, the search range is [−p,

p−1], the block size is N × N, and MV expresses the

motion vector of current block with minimum SAD

among (2p)2 search positions. FSBMA demands a lot

of computation. For example, real-time ME for CIF

(352 × 288) 30 frames per second (fps) video with

[−16, +15] search range requires 9.3 Giga-operations

per second (GOPS). If the frame size is enlarged to D1

(720 × 480) 30 fps with [−32, +31] search range, 127

GOPS is required. Clearly, such huge computational

complexity is far beyond the processing capabilities of

today’s general purpose processors. Therefore, many

fast algorithms and hardware architectures have been

proposed.

The main purpose of this paper is to make a com-

prehensive study of ME algorithms and architectures.

Comparisons in many directions are made for sys-

tem designers to determine the best tradeoff. The rest

of this paper is organized as follows. In Section 2,

different categories of fast ME algorithms are dis-

cussed. Section 3 investigates both full search and

fast search architectures. In Section 4, we propose

our hardware-oriented algorithm and its correspond-

ing architecture. Finally, Section 5 concludes this

paper.

2. Exploration of Algorithms

We classify fast algorithms into six categories. The first

five categories are lossy, which means that FSBMA

outperforms them in video quality. The last category

is lossless, which means that it produces the same re-

sults as FSBMA. A fast ME algorithm can belong to

combination of the several categories.

2.1. Reduction in Search Positions

Under the assumption that the distortion monotonically

increases as the search position moves away from the

point corresponding to minimum distortion, conver-

gence to the optimal position still can be achieved with-

out matching all the candidates. Computation is thus

significantly reduced by decimation of search posi-

tions. Since 1981 many algorithms of this type, e.g. two

dimensional logarithmic search [7], three step search

[8], conjugate direction search [9], modified logarith-

mic search [10], cross search [11], parallel hierarchi-

cal one dimensional search [12], one dimensional full

search [13], new three step search [14], four step search

[15], block-based gradient descent search [16], center-

biased diamond search [17, 18], advanced diamond

zonal search [19, 20], minimum bounded area search

[21], one-dimensional gradient descent search [22],

cross diamond search [23], predictive line search [24,

25], and many others, have been proposed. Roughly

speaking, a newer algorithm requires less computa-

tion, achieves faster convergence, and results in higher

video quality. In [12, 13], and [24], not only the num-

ber of searched candidates but also the feasibility of

parallel processing, regularity of data flow, and effi-

ciency of memory access were taken into consider-

ation toward system optimization. The first diamond

search [26], which is adopted by the reference soft-

ware of MPEG-4, has significantly better performance

in speed and quality than its prior algorithms. Although

improvements still can be made after diamond search,

the contribution is less recognized.

2.2. Simplification of Matching Criterion

The SAD matching criterion involves all pixels in the

current block and the candidate block. In order to re-

duce the computational effort, a subsampling scheme

was performed in [27]. Only every second pixel is

taken into account for estimation of distortion in both

horizontal and vertical directions, and the computa-

tional burden is reduced by a factor of four. Aliasing

effects can be avoided by low-pass filtering. In [28,

29], periodic alternation of four subsampling patterns

was adopted on different search positions to solve the

aliasing without filtering. Adaptive pixel-decimation

scheme was further proposed in [30]. It does not re-

quire an initial division of a block and selects pixels

only when they have the features important in deter-

mining a match.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 299

Pixel difference classification (PDC) [31] is to

threshold every pixel absolute difference and classify

it into match or mismatch. The best candidate block

has the highest number of match pixels. The hardware

complexity can be dramatically reduced because only

one counter is required to replace the accumulators.

However, the threshold value affects the quality a lot

and is not easy to be decided automatically.

Minimax criterion [32] finds the maximum error

among all pixels in a candidate block and then chooses

the final MV by minimizing the maximum errors of all

candidate blocks. Although the number of operations is

not reduced in software implementation compared with

FSBMA, minimax criterion can save 15% of hardware

area because an eight-bit comparator is much smaller

than a 16-bit accumulator. Boundary match [33] is also

a simplified matching criterion. Moreover, it is often

adopted for error concealment from loss of MVs.

The concept of integral projection was introduced

in [34, 35]. For simple translational motion, the infor-

mation on the axes in the Fourier transform domain

is sufficient to estimate motion between two images.

Computing the horizontal and vertical frequency infor-

mation is equivalent to discrete approximation as inte-

gral projections at these two orientations. The simple

equivalence between shifts in integral projection mea-

surements and shifts in the corresponding segments of

images suggests the comparison of integral projections

as a computationally efficient technique for BMA since

the pair of horizontal and vertical projections contain

fewer data than the pixels in a candidate block.

2.3. Bitwidth Reduction

Originally, each pixel is represented with eight-bit res-

olution. In [36, 37], their algorithms involve transform-

ing each pixel to one-bit representation and then ap-

plying conventional ME search strategies. In [38], they

directly truncate the bitwidth of pixels. It is shown that

on average more than four bits can be truncated without

significantly affecting the picture quality. Pixel trunca-

tion can lead to substantial reduction in hardware com-

plexity and power consumption. Fixed length trunca-

tion saves hardware areas and power consumption but

runs the risk of losing too much quality. Adaptive trun-

cation by masking the least significant bits of pixels to

zero cannot reduce areas, but it has chances to save a

lot of power without losing quality. Furthermore, pixel

truncation can be also applied in software implemen-

tation for the popularity of single instruction multiple

data (SIMD) of processors since fewer-bit representa-

tion may achieve higher degrees of parallel processing.

2.4. Predictive Search

For the video sequences with fast moving objects, the

heuristic fast search algorithms of the first category

perform poorly due to the frequent failure of mono-

tonically increasing distortion model assumption. Al-

gorithms belonging to decimation of search positions

are often trapped in local minima of distortion, thus

resulting in poor ME accuracy. Predictive motion esti-

mation [39–43], which utilizes the motion information

in the spatial and/or temporal neighboring blocks to

form an initial estimate of current MV, can effectively

reduce the search area as well as the computation. The

reduced motion search area also provides an additional

compression since the overhead information of MV is

less. In [20], the MV predictors can be the MVs of

the MBs on the left, top, and top right, their median,

zero MV, the MV of the collocated MB in the previous

frame, and the accelerated MV of the collocated MBs

in the previous two frames. These predictors are most

frequently adopted in predictive search.

2.5. Hierarchical Search

It is well known that a multiresolution structure, also

known as a pyramid structure, is a very powerful com-

putational configuration for image processing task. To

save the computation of FSBMA, it is common to resort

to the pyramid structure. The multiresolution scheme

is based on the idea of predicting an initial estimate

at the coarse level and refining the estimate at the fine

level. Usually two- or three-level hierarchical search is

adopted [44–46]. The search range at the fine level is

much smaller than the original search range. Basically,

more levels can save more computation, but the prob-

ability of being trapped in local minimum is higher

because when the image is scaled down, the detailed

textures will be lost. In fact, the multiresolution tech-

nique has been regarded as one of the most efficient

methods in BMA and is mostly adopted in applications

with very large frames and search areas.

2.6. Fast Full Search

The main idea of fast full search algorithms is stated

as follows. In the early stage, a simple check is done to

300 Huang et al.

detect whether a candidate block is possible to be the

optimal one. Then, only the potential candidate blocks

are further processed for detailed distortion calcula-

tion. Thus, a large portion of unnecessary computation

for impossible candidate blocks can be avoided. For

example, successive elimination algorithm (SEA) [47]

eliminates impossible candidate blocks by checking

if the absolute difference between current block pixel

sum and candidate block pixel sum is larger than the

up-to-date minimum SAD, denoted as SADmin. If the

condition holds, it is proved that the SAD of the candi-

date block will be larger than SADmin, and this search

position should be skipped. If the condition fails, SAD

calculation is still necessary for finding the global min-

imum distortion. The sum of all pixels in current block

only has to be computed one time, and the sum of

all pixels in a candidate block can be computed in a

fast way by simple partial result reuse. Therefore, the

computational overhead of the checking procedure is

very small, and the skipping of impossible candidate

blocks can speed up the whole BMA process. Note

that a good initial guess of MV with smaller SAD is

critical for SEA to increase the skipping ratio. Conse-

quently, SEA is often combined with the use of MV

predictors or spiral scanning order of search positions.

Multilevel successive elimination algorithm (MSEA)

[48–50] improves SEA by changing the checking pro-

cedure. The probability to skip candidate blocks can be

greatly increased. In [51], MSEA is further improved

by combination with SIMD for speeding up.

The concept of partial distortion elimination (PDE)

[52] is simple and effective. Computation of FSBMA

is reduced by using a halfway-stop technique in the

SAD calculation. When the partial distortion of a can-

didate block is already larger than the current mini-

mum distortion, this candidate block can be skipped.

In [53], the partial distortions and the current minimum

distortion were normalized to increase the probabil-

ity of early rejection of non-possible candidate MVs.

In addition, grouping of partial distortion and spiral

scan of search positions also increase the probability

of early termination. However, normalized PDE can-

not guarantee exactly the same result as FSBMA. It

may suffer a little quality loss but is still very close to

FSBMA. In [54], an adaptive scanning order of pix-

els in a candidate block was proposed for distortion

calculation to further speed up the PDE. In [55], mod-

els to describe the probability distribution of the total

distortion given a measured partial distortion are intro-

duced. In [56], analysis-based method for optimizing

the timing of decisions regarding early termination was

proposed for developing PDE algorithms on different

platforms.

Winner-update algorithm [57] is a very interesting

fast full search algorithm. Suppose there are five play-

ers in a game of poker cards, and each player is dealt

four cards. The player with the minimum sum of the

four card values is the winner. The basic idea is that one

does not have to calculate the summation of all the card

values for each player when determining the winner.

In the beginning, every player shows one card, and the

player with the smallest card value can show the sec-

ond card. Then, only the player having the minimum

sum of card values can reveal the next card, and the first

player reaching the fourth card is the winner. Similarly,

in the process of FSBMA, the candidate blocks and the

pixels in a block can be regarded as the players and the

number of cards dealt for each player, respectively.

In [57], hash chain is used in the implementation of

winner-update strategy to avoid the expensive sorting

procedure of finding the minimum partial SAD value.

Also, in order to reduce the size of hash table and thus

achieve speed-up, MSEA is applied with normalized

partial distortion.

In fact, the results of fast full search are not exactly

the same as FSBMA. Sometimes, minor differences

occur. For example, when two or more search posi-

tions have the same minimum SAD, the result will be

dependent on scan order. However, these minor differ-

ences do not cause noticeable effect on quality.

2.7. More Discussion and Comparison

Combination with mode decision and encoding issues

is another trend. In [58], a quantization parameter de-

pendent threshold value is applied on SAD to detect

all-zero residues and to early stop ME. In [59, 60],

diversity-based method takes advantages of multiple

algorithms. For example, diamond search or four step

search has good performance when the motion field

is small while three step search converges faster when

the motion field is larger. Thus, a pre-checking can be

developed to select what algorithm is more suitable for

the current block. In [61], a computation-aware (CA)

scheme for software-based BMA was introduced. In

a computation-limited environment, the computation-

distortion curve of a BMA is much more important than

the rate-distortion curve for real-time applications. Ac-

cording to their experiments, CA diamond search is

usually the best while CA three step search or CA

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 301

FSBMA is the worst. Recently, in the new video cod-

ing standard, H.264/AVC, multiple reference frames

and variable block sizes make BMA much more com-

plex, which becomes the hottest new topic of fast ME.

However, we do not have enough space for this topic.

Interested readers can refer to [46, 62–71], and many

others. These papers were dedicated for the BMA in

H.264/AVC. Other kinds of ME algorithms may in-

clude considerations for fractional pixel accuracy, bidi-

rectional frames, fields, and deinterlacing.

Now we compare representative BMAs in terms

of motion compensated PSNR and execution time.

The platform is a personal computer (PC) with Pen-

tium IV 2.53 GHz CPU and 1 GB DRAM (DDR 333

MHz), and the program is written in C language. The

implemented BMAs are FSBMA, three step search

(TSS), one dimensional full search (1DFS), center-

biased diamond search (DS), predictor-biased diamond

search (PDS), two-level hierarchical search (2-Level

Hier.), three-level hierarchical search (3-Level Hier.),

full search with 1/2-subsampling (in SAD computa-

tion), full search with 1/4-subsampling, full search

with 1/8-subsampling, spiral SEA, spiral MSEA, spi-

ral PDE, and winner-update strategy. The results of

Foreman (QCIF [−16, +15]) and Stefan (CIF [−32,

+31]) are shown in Tables 1 and 2, respectively. As

can be seen, real-time encoding of QCIF 30 Hz video

Table 1. Comparison of BMAs for Foreman, QCIF 30 Hz, [−16,

+15].

BMA Time (ms) Speed up PSNR (dB) Diff.

FSBMA 105.108 N/A 31.911 N/A

TSS 003.486 30.151 31.431 −0.480

1DFS 010.454 10.054 31.377 −0.534

DS 002.822 37.246 31.555 −0.356

PDS 002.506 41.943 31.730 −0.181

2-Level Hier. 009.008 11.668 31.752 −0.159

3-Level Hier. 007.130 14.742 31.634 −0.277

1/2-Subsample 048.439 02.170 31.868 −0.042

1/4-Subsample 024.987 04.207 31.739 −0.172

1/8-Subsample 014.882 07.063 30.355 −1.555

Spiral SEA 018.128 05.798 31.911 −0.000

Spiral MSEA 004.892 21.486 31.911 −0.000

Spiral PDE 024.083 04.364 31.911 −0.000

Winner-Update 009.905 10.612 31.903 −0.008

Time: Average milli-second per frame.

Platform: Pentium IV 2.53 GHz, 1 GB DDR 333 MHz DRAM, C

language.

Table 2. Comparison of BMAs for Stefan, CIF 30 Hz, [−32,

+31].

BMA Time (ms) Speed up PSNR (dB) Diff.

FSBMA 1,683.107 N/A 25.732 N/A

TSS 0,016.569 101.582 22.619 −3.113

1DFS 0,079.953 021.051 25.302 −0.430

DS 0,016.669 100.972 22.747 −2.985

PDS 0,014.736 114.217 24.507 −1.224

2-Level Hier. 0,122.649 013.723 25.700 −0.032

3-Level Hier. 0,059.886 028.105 25.186 −0.546

1/2-Subsample 0,770.482 002.184 25.724 −0.007

1/4-Subsample 0,393.656 004.276 25.513 −0.219

1/8-Subsample 0,225.806 007.454 24.878 −0.853

Spiral SEA 0,403.324 004.173 25.732 −0.000

Spiral MSEA 0,092.756 018.146 25.732 −0.000

Spiral PDE 0,470.268 003.579 25.732 −0.000

Winner-Update 0,164.505 010.231 25.713 −0.019

Time: Average milli-second per frame.

Platform: Pentium IV 2.53 GHz, 1 GB DDR 333 MHz DRAM, C

language.

with FSBMA is not achievable even on such a high

speed PC. If MMX/SSE instructions can be used, 2–

3 times of speed-up can be further achieved, but the

column of speed up will still be about the same. TSS,

1DFS, and DS belong to the category of reduction in

search positions. DS has better tradeoff in speed and

quality. PDS has better quality than DS with faster con-

vergence, which shows the advantage of motion vector

prediction. Hierarchical search BMAs provide moder-

ate performance in both speed and quality. The quality

drops of 1/2-, 1/4-, and 1/8-subsampling are insignifi-

cant, moderate, and unacceptable, respectively. As for

fast full search, spiral MSEA is the fastest and is about

20 times faster than FSBMA. Note that the speed up of

fast full search may vary a lot with different sequences.

The earlier the global minimum distortion is found, the

more computation is saved. For software implementa-

tions, lossy BMAs slower than spiral MSEA are out of

popularity. Recently, prevailing lossy BMAs should be

capable of providing more than 100 times of speed-up

with acceptable quality loss (<0.5 dB).

3. Investigation of Architectures

In this section, we will introduce FSBMA architectures

and discuss on-chip memories for storing search area

302 Huang et al.

data, followed by using hexagonal plots to compare six

aspects, and surveying fast BMA architectures.

3.1. FSBMA Architectures

Many FSBMA architectures were developed due to the

regularity of data flow. In this subsection, we will try to

bring a thorough survey of FSBMA designs. Most of

them belong to systolic arrays [72] composed of locally

connected processing elements (PEs). A pipelined si-

multaneous data flow via the local connections does

not require any control overhead. The small load ca-

pacities to be driven permit high clock frequencies and

thus higher processing speeds. Moreover, after a da-

tum is accessed from memory, it is reused for each PE

by propagating through the array, which significantly

reduces the memory bandwidth. For FSBMA, each PE

is responsible for computing the absolute difference of

one current block pixel and one search area pixel. In

the following discussion, we denote the block size and

search range as N × N and [−p, p − 1], respectively.

In [73], Komarek and Pirsch contributed a detailed

systolic mapping procedure to derive FSBMA architec-

tures. The first step is to establish the dependence graph

(DG) of FSBMA. In DG, a node represents a basic op-

eration (absolute pixel difference), and an arc denotes

data dependence. Second, a time schedule and assign-

ment of multiple nodes to a single PE by projection are

specified to provide a signal flow graph (SFG) of re-

duced dimension compared with DG. The time sched-

ule must be carefully designed. Multiple nodes (opera-

tions) projected to the same PE should not be executed

at the same time. Note that the DG is not unique. Dif-

ferent DGs, as well as different time schedules and pro-

jections, lead to different architectures. With a single

projection, a 2-D DG and a 3-D DG can be transformed

into a 1-D array and a 2-D array, respectively. DGs with

dimensions higher than three have to be mapped on to

systolic arrays by multiple projections. In this paper,

two DGs were displayed, and two projections were at-

tempted for each DG. The proposed architectures are

AB1, AB2, AS1, and AS2. “A” denotes array, “1” rep-

resents 1-D, “2” stands for 2-D, “B” means that the

number of PEs is in proportion to the block size (1-D:

N; 2-D: N2), and “S” indicates that the number of PEs is

proportional to the search range (1-D: 2p; 2-D: N × 2p).

The four architectures are fully systolic without any

global routing, but the bitwidths of memory access are

large.

In [74], Vos and Stegherr proposed a 2-D semi-

systolic array with an adder tree. The most special

idea is the scanning order of search positions, known

as snake scan. The number of PEs is N2, and the N2

pixels of current block are stayed in the corresponding

PEs. All pixels of a candidate block are also properly

moved to the corresponding PEs. Each PE computes

the absolute difference, add its own difference with the

output of previous PE on the same row, and send the

result to the next PE in the horizontal direction. The last

PE on each row outputs the SAD of a row, and an adder

tree calculates the final SAD of a candidate block. In

the beginning, the first column of search positions is

scanned from top to bottom. Then the second column

is scanned from bottom to top, followed by the third

column scanned from top to bottom, and so on. In or-

der to successively compute SAD values without extra

cycles to load pixels, two sets of (2p − 1) × N registers

are required to prepare the proper search area pixels

beforehand, and the data path should be periodically

configured as 2p cycles upward, one cycle leftward, 2p

cycles downward, and one cycle leftward. The large

register sets is a tradeoff for the bitwidth of memory

access. The utilization of this architecture is higher

(produces one SAD value of a search position per cy-

cle) for large search range application. If 2p is smaller

than N, there exist (N−2p) bubble cycles when search

positions are switched from one column to another.

In [75], Yang, Sun, and Wu implemented the first

VLSI motion estimator in the world. The most im-

portant concept is data broadcasting. Two 1-D semi-

systolic arrays were proposed based on data-flow de-

signs which allow sequential inputs but perform par-

allel processing. One type is broadcasting reference

frame data with current block data propagated through

PEs while the other type is broadcasting current block

data with reference frame data propagated through PEs.

With broadcasting technique, although some global

routing is required, the bitwidth of memory access in

one cycle can be significantly reduced. The number of

PEs is the same as the number of search positions in

the horizontal direction. Each PE not only computes

the absolute pixel difference but also accumulates the

SAD of a search position. In order to achieve 100%

utilization during the row change of search positions,

two reference frame pixels are simultaneously fetched,

and a multiplexer is required for each PE to select the

proper data. Moreover, the chips can be cascaded for

larger search range. A chip-pair design is also derived

to obtain fractional MVs.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 303

In [76], Hsieh and Lin focused on the decrease of

pin counts (bitwidth of memory) and the flexibility of

search range. The proposed structure is a 2-D systolic

array and a shift register array. The number of PEs is

N2, and the N2 pixels of current block are stayed in the

corresponding PEs. Each row of PEs, except the bottom

row, is followed by (2p − 2) shift registers (SRs), and

the total number of SRs is (2p − 2) × (N − 1). The

main purpose of SRs is to get the profit of serial data

inputs. The length of SRs is programmable to support

flexible search range. A search area pixel propagates

from the PEs and SRs on the first row, and then to the

second row of PEs and SRs, and so on. The PEs sends

the partial results of SAD in the upward direction. Only

one search area pixel is inputted in each cycle. It takes

(N + 2p − 1)2 to scan the whole search area, and the

number of valid cycles for generating SAD values is

4p2. Lower PE utilization and the area of SRs are the

tradeoff for bitwidth of memory access.

In [77], Jehng, Chen, and Chiueh proposed an

efficient and simple tree architecture, which gave a

completely different ME structure. The tree structure

supports not only FSBMA but also fast algorithms

by decimating search positions, such as three step

search. Concepts of memory interleaving and pipeline

interleaving were proposed to enhance the supported

memory bandwidth and to prevent the hardware from

idling, respectively. However, when the block size

is enlarged, the required bitwidth of full tree will

become too large. Therefore, subtree of 1/2m-cut was

described to trade off between processing speed and

memory bitwidth. Another solution of the bitwidth

problem is to employ a search area pixel cache with

snake scan of search positions. The inputs of the cache

are 17 pixels and the outputs are 256 pixels. Related

materials can be found in [78].

In [79], Chang et al. contributed an approach that

employs transformation on a 4-D DG (represented by

multiple 3-D sub-DGs), called slice and tile, to produce

different forms of DGs. A 3-D sub-DG is partitioned

into slices, and the slices of all sub-DGs are tiled in

a direction. They categorized 2-D systolic arrays of

FSBMA into six types. Type A and B are obtained

by tiling slices in the diagonal direction with diagonal

and horizontal projection, respectively. The numbers

of PEs for type A and type B are 4p2 and N2, respec-

tively, and the numbers of cycles required for process-

ing a macroblock (MB) are N2 and 4p2, respectively,

assuming the PE utilization is 100%. Usually, type A is

called inter-level parallelism in which every PE com-

putes SAD for a candidate block, and type B is referred

as intra-level parallelism in which every PE computes

an absolute pixel difference in candidate blocks. Type

C and D are obtained by tiling slices in the horizon-

tal direction with diagonal and horizontal projection,

respectively. Type E and F are achieved through the

projection of the direct form DG along the horizontal

direction of current block with different scheduling.

The numbers of PEs and the ideal numbers of cycles

for type C–F are 2p × N.

In [80], Yeo and Hu transformed the 1-D linear ar-

ray of broadcasting reference frame data with 2p PEs in

[75] to a 2p × 2p 2-D basic mesh array. Current block

pixels are propagated among PEs where the last PE of

a row is connected to the first PE of the next row. The

reference frame data are broadcasted not only in the

horizontal direction but also in the vertical direction.

A basic mesh array requires 2p to be equal to N. For

large search range applications, multiple mesh arrays

can be applied. The search range is partitioned into

multiples of N × N search positions, and each partition

is processed by one mesh array. Under typical specifi-

cations, this architecture results in the fastest speed and

the fewest amount of memory access when compared

with prior FSBMA hardware. However, the number of

total PEs in the multiple mesh arrays is relatively high,

and thus this architecture is more suitable for high-end

applications.

In [81], Lai and Chen proposed a 1-D PE array and

two data-interlacing SR arrays that utilize 2-D data-

reuse. In fact, it can be regarded as an extension of the

1-D linear array of broadcasting current block data in

[75]. The main difference from [80], which is the ex-

tension of broadcasting reference frame data in [75], is

that search range partition is not always necessary. The

PEs can be cascaded when the number of PEs reaches

the number of search positions. In this situation, every

reference frame pixel is fully reused and is only fetched

from memory to PEs for one time. Nevertheless, the

MB latency of generating a motion vector will become

the number of pixels in the search area, which is quite

large. With search range partition, the PE number is still

the same, but the reference frame pixel reuse becomes

incomplete, which increases the memory bandwidth,

as a tradeoff for shorter MB latency.

In [82], Yeh and Lee found that overlapped data flow

can increase the PE utilization for 2-D arrays where

current block stays (intra-type). Search area data from

two different rows are needed as a boundary candi-

date is detected, and thus two inputs are requested. A

304 Huang et al.

stream memory similar to the SRs in [76] is adopted to

reduce the memory bandwidth. However, unlike [76],

two search area pixels are propagated simultaneously.

During the row change of search positions, no bubble

cycles exist, so the utilization is much higher. Based on

the overlapped data flow and the stream memory, a sys-

tolic 2-D array (SA architecture) and a semi-systolic

2-D array (SSA architecture) were devised to collabo-

rate with N-parallel adder tree for FSBMA.

In [83, 84], four levels of search area data reuse were

discussed. Let N × N , [−p, p − 1, W × H , fr be the

block size, search range, image size, and frame rate, re-

spectively. Level A is the reuse of the N ×(N −1) over-

lapped pels between two horizontally adjacent candi-

date blocks. Level B is the reuse of the (N + 2p −

1) × (N − 1) overlapped pels between two vertically

adjacent candidate block strip. Level C is the reuse of

the (2p − 1) × (N + 2p − 1) overlapped pels between

the search areas of horizontally adjacent MBs. Level D

is the reuse of the (W +2p −1)× (2p −1) overlapped

pels between vertically adjacent search area strips. In

today’s VLSI technology, on-chip SRAMs can be as

large as several tens of Kbytes. Therefore, level C is the

most popular scheme. The search area pels are buffered

in the on-chip memory. For the left most MBs in the im-

age, the whole search area ((N +2p−1)×(N +2p−1)

pels) is reloaded from external DRAM to on-chip

SRAM. For the rest MBs, only part of the search area

(N × (N + 2p − 1) pels) is loaded. The bus band-

width can thus be reduced from ((N + 2p − 1) × (N +

2p −1)) · (W/N) · (H/N) · fr to (N × (N +2p −1)) ·

(W/N) · (H/N) · fr, that is, (2p − 1)/(N + 2p − 1)

of the bus bandwidth is saved. Currently, level D is

impractical due to the limited SRAM size. If level D

becomes feasible in the future, the bus bandwidth for

loading search area pels will be reduced by a factor

of five. Level D scheme is also beneficial to power-

limited systems because external DRAM access con-

sumes more than tens times higher of power than on-

chip SRAM.

There still exist many other FSBMA implementa-

tions. For example, reference [85] depicted a type D

architecture and implemented the FSBMA with dis-

crete TTL components. Reference [86] combined the

architecture in [76] with the MSEA to avoid the unnec-

essary SAD computations for low power consumption.

Reference [87] designed a powerful FSBMA chip with

1024 PEs to provide computational capability of 165

GOPS. Reference [88] modified the 1-D linear array

in [75] to support half-pixel precision, AP mode, PB

mode, and RRU mode for H.263+. Reference [89] im-

proved the architecture in [74] by changing the snake

scan of search positions to regular column scan (top

to bottom and then left to right) and using a circular

shift scheme for PEs with half-reduced SRs. Reference

[90] worked on an architecture design of variable block

sizes ME for H.264/AVC.

According to our survey, PE array is the trend of FS-

BMA architectures. Tradeoffs can be made between

area (number of PEs) and throughput (processing ca-

pability), SAD latency (total cycles to compute a SAD)

and memory bitwidth/bandwidth (serial/parallel load-

ing), PE utilization and data alignment circuits (shift

registers/memory with circular addressing), bus band-

width and on-chip SRAM size. The designers have to

carefully select what can be sacrificed and what must

be insisted on for target applications.

Usually, MB latency (cycles/MB) is defined as the

duration from the start of processing an MB to the end

of finding its motion vector. Throughput (MBs/sec) is

denoted as the reciprocal of the timing interval between

generating two MVs. For intra-type FSBMA architec-

tures, the timing interval is the same as MB latency. For

inter-type designs, the PE array starts processing the

next MB before finishing one MB. The MB latency will

be much larger than the timing interval of generating

two MVs if the search range is much larger than an MB.

That is, the schedule of an inter-type design is often

arranged to process multiple current blocks in parallel.

However, such schedule is not very suitable for MB

pipelining, which is often adopted in a hardware accel-

erated video coding system. When an inter-type design

is integrated into MB pipelining systems, the claimed

throughput and utilization will be dropped. For exam-

ple, two-stage MB pipelining handles two MBs at the

same time. When one new MB is processed at ME

stage, its previous MB is processed at block engine

(BE = DCT + Q + IQ + IDCT + VLC) stage. Before

finishing all the operations for one MB, every stage

cannot start processing the next MB. Hence, system

designers should pay more attention on the MB la-

tency of inter-type architectures than on the claimed

throughput.

We derive hexagonal plots to evaluate representative

FSBMA architectures including Komarek and Pirsch’s

AB2 [73], Vos and Stegherr’s [74], Yang, Sun, and

Wu’s broadcasting reference frame [75], Hsieh and

Lin’s [76], Yeo and Hu’s [95], and Lai and Chen’s [81].

While [75, 80, 81] are inter-type architectures, AB2 of

[73, 74, 76] are intra-type. The results are shown in

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 305

Fig. 1. Gate count, required frequency, hardware uti-

lization, memory bandwidth, memory bitwidth, and

SAD latency are the six dimensions of the hexago-

nal plots. The search range is H[−64, +63]/V[−32,

+31]. The required frequency is estimated for CIF

30 Hz video. Both the required frequency and hard-

ware utilization are derived with integration of ME

into MB pipelining systems. The “latency” in the plot

is SAD latency instead of MB latency. The inverse of

MB latency is proportional to the required frequency,

so we do not have to plot it again. The SAD latency

is the timing interval from start processing an MB to

finish accumulating the first SAD value. For each di-

mension of the hexagonal plots, the performance is

better (or worse) when the curve approaches vertex

(or center). For example, Yeo and Hu’s inter-type 2-D

broadcasting reference frame architecture is good in

required frequency, memory bandwidth, and latency.

However, its gate count, memory bitwidth, and utiliza-

tion are the tradeoffs. These hexagonal plots provide

system designers with a quick evaluation of architec-

tures. The detailed data of these designs are shown in

Table 3.

3.2. Fast BMA Architectures

Fast ME algorithms can reduce the heavy computa-

tion burden of FSBMA with acceptable video quality.

The challenges of architecture design for fast ME algo-

rithms include unpredictable data flow, irregular mem-

ory access, difficult mapping to systolic arrays, low

hardware utilization, and sequential procedures with

data dependence that cannot be parallelized. Besides,

the silicon area of fast ME architectures must be signif-

icantly smaller than that of FSBMA architectures for

cost efficiency considerations. In this subsection, we

will survey the previous arts.

In [91], Jong et al. developed a fully pipelined paral-

lel architecture for three step search BMA. Basically,

nine PEs compute the SAD of the nine candidates in

each step, and 256 cycles are required for each of the

three steps. Intelligent data arrangement and memory

arrangement are used to completely utilize the advan-

tage of three step search. The proposed architecture

can be extended to 27 PEs with MB pipelining to triple

the throughput of blocks. The latency of 27-PE design

is still the same as 9-PE design. The proposed archi-

tecture can be also reduced to 3 PEs with one third

of the throughput and three times of the latency. The

3-PE, 9-PE, and 27-PE designs all have computation

efficiency close to 100%. Compared with a 256-PE

FSBMA array, the gate count of 9-PE architecture is

significantly smaller (36.6 K vs. 192.2 K). When 27-

PE design is used, the throughput is about the same as

a 256-PE FSBMA array, and the area (110 K) is still

much smaller.

In [92], Dutta and Wolf modified the data flow of

the 1-D linear array in [75] to support FSBMA, three

step search, and conjugate direction search on the same

architecture. Multiple memory banks are organized in

communication with PEs via a multistage interconnec-

tion network. When three step search is selected as

the target BMA, the throughput is eight times of FS-

BMA. The programmability makes the 1-D linear array

suitable for more applications with different timing or

power constraints.

In [93], Lin et al. proposed a joint algorithm-

architecture design of a programmable motion estima-

tor chip. Various algorithms are implemented through

a search strategy with macrocommands that can be

executed efficiently on the chip. Two types of pro-

grammable mechanism are supported. One is subsam-

pled search positions and/or block pixels, and the other

is the cluster search. Because the programmable ME re-

quires executing macrocommands interactively as op-

posed to executing fixed search patterns in batches,

the latency in computing the SAD values must be kept

low. Therefore, serial array architecture is not suitable,

and parallel 2-D array is chosen. Conventionally, mul-

tiple banks of SRAMs with bank selection and window

shift are required as an interface between SRAMs and

the parallel 2-D array to perform data alignment. In

this paper, a synchronous self-align array composed

of pixel-rotating PEs, together with a dual-addressing

single-port memory, achieves data alignment without

the complex interface. A prototype chip was imple-

mented. The maximum computational power is 14

GOPS, and it is enable to deliver full search quality

at CIF 30 fps, near full search quality at NTSC level,

and a wide range of other video quality and resolution

rasolution tradeoffs.

In [94], Cheng and Hang used a universal systolic

arrays structure to realize many BMAs. In summary,

they found that the relative performance in chip area

and I/O bandwidth between various algorithms is

strongly picture size- and search range- dependent. For

small pictures and slow motion, all the BMAs under

consideration are on a par. For larger picture sizes and

fast motion, certain fast algorithms have significantly

306 Huang et al.

Figure 1. Hexagonal plots to evaluate different architectures for CIF 30 Hz video with search range as H[−4, +63]/V[−2, +31]; (a) Komarek

and Pirsch’s AB2; (b) Vos and Stegherr’s; (c) Yang, Sun, and Wu’s; (d) Hsieh and Lin’s; (e) Yeo and Hu’s; (f) Lai and Chen’s.

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 307

Table 3. Comparison of FSBMA architectures.

Area Freq. Util. SAD Latency Bitwidth Bandwidth

Architecture (Kgates) (MHz) (%) (Cycles) (Bits) (Kbits/MB)

Komarek and Pirsch’s 0,061.9 196.0 99.2 0.256 080 1.290

Vos and Stegherr’s 0,108.8 108.9 89.3 0.048 128 1.146

Yang, Sun and Wu’s 0,301.3 112.3 88.9 1.024 016 0.146

Hsieh and Lin’s 0,231.9 109.4 72.5 2.176 008 0.090

Yeo and Hu’s 2,907.0 006.1 50.0 0.256 520 0.260

Lai and Chen’s 4,055.0 006.1 50.0 0.512 520 0.260

CIF 30 Hz video, H[−64, +63]/V[−32, +31].

smaller chip areas. In fact, if a more efficient dedicated

hardware is designed for a certain fast algorithm

instead of using systolic arrays, fast algorithms may

even result in much smaller chip area for low-end

applications, like the three step search architecture

developed in [91]. Their analysis provides useful

guidelines to system designers in choosing a suitable

high-level algorithm for VLSI implementation.

In [95], Minzuno et al. pointed out that conventional

ME designs with pipeline/parallel processing must de-

cide a search window size in advance, since the designs

are optimized in accordance with the search window

size. The efficiency needed to achieve the performance

cannot be maintained when the search window size

varies. This lack of flexibility is a significant drawback.

Hence, they developed a motion estimation algorithm

and a hardware implementation method with which the

search window size can be varied without degrading

pipeline/parallel processing efficiency. Two-step hier-

archical search scheme is employed. The first phase

determines coarse motion vectors with a precision of

two pel in the horizontal direction and one pel in the

vertical direction. The second phase is performed at

5 × 3 points in the center of the area determined by the

first phase. The final MVs are obtained within a pre-

cision of half pel. The quality loss for edge-sharpness

sequences is 0.13 dB and for typical sequences is 0.03

dB. The search range of ME is −48/+47 horizon-

tal and −16/+15.5 vertical. The pseudo search range,

which is the size when the location of the search win-

dow is adaptively shifted, is −96/+95 horizontal and

−32/+31.5 vertical and improves 0.4/0.8 dB of coding

performance. Other hierarchical ME architectures can

be found in [45, 96]. Three-level hierarchy was adopted

instead. In [95], tasks of different levels are executed

in separate processing units, so MB pipelining can be

utilized for tasks of different levels. On the contrary,

the architecture in [45] iterates a basic searching unit

for different levels of block matching to save the chip

area.

In [97], Moshnyaga proposed a fast algorithm from

observing that the size of the search window can be

gradually reduced during processing based on the level

of picture distortion between the current block and the

candidate block. After i rows of SAD are accumulated

for a candidate, if the partial SAD value exceeds a

threshold, the candidate can be eliminated at row i + 1,

i + 2, . . . , with all the corresponding operations. The

1-D linear array [75] and the AB2 [73] are taken as

examples to fit the adaptive scheme. However, only

the power consumption can be reduced, but the chip

area and the latency for an MB is still the same due to

the already established data flow. The threshold mod-

ification algorithm was described and claimed to save

up to 75% of the operations whilst preserving the high

quality.

In [98], Hsia adopted temporal prediction of MV

with refinement in a significantly smaller search win-

dow. Only eight PEs with 8 K gates are designed to

achieve throughput of 53 K MBs/s. The produced MVs

may cover the range of [−127, +127]. An adaptive

−7/+7 full search centered at temporal MV predictor is

adopted. The claim that the proposed algorithm is bet-

ter than FSBMA in video quality is misleading because

it was only compared with −7/+7 full search centered

at the origin. In fact, compared with −127/+127 FS-

BMA centered at the origin, the quality loss of this

design will become very large. For example, in Foot-

ball sequence, the camera pans fast toward left at frame

1–70 and then pans fast toward right. In this case, the

predictive search method suffers more than 2 dB PSNR

degradation.

308 Huang et al.

In [99], Kawahito et al. combined ME with CMOS

sensors. In the future, CMOS sensor will become

more and more popular than CCD sensors due to

the easier integration with other CMOS components

to achieve system on chip (SOC). By utilizing high-

speed intermediate pictures from the sensor, an adap-

tive iterative-search BMA was proposed. The concept

is very simple. Since the frame rate of intermediate

pictures is much higher, the motion between con-

secutive intermediate pictures is also much smaller.

ME can be performed on the intermediate pictures

with much smaller search range, and these MVs can

be used to composite the MVs of pictures with nor-

mal frame rate. For instance, let the original frame

rate and search range be 30 and [−64, +63], re-

spectively. If the frame rate is increased to 480, the

search range can be reduced to [−4, +3]. Assume the

same BMA is applied for both frame rates, the ratio

of computational complexities is 1282 × 30:82 × 480

= 16:1. In addition to the reduced complexity, mem-

ory access is also reduced due to the shrink of search

range.

In [100], Vleeschouwer et al. proposed a directional

squared-search BMA. It is similar in performance to

other up-to-date fast BMAs belonging to decimation

of search positions and predictive search, which is not

a surprise as it exploits the same under-lying principles

including spatial correlation of MVs, center-biased dis-

tribution of MVs, faster convergence toward an op-

timum, and early termination when the distortion is

small enough. However, the algorithm is designed with

architectural considerations such that the data reuse of

adjacent candidate blocks can be utilized. Three PEs

are used for three horizontally/vertically adjacent can-

didates. According to their experimental data, the video

quality is worse than diamond search and the com-

plexity is higher, but their algorithm has more efficient

memory access for hardware. Unfortunately, no report

of implementation or simulation result is available in

the paper, so comparison with other papers cannot be

made.

In [102], Chao et al. contributed a novel hybrid

motion estimator supporting advanced zonal diamond

search [19] and fast full search (SEA) [47]. The design

target was CIF 30 fps with search range of [−16, +15].

The search area pixels are buffered in the on-chip

SRAM for level C data reuse. Search area pixels on

different columns are interleaved in eight banks of

SRAMs so that any 8 × 1 pixels in the search area can

be accessed in one cycle. An eight-PE SAD tree [77]

is adopted to compute a SAD in 32 cycles. When dia-

mond search mode is selected, some candidates will be

searched for more than one time without checking. To

avoid the computation redundancy, 1024 one-bit flags

are conventionally used to record if search positions

have been searched. The average saved computation is

24.43%. In this paper, the authors used a ROM-based

method to determine the search positions of the next

step, and the 1024 flags are omitted. Although it is

still possible to search a candidate twice, the saved

computation is 24.23% statistically, which almost

reaches the conventional way. PDE is also applied

in the design to shorten the processing cycles with a

comparator to compare the accumulated partial SAD

with SADmin. When the design is configured as SEA

mode, extra circuits to decide if the SAD calculation

of a search position is necessary will be activated.

The decision is made for every search position in one

cycle. However, if skipping condition does not hold,

the number of cycles to compute an SAD is 32, and

the SAD decision circuit must be stalled. Therefore,

a FIFO is inserted between the SAD decision circuit

and 8-PE SAD tree to increase the throughput. This

architecture has been successfully integrated into an

MPEG-4 simple profile level 3 VLSI encoder and

the ME gate count is only 9 K. The extension of this

architecture to a computation-controllable version

with half/quarter pel accuracy can be found in [102].

Based on our survey, the trend of fast BMA architec-

tures is algorithmic and architectural co-development.

The benefits from the algorithmic level are usually

larger than those from the architectural level. Not only

the traditional algorithmic issues, such as convergence

speed and avoidance of being trapped in local minima,

but also the architectural issues should be taken into

consideration. For example, searching eight random

candidates requires memory access of 16 × 16 × 8 =

2048 pixels, but searching eight successive candidates

requires to access only 16 × (16 + 7) = 368 pixels,

which suggests the line search pattern is more efficient

in memory access. Serial systolic array architectures,

though may have high throughput by many cascaded

PEs, requires a long latency to load pixels, which will

lead to low throughput and low utilization for fast al-

gorithms whose next-step-candidates cannot be known

in prior. Thus, architectures with parallel loading of

reference frame pixels, though require a wider mem-

ory bitwidth, are more suitable for fast BMAs. Besides,

algorithms utilizing sequential processing candidates

by candidates, which may cause an upper bound of

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 309

throughput that cannot be improved by parallelism,

should be avoided.

4. Proposed New Design

In [103], we proposed a global elimination algorithm

(GEA) to remove the branches of SEA/MSEA. The

data flow becomes more regular for hardware. The

video quality is almost the same as that of FSBMA. The

corresponding GEA architecture was also developed.

Compared with FSBMA architectures, we concluded

that our GEA design is much more area-speed efficient.

The processing capability of ours is about the same

as 256-PE intra-type 2-D array while our gate count

is five times smaller. However, the drawback is the

longer critical path. It is difficult to meet the real-time

requirement for high specifications. Recently, we have

developed a new parallel GEA and its corresponding

architecture to solve the encountered problem, which

will be described in detail as follows.

4.1. Global Elimination Algorithm

The original GEA is described as Eqs. (3)–(9).

−p ≤ (m, n) ≤ p − 1 (3)

0 ≤ (i, j) ≤ 2L − 1 (4)

CSL , j,i =

yb∑

yc=ya

xb∑

xc=xa

C(xc, yc)

0 ≤ (xc, yc) ≤ N − 1

ya = j · N/2L , yb = ya + N/2L − 1

xa = i · N/2L , xb = xa + N/2L − 1

(5)

SSL , j,i,n,m =

yd∑

ys=yc

xd∑

xs=xc

S(xs, ys)

0 ≤ (xs, ys) ≤ 2p + N − 2

yc = n + p + j · N/2L , yd = yc + N/2L − 1

xc = m + p + i · N/2L , xd = xc + N/2L − 1

(6)

SSAD(m, n) =

2L −1∑

j=0

2L −1∑

i=0

|C SL , j,i − SSL , j,i,n,m | (7)

(mi , ni) ∈ {(m, n) | SSAD(m, n) ≤ SSADM} (8)

MV = {(u, v) | SAD(u, v) ≤ SAD(mi , ni)}

SAD(m, n) =

N−1∑

y=0

N−1∑

x=0

|C(x, y)−S(x + m + p, y + n + p)| (9)

The search range is [−p, p−], (m, n) denotes a search

position, and (i, j) is the subblock index. Level is indi-

cated by L, and a block of size N × N is divided into

2L × 2L subblocks of size (N/2L) × (N/2L). The cur-

rent block data and the search area data are denoted

as C and S, respectively. CS is the sum of all pixels

within a subblock in current block, and SS is the sum

of all pixels within a subblock in a candidate block.

Originally, the matching criterion is sum of absolute

differences (SAD) for all pixels in the block. Here, we

define subsampled-SAD (SSAD) as sum of absolute

differences between CS and SS. After all the SSAD(m,

n) values are calculated, we will find the most probable

M motion vectors (mi, ni) whose SSAD values are the

smallest. The M-th smallest SSAD among all candidate

blocks is denoted as SSADM . Finally, we compute the

SAD at the M search positions to find the final motion

vector (MV). In [103], we found that L = 2 and M = 7

are suitable parameters for CIF and QCIF under N =

16 and p = 16 or p = 32.

4.2. Problem Statement

The previously proposed architecture is composed of

a systolic module and a 16-pel SAD tree to efficiently

calculate SSAD and SAD, and a comparator tree to

record the M most probable motion vectors. The com-

parator tree is designed to match the throughput of gen-

erating SSAD values, so the critical path of the com-

parator tree is roughly proportional to logM+1
2 . How-

ever, for high-end applications with larger frame size,

the search range and the M parameter should be en-

larged (e.g. p = 64, M = 15 or 31) to obtain FSBMA

quality. Moreover, our previous architecture computes

SSAD sequentially (one SSAD per cycle), so the op-

erating frequency must be significantly increased with

search range and frame size to an unacceptable degree.

Consequently, parallel algorithm and architecture with

short critical path are demanded.

4.3. Proposed Parallel GEA

In order to compute the SSADs of several candidate

blocks in parallel, we divide them into P groups.

310 Huang et al.

Figure 2. Scanning order of search positions for SSAD calculation: (a) sequential GEA; (b) parallel GEA with P = 8.

Candidate blocks with the same value of m%P are

grouped together, and the the most probable K motion

vectors with the smallest SSADs are found separately

for each group. Hence, after all the SSAD values are

estimated, SAD values of the K · P search positions

are further computed to get the final motion vector.

Although the K · P most probable candidates do not

correspond to the K · P smallest SSAD values within

the whole search range, the parallel GEA does not

suffer noticeable quality degradation because the K · P

globally smallest SSAD values usually belong to dif-

ferent groups. The collection of K candidates in each of

the P groups should be similar to the K · P candidates

with globally smallest SSAD values. In this way, P

duplications of the original GEA architecture can be

configured as an array of GEA-PEs to support parallel

scanning of search positions and parallel calculation

of SSAD values. Figure 2 illustrates the scanning

order. Besides, K is much smaller than K · P, which

indicates that the critical path of comparator tree in

each GEA-PE can be reduced at the algorithmic level.

Many conditions have been tested to verify the qual-

ity of our parallel GEA. In our experiments, we embed

parallel GEA with P = 8 and K = 3 into an MPEG-4

simple profile encoder. The resolution of CS and SS

is truncated from 12-bit to eight-bit in order to save

more area and to reduce the critical path for hard-

ware. The other parameter sets are {CIF 30 fps [−32,

+31.5] 384/2048 Kbps} and {D1 30 fps H[−4, +63.5]

V[−32, +31.5] 1536/8192 Kbps}. CIF sequences are

Foreman, Hall Monitor, Mobile Calendar, Stefan, and

Table Tennis. D1 sequences are two clips from the

movie, Crouching Tiger Hidden Dragon. One clip is

the scene with two actresses fighting against each other

in the courtyard, and the other clip is the leading ac-

tor chasing the leading actress on bamboos. Compared

with FSBMA, the average PSNR losses for the seven

sequences are only 0.16, 0.13, 0.05, 0.00, 0.14, −.02,

0.05 dB, respectively. Note that Lagrangian mode de-

cision [104] is applied for both BMAs.

4.4. Proposed Parallel GEA Architecture

In the following, N = 16, L = 2, P = 8, K = 3, and

H[−64, +63.5] V[−32, +31.5] are used as an example

to explain the parallel GEA design. The specification

is D1 30 fps.

The purpose of the systolic module is to generate 16

subblock sums of 4 × 4 pixels in parallel. As shown in

Fig. 3, the input is a row of 16 × 1 pixels. After consec-

utive 16 rows of pixels are inputted, the 16 subblock

sums at search position (m, −p) are produced. The

systolic module utilizes vertical data reuse, and thus

the subblock sums at the search positions (m, −p + 1)

(m, p − 1) can be obtained in the following (2p − 1)

cycles. Compared with the original systolic module in

[103], the improved systolic module not only removes

the redundant computation of subblock sums but also

reduces the resolution of subblock sums from 12-bit to

eight-bit. The gate count of this part is reduced from

6.0 to 4.7 K.

The SAD tree is illustrated in Fig. 4, and the goal is

to compute SSAD/SAD values. An AD unit computes

the absolute difference of two eight-bit samples. When

SAD tree is used to generate SSAD values, the inputs

are 16 subblock sums of current block and 16 subblock

sums of a candidate block. The throughput is the same

as the systolic module, i.e. one candidate block per

cycle (except the first candidate block at each column

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 311

Figure 3. Systolic module to generate 16 subblock sums of 4 × 4 pixels.

Figure 4. SAD Tree to compute SSAD/SAD.

of search positions). When SAD tree is used to compute

SAD values, the inputs are rows of current block data

and search area data, and its output is fetched to a 16-

bit accumulator. It takes 16 cycles for one candidate

block to compute SAD. Due to the bitwidth reduction

of CS and SS, the gate count of this part is reduced

from 4.6 to 2.8 K.

The purpose of the comparator tree is to find the

three smallest SSAD values among one group of can-

didate blocks. The throughput is also matched with the

systolic module and the SAD tree. The concept is to

keep the up-to-date three smallest SSAD values and

their corresponding MV’s in the registers, compare the

new coming SSAD value with the three stored values,

and replace maximum stored values by the new SSAD

if it is larger than the new one. Figure 5 illustrates

the comparator tree. The MAX unit outputs the larger

value of its two inputs, and the EQU unit tells if the

two given inputs are the same. The previous architec-

ture shown in [103] finds the maximum SSAD value

and feed it back to compare with three stored values

to see if a stored value should be replaced. Then, a

CHECK unit is to ensure that only one stored value

will be replaced if more than one stored values are

equal to the maximum. Stall signal should be activated

when the invalid SSAD value is generated from SAD

tree for the first 15 cycles of a column of search po-

sitions. We shorten the critical path in three aspects.

First, at the algorithmic level, search positions are di-

vided into eight groups. Originally, if M = 24, we will

have to find the 24 smallest values, but now only three

smallest values in each group are required. Second,

the bitwidth of SSAD is reduced from 16-bit to 12-bit.

Third, as shown in Fig. 5, instead of feeding the max-

imum SSAD value back to compare for replacement,

we give each SSAD value an unique 2-bit tag and feed

the tag with the maximum SSAD back for compari-

son. The gate count of the comparator tree is reduced

from 1.5 to 1.1 K, compared with the previous version

[103] for M = 3.

Figure 6(a) illustrates a GEA-PE. The systolic mod-

ule, SAD tree, MV cost generator, and comparator tree

are configured in cascoding. The MV cost generator,

which requires only 0.6 K gates, adds a bias of motion

information to the distortion function (known as La-

gragian method [104]) and provides additional coding

gain of 0.2–1.0 dB in PSNR for the MPEG-4 simple

profile encoder. The gate count of a GEA-PE is 11.3 K.

312 Huang et al.

Figure 5. Comparator tree to find the three smallest SSAD values.

Figure 6. Illustration of the motion engine: (a) GEA processing element; (b) system block diagram.

Figure 6(b) illustrates the entire ME accelerator. Cur-

rent block data and search area data are loaded from

external SDRAM to on-chip SRAMs. The SRAMs be-

have as a cache of the ME processor, and the bus band-

width is reduced from more than 7 Gbytes/sec to 477

Mbytes/sec. We adopt (level C) data reuse of over-

lapped search area between two horizontally adjacent

MBs to further reduce the bus bandwidth from 477

Mbytes/sec to 71 Mbytes/sec. The interpolation cir-

cuit is used to generate half-pixels. Besides, thanks to

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 313

the versatility of SAD tree, advanced prediction (AP)

mode (four 8 × 8-MVs for an MB) is also supported.

Inter mode selection between 16 × 16 and 8 × 8 con-

figurations of an MB is done after half-pixel ME, and

intra/inter mode decision is also included in the ac-

celerator. In general, an MPEG-4 simple profile en-

coder with our ME accelerator provides 0.5 dB better

coding performance than the reference software using

FSBMA.

4.5. Discussion and Comparison

The sequential GEA only utilizes the data reuse in the

vertical direction by systolic module to compute the

SSAD values. For one column of 64 search positions,

79 rows of 16 × 1 pixels are fetched, and 1264 bytes of

memory access are required. The parallel GEA utilizes

not only the vertical but also the horizontal data reuse.

As mentioned before, SSAD values of eight columns

of search positions are generated in parallel. In order

to achieve parallel SSAD calculation, 79 rows of 23

× 1 pixels (1817 bytes) are fetched. Let us denote the

fetched 23 × 1 pixels from left to right as p0–p22. The

first 16 pixels, p0–p15, are sent to PEO, p1–p16 are sent

to PE1,. . ., and p7–p22 are sent to PE7. In this way,

compared with the sequential GEA (1264 bytes for one

column), parallel GEA is much more efficient in on-

chip SRAM access (1817 bytes for eight columns, i.e.

227 bytes for one column on average). The bandwidth

of on-chip SRAM for SSAD computation is reduced

from 6.55 Gbytes/sec to 1.18 Gbytes/sec.

The numbers of cycles to compute CS values, SSAD

values, integer-pel SAD values, and half-pel SAD val-

ues are 16, (64 × 15) × 128/8 = 1264, 16 × 24 = 384,

and (16 + 2) + (8 + 2) × 4 = 58, respectively. There-

fore, for processing an MB, about 1722 cycles are re-

quired (including pipelines and mode decision). For

D1 30 fps, there are 40,500 MBs in a second, so the re-

quired frequency is 69.741 MHz. We use one 16 × 128

(words × bits) single-port SRAM to store current block

data (16 × 16 pels) and eight 400 × 32 single-port

SRAMs to store the search area data (160 × 80 pels).

If the bus bitwidth is 32, loading current block data

and search area data from external DRAM to on-chip

SRAM requires about 500–700 cycles in average, de-

pending on the bus traffic and protocol. Therefore, the

frequency must be increased to 100 MHz. If dual-port

SRAMs can be used, the loading operations of the

next MB and the ME operations of the current MB

can be executed at the same time, and no extra cycle

is needed. Nevertheless, dual-port SRAMs are larger

than single-port SRAMs, which is the tradeoff for

speed.

In Fig. 6(b), there are eight GEA-PEs in parallel.

Since the utilization rates of different modules vary a

lot, the inputs of the idling circuits should be masked to

zero for power saving. When the ME engine is config-

ured to compute CS values, only one “Systolic Mod-

ule” should be activated, and the rest of circuits can

be shut down. When the ME engine is configured to

compute SSAD values, all the logic circuits except in-

terpolation will be activated. When the ME engine is

configured to compute integer-pel SAD values of the

24 potential candidates, five ‘SAD Tree’ and ‘MV Cost

Bias’ circuits (one for 16 × 16-block, four for 8 × 8-

blocks) will be on. When the ME engine is config-

ured to compute half-pel SAD values of one 16 × 16-

block and four 8 × 8-blocks, only the interpolation and

one ‘SAD Tree” and ‘MV Cost Bias” circuits will be

used.

For the sake of clarity, GEA-PEs are used to ex-

plain the parallel processing for multiple columns of

search positions. However, there exist redundant com-

putations of SS values. For example, when pixels of

8 × 1 candidate blocks are inputted row by row (23

pels by 23 pels), the second column 4 × 4-block sum

of the first candidate block is exactly the same as the

first column 4 × 4-block sum of the fourth candidate

block. To avoid the redundant SS computation of the

8 × 1 candidate blocks, the ME engine can be modified

as Fig. 7. First, “Systolic Module” is removed from a

GEA-PE, as shown in Fig. 7(a). Second, a systolic col-

umn PE is used to compute four 4 × 4-block sum with

one inputted 4 × 1-pel sum at every cycle, as shown in

Fig. 7(b). Third, for replacing the original eight “Sys-

tolic Module” circuits in GEA-PEs, we integrate 24

systolic column PEs and additional adders to compute

4 × 1-pel sums, as shown in Fig. 7(c). Finally, the mod-

ified system block diagram is shown in Fig. 7(d). In

this way, about 15 K gates can be saved, and the over-

all logic gate count in Fig. 7(d) is reduced from 113 to

98 K (synthesized by Synopsys Design Compiler with

Artisan 0.18 µm cell library at 70 MHz).

In order to compare our implementation with the

hexagonal plots in Fig. 1, the specification is lowered

from D1 30 fps to CIF 30 fps to get the scaled

hexagonal plot of our eight-parallel GEA design, as

shown in Fig. 8. With the moderate performance in

memory bitwidth and utilization, our design performs

314 Huang et al.

Figure 7 Illustration of the modified motion engine: (a) modified GEA processing element; (b) systolic column processing element (c)

integrated systolic module with systolic column processing elements (d) modified system block diagram.

very well in the other four dimensions. Besides, the

functionality of our ME engine is quite rich. Not only

integer-pel ME, but also half-pel ME, AP mode, MV

cost bias, intra/inter MB mode decision are included.

It is a good silicon intellectual property (IP) and has

been integrated into several commercial MPEG-4

VLSI coding systems.

Next, we compare our implementation with 1-D

semi-systolic FSBMA array architecture [75] due to

its high flexibility of search range and scalability of

PEs. The results are shown in Table. 4. Search range

partition is adopted for [75] to achieve the scalable

PEs. The gate count of our design is 4.57, 9.14, and

18.29 times smaller than 512-PE, 1024-PE, and 2048-

PE array, respectively, while the working frequencies

of the three array configurations are 2.37, 1.19, and

0.6 times of our design’s for D1 30 fps H[−4, +63]

V[−2, +31]. Apparently, our design is more efficient

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 315

Figure 8. Hexagonal plots of our eight-parallel GEA design for CIF 30 Hz video with search range as H[−4, +63]/V[−2, +31].

in all aspects except a minor loss of video quality. The

video quality of an MPEG-4 simple profile encoder

adopting our ME accelerator is 0.1–0.2 dB worse than

that of adopting FSBMA and Lagrangian mode deci-

sion, but is significantly better than that produced by

the reference software.

4.6. Summary

We presented a new parallel global elimination

algorithm and architecture for fast block matching. By

rejecting less possible candidates with simplified dis-

tortion estimation, only a few potential candidates are

required to be refined with fine distortion estimation.

The software complexity of our algorithm is about

8.8% of the full search. To achieve parallel processing,

candidate blocks are divided into independent groups

so that the coarse distortion estimation of several search

positions can be executed simultaneously. Many design

techniques, such as systolic flow, 2-D data reuse, reuse

of overlapped search area, and resource sharing, are

adopted to maximize the overall system performance.

Our accelerator is ten times more area-speed efficient

than FSBMA architectures and provides better coding

performance than the MPEG-4 reference software.

Table 4. Comparison of ME architectures under the specification of D1 30 fps H[−4, +63] V[−2, +31].

Architecture 8-Parallel GEA 512-PE 1-D array 1024-PE 1-D array 2048-PE 1-D array

Gate count 98 K 448 K 896 K 1792 K

Working frequency 70 MHz 166 MHz 83 MHz 42 MHz

SRAM size 13,312 Kbytes 13,312 Kbytes 13,312 Kbytes 13,312 Kbytes

SRAM bandwidth 1,842 Mbytes/sec 6,142 Mbytes/sec 6,059 Mbytes/sec 6,090 Mbytes/sec

Bus bandwidth 71 Mbytes/sec 71 Mbytes/sec 71 Mbytes/sec 71 Mbytes/sec

Functionality Integer ME, Half ME, AP Mode,

Lagrangian MB mode decision

Integer ME (FSBMA) Integer ME (FSBMA) Integer ME (FSBMA)

316 Huang et al.

5. Conclusion

Motion estimation engine is usually the most impor-

tant module in a typical video encoder. It spends the

longest run-time in software and demands the largest

area/bandwidth in hardware. In this paper, we made

a detailed study of block matching algorithms and ar-

chitectures during the past two decades. Also, our new

development was proposed to illustrate the advantages

of algorithmic and architectural co-design, which is the

trend for VLSI implementation of ME engine to pro-

vide high performance and cost effective video coding

systems.

References

1. Information Technology—Coding of Moving Pictures and As-

sociated Audio for Digital Storage Media at up to about 1.5

Mbit/s—Part 2: Video, ISO/IEC 11172-2, 1993.

2. Information Technology—Generic Coding of Moving Pictures

and Associated Audio Information: Video, ISO/IEC 13818-2

and ITU-T Recommendation H.262, 1996.

3. Information Technology—Coding of Audio-Visual Objects—

Part 2: Visual, ISO/IEC 14496/2, 1999.

4. Video Codec for Audiovisual Services at p × 64 Kbit/s, ITU-T

Recommendation H.261, Mar. 1993.

5. Video Coding for Low Bit Rate Communication, ITU-T Rec-

ommendation H.263, Feb. 1998.

6. Joint Video Team, Draft ITU-T Recommendation and Final

Draft International Standard of Joint Video Specification, ITU-

T Recommendation H.264 and ISO/IEC 14496/10 AVC, May

2003.

7. J. Jain and A. Jain, “Displacement Measurement and its Appli-

cation in Internal Image Coding,” IEEE Trans. Commun., vol.

COM-29, no. 12, 1981, pp. 1799–1808.

8. T. Koga, K. linuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Mo-

tion compensated interframe coding for video conferencing,”

in Proc. Nat. Telecommun. Conf., 1981, pp. C9.6.1–C9.6.5.

9. R. Srinivasan and K.R. Rao, “Predictive Coding based on Effi-

cient Motion Estimation,” IEEE Trans. Commun., vol. COM-

33, no. 8, 1985, pp. 888–896.

10. S. Kappagantula and K.R. Rao, “Motion Compensated Inter-

frame Image Prediction,” IEEE Trans. Commun., vol. COM-

33, no. 9, 1985, pp. 1011–1015.

11. M. Ghanbari, “The Cross Search Algorithm for Motion Es-

timation,” IEEE Trans. Commun., vol. 38, no. 7, 1990, pp.

950–953.

12. L.G. Chen, W.T. Chen, Y.S. Jehng, and T.D. Chiueh, “An Effi-

cient Parallel Motion Estimation Algorithm for Digital Image

Processing,” IEEE Trans. Circuits Syst. Video Technol., vol. 1,

no. 4, 1991, pp. 378–385.

13. M.J. Chen, L.G. Chen, and T.D. Chiueh, “One-dimensional

full Search Motion Estimation Algorithm for Video Coding,”

IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 5, 1994,

pp. 504–509.

14. R. Li, B. Zeng, and M.L. Liou, “A New Three-step Search

Algorithm for Block Motion Estimation,” IEEE Trans. Circuits

Syst. Video Technol., vol. 4, no. 4, pp. 438/442, Aug. 1994.

15. L.M. Po and W.C. Ma, “A Novel Four-step Search Algorithm

for Fast Block Motion Estimation,” IEEE Trans. Circuits Syst.

Video Technol., vol. 6, no. 3, 1996, pp. 313–317.

16. L.K. Liu and E. Feig, “A Block-based Gradient Descent Search

Algorithm for Block Motion Estimation in Video Coding,”

IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 4, 1996,

pp. 419–422.

17. J.Y. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, “A

Novel Unrestricted Center-biased Diamond Search Algorithm

for Block Motion Estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 4, 1998, pp. 369–377.

18. S. Zhu and K.K. Ma, “A New Diamond Search Algorithm for

Fast Block-matching Motion Estimation,” IEEE Trans. Image

Processing, vol. 9, no. 2, 2000, pp. 287–290.

19. A.M. Tourapis, O.C. Au, M.L. Liou, G. Shen, and I. Ahmad,

“Optimizing the mpeg-4 Encoder - advanced Diamond Zonal

search,” in Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’00),

2000, pp. 674–677.

20. A.M. Tourapis, O.C. Au, and M.L. Liu, “Highly Efficient Pre-

dictive Zonal Algorithms for Fast Block-matching Motion Es-

timation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12,

no. 10, 2002, pp. 934–947.

21. V. Christopoulos and J. Cornelis, “A Center-biased Adaptive

Search Algorithm for Block Motion Estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 10, no. 3, 2000, pp. 423–

426.

22. O.T.C. Chen, “Motion Estimation using a One-Dimensional

Gradient Descent Search,” IEEE Trans. Circuits Syst. Video

Technol., vol. 10, no. 4, 2000, pp. 608–616.

23. C.H. Cheung and L.M. Po, “A Novel Cross Diamond Search

Algorithm for Fast Block Motion Estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 12, no. 12, 2002, pp. 1168–

1177.

24. Y.W. Huang, S.Y. Ma, C.F. Shen, and L.G. Chen, “Predictive

Line Search: An Efficient Motion Estimation Algorithm for

mpeg-4 Encoding Systems on Multimedia Processors,” IEEE

Trans. Circuits and Syst. Video Technol., vol. 13, no. 1, 2003,

pp. 111–117.

25. C.W. Lam, L.M. Po, and C.H. Cheung, “A Novel Kite-

Cross-diamond Search Algorithm for Fast Video Coding and

Videoconferencing Applications,” in Proc. of IEEE Int. Conf.

Acoust., Speech, and Signal Processing (ICASSP’04), 2004,

pp. 365–368.

26. S. Zhu and K.K. Ma, “A New Diamond Search Algorithm for

Fast Block Matching Motion Estimation,” in Proc. of IEEE Int.

Conf. Image Processing (ICIP’97), 1997, pp. 292–296.

27. M. Bierling, “Displacement Estimation by Hierarchical Block

Matching,” in Proc. of SPIE Visual Commun. Image Processing

(VCIP’88), 1988, pp. 942–951.

28. A. Zaccarin and B. Liu, “Fast Algorithms for Block Motion

Estimation,” in Proc. of IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP’92), 1992, pp. 449–452.

29. B. Liu and A. Zaccarin, “New Fast Algorithms for the Esti-

mation of Block Motion Vectors,” IEEE Trans. Circuits Syst.

Video Technol., vol. 3, no. 2, 1993, pp. 148–157.

30. Y. Wang, Y. Wang, and H. Kuroda, “A Globally Adaptive Pixel-

decimation Algorithm for Block-motion Estimation,” IEEE

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 317

Trans. Circuits Syst. Video Technol., vol. 10, no. 6, 2000, pp.

1006–1011.

31. H. Gharavi and M. Mills, “Block Matching Motion Estimation

Algorithms - New Results,” IEEE Trans. Circuits Syst., vol.

37, no. 5, 1990, pp. 649–651.

32. M.J. Chen, L.G. Chen, T.D. Chiueh, and Y.P. Lee, “A New

Block-matching Criterion for Motion Estimation and its Im-

plementation,” IEEE Trans. Circuits Syst. Video Technol., vol.

5, no. 3, 1995, pp. 231–236.

33. M.J. Chen, “Predictive Motion Estimation Algorithms for

Video Compression,” J. of St. John’s St. Mary Institute of Tech-

nol., vol. 15, 1997, pp. 197–214.

34. J.S. Kim and R.H. Park, “A Fast Feature-based Block Matching

Algorithm using Integral Projections,” IEEE J. Select. Areas

Commun., vol. 10, no. 5, 1992, pp. 968–979.

35. K. Sauer and B. Schwartz, “Efficient Block Motion Estimation

using Integral Projections,” IEEE Trans. Circuits Syst. Video

Technol., vol. 6, no. 5, 1996, pp. 513–518.

36. B. Natarajan and V. Bhaskaran, “Low-complexity Block-based

Motion Estimation via one-bit Transforms,” IEEE Trans. Cir-

cuits Syst. Video Technol., vol. 7, no. 4, 1997, pp. 702–706.

37. J.H. Luo, C.N. Wang, and T. Chiang, “A Novel All-binary

Motion Estimation (ABME) with Optimized Hardware Archi-

tectures,” IEEE Trans. Circuits Syst. Video Technol., vol. 12,

no. 8, 2002, pp. 700–712.

38. Z.L. He, C.Y. Tsui, K.K. Chan, and M.L. Liou, “Low-power

VLSI Design for Motion Estimation using Adaptive Pixel trun-

cation,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no.

5, 2000, pp. 669–678.

39. C.H. Hsieh, P.C. Lu, J.S. Shyn, and E.H. Lu, “Motion Estima-

tion Algorithm using Interblock Correlation,” IEE Electron.

Lett., vol. 26, no. 5, 1990, pp. 276–277.

40. S. Zafar, Y.Q. Zhang, and J.S. Baras, “Predictive Block Match-

ing Motion Estimation for TV Coding—Part I: Inter-block

Prediction,” IEEE Trans. Broadcast., vol. 37, no. 3, 1991, pp.

97–101.

41 Y.Q. Zhang and S. Zafar, “Predictive Block-matching Motion

Estimation for TV Coding—Part II: Inter-frame Prediction,”

IEEE Trans. Broadcast., vol. 37, no. 3, 1991, pp. 102–105.

42. M.C. Chen and A.N. Willson J., “A Logarithmic-time Adaptive

Block Matching Algorithm in Estimating Large Displacement

Motion Vectors,” in Proc. of IEEE Multimedia Commun. Video

Coding Symp., 1995.

43. J. Chalidabhongse and C.C.J. Kuo, “Fast Motion Vector Esti-

mation using Multiresolution-Spatio-Temporal Correlations,”

IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 3, 1997,

pp. 477–488.

44. D. Tzovaras, M.G. Strintzis, and H. Sahinolou, “Evaluation of

Multiresolution Block Matching Techniques for Motion and

Disparity Estimation,” Signal Processing: Image Commun.,

vol. 6, 1994, pp. 56–67.

45. J.H. Lee, K.W. Lim, B.C. Song, and J.B. Ra, “A Fast Multi-

resolution Block Matching Algorithm and its VLSI Archi-

tecture for Low Bit-rate Video Coding,” IEEE Trans. Cir-

cuits Syst. Video Technol., vol. 11, no. 12, 2001, pp. 1289–

1301.

46. J.H. Lee and N.S. Lee, “Variable Block Size Motion Estimation

Algorithm and its Hardware Architecture for H.264,” in Proc.

of IEEE Int. Symp. Circuits Syst. (ISCAS′04), 2004, pp. 740–

743.

47. W. Li and E. Salari, “Successive Elimination Algorithm for

Motion Estimation,” IEEE Trans. Image Processing, vol. 4,

no. 1, 1995, pp. 105–107.

48. X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel Succes-

sive Elimination Algorithm for Block Matching Motion Esti-

mation,” IEEE Trans. Image Processing, vol. 9, no. 3, 2000,

pp. 501–504.

49. M. Brunig and W. Niehsen, “Fast Full-search Block Matching,”

IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, 2001,

pp. 241–247.

50. C. Zhu, W.S. Qi, and W. Ser, “A New Successive Elimination

Algorithm for Fast Block Matching in Motion Estimation,” in

Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS′04), 2004, pp.

733–736.

51. C.J. Duanmu, M.O. Ahmad, and M.N.S. Swamy, “8-bit Partial

Sum of 16 Luminance Values for Fast Block Motion Estima-

tion,” in Proc. of IEEE Int. Conf. Multimedia Expo (ICME′03),

2003, pp. 689–692.

52. Digital Video Coding Group, ITU-T recommendation H.263

software implementation, Telenor R’D, 1995.

53. C.K. Cheung and L.M. Po, “Normalized Partial Distortion

Search Algorithm for Block Motion Estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 10, no. 3, 2000, pp. 417–

422.

54. J.N. Kim and T.S. Choi, “A Fast Full-search Motion-estimation

Algorithm using Representative Pixels and Adaptive Matching

Scan,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no.

7, 2000, pp. 1040–1048.

55. K. Lengwehasatit and A. Ortega, “Probabilistic Partial-

distance Fast Matching Algorithms for Motion Estimation,”

IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, 2001,

pp. 139–152.

56. A. Hatabu, T. Miyazaki, and I. Kuroda, “Optimization of

Decision-timing for Early Termination of SSDA-based Block

Matching,” in Proc. of IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP’03), 2003, pp. 533–536.

57. Y.S. Chen, Y.P. Huang, and C.S. Fuh, “Fast Block Matching

Algorithm based on the Winner-update Strategy,” IEEE Trans.

Image Processing, vol. 10, no. 8, 2001, pp. 1212–1222.

58. I.M. Pao and M.T. Sun, “Modeling Dot Coefficients for Fast

Video Encoding,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 9, no. 4, 1999, pp. 608–616.

59. D.S. Turaga and T. Chen, “Estimation and Mode Decision for

Spatially Correlated Motion Sequences,” IEEE Trans. Circuits

Syst. Video Technol., vol. 11, no. 10, 2001, pp. 1098–1107.

60. J. Xin, M.T. Sun, and V. Hsu, “Diversity-based fast block mo-

tion estimation,” in Proc. of IEEE Int. Conf. Multimedia Expo

(ICME’03), 2003, pp. 525/528.

61. P.L. Tsai, S.Y. Huang, C.T. Liu, and J.S. Wang, “Computation-

aware Scheme for Software-based Block Motion Estimation,”

IEEE Trans. Circuits and Syst. Video Technol., vol. 13, no. 9,

2003, pp. 901–913.

62. Y.W. Huang, B.Y. Hsieh, T.C. Wang, S.Y. Chien, S.Y. Ma, C.F.

Shen, and L.G. Chen, “Analysis and Reduction of Reference

Frames for Motion Estimation in MPEG-4 AVC/JVT/H.264,”

in Proc. of IEEE Int. Conf. Acoust., Speech, and Signal Pro-

cessing (ICASSP’03), 2003, pp. 145–148.

63. H.Y.C. Tourapis and A.M. Tourapis, “Fast Motion Estimation

Within the H.264 Codec,” in Proc. of IEEE Int. Conf. Multi-

media Expo (ICME’03), 2003, pp. 517–520.

318 Huang et al.

64. Y.K. Tu, J.F. Yang, Y.N. Shen, and M.T. Sun, “Fast Variable

Block Motion Estimation using Merging Procedure with an

Adaptive Threshold,” in Proc. of IEEE Int. Conf. Multimedia

Expo (ICME’03), 2003, pp. 789–792.

65. W.I. Choi, B. Jeon, and J. Jeong, “Fast Motion Estimation with

Modified Diamond Search for Variable Motion Block Sizes,”

in Proc. of IEEE Int. Conf. Image Processing (ICIP’03), 2003,

pp. 371–374.

66. X. Li, E.Q. Li, and Y.K. Chen, “Fast Multi-frame Motion Esti-

mation Algorithm with Adaptive Search Strategies in H.264,”

in Proc. of IEEE Int. Conf. Acoust., Speech, and Signal Pro-

cessing (ICASSP’04), 2004, pp. 369–372.

67. Z. Zhou and M.T. Sun, “Fast Vaiable Block-size Motion Esti-

mation Algorithms based on Merge and Split Procedures for

H.264/MPEG-4 AVC,” in Proc. of IEEE Int. Symp. Circuits

Syst. (ISCAS’04), 2004, pp. 725–728.

68. M.J. Chen, Y.Y. Chiang, H.J. Li, and M.C. Chi, “Effi-

cient Multi-frame Motion Estimation Algorithms for MPEG-4

AVC/JVT/H.264,” in Proc. of IEEE Int. Symp. Circuits Syst.

(ISCAS’04), 2004, pp. 737–740.

69. C.H. Kuo, M. Shen, and C.C.J. Kuo, “Fast inter-prediction

mode decision and motion search for H.264,” in Proc. of IEEE

International Conference on Multimedia and Expo, 2004.

70. P. Yang, Y.W. He, and S.Q. Yang, “An Unisymmetrical-

cross Multi-Resolution Motion Search Algorithm for MPEG-4

AVC/H.264 coding,” in Proc. of IEEE International Confer-

ence on Multimedia and Expo, 2004.

71. Y. Su and M.T. Sun, “Fast Multiple Reference Frame Motion

Estimation for H.264,” in Proc. of IEEE International Confer-

ence on Multimedia and Expo, 2004.

72. S.Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ:

Prentice Hall, 1988.

73. T. Komarek and P. Pirsch, “Array Architectures for Block

Matching Algorithms,” IEEE Trans. Circuits Syst., vol. 36,

no. 2, 1989, pp. 1301–1308.

74. L.D. Vos and M. Stegherr, “Parameterizable VLSI Architec-

tures for the Full-search Block-matching Algorithm,” IEEE

Trans. Circuits Syst., vol. 36, no. 2, 1989, pp. 1309–1316.

75. K.M. Yang, M.T. Sun, and L. Wu, “A Family of VLSI De-

signs for the Motion Compensation Block-matching Algo-

rithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2, 1989, pp.

1317–1325.

76. C.H. Hsieh and T.P. Lin, “VLSI Architecture for Block-

matching Motion Estimation Algorithm,” IEEE Trans. Circuits

Syst. Video Technol., vol. 2, no. 2, 1992, pp. 169–175.

77. Y.S. Jehng, L.G. Chen, and T.D. Chiueh, “An Efficient and

Simple VLSI Tree Architecture for Motion Estimation Algo-

rithms,” IEEE Trans. Signal Processing, vol. 41, no. 2, 1993,

pp. 889–900.

78. C.Y. Chen, Y.W. Huang, T.C. Shen, and L.G. Chen, “Analysis

and Architecture Design of Variable Block Size Motion Esti-

mation for Video Coding Systems,” IEEE Trans. Circuits and

Syst. I, 2004 (submitted).

79. S.F. Chang, J.H. Hwang, and C.W. Jen, “Scalable Array Archi-

tecture Design for Full Search Block Matching,” IEEE Trans.

Circuits Syst. Video Technol., vol. 5, no. 4, 1995, pp. 332–343.

80. H. Yeo and Y.H. Hu, “A Novel Modular Systolic Array Archi-

tecture for Full-search Block Matching Motion Estimation,”

IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 5, 1995,

pp. 407–416.

81. Y.K. Lai and L.G. Chen, “A Data-interlacing Architecture with

two-Dimensional Data-reuse for Full-search Block-matching

Algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 8,

no. 2, 1998, pp. 124–127.

82. Y.H. Yeh and C.Y. Lee, “Cost-effective VLSI Architectures

and Buffer Size Optimization for Full-search Block Matching

Algorithms,” IEEE Trans. VLSI Syst., vol. 7, no. 3, 1999, pp.

345–358.

83. J.C. Tuan, T.S. Chang, and C.W. Jen, “On the Data Reuse and

Memory Bandwidth Analysis for Full-search Block-matching

VLSI Architecture,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 12, no. 1, 2002, pp. 61–72.

84. Mei-Yun Hsu, Scalable module-based architecture for MPEG-

4 BMA motion estimation, Master Thesis, National Taiwan

Univ., 2000.

85. C.H. Chou and Y.C. Chen, “A VLSI Architecture for Real-time

and Flexible Image Template Matching,” IEEE Trans. Circuits

Syst., vol. 36, no. 2, 1989, pp. 1336–1342.

86. V.L. Do and K.Y. Yun, “A Low-power VLSI Architecture for

Full-search Block-matching Motion Estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 8, no. 4, 1998, pp. 393–

398.

87. A. Hanami, S. Scotzniovsky, K. Ishihara, T. Matsumura, S.

I. Takeuchi, H. Ohkuma, K. Nishigaki, H. Suzuki, M. Kaza-

yama, T. Yoshida, and K. Tsuchihashi, “A 165-GOPS Motion

Estimation Processor with Adaptive Dual-array Architecture

for High Quality Video-encoding Applications,” in Proc. of

IEEE Custom Integrated Circuits Conf. (CICC’98), 1998, pp.

169–172.

88. J.F. Shen, T.C. Wang, and L.G. Chen, “A Novel Low-power

Full Search Block-matching Motion Estimation Design for

H.263+,” IEEE Trans. Circuits Syst. Video Technol., vol. 11,

no. 7, 2001, pp. 890–897.

89. N. Roma and L. Sousa, “Efficient and Configurable Full-search

Block-matching Processors,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 12, pp. 1160/1167, Dec. 2002.

90. Y.W. Huang, T.C. Wang, B.Y. Hsieh, and L.G. Chen, “Hard-

ware Architecture Design for Variable Block Size Motion es-

timation in MPEG-4 AVC/JVT/ITU-T H.264,” in Proc. of

IEEE Int. Symp. Circuits Syst. (ISCAS’03), 2003, pp. 796–

799.

91. H.M. Jong, L.G. Chen, and T.D. Chiueh, “Parallel Architec-

tures for 3-step Hierarchical Search Block-matching Algo-

rithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no.

4, 1994, pp. 407–416.

92. S. Dutta and W. Wolf, “A Flexible Parallel Architecture

Adopted to Block-matching Motion Estimation Algorithms,”

IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 1, 1996,

pp. 74–86.

93. H.D. Lin, A. Anesko, and B. Petryna, “A 14-GOPS Pro-

grammable Motion Estimator for H.26 × Video Coding,” IEEE

J. Solid-State Circuits, vol. 31, no. 11, 1996, pp. 1742–

1750.

94. S.C. Cheng and H.M. Hang, “A Comparison of Block-

matching Algorithms Mapped to Systolic-array Implementa-

tion,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 5,

1997, pp. 741–757.

95. M. Mizuno, Y. Ooi, N. Hayashi, J. Goto, M. Hozumi, K. Fu-

ruta, A. Shibayama, Y. Nakazawa, O. Ohnishi, S. Y. Zhu, Y.

Yokoyama, Y. Katayama, H. Takano, N. Miki, and Y. Senda,

Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results 319

“A 1.5-W Single-chip MPEG-2 MP@ML Video Encoder with

Low Power Motion Estimation and Clocking,” IEEE J. Solid-

State Circuits, vol. 32, no. 11, 1997, pp. 1807–1816.

96. M. Takahashi, M. Hamada, T. Nishikawa, H. Arakida, T. Fujita,

F. Hatori, S. Mita, K. Suzuki, A. Chiba, T. Terazawa, F. Sano, Y.

Watanabe, K. Usami, M. Igarashi, T. Ishikawa, M. Kanazawa,

T. Kuroda, and T. Furuyama, “A 60-mW MPEG-4 Video Codec

using Clustered Voltage Scaling with Variable Supply-voltage

Scheme,” IEEE J. Solid-State Circuits, vol. 33, no. 11, 1998,

pp. 1772–1780.

97. V.G. Moshnyaga, “A New Computationally Adaptive Formu-

lation of Block-matching Motion Estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 11, no. 1, 2001, pp. 118–

124.

98. S.C. Hsia, “VLSI Implementation for Low-complexity Full-

search Motion Estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 7, 2002, pp. 613–619.

99. S. Kawahito, D. Handoko, Y. Tadokoro, and A. Matsuzawa,

“Low Power Motion Vector Estimation using Iterative Search

Block-matching Methods and a High-speed Non-destructive

CMOS Sensor,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 12, no. 12, 2002, pp. 1084–1092.

100. C.D. Vleeschouwer, T. Nilsson, K. Denolf, and J. Bor-

mans, “Algorithmic and Architectural Co-design of a Motion-

estimation Engine for Low-power Video Devices,” IEEE

Trans. Circuits Syst. Video Technol., vol. 12, no. 12, 2002,

pp. 1093–1105.

101. W.M. Chao, C.W. Hsu, Y.C. Chang, and L.G. Chen, “A Novel

Motion Estimator Supporting Diamond Search and Fast full

Search,” in Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’02),

2002, pp. 492–495.

102. W.M. Chao, T.C. Chen, Y.C. Chang, C.W. Hsu, and L.G. Chen,

“Computationally Controllable Integer, Half, and Quarter-pel

Motion Estimator for MPEG-4 Advanced Simple Profile,” in

Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’03), 2003, pp.

788–791.

103. Y.W. Huang, S.Y. Chien, B.Y. Hsieh, and L.G. Chen, “Global

Elimination Algorithm and Architecture Design for Fast Block

Matching Motion Estimation,” IEEE Trans. Circuits and Syst.

Video Technol., vol. 14, no. 6, 2004, pp. 898–907.

104. A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G.J. Sul-

livan, “Performance Comparison of Video Coding Standards

using Lagragian Coder Control,” in Proc. of IEEE Interna-

tional Conference on Image Processing, 2002.

Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He re-

ceived the B.S. degree in electrical engineering and the Ph.D. degree

in electronics engineering from National Taiwan University, Taipei,

in June 2000 and December 2004, respectively. He joined Medi-

aTek, Inc., Hsinchu, Taiwan, in 2004, where he develops integrated

circuits related to video coding systems. His research interests in-

clude video segmentation, moving object detection and tracking,

intelligent video coding technology, motion estimation, face detec-

tion and recognition, H.264/AVC video coding, and associated VLSI

architectures.

yuwen@video.ee.ntu.edu.tw

Ching-Yeh Chen was born in Taipei, Taiwan, in 1980. He received

the B.S. degree from the Department of Electrical Engineering, Na-

tional Taiwan University, Taipei, Taiwan, in 2002. He currently is

pursuing the Ph.D. degree at the Graduate Institute of Electronics En-

gineering, National Taiwan University. His research interests include

intelligent video signal processing, global/local motion estimation,

scalable video coding, and associated VLSI architectures.

cychen@video.ee.ntu.edu.tw

Chen-Han Tsai received the B.S. degree in electrical engineering

from National Taiwan University in 2002. Now he is working toward

the Ph.D. degree in the Graduate Institute of Electronics Engineering,

National Taiwan University. His major research interests include

face detection and recognition, motion estimation, H.264/AVC video

coding, digital TV systems, and related VLSI architectures.

phenom@video.ee.ntu.edu.tw

Chun-Fu Shen received the B.S. and M.S. degrees in electrical

engineering from National Taiwan University in 1996 and 1998, re-

spectively. After two years of military service, he joined VIVOTEK,

Inc., Taipei County, Taiwan, in 2000. He developed many video cod-

ing systems and IP camera products on DSP platforms and ASICs.

320 Huang et al.

His major research interests include JPEG, H.263, MPEG-4, and

H.264/AVC coding systems, network camera SOC, and embedded

systems.

sor@vivotek.com

Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He re-

ceived the B.S., M.S., and Ph.D. degrees in electrical engineering

from National Cheng Kung University, in 1979, 1981, and 1986,

respectively. He was an instructor (1981–1986), and an associate

professor (1986–1988) in the Department of Electrical Engineer-

ing, National Cheng Kung University. In the military service during

1987 and 1988, he was an associate professor in the Institute of Re-

source Management, Defense Management College. From 1988, he

joined the Department of Electrical Engineering, National Taiwan

University. During 1993 to 1994 he was a visiting consultant of DSP

Research Department, AT&T Bell Lab, Murray Hill. In 1997, he

was the visiting scholar of the Department of Electrical Engineer-

ing, University, of Washington, Seattle. Currently, he is a professor

of National Taiwan University. From 2004, he is also the executive

vice president and the general director of Electronics Research and

Service Organization (ERSO) in the Industrial Technology Research

Institute (ITRI). His current research interests are DSP architecture

design, video processor design, and video coding systems.

Dr. Chen is a Fellow of IEEE. He is also a member of the honor

society Phi Tau Phi. He was the general chairman of the 7th VLSI

Design CAD Symposium. He was also the general chairman of

the 1999 IEEE Workshop on Signal Processing Systems: Design

and Implementation. He has served as the associate editor of IEEE

Transactions on Circuits and Systems for Video Technology since

1996, the associate editor of IEEE Transactions on VLSI Systems

since 1999, the associate editor of Journal of Circuits, Systems, and

Signal Processing since 1999, and the guest editor of Journal of VLSI

Signal Processing Systems for Signal, Image, and Video Technology

since 2001. Now he is also the associate editor of IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing

and the associate editor of Proceedings of the IEEE.

Dr. Chen received the Best Paper Awards from ROC Computer So-

ciety in 1990 and 1994. From 1991 to 2005, he received Long-Term

(Acer) Paper Awards annually. In 1992, he received the Best Paper

Award of the 1992 Asia-Pacific Conference on Circuits and Systems

in VLSI design track. In 1993, he received the Annual Paper Award

of Chinese Engineer Society. In 1996, he received the Outstand-

ing Research Award from National Science Council (NSC) and the

Dragon Excellence Award from Acer. He was elected as the IEEE

Circuits and Systems Distinguished Lecturer from 2001–2002.

lgchen@cc.ee.ntu.edu.tw

