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Abstract 

This survey investigates current techniques for representing qualitative data for use as 
input to neural networks. Techniques for using qualitative data in neural networks are 
well known. However, researchers continue to discover new variations or entirely new 
methods for working with categorical data in neural networks. Our primary contribu-
tion is to cover these representation techniques in a single work. Practitioners working 
with big data often have a need to encode categorical values in their datasets in order 
to leverage machine learning algorithms. Moreover, the size of data sets we consider 
as big data may cause one to reject some encoding techniques as impractical, due 
to their running time complexity. Neural networks take vectors of real numbers as 
inputs. One must use a technique to map qualitative values to numerical values before 
using them as input to a neural network. These techniques are known as embeddings, 
encodings, representations, or distributed representations. Another contribution this 
work makes is to provide references for the source code of various techniques, where 
we are able to verify the authenticity of the source code. We cover recent research in 
several domains where researchers use categorical data in neural networks. Some of 
these domains are natural language processing, fraud detection, and clinical document 
automation. This study provides a starting point for research in determining which 
techniques for preparing qualitative data for use with neural networks are best. It is 
our intention that the reader should use these implementations as a starting point to 
design experiments to evaluate various techniques for working with qualitative data in 
neural networks. The third contribution we make in this work is a new perspective on 
techniques for using categorical data in neural networks. We organize techniques for 
using categorical data in neural networks into three categories. We find three distinct 
patterns in techniques that identify a technique as determined, algorithmic, or auto-
mated. The fourth contribution we make is to identify several opportunities for future 
research. The form of the data that one uses as an input to a neural network is crucial 
for using neural networks effectively. This work is a tool for researchers to find the most 
effective technique for working with categorical data in neural networks, in big data 
settings. To the best of our knowledge this is the first in-depth look at techniques for 
working with categorical data in neural networks.

Keywords: Deep learning, Neural networks, Embedding, Encoding, Qualitative data, 
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Introduction

�ere is a spectrum of techniques for using categorical variables in neural networks. 

Finding the right technique can have a significant impact on a model’s performance. At 

one end of the spectrum, we have determined encoding techniques. Determined tech-

niques are simplest. We characterize determined encodings as having the quality that 

given the same dataset, a determined encoding will produce the same encoding every 

time a practitioner employs it. Also, determined techniques have low running time 

complexity. In the middle of the spectrum, we find algorithmic techniques, such as 

Latent Dirichlet Allocation. Algorithmic techniques may or may not have determinis-

tic outcomes, but we wish to identify them in a class separate from determined tech-

niques because they are more complex in terms of running time. At the other end of the 

spectrum, we have automatic techniques, where neural networks dynamically generate 

their own data representations as a part of their training phase. �is is the key differ-

ence between automatic and algorithmic techniques. Automatic techniques encode cat-

egorical data as a side effect of a machine learning task, whereas algorithmic techniques 

encode categorical data prior to the beginning of a machine learning task. In practice, we 

find encoding techniques are blended as we depict in Fig. 1.

In this survey, we aim to give the reader a solid understanding of current methods 

for applying neural networks to qualitative data. �erefore, our aim is to describe in 

detail the three primary techniques. One thing all three techniques have in common is 

that one must have a way to represent categorical data with numbers in order to use 

it in a neural network. Determined techniques convert categorical data to vectors with 

a low amount of computational complexity. For example, the determined Label encod-

ing technique simply replaces a categorical value with a distinct, scalar numerical value. 

Algorithmic techniques are more sophisticated than determined techniques and require 

more intensive computation. Algorithmic techniques are not directly incorporated into 

Fig. 1 Encoding techniques are determined, algorithmic or automatic. Most works we review employ some 
blend of encoding techniques. It is possible to use compositions of up to all three varieties. After selecting a 
method for representing data, practitioners can transfer it to another algorithm, or use it directly in the next 
stage
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the training of a neural network, but rather take the form of more involved pre-pro-

cessing of data. Automatic techniques employ machine learning algorithms to discover 

a data representation. Hence, they have an intrinsic dependence on the dataset the prac-

titioner uses. In the literature, we find authors sometimes employ techniques separately, 

sometimes they compose techniques. Here we use the term “composition” in the math-

ematical sense of the word; i.e., to compose functions f and g is to apply f to the output 

of g, often denoted f ◦ g . Determined techniques are suitable for big-data because they 

have low running time complexity. Algorithmic and automatic techniques require more 

resources to encode qualitative data for use in neural networks. However, researchers 

may be able to leverage transfer learning to side-step having to generate encodings for 

their qualitative data.

By definition, neural networks operate on vectors of real numbers [1]. �erefore, in 

order to apply neural networks to qualitative data, we must find a way to transform the 

categorical data to vectors of real numbers. One must begin with what we call a deter-

mined technique for representing categorical values with vectors of real numbers. �e 

most common determined technique we find in this review is One-hot encoding. A 

determined technique is one that transforms categorical values to vectors with minimal 

processing. �is is a defining characteristic of determined techniques. We may choose 

to use the result of a determined technique for transforming qualitative data as the input 

for a neural network. On the other hand, we may choose to use it only as the first step 

for an algorithmic or automatic technique. Both algorithmic and automatic techniques 

may exploit dataset labels in the computations they perform to convert qualitative data 

to numerical form. �ey are also more computationally complex than determined tech-

niques. What separates algorithmic and automatic techniques is that practitioners must 

apply algorithmic techniques before initiating the learning process in neural networks. 

With automatic techniques, one need only convert data with a simple determined tech-

nique, like One-hot encoding, and the neural network itself will learn a dense encoding 

of the categorical data. Latent Dirichlet Analysis ( LDA ) [2] is an example of an algorith-

mic technique. Entity embedding [3] is an example of an automatic technique.

�ere are clear differences in techniques. However, a close look at experiments involv-

ing categorical data and neural networks reveals practitioners use these techniques in 

combination. We use overlapping regions in Fig. 1 to show that researchers often employ 

combinations of all three techniques. If one aims to use qualitative data in neural net-

works, one should be open to using a combination of techniques. If the reader plans on 

extending another researcher’s work, understanding which sorts of encoding techniques 

are used is key to understanding over-all research results.

To help the reader understand the spectrum of techniques, in "Definitions" section, we 

give definitions for some terms used in this work. We then present our search methodol-

ogy and related works. In addition, we provide a table of works studied that summarizes 

them and includes the encoding technique category (determined, automatic, or aglorith-

mic) for each work. After that, we proceed with an analysis of techniques. Our research 

for this study reveals that there is a spectrum of techniques. We separate works into sec-

tions by the interesting encoding technique. However, many works exhibit composition 

of techniques. Finally, we come to our conclusions on which encoding techniques show 

the most promise for future research.
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De�nitions

One term central to this paper is “deep learning algorithm”. Here, deep learning algo-

rithms and feed forward networks are synonyms. We rely on Goodfellow et al.’s defini-

tion of the term “feedforward network” in [1]: “A feedforward network defines a mapping 

y = f (x; θ) and learns the values of the parameters θ that result in the best function 

approximation”. Hence, the term “learning” in what we call a deep learning algorithm. A 

deep learning algorithm is an algorithm that employs a composition of functions where 

each function equates conceptually to a layer of a k-partite directed graph. For further 

clarification on what a deep learning algorithm is, we refer the reader to chapter 6 of [1]. 

We use the terms “deep learning algorithm”, “neural network”, “feedforward network”, 

and “deep neural network”, interchangeably.

�e next important term in this work is, “categorical data”. We use Lacey’s definition 

of categorical data, “Categorical variables represent types of data which may be divided 

into groups. Examples of categorical variables are race, sex, age group, and educa-

tional level [4]”. Furthermore, we use the terms “categorical data” and “qualitative data” 

interchangeably.

We find a more specific definition of categorical variables in Lane [5]. Lane writes 

about scales of measurement. He defines nominal scales, ordinal scales, interval scales, 

and ratio scales of measurement. Our notion of categorical variable includes variables 

that we measure using nominal or ordinal scales according to Lane’s definition of nomi-

nal and ordinal scales. A nominal variable is a variable whose values we cannot order. 

For example, the political party a person belongs to is a nominally scaled random vari-

able. It does not make sense to say that Democrat comes before Republican. Variables 

we measure with ordinal scales have order, but we cannot associate a number with them. 

Lane gives the example of the variable “customer satisfaction” that may take levels such 

as “very dissatisfied” or “somewhat dissatisfied”.

In the works we study here, we find techniques for using categorical data in deep learn-

ing algorithms. We find works using several terms to refer to these techniques. Exam-

ples of terms referring to these techniques are “entity embeddings” [3], “dense encoding” 

[6], “distributed representation” [7], and simply “encoding.”. In this work, the terms dense 

encoding, dense embedding, entity embedding, and distributed representation refer to 

different ways of mapping categorical data to vectors v ∈ R
n for the purpose of using 

those vectors as input to a deep learning algorithm.

We find that researchers have not reached a consensus on what to call what we refer 

to as entity embedding. We attempt to follow the succession of important works in deep 

learning research to find the terms the authors of these important works are using. Our 

conclusion is that machine learning researchers’ interest in deep learning starts with 

Krizhevsky, Sutskever, and Hinton’s 2012 success applying deep learning algorithms 

to the problem of classifying Imagenet data [8]. It is our belief that this success then 

inspired researchers to find ways to apply deep learning to data other than image data. 

�e next milestone we see is Mikolov et  al.’s publication, “Distributed representations 

of words and phrases and their compositionality” [9]. Interestingly, both the 2012 Ima-

genet paper, and the 2013 paper on distributed representations of words have a common 

author: Ilya Sutskever. �is fact may lead one to believe the community should settle 

on, “distributed representations”, as the term for mapping categorical data to vectors 
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for deep learning. �ere is, however, another work we find important. �is is Guo and 

Berkhahn’s, “Entity embeddings of categorical variables” [3]. We prefer the term entity 

embedding because we feel current and future research will develop techniques Guo and 

Berkhahn outline in their work.

In this analysis, we categorize, compare and contrast various techniques, in the form 

of algorithms, that carry out entity embeddings. We refer to these techniques as entity 

embedding algorithms. �e output of an entity embedding algorithm is a mapping from 

some set of categorical values S to a space of n-dimensional vectors in Rn . We denote 

the mapping with the letter e. An entity embedding algorithm may change the behavior 

of e over time. One technique for updating e that we find employed in Mikolov et al. [9] 

is to express e as a feed forward neural network, and alter the behavior of e by updat-

ing the parameters of the neural network. We have many options for network structure 

and weight updating schemes to choose from, thanks to the work of previous research-

ers. We find many works where the authors use entity embeddings to produce input val-

ues for other deep learning algorithms. Guo and Berkhahn give a rigorous definition in 

[3] that we summarize here to introduce notation. Let S be the set of distinct values of 

some variable that is characterized as categorical data. �en an entity embedding e is a 

mapping

of the elements of S to vectors of real numbers. We define the range of an entity embed-

ding as Rd to allow us the luxury of employing any theorems that hold for real numbers. 

In practice, the range of our embedding is a finite subset of vectors of rational num-

bers Qd because computers are currently only capable of storing rational approximations 

of real numbers. We refer to this as “entity embedding”, “embedding categorical data”, 

“embedding categorical values”, or simply as “embedding” when the context is clear.

�e terms we define in this section are key to understanding the works we cover here. 

In the next section we report the search method we use to find the works we include. 

�is search process is what leads to our formulation of categories of embedding 

techniques.

Search method

We employ Google Scholar [10] and the Florida Atlantic University (FAU) online library 

database OneSearch [11] to search for terms synonymous with embedding. �ese are 

the synonymous terms: “entity embedding”, “tabular data”, “dense encoding”, “distributed 

representation”, and, “encoding categorical variables”.

We combine each of the five synonyms for entity embedding above with each of the 

following phrases: “deep learning”, “neural network”, “deep learning survey”, and, “neural 

network survey”.

Our research group is interested in entity embeddings as they relate to medical 

research with respect to the Healthcare Common Procedure Coding System (HCPCS), 

so we also searched the databases we listed above using phrases, “deep learning HCPCS”, 

and, “neural network HCPCS”.

Hence, we conduct a total of 40 searches in each of the two databases. We include the 

term “survey” in our searches to find related works. In addition, we search for the phrase 

(1)e : S → R
d
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“encoding categorical variables” by itself in order to find literature that covers techniques 

that have potential to be used in neural networks. �rough the course of conducting 

these searches, we discovered the spectrum of techniques for using qualitative data in 

neural networks.

Related work

We find several existing studies that involve using categorical data in neural networks. 

However, we do not find work that identifies the spectrum of techniques we discover 

here. Related works we find here cover some aspects of what we find, but none of 

them present techniques for using qualitative data in neural networks with our unified 

approach.

Interestingly, when we query the Google Scholar search engine “encoding categorical 

variables neural networks” we find “A comparative study of categorical variable encoding 

techniques for neural network classifiers” [12] is the second result. �is 3-page work is 

from October 2017. One positive aspect of this work is that it covers seven techniques 

for encoding categorical variables. On the other hand, the authors evaluate each tech-

nique on the UCI Cars dataset [13], with one neural network architecture. In our search 

for works to cover in this review we do not find papers that employ all of these tech-

niques. Furthermore, we find that each of the seven techniques the authors listed are all 

available in the Scikit-learn Category Encoders library. All the techniques covered in this 

paper fall into the determined category of techniques for using categorical data in neural 

networks. �is work appears to be a report on an exercise where the authors applied 

various encoding techniques available in a popular machine learning library to a dataset 

commonly used for teaching purposes. Although the scope of the work is limited, we 

find it useful for discussing determined techniques for encoding categorical variables.

One work with a promising title for researchers interested in using categorical data 

as input to neural networks is, “An overview on data representation learning: From tra-

ditional feature learning to recent deep learning” [14], by Zhong et  al. However, this 

work traces the history of data representation starting with principal component analy-

sis ( PCA ) and linear discriminant analysis ( LDA ) (On a side note, the reader should be 

aware that the abbreviation LDA is often used for two different techniques in machine 

learning literature, Latent Dirichlet Allocation, or linear discriminant analysis). Zhong 

et al. make a great contribution in describing PCA, LDA, and its descendants, but this 

work is not strictly dedicated to techniques for using categorical data in neural networks 

in the manner that this survey is. Another major theme in [14] is learned embeddings. 

Zhong et al. introduce learned embeddings by covering Mikolov et al.’s distributed rep-

resentations in [9]. �ere is some overlap in this work and [14] in that regard. However, 

Zhong et al. present a collection of techniques from a historical point of view. We do not 

take a historical perspective in this work. �is could imply some techniques are passe 

and others are en vogue. We find that there is a spectrum of techniques, and researchers 

often compose techniques.

Natural language is a common form of categorical data. On the subject of natural lan-

guage processing, we also have the survey, “Semantic text classification: A survey of past 

and recent advances” [15] by Altinel and Ganiz. Part of this work covers embeddings 

for natural language data. However, the focus of [15] is on text classification, so it only 
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covers techniques for using categorical data in neural networks for text classification. 

�is work is not limited to neural networks only. For example, it also covers knowledge 

bases such as WordNet, non-parametric techniques for text processing such as K-Near-

est Neighbors, Support Vector Machine, and so on. �ere is some overlap with Altinel 

and Ganiz’s coverage of deep learning based natural language processing techniques, 

and the automatic class of embedding techniques we study here. Altinel and Ganiz do 

not write about embedding techniques from a general perspective, so they do not pro-

vide a unified description of embedding techniques.

“Graph Embedding Techniques, Applications, and Performance: A Survey” [16] is 

another survey of embedding techniques albeit exclusively for graph embeddings. We 

feel this is an interesting, emerging subject in deep learning. Moreover, one may char-

acterize a qualitative attribute of some data as connections between data that share the 

attributes’ value. However, in this work we focus on existing techniques for working with 

qualitative data in neural networks. As previously, we feel applying graph embedding 

techniques to categorical data is a subject for future research.

In “Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Elec-

tronic Health Record (EHR) Analysis” [17], Shickel et al. cover entity embeddings in the 

section entitled, “Concept representation”. �e introduction mentions DeepCare, and 

Med2Vec. However, the scope of their work is smaller than the scope of this work. �ey 

cover deep learning applications to electronic health records ( EHR ) data. �is survey 

is interesting to us because it covers techniques for dealing with categorical health care 

data such as International Statistical Classification of Diseases ( ICD ) codes as input for 

deep learning algorithms. We aim to cover the same types of techniques in the context of 

qualitative data in general.

Survey of techniques

In this section, we present our findings on the works we review. We present embedding 

techniques in works we study in terms of three categories: determined, algorithmic, and 

automated. �erefore, we group works into sections by category. We devise categories 

of techniques based on the degree of automation in the technique, and the degree of 

coupling the technique has with the neural network training. �ere is no strict dividing 

line among techniques. �e absence of strict dividing lines is why we prefer the phrase 

“spectrum of techniques”.

We start with the simplest techniques first. We call these types of techniques deter-

mined techniques, because the encoding process is straightforward, and does not 

require heavy computation. Determined techniques often require one pass over the 

dataset to complete an encoding. �e next step in these techniques is to construct some 

data structure such as a look-up table. Finally, to encode the categorical variable, deter-

mined techniques require one pass over the entire dataset. After the encoding is com-

plete, practitioners using determined techniques do not need to change the values of the 

encodings once computed.

We find some authors use a separate technique for mapping qualitative data to vec-

tors of real numbers in a process that is unrelated to the neural network’s learning pro-

cess. �ese techniques are computationally more intensive than determined techniques. 

Once the data is transformed, then the authors use the transformed data as input to a 
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neural network. Since the authors employ the embedding technique outside of the func-

tioning of the neural network, we call this class of embedding techniques algorithmic 

embedding. Examples of algorithmic embedding techniques are Latent Dirichlet Allo-

cation ( LDA ) [18], and “Generalized Feature Embedding for Supervised, Unsupervised, 

and Online Learning Tasks” [19]. Encoding values computed in this class of techniques 

may change as the encoding progresses. Once the algorithmic encoding process is com-

plete, the encoded values are fixed, and the practitioner uses these fixed values as input 

to a neural network.

Automatically optimized embedding techniques rely on the neural network’s weight 

update process. We give an example of how an automated weight update process can 

work. However, the reader should be aware that algorithms that learn embeddings, such 

as Global Vectors for Word Representation ( GloVe ) are more sophisticated than this 

simple example.

�e example we work through here is similar to the functioning of a Keras embedding 

layer [20]. To compute the embedded value e of the input we compute e = W v , where, 

W is the edge weight matrix for nodes in the neural network’s embedding layer, and v is 

the input value. For embedding categorical variables, v must be some encoded value of a 

categorical variable. Typically, v is a One-hot encoded value. Please see "One-hot encod-

ing" section for a definition of One-hot encoding. Equations 2, and 3 give an example of 

how one may compute the embedded value of a One-hot encoded categorical variable.

Assuming the entry equal to 1 in the column vector on the right-hand side of Eq. 2 is 

the encoding vector v , and the value equal to 1 is on the jth row of v , the product on the 

right-hand side of Eq. 2 will be

An easy way to think of the embedding process we illustrate in Eqs. 2 and 3 is that W 

is a look-up table for One-hot encoded values. A neural network’s optimizer applies 

some procedure such as Stochastic Gradient Descent ( SGD ) to update its weight values, 

including those of the weight matrix W. Over time the optimizer finds a value of W that 

minimizes the value of some loss function, J. As the neural network changes the value of 

W, the components of the embedded vectors e change as well. Since the values of e are 

updated as a result of the neural network’s weight update function, we call the embed-

ding automatic embedding.

�e reader should bear in mind that the example we give in Eqs. 2 and 3 is not com-

prehensive. �is example illustrates the basic principle of how to use the values of edge 

weights that a neural network learns as embedded values of One-hot encoded vectors. 
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In the research we cover below, we find more intricate adaptations in automated tech-

niques. Some researchers use the weights in W directly in a neural network that does 

some machine learning task. We call this the direct employment method that we 

describe more in the next section. At other times, practitioners may use the values in 

W in a completely different neural network. �is is the transfer learning employment 

technique we also describe in the next section. Transfer learning is not an embedding 

technique. Rather, it is a way to employ a data representation.

To sum up, we find three major categories of embedding techniques used to encode 

categorical values for use in neural networks. �e degree of complexity in the techniques 

is one aspect that differentiates them. �e other aspect that differentiates techniques is 

whether the encoding process is part of the neural network’s learning process. Deter-

mined techniques are the simplest. Algorithmic and automatic techniques are compu-

tationally more complex than determined techniques. Algorithmic techniques produce 

encodings in a manner that is not part of a neural network’s weight updating process. 

Automatic techniques learn embedded values of categorical variables. Once a categori-

cal value is fully encoded, we have options for how to use it. We refer to these options as 

“employment techniques” that we cover in the next section.

Employment techniques

Practitioners have options for employing embedding techniques. We illustrate these 

options in Fig. 1 with the curly braces around the Venn diagram that depicts embedding 

techniques. �e first option is to re-use an existing embedding. �is option is known 

as transfer learning. Other researchers refer to this technique as using a pre-computed 

embedding. A pre-computed, or transfer learning, employment technique uses an exist-

ing encoding that some other algorithm has learned. In this work we only find practi-

tioners using transfer learning in conjunction with automatic embedding techniques. 

An example of a transfer learning technique is using the embedding from the GloVe 

algorithm. �is algorithm computes a map of natural language words to vector values 

[21]. Francois Chollet covers this transfer learning technique in Chapter 6 of [22]. In his 

example Chollet creates a neural network with an embedding layer. �e weights for the 

embedding layer are the embedded values (vectors), that the GloVe algorithm learned 

when Pennington, Socher, and Manning ran it using a specific corpus of text for input. 

�e corpus they used consists of a copy of Wikipedia from 2014, and the Gigaword data-

set [23]. We know Chollet is using this particular instance of GloVe vectors because we 

cross-reference the file name Chollet uses in his example, glove.6B.100d.txt, with 

the contents of [24]. In Chollet’s example he presents a classifier for sentiment analy-

sis of a collection of movie reviews. In the example, Chollet defines a neural network 

with an embedding layer. He sets the weight matrix of the embedded layer to have 

one row for every word in the corpus of movie reviews. He then fixes the values of the 

weights in the embedding layer so that his algorithm does not update them during train-

ing. Furthermore, these fixed values are the embedded equivalent GloVe vectors from 

glove.6B.100d.txt. Chollet’s example is typical of how a practitioner employs 

transfer learning. One may simply take the appropriate part of the embedding layer 

that another algorithm learns, and use it as a layer in a completely different neural net-

work. Some researchers use embedded values in machine learning algorithms other than 
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neural networks. Guo and Berkhahn do this in [3]; they use an embedded representation 

of categorical data for input into the K-Nearest Neighbors, Random Forest, and Gradi-

ent Boosted Trees algorithms.

�e second option researchers have for employing an embedding technique is to use it 

directly as a part of a larger machine learning algorithm. We call this manner of employ-

ing an embedding technique direct employment. Often embeddings that are reused in 

transfer learning are the result of one scientist’s direct employment of an embedding 

technique. In the same work where Guo and Berkhahn employ transfer learning with 

algorithms other than a neural network, they directly feed the representation of cate-

gorical variables the neural network learns into layers above it, and the parameters of 

the embedding layer are updated as part of the training phase of their algorithm. Just 

as researchers compose embedding techniques, they may use both direct and transfer 

employment techniques in the course of one paper. Hence, we encounter the documen-

tation of both methods of employment in some works.

Table of works studied

We summarize the techniques we find in this survey in the table below where we classify 

them according to the categories we describe above (Table 1). 

�e common thread we find with research on distributed representation, dense encod-

ing, and embedding is that all three of these subjects employ the same general idea. �e 

idea is to define some mapping from qualitative data to vectors in Rn that are suitable as 

input to neural networks.

Usually the authors first assign One-hot encoded vectors to each possible value of 

some qualitative data as a starting point, and then they apply some transformation of the 

One-hot encoded vectors to obtain new vectors that are more suitable as input to neural 

networks.

Determined techniques

In this section we cover determined techniques. Determined techniques are the least 

computationally complex encoding techniques. One way to spot a determined technique 

is the encoded values will be the same every time we apply the technique. We begin with 

the simplest possible of determined encoding techniques, label encoding.

Label encoding

Label encoding is simply assigning an integer value to every possible value of a categori-

cal variable. For example, if a dataset has a categorical variable with values drawn from 

the set {“vanilla”, "chocolate", "strawberry"} then label encoding might assign the mapped 

values from the set {0, 1, 2} respectively. We cannot think of a simpler way to convert cat-

egorical values to numerical values. Label encoding is a good example of why we choose 

to call this class of encoding techniques determined. Once we know all the possible val-

ues of a categorical variable, their encoded equivalents are determined by how we arbi-

trarily choose to assign integer values to them.

�e Python Scikit-learn library [63] has a Category Encoders module, with an Ordinal 

Encoder. �e documentation for the Scikit-learn Ordinal Encoder explains that it is an 
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Table 1 Works Studied

Description Reference, 
implementation 
reference

Automatic techniques

 Paper introducing TensorFlow framework, explains how Tensorflow is designed for large 
datasets, including distributed representations

[25, 26]

 Seminal work defines automatic embedding technique for natural language processing, 
transform natural language words to one-hot encoded vectors, and learn lower-dimen-
sional embedded values

[27], N/A

 Use embedding layers for categorical variables to predict taxi destination [28, 29]

 Entity embedding categorical data from computing system events for intrusion detection [30], N/A

 Widely used Keras library, provides embedding layer implementation [20, 31]

 BERT leverages word piece embeddings, can be used in a feature-based approach to learn 
a representation of natural language, shown to work well for named entity recognition 
tasks

[32, 33]

 Survey of techniques for graph embedding, Python package with examples for techniques 
covered,

[16, 34]

 Use Keras embedding layer for entity embedding of categorical values, won third place in 
a Kaggle competition, map One-hot encodings of categorical data to lower dimensional 
vectors

[3, 35]

 Library for automatic embeddings, part of fast.ai framework, supports PyTorch neural 
networks library

[36, 37]

 Concatenate embeddings of categorical data to time-series data for input to neural net-
work

[38], N/A

 Comparison of several pre-computed embedding techniques employing transfer learning, 
cited in documentation for Pytorch embedding layer

[39], N/A

 Learn patient representation from EHR data such as ICD-10 codes, using denoising autoen-
coder for transfer learning to use learned representation for various tasks

[40], N/A

 Survey of deep learning techniques for bioinformatic data use-cases, Examples of applying 
graph embeddings of proteins to predict protein-protein interactions, and recurrent 
and convolutional neural networks for predicting expression of one-hot encoded DNA 
sequences, authors provide source code for techniques they cover

[41, 42]

 Word2vec algorithm breakthrough automatic technique for natural language processing, 
transform natural language data to embedded vectors, suitable for transfer learning

[43, 44]

 Apply word2vec to corpus of protein sequences to obtain lower dimensional representa-
tion, for transfer learning in various machine learning algorithms

[45], N/A

 Natural language processing algorithm, uses word co-occurrence matrix for embedding 
qualitative data in lower dimensional space, suitable for transfer learning

[21, 46]

 Transfer GloVe embedding for sentiment analysis to classify emotion, introduces weighting 
scheme for imbalanced data

[47], N/A

 Use GRU’s to learn representations of clinical descriptions, representations fed into dense 
layers that act as classifiers to produce ICD-10 codes

[48, 49]

 Embed One-hot encoded vectors for categorical data, feed as input to a log-bilinear neural 
model for unsupervised anomaly detection in 12 datasets

[50], N/A

 Use One-hot encoding of demographic and diagnostic data plus embedding of medical 
coding ( ICD-9 ) with Long Short-term Memory (LSTM) to predict hospital re-admission, 
ICD-9 embedding transferred from previous work using Word2vec variant to embed 
ICD-9 codes

[51, 52]

 Embedding technique that Lin et al. leverage in [51], leverage Word2vec algorithm to 
encode ICD-9 codes as real-valued vectors

[53, 54]

Algorithmic techniques

 Predict patient mortality, categorical inputs include ICD-9, Current Procedural Terminology 
(CPT), and RxNorm Codes; value counts are used to encode data, authors claim tech-
niques are suitable for big data

[55], N/A

 GEL Pre-processing technique for embedding qualitative data for convolutional neural 
networks, authors claim suitable for any type of categorical variable, and datasets with 
both numerical and categorical variables

[19, 56]

 EDLT pre-processing technique leveraging Pearson correlation for converting tabular data 
to matrix form for convolutional neural networks

[57, 58]
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implementation of Label encoding. Both Label encoding and the Ordinal Encoder assign 

a unique integer value to the distinct values of a categorical variable.

Potdar et al. compare seven encoders in “A comparative study of categorical variable 

encoding techniques for neural network classifiers”. One of the encoders in the compari-

son is the Ordinal encoder. �e authors’ description of the ordinal encoder matches that 

of the Scikit-learn label encoder. Also, the names of the seven encoders match the names 

of seven encoders available in the Scikit-learn Category Encoders module. We suspect 

the authors used this module for the experiments in [12]. For their experiments, the 

authors encode data from the Cars dataset [13], pass it to a neural network, and report 

the accuracy. We reproduce the accuracy report in Table 2.

One may be curious about the best performing encoding techniques that Potdar et al. 

report in this table. However, as we noted in "Related works" section [12] is a brief work. 

From the authors’ description of their experiments, we do not find a theoretical justifica-

tion for why the best techniques do so well. On the other hand, the result of the worst 

performing encoding technique is in line with our expectations. �e worst perform-

ing technique is Ordinal Coding (a.k.a. Label encoding). We expect poor performance 

of label encoding because it introduces artificial order among categorical variables. 

For example, when we directly use label encoded values in neural networks optimized 

with stochastic gradient descent, the larger label values will contribute more to gradi-

ents we use to update weights. �is does not make sense because we assigned integer 

values to the categorical variables arbitrarily. Label encoding also presents a problem 

Table 1 (continued)

Description Reference, 
implementation 
reference

 Use loss function to optimize parameters of hash algorithm for mapping One-hot encoding 
of data to lower dimensional vectors

[59, 60]

 Use Latent Dirichlet Allocation ( LDA ) to extract features from text of automobile insurance 
claims, then use features from LDA as input to neural network

[18], N/A

Determined techniques

 Experiment to compare encoding techniques, all encoding techniques mentioned are 
available in Python Scikit-learn Category encoders librar

[12], N/A

 Use One-hot encoding for low-cardinality categorical variables to compute loan risk [61], N/A

 Use leave-one-out encoding for categorical variables as input to convolutional neural 
network for computer network intrusion detection system

[62], N/A

Table 2 Accuracy results reproduced from [12]

Encoding technique Accuracy 
(Percentage)

One-hot coding 90

Ordinal coding 81

Sum coding 95

Helmert coding 89

Polynomial coding 91

Backward difference coding 95

Binary coding 90



Page 13 of 41Hancock and Khoshgoftaar  J Big Data            (2020) 7:28  

for unsupervised learning with neural networks. �e problem is that an unsupervised 

algorithm cannot exploit the numerical difference between encoded values because the 

numbers we assign those values are arbitrary. We feel this informal argument provides 

enough justification for why practitioners must use something more sophisticated than 

label encoding for input values. Moreover, it also aligns with the poor performance that 

Potdar et al. report.

While Label encoding may not be suitable for direct input to neural networks, one 

may need to use it as the very first step in an encoding technique. Some libraries for 

One-hot encoding require a list of integer values for input, and Label encoding is a rea-

sonable way to obtain that list of values. Label encoding is the simplest determined tech-

nique, but it has its uses.

Code counting

In “Improving palliative care with deep learning” [55], Avati et  al. document a simple 

determined encoding technique that is effective for the purpose of predicting patient 

mortality. Avati et al. derive a dataset from electronic heath records ( EHR ) data. �ey 

then use the derived dataset as input for a classifier that they employ to predict whether 

a patient will die in the next year. �e EHR data Avati et al. use includes qualitative data 

in the form of International Classification of Diseases, 9th revision (ICD-9) code, Cur-

rent Procedural Terminology ( CPT ) codes, and RxNorm prescription codes. To derive 

a record from the EHR data for a patient, the authors use the counts of types of codes 

as features. In order to calculate the counts, Avati et al. use the concept of windows and 

slices. In order to define a window for EHR data, Avati et al. select a prediction date. �e 

prediction date is not necessarily the current date. We copy a table from [55] to give 

the reader a clear idea of how Avati et al. segment EHR data into windows and slices. 

�e copy of the table is in Table 3. After the data is arranged into slices, Avati et al. use 

the counts of various qualitative values as features. Finally, they concatenate the lists of 

counts for each slice to complete the encoding technique.

Avati et al. explain that their machine learning task for predicting patient mortal-

ity is a proxy for recommending a patient for palliative care. �ey report that their 

model achieves 0.69 AUC for predicting whether the patient will die within the year 

after their prediction date. Avati et al. qualify this performance metric by pointing out 

that this model achieves a 0.93 AUC when they use it as a proxy to predict whether 

a patient is a candidate for palliative care. It would not be surprising to find that an 

embedding technique that discards less information in the EHR data would achieve 

better performance. For example one could employ techniques Duarte et  al. use in 

Table 3 Window slices in [55], PD stands for prediction date

Start date End date Duration

Observation window PD—365 PD 356

Observation slice 1 PD—30 PD 30

observation slice 2 PD—90 PD—30 60

Observation slice 3 PD—180 PD—90 90

Observation slice 4 PD—365 PD—180 185
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[48] to encode ICD-9 codes. On the other hand, the code counting technique that 

Avati et al. employ is amenable to large data sets since has a low running time com-

plexity. Assuming there are n EHR records, and the records have a patient ID, we 

could sort all the EHR records in O
(

nlog(n)
)

 time. See Section  7.2 of [64] for proof 

of running time complexity of sorting. �en we can count the codes for each patient 

ID in O(n) time, which means that count encoding has O(n) running time complex-

ity. Count coding is a determined technique that might work when other techniques 

fail due to a huge dataset size. Indeed, in Section 2 of [55] the authors explicitly claim 

their technique is suitable for big data. Otherwise, we suspect using other techniques 

that discard less information about qualitative data will provide better performance.

One-hot encoding

One-hot encoding is a technique that requires very little work for to use, and practi-

tioners often use it as a first step in more sophisticated techniques, such as employing 

a Keras embedding layer. Known colloquially as One-hot encoding [65], we find that 

Guo and Berkhahn [3] identify One-hot encoding as the Kroneker Delta Function. 

We express One-hot encoding formally as follows. Let x be some discrete categorical 

random variable with n distinct values x1, x2, . . . xn . �en, the One-hot encoding of a 

particular value xi is a vector v where every component of v is zero except for the ith 

component, which has the value 1. For example, assume we have some random vari-

able x that takes values from the set S =

{

a, b, c
}

 . Let x1 = a , x2 = b , and x3 = c . A 

One-hot encoding for x is: (1, 0, 0) , (0, 1, 0) , and (0, 0, 1) . Since the One-hot encoding 

of the levels of a categorical variable only depends on the number of levels, One-hot 

encoding falls into the determined family of techniques for encoding categorical vari-

ables for use in neural networks.

One clear disadvantage to One-hot encoding is that the distance between One-hot 

encoded vectors carries just a bit of information. Cui, Xie, and Shen mention in [66] 

that the distance between any pair of distinct One-hot encoded vectors is the same. 

It is beyond the scope of this analysis to prove that a general distance metric is the 

same for any pair of distinct One-hot encoded vectors, but we can easily do so for the 

Euclidean distance

Only one component of v1 and v2 is 1 because they are One-hot encoded, so Eq. 4 sim-

plifies to

in the case that the vectors are different, and

in the case the vectors are the same.

(4)dn(v1, v2) =

(

n
∑

i=1

(

v1i − v2i

)2

)
1
2

(5)dn(v1, v2) = 2
1
2

(6)dn(v1, v2) = 0
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Hence, the Euclidean distance between two One-hot encoded features tells us only that 

two features are identical, or different. �erefore, distance between One-hot encoded 

features carries little information about their similarity.

A second disadvantage of One-hot encoding is that it consumes storage resources 

aggressively if we store One-hot encoded values directly. By storing One-hot encoded 

values directly, we mean storing a literal one or zero for every component of a vector. 

Suppose a dataset has a feature that is a categorical variable with n values. �en we 

might require on the order of n times the size of the feature in the dataset to store the 

One-hot encoded values of the feature. We can overcome this increase in the amount of 

storage that One-hot encoding requires with sparse representations. Sparse vector and 

matrix representations store data in a compressed form. Python’s Scikit-learn One-hot 

encoder uses a “sparse” option by default [67], so unless the user specifies otherwise, the 

Scikit-learn One-hot encoder will store One-hot encoded values efficiently.

Nevertheless, One-hot encoding is often a first step to using existing embedding 

libraries such as the Keras embedding layer [20]. Indeed, one may look at other encoding 

techniques in the spectrum as answering the question of what might we do to improve 

our results after One-hot encoding our data.

However, One-hot encoding it is not without its uses. One good aspect of One-hot 

encoding is that is simple to implement, and has efficient running time. Referring to the 

Kroneker Delta Function definition of One-hot encoding above, we see that the running 

time to One-hot encode a categorical variable is on the order of the number of possible 

values of the categorical variable, plus the size of the dataset to encode. A simple look-up 

table will suffice to produce the One-hot encoded equivalent of a categorical variable. 

�e running time for using a simply implemented look-up table is also on the order of 

the number of One-hot encoded values, and slightly more sophisticated implementa-

tions would have order log2 running time in the number of encoded values.

We find research where One-hot encoding categorical variables for use in neural net-

works is sufficient to design a neural network that outperforms other machine learning 

algorithms. �e work is entitled, “Financial system modeling using deep neural networks 

(DNNs) for effective risk assessment and prediction” [61], by Jing Duan. In this work 

Duan evaluates various classifiers’ ability to classify loan applications into risk catego-

ries. �e input to the classifiers includes categorical variables such as home ownership, 

and loan purpose (e.g. credit card debt consolidation, or home improvement). Duan 

uses One-hot encoding to encode these categorical values. Nevertheless, Duan reports 

the best results in loan risk prediction accuracy for a deep neural network classifier. In 

[61], Duan compares the Performance of a Deep Neural Network to Logistic Regression, 

Linear Discriminant Analysis, Decision Tree, Support Vector Machine, Radial Basis 

Functions, and Adaptive Gradient Boosted Decision Tree. While it is true that Duan’s 

experiment shows a Deep Neural Network outperforms other machine learning algo-

rithms with One-hot encoding, we see an opportunity for future research to employ 

other classes of encoding techniques, such as Golinko et al.’s algorithmic technique in 

[68].

One-hot encoding may be a good first choice for getting started on selecting a machine 

learning algorithm. For example, Duan’s experiment shows that under the conditions of 

his tests, a Deep Neural Network is the strongest candidate. After evaluating different 
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algorithms, one may be convinced a Neural Network is the best model to use. After 

that, one may decide to invest resources in trying different encoding schemes for further 

gains in performance.

Leave-one-out encoding

We learn about the Leave-one-out pre-processed encoding technique for categorical 

values in “Enhanced Network Intrusion Detection using Deep Convolutional Neural 

Networks” [62], by Naseer and Saleem. �e popular Scikit-learn Python library, that 

machine learning practitioners often employ, includes this encoding technique in its 

Category Encoders module [69]. We are unable to find a peer reviewed publication that 

defines leave-one-out encoding. To the best of our knowledge, Zhang discovered the 

leave-one-out encoding technique, and it is documented on slides 25 and 26 of [70].

Leave-one-out encoding clearly falls into the determined class of techniques for using 

categorical data in neural networks. To leave-one-out encode a categorical value, we rep-

resent the categorical value with the mean value of all the response variables except the 

response that the categorical variable currently appears with. To complete the encoding, 

to avoid over fitting, we add a small random noise value to the mean we compute.

Leave-one-out encoding must be implemented carefully when working with big data. 

First of all, to compute the mean values of target variables, one must use a technique 

tailored to computing the mean value of a large set of numbers safely to avoid overflow 

errors. Second, for large datasets we must have an efficient method to calculate encoded 

values. A naive approach where we take a pass over the entire dataset to compute the 

mean value of labels for each and every row is an O
(

n
2
)

 operation that is impractical for 

large datasets. We speculate that one should be able to compute all the possible leave-

one-out encoded values of a categorical feature ahead of time, and store them in a look-

up table indexed by the value of the categorical variable, and the value to be left out for 

efficient encoding. If there are so many values for the target variable that such a scheme 

is not feasible, then one may need to use an alternative encoding technique. �is sce-

nario is more likely the large datasets.

�e first interesting result Nasir and Saleem give in [62] is the result of an experiment 

they conduct to select an encoding technique. For this experiment Nasir and Saleem 

compare ten encoding techniques. �ey pre-process data from the NSLKDD [71] data-

set with each of the ten encoding techniques, and then feed the pre-processed data to 

Random Forest. Naseer and Saleem find that they get the highest accuracy from Ran-

dom Forest when they use the leave-one-out encoding technique. We include a table 

from [62] that summarizes these results in Table 4.

Naseer and Saleem illustrate an interesting method for selecting an encoding tech-

nique. �ey use a classifier with fast training time to rank encoding techniques. One can 

inspect the training time column in Table 4 to see that this entire experiment has a total 

running time of about three minutes. However, Naseer and Saleem do not stop here. 

�eir goal is to employ deep neural networks in a computer network intrusion detection 

system. �erefore, Naseer and Saleem compare the performance of five different classifi-

ers on the leave-one-out encoded NSLKDD data. We include a copy of results from [62] 

in Table 5.
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We see in Table  5 that Naseer and Saleem obtain the best performance with a 

DCNN when they use leave-one-out encoding to pre-process its input data. One 

important note on how Naseer and Saleem use the NSLKDD data in the DCNN is 

that they reshape observations in the processed NSLKDD data into 32 ×  32 gray-

scale images. We consider these steps to be elements of a pre-processing technique 

for using categorical data in neural networks. Naseer and Salim write that the way 

they convert the leave-one-out encoded data to an image is simply to triplicate each 

41-element observation to obtain a list of 123 elements. Next they concatenate the 

first five elements of the observation to obtain a list of 128 values, and then they 

replicate this list 8 more times to obtain a 1024 element list that they reshape into a 

32 × 32 array that may be interpreted as a 32 × 32 grayscale image.

Naseer and Saleem’s work is an example of a composition of encoding tech-

niques. First the authors use Leave-one-out encoding, then convert their leave-one-

out encoded data to images for use in a DCNN . We see an opportunity for future 

research to employ this composition technique on other types of qualitative data.

Table 4 Table comparing Random Forest accuracy for  various encoding techniques, 

reproduced from [62]

Encoding scheme Dimensionality Training time (s) Average 
training score

Score StDev

BackwardDifference 81 9.445193 0.961925 0.002291

BinaryEncoder 13 9.234833 0.962050 0.002472

HashingEncoder 8 20.524086 0.918650 0.002197

HelmertEncoder 81 9.418384 0.962100 0.002359

OnehotEncoder 84 8.884236 0.961950 0.002361

OrdinalEncoder 3 8.443738 0.961950 0.002513

SumEncoder 81 9.405340 0.961975 0.002560

PolynomialEncoder 81 9.642599 0.962000 0.002327

BaseNEncoder 13 10.734352 0.961925 0.002342

LeaveOneOutEncoder 3 8.746265 0.962150 0.002444

Table 5 Classi�er performance results, reproduced from  [62], classi�er names are 

abbreviated as follows: Deep Convolutional Neural Network ( DCNN ), Radial Basis Function 

Support Vector Machine ( RBF SVM ), Multi-Layer Perceptron (MLP), Extreme Learning 

Machine ( ELM ), Radial Basis Function ( RBF ); NSLKDDTest+ and  NSLKDDTest21 are 

partitions of the NSLKDD dataset [71] for evaluating trained models

Classi�er name AuC for NSLKDDTest+ Classi�er name AuC 
for NSLKDDTest21

DCNN 0.965 DCNN 0.926

Random-Forest 0.958 RBF SVM 0.867

RBF SVM 0.920 k-NN 0.825

Decision Tree 0.915 ELM Generalized 0.807

MLP 0.887 ELM RBF 0.803
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Hashing

In our survey, we find researchers sometimes use hash functions to convert categorical 

values to numeric values for input to deep learning algorithms. Hashing is on the bor-

derline of determined and algorithmic techniques, since hash algorithms can be rather 

involved. However, a hash algorithm is deterministic, and they do not require something 

like a pass over all possible inputs before they are ready to produce output values. For 

these reasons we include hashing in the determined category of techniques for using 

qualitative data in neural networks. In the context of this work, we use the definition 

of hash function from MacKay [72]. MacKay defines a hash function as a pseudo-ran-

dom function that maps an N-bit string to an M-bit string where N is smaller than M. 

However, we relax the constraint that the input to the hash function be strictly longer 

than the output of the hash function. We find in practice that hash functions such as 

the built-in Python hash function, or the md5sum function available in Debian Linux 

distributions behave in this manner. In practice, we find that both hash and md5sum 

accept values as small as a single character and produce a longer output.

In “Deep learning with Python” [22], Chollet mentions hashing in Chapter 6. Chollet 

writes that one may choose to use hashing in lieu of One-hot encoding when the num-

ber of possible values one wishes to encode is so large that creating a mapping of the 

values to One-hot vectors is not practical. �is is often the case when working with large 

datasets in a big data ecosystem. In [22] Chollet gives an example that uses Python’s built 

in hash function. Python’s hash function accepts a string as a parameter and returns 

an integer. We refer the reader to [73] for details on this function. Reverting to Chollet’s 

coverage of the hashing technique in [22] we point out that we see hashing categori-

cal values to integers as a viable alternative to Label encoding categorical values as vec-

tors. Even when we map categorical values to vectors using some embedding technique, 

we first need to map the categorical values to some vectors that we can then embed in 

a lower dimensional space. We conjecture that mapping categorical values to integers 

using some hashing function is an equivalent and possibly more practical method as one 

does need to maintain an explicit mapping in one’s own software. We give a caveat for 

using hashing that Chollet also mentions in [22], and that is that one must be careful to 

ensure that hash collisions do not frequently occur for distinct values of the categorical 

values. One may choose a hash algorithm with a large range of output values to lower 

the probability of collisions. We recommend [74] for some context on the ranges of pop-

ular hash algorithms.

In our review, we find research that takes hashing a step further. In [22] in the cap-

tion of Figure  6.2, Chollet writes, “...word representations obtained from One-hot 

encoding or hashing are sparse, high-dimensional, and hardcoded...” Chollet assumes a 

hash algorithm that does not change over time. We find research that challenges Chol-

let’s assumption in “Hash embeddings for efficient word representations” [59]. In this 

work Svenstrup, Hansen, and Winther introduce hash embeddings. Hash embeddings 

incorporate hashing into trainable functions. �at is Svenstrup, Hansen, and Winther 

discuss a technique where they apply several hash functions to input data, and use a 

weighted sum of the hash functions’ output for an embedding. �e authors treat the out-

put of the hash functions as vectors. �e authors then combine the vectors into a matrix 

that they then multiply by another matrix P whose entries are updated with a learning 
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algorithm that discovers the optimal values for the entries of P. In [59] the authors per-

form experiments that compare their hash embedding method to the hashing method 

Chollet presents in [22], as well as to several other embedding methods. �e point of the 

experiments is not that one may use hash embeddings to obtain better performing deep 

learning algorithms, but that hash embeddings require fewer trainable parameters and 

achieve performance on par with competing techniques. �erefore, the conclusion that 

the authors wish the reader to come to is that their technique is better from a resource 

consumption perspective. �is may resonate well with researchers working in big data. 

From our point of view, Svenstrup, Hansen, and Winther’s is a unique composition of an 

automatic technique and a determined technique. We include it here because the focus 

of the work is employment of hashing functions.

We include this section on hash functions here because we find the idea of using hash 

algorithms in lieu of maintaining a look-up table to map categorical values to vectors to 

be an attractive technique, especially when working with big data. Hashing qualitative 

input values is a determined technique because the encoded value of hashed categorical 

data does not change with the context of the data.

Summary of determined techniques

Here, the determined techniques we cover are: Code counting, One-hot encoding, Label 

encoding, Leave-one-out encoding, and hash-encoding. Our choice of encoding tech-

niques to include is based on our finding these techniques used in recent works where 

the authors use categorical data for input to neural networks.

Determined techniques are suitable for big data when they have a low running time 

complexity. Researchers may need to use sparse representations for One-hot encoded 

values when working with big data to avoid overtaxing storage resources. Hash encod-

ing, and label encoding are also suitable for big data since we can defer producing the 

encoded value of a variable until we require it for input to a machine learning algorithm. 

Leave-one-out encoding may not be feasible for encoding qualitative values in big data 

datasets if the subset of labels has a high cardinality.

�e common theme we see in works where researchers employ determined techniques 

is that using one of them is unavoidable. It is necessary to use a determined technique to 

transform qualitative data to numerical form for use in neural networks. Often research-

ers use a determined technique as the beginning of a more sophisticated algorithmic or 

automatic technique. As a best practice for selecting a determined technique we recom-

mend avoiding leave-one-out encoding for datasets with label sets of high cardinality, 

and avoiding label encoding for input values to neural networks because that introduces 

arbitrary order and magnitude to those values.

An experiment comparing the effectiveness of Svenstrup, Hansen, and Winther’s 

determined technique in [59], to that of Zhu and Han’s work involving an algorithmic 

technique in [57], Zhu and Golinko’s work involving the algorithmic technique in [19], 

and Guo and Berkhahn’s work on an automatic technique in [3] is an avenue for future 

research. We find Svenstrup makes his hash embedding technique source code available 

in [60]. �e researcher may want to use this source code to get started on comparing 

techniques.
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Algorithmic techniques

Techniques for representing qualitative data that require extensive computations fall 

into the algorithmic class of data representation techniques. �ese algorithmic tech-

niques involve applying a process to convert categorical variables to numeric values 

for neural networks. When researchers put a significant amount of work in designing 

a process that converts qualitative data to numerical form, we call this algorithmic 

data representation. �is effort sets algorithmic techniques apart from techniques 

like One-hot encoding.

Latent Dirichlet Allocation

�e first algorithmic data representation technique we cover is Latent Dirichlet Allo-

cation ( LDA ). In “Leveraging deep learning with LDA-based text analytics to detect 

automobile insurance fraud” [18], Wang and Xu employ Latent Dirichlet Allocation in 

an algorithm to detect fraudulent auto insurance claims. �e references of [18] con-

tain a citation of “Latent Dirichlet Allocation” [2] that appears to be a seminal work 

on LDA . In “Latent Dirichlet Allocation” Blei, Ng, and Jordan write, “�e basic idea 

[of LDA ] is that documents are represented as random mixtures over latent topics, 

where each topic is characterized by a distribution over words”. In [18] Wang and Xu 

add to the description of LDA , writing, “ LDA uses a joint distribution to compute 

the conditional distribution of the hidden variable under a given observable variable. 

�e observable variable is a set of words, and the latent variable is the topics”. From 

these two quotes we surmise that LDA is a method to represent a collection of docu-

ments as a distribution of topics where we infer the topic distribution using the distri-

bution of words in documents. Both the direct encoding approach, such as One-hot 

encoding, and LDA involve executing a deterministic set of rules for converting cat-

egorical data to numerical form. However, algorithmic techniques, like LDA are more 

involved.

One distinguishing feature of algorithmic techniques is that they have hyper-

parameters one must set. We see in [18] that the authors chose to set the number of 

topics parameter for LDA to 5, and that the authors’ model associates 5 scores with 

each document, one for each topic. In the context of Wang and Xu’s experiments, a 

document is the description section of an auto insurance claim. It contains a natu-

ral language description of the accident over which the insured is filing the claim. 

Wang and Xu write that they use One-hot encoding for other categorical variables 

for their models. In their experiments, Wang and Xu find that a deep neural network 

has the best performance when compared with support vector machine, and random 

forest models. Furthermore, in their conclusion they attribute the success of the deep 

neural network to increased sensitivity to the LDA values they compute for the claim 

descriptions. We reproduce a table of experimental results from [18] in Table 6.

Wang and Xu note that their DNN model performs worse when they remove the 

LDA values from its input. �is fact supports the theory that the LDA values carry 

information about fraudulent and legitimate auto insurance claims. We see an oppor-

tunity for future research in applying Wang and Xu’s technique to other types of 

insurance claim data.
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Generalized feature embedding learning

Zhu and Golinko introduce an algorithmic technique for embedding categorical data 

in their paper entitled, “Generalized Feature Embedding for Supervised, Unsupervised, 

and Online Learning Tasks” [19]. �e authors name their technique “Generalized feature 

embedding learning”, or, GEL , for short. �e first thing we notice about GEL that sets it 

apart from automatic techniques is that Zhu and Golinko’s GEL does not employ some-

thing like gradient descent to update the embedding it provides. �is is a distinguishing 

characteristic of algorithmic techniques. In [19], the authors present GEL as a systematic 

technique for transforming a dataset into an alternate representation that one may then 

use as input to a variety of supervised and unsupervised machine learning algorithms. 

GEL assumes that the instances of a dataset form a matrix X. It is important to note that 

the entries of X may have any data type; X is different from matrices that are familiar to 

us in that the elements of X may be text values, real numbers, ranges, or any kind of data 

that one might encode with One-hot encoding. GEL then transforms X into a matrix of 

binary values W. We perform One-hot encoding of the rows of X to obtain W. �erefore, 

W may have many more columns than X. GEL then performs a series of computations 

on W that expand it into a larger matrix of derived values S. GEL has a hyper-parameter 

k that holds the number of eigenvectors of S we use to form a matrix V. Finally, we mul-

tiply W by V 2 to obtain a matrix F  that we use as input to a machine learning algorithm 

for training and evaluation. As practitioners, we are not so interested in the algebra of 

the calculations for GEL, but we are very interested in Golinko’s R language implementa-

tion of GEL on Github.com [56] as we can directly use this code, or easily translate it into 

implementations in different languages for use in future experiments.

In [19], Zhu and Golinko compare the performance of various machine learning algo-

rithms on two different types of datasets. We refer the reader to Section 5.1.4 of [19] for 

more detail on what Zhu and Golinko refer to as baseline methods. �e baseline method 

is one where Zhu and Golinko apply minimal data preparation to the dataset for use with 

a collection of machine learning algorithms. �e second kind of dataset that Zhu and 

Golinko employ to train the collection of machine learning algorithms is one where they 

first transform the dataset using GEL , and then train the machine learning algorithm 

with the transformed dataset. So, we conclude that we have an opportunity for future 

research to do a comparison of GEL to some other embedding technique or collection 

of techniques. In Figure 4 of [19] Zhu and Golinko show that using GEL to prepare the 

input for a collection of machine learning algorithms generally gives better performance 

than what they term the baseline method. However, one cannot use this result by itself 

to conclude how GEL performs in comparison with other embedding techniques.

Table 6 Results reproduced from  [18], abbreviations are as  follows: Support Vector 

Machine (SVM); Random Forest (RF); Deep Neural Network (DNN); true positive ( TP ); false 

positive ( FP ); F1 score (F1)

TP rate FP rate Accuracy Precision F1

SVM 0.682 0.108 0.787 0.863 0.762

RF 0.823 0.198 0.812 0.806 0.814

DNN 0.910 0.082 0.914 0.917 0.913
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Another interesting feature of GEL is that we can use it in an online learning scenario. 

For the reader who is unfamiliar with the term online learning, we recommend seeing 

[75], Section II, B for a precise definition. Also, we refer the reader to Section 5.2.4 of 

[19] for details on how the authors use GEL in an online learning context. Here we sum-

marize that Zhu and Golinko show that preparing data with GEL, and then feeding that 

data to a Naive Bayes classifier, has better performance in an online learning task, than 

when they use the same classifier, but feed it with data from a baseline data preparation. 

We see an opportunity for future work in comparing GEL to other embedding methods 

in an online learning setting.

We give a caveat for using GEL with large datasets. In a big data setting, the step where 

we convert a dataset to matrix form, and then calculate the values of the eigenvectors 

may not be feasible. �erefore, another avenue for future research would be to deter-

mine whether or not one can split a large dataset into smaller partitions and apply GEL 

to each partition.

Convolutional neural networks for categorical data

In this section, we review another algorithmic technique in papers that Zhu is also an 

author on. We find “ EDLT : Enabling Deep Learning for Generic Data Classification” [76] 

and “Convolutional neural network learning for generic data classification” [57]. Han, 

Zhu, and Li are the authors of both works. We do not find that the authors explicitly 

define the term EDLT but it appears to be an abbreviation of “Enabling Deep Learning 

for Generic Classification Tasks”. Both papers cover the same topic of EDLT . EDLT is a 

technique for transforming rows of data that is in tabular form to matrices that we then 

use as input to convolutional neural networks.

Han, Zhu, and Li’s EDLT technique begins with finding the matrix M , which is the 

Pearson correlation matrix of all the features of some dataset x , and a correlation vec-

tor of all the labels of x that we denote with L . EDLT then uses M and L in an iterative 

process to generate a matrix O that we use to re-order and transform x , one instance xt 

at a time into synthetic matrices F(xt) . After we use EDLT to obtain the F(xt) , we use 

these matrices as input to convolutional neural networks. EDLT transforms instances of 

x, xt , into matrices F(xt) such that the elements of the matrices F(xt) are spatially close 

to one and other if they are correlated. Convolutional neural networks are then suitable 

consumers of the F(xt) because convolutional neural networks excel in recognizing spa-

tially correlated features in data such as images. In [57, 76], Han, Zhu and Li are able to 

show that convolutional neural networks show better performance in both supervised 

and unsupervised learning tasks if they use data that is treated with the EDLT technique 

versus what they term as baseline techniques.

According to Han, Zhu and Li in [57, 76] there are two baseline methods in the con-

text of their work. �e first baseline method is a random reordering of features. Han, 

Zhu, and Li name this baseline method RR . �e second baseline method Han, Zhu, and 

Li use is a partial application of EDLT where we do not carry out the steps to optimize 

the reordering matrix O to globally maximize correlation between nearby entries of the 

synthetic matrix F(xt) . As Golinko and Zhu do in, “Generalized Feature Embedding for 

Supervised, Unsupervised, and Online Learning Tasks” [19], Zhu and Li compare the 

performance of EDLT to baseline methods that are not methods we would consider to 
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be competitors to EDLT . We feel it is obviously an interesting area of future research to 

make the comparison.

�e authors make the source code for the EDLT technique available in [58]. However, 

one should note that this source code is a mixture of Python and Matlab code. We see an 

opportunity for a contribution. �e source code in [58] should be translated into a single 

language that one might easily employ EDLT as a library function.

We see a challenge to employ EDLT on large datasets similar to the one we find with 

GEL . EDLT ’s requirement to calculate the Person correlation of a large dataset may be 

prohibitively expensive for big data. An interesting topic for future research is a study on 

whether or not we can make EDLT amenable to big data in some way, such as partition-

ing the data in some manner so as to make the Pearson correlation calculation tractable.

Summary of algorithmic techniques

Algorithmic techniques may not be suitable for big data projects because they are com-

putationally intensive. As a best practice for deciding to use an algorithmic technique, 

we recommend evaluating the running time of an algorithmic technique relative to a 

determined technique on a small sample of a dataset to gauge how much more time the 

algorithmic technique will require. One should also be able to compare the relative sizes 

of the datasets obtained with both the algorithmic and determined techniques to get a 

sense for how much space the algorithmic technique will require.

One common theme we notice about research on algorithmic techniques is that the 

authors present them as techniques to employ on a dataset directly. We did not notice 

any work where the authors recommend employing transfer learning when using an 

algorithmic technique. Indeed, it is unclear to us what, besides the encoded data itself, 

one would be able to reuse for separate machine learning tasks. In the long run, this may 

be an Achilles heel in algorithmic techniques.

We find researchers use algorithmic techniques to encode categorical variables to 

enhance the performance of some models. We suspect that algorithmic techniques 

tend to be more domain specific because they may exploit aspects of data in particular 

domains. For example, LDA operates on collections of documents, and EDLT operates 

on tabular data. GEL stands out in this regard because it can operate on categorical data 

in general.

Automatic techniques

Automatic techniques for using categorical data in neural networks incorporate find-

ing a data representation into the neural network’s learning process. Automatic tech-

niques are appealing because they are more general-purpose than determined or 

algorithmic techniques. For example, Mikolov et al.’s Word2vec algorithm is reused in 

many domains. We cover some of these re-uses below. Due to their proven potential for 

reuse we include details on several works using automatic techniques, whether they are 

employed in a transfer learning manner, or directly. For big data applications, one may 

prefer to employ automatic techniques via transfer learning. �is is because automatic 

techniques for encoding qualitative data often involve optimizing models with a number 

of parameters large enough that the encoding process becomes time-consuming.
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Distributed representation learning

One body of machine learning research literature uses the term “distributed representa-

tion” to refer to the concept of mapping qualitative data to vectors of real numbers. We 

find that when the term distributed representation appears in the literature, that it refers 

to an automatic technique for using qualitative data in neural networks. Our research 

indicates the lineage of the term is as follows: in “A neural probabilistic language model”, 

Bengio et al. [27] propose a technique for fighting what the authors refer to as the “curse 

of dimensionality”. �e curse of dimensionality is an expression that refers to how the 

number of observations and labels one needs to accurately model a dataset grows as the 

number of labels in the data set raised to the power of the number of features. To use 

Goodfellow, Bengio, and Courville’s terminology, if we have a model that uses d features 

and has v distinct output values, then in order to accurately train and evaluate the model 

we require O
(

v
d
)

 observations with their labels [1]. For example, in [27] the authors 

point out the set of all possible 10-word phrases one may draw from a 100,000-word 

vocabulary contains 1050 − 1 elements. To accurately model such a dataset, we require 

O
(

10
50

)

 labels and observations. Current storage technology capacity is on the order of 

terabytes 
(

10
12

)

 , or perhaps petabytes 
(

10
15

)

 . �erefore, it is not possible to store a sam-

ple of such a large dataset, such that the sample is large enough that we can accurately 

evaluate the model’s performance. Hence, Bengio et al. propose a technique for mapping 

words that appear in text documents to vectors. �is technique incorporates machine 

learning to do the mapping. Bengio et al. refer to the collection of vectors as a distrib-

uted representation for words. �ey summarize their technique for finding distributed 

representations for words in natural language as follows:

1.  Associate with each word in the vocabulary a distributed word feature vector 

(a real-valued vector in Rm),

2.  Express the joint probability function of word sequences in terms of the feature 

vectors of these words in the sequence, and

3.  Learn simultaneously the word feature vectors and the parameters of that 

probability function.

Bengio et al. emphasize the term “probability function” because their paper makes the 

contribution of showing how we can use neural networks to implement a function 

that computes the probability of a sequence of words. Also, the third step in the tech-

nique Bengio et al. describe is a key characteristic of automatic techniques; the process 

for embedding the qualitative data is tightly coupled with the algorithm that finds the 

parameters of a probability function. It is worth noting that the probability function 

Bengio et al. write about is a neural network.

One work related to Bengio et al. [27] that stands out to us due to the number of 

times we see references to it is “Distributed representations of words and phrases and 

their compositionality”, by Mikolov et  al. [9]. �is work builds on Mikolov’s earlier, 

oft cited work, “Efficient Estimation of Word Representations in Vector Space” [43]. 

�ese two works are both published in 2013, with [43] preceding [9] by a few months. 

We use Google Scholar to check the number of references to [43], and [9]. �e num-

bers of references are 11,298, and 13,924, respectively. Furthermore, we use our 

research facility database to search the term, “distributed representation”, for a sample 
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of works related to this keyword. We take the first 49 works that the search engine 

returns, and check the references in these works. We use no other search parameters 

save for the search term “distributed representation”. Approximately 71%, or 35 out of 

49, of the works refer to Mikolov et al.’s [9] or [43]. So not only is the work of Mikolov 

et  al. widely cited, but also specifically in the context of work where the term, “dis-

tributed representation”, is a subject. Moreover, we are interested in the techniques 

Mikolov et al. employ because these are techniques for using categorical data as input 

for deep learning algorithms. �erefore, it behooves the reader to have a good under-

standing of Mikolov et  al.’s work because other researchers have extended it in so 

many ways. In addition, many of the works citing Mikolov et al. include domain spe-

cific embeddings that researchers may be able to re-use in their work.

“Efficient estimation of word representations in vector space” [43] is interesting 

because this is the work where Mikolov et  al. introduce two techniques for word 

embeddings: skip-gram and continuous bag of words ( CBOW ). �e objective func-

tion for the deep learning algorithm in CBOW is a function of how well the embed-

ding vectors of surrounding words predict the word they surround. In [43] the 

authors refer to the i words that surround a given word as, “the context”, and the word 

itself as, “the center word”.

We find [9] more interesting because it has more content to it. �is work focuses 

primarily on the skip-gram approach to word embedding. A key result reported in the 

work is that skip-gram produces representations of words that do better than previ-

ous representations, and the skip-gram algorithm has a faster running time than its 

competitors. �ankfully, there is a footnote at the end of [9] that links to source code 

for running both algorithms. �e entry of the references section in this work [44], 

has the uniform resource locator ( URL ) for this source code. If one is curious as to 

precisely how skip-gram and CBOW learn vector representations for natural language 

words as categorical data, the file Word2vec.c in [44] contains these calculations. 

Another important file in [44] is distance.c, which serves as an example of how to use 

the mappings that CBOW and skip-gram learn, to convert categorical data to vectors 

in Rn
. Here n is smaller than the number of dimensions one would need to use One-

hot encoding. �e points that the reader should gather from [9, 43] are:

• Both skip-gram and CBOW are algorithms that employ neural networks to learn a 

mapping of words in natural language, i.e. categorical data, to vectors in Rn,

• Skip-gram learns a mapping with a loss function that measures how well skip 

gram predicts the words that surround the current word,

• CBOW learns a mapping with a loss function that is a measure of how well CBOW 

predicts the current word, given the words that surround the current word,

• In practice, Mikolov et  al. [9] find that when they use the vectors for categori-

cal data that skip-gram learns, they get the best results, and skip-gram consumes 

fewer resources than its competitors, and

• One can do arithmetic on the vectors in Rn that skip-gram or CBOW learn in 

such a way that the vector arithmetic is compatible with human intuition.
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To expand on the last point on vector arithmetic above, we give an example from [9]. 

If we use vectors from the Word2vec embedding algorithm, the result of subtract-

ing the vector for “man” from the vector that represents, “king”, and adding the vector 

for, “woman” to the result gives a vector that is closest to the vector that skip-gram or 

CBOW learns for, “queen”. �is is one result that inspires much subsequent research. 

Researchers find that one may use qualitative data, other than words, as input to deep 

learning algorithms and obtain similar, intuitive results. In the next section, we study the 

progeny of Mikolov et al.’s discoveries.

�ere are many implementations of skip-gram and CBOW that researchers should 

take advantage of and re-use, if transfer learning is feasible. One can easily find imple-

mentations on http://githu b.com. At the time of this writing a search on http://githu 

b.com for the term, “Word2vec”, garners 6320 results. Suffice it to say, Word2vec is an 

automated technique for converting categorical data for use in neural networks.

Optimal embedding vector length

Word2vec discovers representations for categorical, natural language data automatically. 

However, it is up to the user of the Word2vec algorithm to select the number of dimen-

sions the embedded vectors will have. In our search for material for this work, we find 

Yin and Shen’s work, “On the Dimensionality of Word Embedding” [77]. Yin and Shen 

present a method to find an optimal value for the dimensionality of word embeddings. 

Word embeddings are a special case of entity embeddings. �erefore, we see opportuni-

ties for future work to apply Yin and Shen’s method to entity embeddings.

Yin and Shen’s method for estimating the dimension of a word embedding is to esti-

mate the Pairwise Inner Product ( PIP ) loss of embeddings as we increase the number of 

dimensions in the embedding. Yin and Shen show that the value of the PIP loss versus 

dimensions reflects a trade off between the bias and the variance of the word embedding 

algorithms. �is trade off implies the existence of an optimal value for the number of 

dimensions one may select when choosing the number of dimensions in the domain of 

an embedding.

Yin and Shen qualify their technique as useful for embedding algorithms that are based 

on matrix factorization. In [77] the authors write that GloVe [21] and Word2vec [43], “...

learn word embeddings by optimizing over some objective functions using stochastic 

gradient methods, they have both been shown to be implicitly matrix factorizations.” 

We feel it lies in the realm of future work to check if other embedding techniques for 

embedding categorical data other than words might be characterized as implicit matrix 

factorizations. �is would be a strong indicator that applying Yin and Shen’s method for 

calculating the optimal number of dimensions in an embedding applies. We might be 

able to improve upon existing results that use embeddings of categorical data by setting 

the number of dimensions according to the value that Yin and Shen’s method finds.

Our discovery of the work [77] leads us to two related works regarding the dimen-

sionality of word embedding. First of all, we find a longer work that Yin writes on the 

same subject as [77], “Understand Functionality and Dimensionality of Vector Embed-

dings: the Distributional Hypothesis, the Pairwise Inner Product Loss and Its Bias-Var-

iance Trade-off” [78]. �is work is far longer than [77]. We see that [77] was submitted 

to arxiv.org December 2018, and [78] was submitted to arxiv.org March 2018, so [77] 

http://github.com
http://github.com
http://github.com
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summarizes the greater detail of [78]. �erefore, the interested reader may wish to con-

sult [78] for clarification.

Researchers interested in applying Yin and Shen’s method for finding the optimal 

dimensionality for an embedding should also know about the repository [79] that has an 

implementation of the techniques that Yin and Shen cover in [77, 78]. �e implementa-

tion in this repository is in the Python programming language. Hence, we have source 

code for using Yin and Shen’s technique, which makes it easy to incorporate into exist-

ing projects. We feel that the degree of generality of Yin and Shen’s technique is unclear. 

It may apply to more than just embedding techniques for natural language data. If the 

technique proves to be generally applicable for entity embeddings then an implementa-

tion similar to the code in [79] should become part of any library for entity embedding.

Reusing natural language processing techniques

In “Using word embedding technique to efficiently represent protein sequences for iden-

tifying substrate specificities of transporters” [45], the authors Nguyen et al. reuse skip 

gram and continuous bag of words embedding techniques. �ey treat amino acids as 

letters, and the proteins the amino acids comprise as words. Nguyen et al. then apply 

natural language processing techniques to a database of protein data that they treat as 

their corpus. �is illustrates an interesting possiblity with embedding techniques. If a 

pre-computed embedding is not available, one may find it is possible to reuse an existing 

algorithm from another domain to produce one suitable for the machine learning task at 

hand.

�ere are myriads of derivative works and refinements to Mikolov’s work and an expo-

sition of those works is a topic worthy of a survey in its own right. We give Nguyen 

et  al.’s work as one example of how general Mikolov’s technique is and its applicabil-

ity to other domains beyond natural language processing. �e success of Mikolov et al. 

is rooted in an automatic technique for embedding qualitative data for use in neural 

networks (Word2vec), and shows that automatic techniques are attractive due to their 

potential for reuse. �is is especially true in big data environments where computing a 

new embedding of a large dataset may be too time-consuming to be practical.

Entity embeddings

Guo and Berkhahn employed an automatic technique to win third place in a 2015 Kag-

gle competition. �e technique is known as entity embedding. Entity embedding is a 

method to embed categorical variables in real-valued vector spaces [3]. Guo and 

Berkhan’s success gives us an indication that neural networks are perhaps capable of 

operating on all sorts of qualitative data, if we can map that data to vectors we can use 

as input to neural networks effectively. In [3] Guo and Berkhahn do not reveal a new 

technique. In fact, we find that in the source code for their Kaggle competition entry [35] 

Guo and Berkhahn use the Keras library Embedding Layer function. �e Keras Embed-

ding Layer is a convenient means to automatically find a dense encoding for qualitative 

data. Nevertheless, we believe the embedding technique that Guo and Berkhahn use 

shows promise. We believe their success serves as an endorsement of the technique.

�e abstract of [3] mentions the Rossman Store Sales [80] Kaggle competition. 

Part of [3] is an explanation of the workings of their solution to a Kaggle competition 
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where the authors won third place using a model that employs ideas they expose in 

this paper. �e goal of the Kaggle competition is to discover the best model for pre-

dicting the sales, by store, for stores in the Rossman Drugstore chain. �e source code 

of Guo and Berkhahn’s entry into the Kaggle competition, “Entity-embedding-ross-

man” [35], is publicly available. In this repository, we see the authors use Keras [20] 

embedding layers repeatedly.

We are unable to find a seminal work that explicitly documents a theoretical justifi-

cation for when encoding categorical variables with embedding layers can improve a 

model’s performance. �erefore, we see an opportunity for future work to provide this 

theoretical justification. We include a summary of the history and references here for 

those who might be interested in researching a theoretical justification for the perfor-

mance enhancements Guo and Berkhahn report in their results in [3]. One can sur-

mise that events happen in rapid succession. We can see from the Keras source code 

repository commit history [20] that the authors add the embedding layer to Keras 

starting in April 2015. We see in Arxiv.org’s listing for Gal and Ghahramani’s paper 

that their first submission is in December 2015, so the Keras embedding functional-

ity must have existed in Github before Gal and Ghahramani submitted their work to 

Arxiv.org.

�erefore, we conclude that the attribution implicit in the Keras documentation 

authors’ listing of Gal and Ghahramani’s work is correct. Furthermore, we conclude 

that Gal and Ghahramani’s is part of the succession of ideas that leads to Guo and 

Berkhahn’s work. And Guo and Berkhan’s work depends on Gal and Ghahramani’s 

work in that they use Keras embedding layers to embed categorical variables’ values 

for use in a neural network.

Guo and Berkhan’s design is sufficiently general that we feel compelled to explain 

its details. We include a copy of a diagram from [3] in Fig. 2 to help us explain the 

architecture.

Fig. 2 Image copied from [3]. The authors perform experiments with and without embedding layers. The 
schematic here shows the Author’s approach when they use embedding layers. Categorical variables are 
embedded separately, then the output of the embedded layers are concatenated and fed forward to dense 
layers
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Guo and Berkhahn’s architecture is elegant. �e architecture diagram in Fig. 2 aligns 

with the actual neural network Guo and Berkhan implement in the source code in refer-

ence [35]. �erefore, understanding the diagram will assist the reader in understanding 

the source code. �e primary idea for Guo and Berkhahn’s architecture is to use One-hot 

Encoding for categorical variables, then feed the encoded categorical values to embed-

ding layers. �e output of all the embedding layers is then concatenated and fed to dense 

layers. Results Guo and Berkhahn present in [3] highlight the utility of embedding layers. 

Furthermore, the results show that using embedding layers can improve performance 

when employed directly, or employed with transfer learning. �e results in Table 7 for 

“neural network” are where Guo and Berkhahn directly employ the encoding that the 

embedding layers provide. �e results for other machine learning algorithms are where 

Guo and Berkhahn employ transfer learning. Guo and Berkhahn report the best perfor-

mance when using direct employment with neural networks.

Guo and Berkhahn’s results may lead one to believe that entity embedding as a tech-

nique for encoding categorical variables is something one should always do. However, 

we raise two points one should consider when digesting their results. �e first is that 

Guo and Berkhahn report one metric, mean absolute percentage error ( MAPE ). �ey 

define MAPE as

We think it would be interesting to see how much of the variance in MAPE is explained 

by the model used, versus the use of entity embeddings.

We see some opportunities for future work given the results Guo and Berkhahn pre-

sent. Guo and Berkhahn provide the source code for their experiments in [35]. �is 

makes extending their work easier. �e first opportunity for future work that we see is 

computing the analysis of variance we mention above. Another opportunity for future 

research is to add the determined encoding technique as a level to the experiments Guo 

and Berkhahn perform in [3]. Guo and Berkhahn’s implementation is written in Python, 

and the Scikit-learn Python library includes modules for seven different determined 

encoding techniques. �erefore, adding these different techniques is a straightforward 

effort.

Guo and Berkhan’s work in [3] is a clear example of how to use an automatic tech-

nique to encode categorical variables, and how to employ it using transfer learning, or 

directly into a larger neural network. When it is possible to use a library such as Keras 
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Table 7 Results copied from  Guo and  Berkhahn [3], MAPE is  mean absolute percentage 

error, EE is  entity embedding KNN is  K-Nearest Neighbors, in  all cases using entity 

embedding for  encoding gives lower error, transfer learning employed for  all models 

except neural network where direct learning is employed

Method MAPE MAPE (with EE)

KNN 0.290 0.116

Random forest 0.158 0.108

Gradient boosted trees 0.152 0.115

Neural network 0.101 0.093
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for implementation, embedding layers require little effort to implement. Guo and Ber-

hahn’s results show that using embedding layers may improve performance. �erefore, 

practitioners may wish to include an embedding layer for any One-hot encoded cate-

gorical variables they are working with since it only requires adding an extra layer to an 

existing neural network.

Entity embedding for anomaly detection

One interesting application of entity embeddings we find when searching for work using 

the term, “entity embedding”, is “Entity Embedding-based Anomaly Detection for Het-

erogeneous Categorical Events” [30] by Chen et  al. Here we have an automatic tech-

nique for anomaly detection. We find the authors report that they use methods similar 

to Mikolov et al. However, we do not find that the authors share the source code for their 

experiments so it is not easy to leverage their research in other avenues. On the other 

hand, the work is interesting, since it describes a technique for using categorical data for 

input into deep learning algorithms. �e authors do not give precise details on how they 

map categorical features that constitute events in some computing environment. Chen 

et al. write that in the context of their research, an event is a collection of categorical val-

ues describing something that happens in a computer system. �ey treat events as cate-

gorical values that they then embed into a vector space. Since the authors do not provide 

their source code, we speculate that they use One-hot encoding for the event data, and 

then use something like a Keras embedding layer to implement the embedding. After 

embedding the authors indicate they optimize the maximum likelihood objective

where e is an event, P(·) is the probability of · , and D is the set of events.

Our understanding of the results Chen et al. present is that they give enough detail to 

earn a place to present this work in the International Joint Conference on Artificial Intel-

ligence, but not quite enough detail for one to be able to reproduce their results easily. 

However, since the work falls under the subject of this review we feel it is worth men-

tioning. One thing researchers should note is that the technique Chen et al. cover in [30] 

is a way to assign a probability to a pair of events that occur in sequence. �is is interest-

ing and reusable in future research. �e technique works as follows: let vai , and vaj be the 

embedding vectors for two entities. Note that we are free to think of vai , and vaj as lists 

of categorical data mapped to vectors in Rn . Furthermore, we define the event e to be an 

ordered collection of m entities. �en we can define a scoring function Sθ (e),

where wij is a parameter that we can adjust via some machine learning algorithm. We 

can furthermore define a loss function for training that machine learning algorithm 

that determines values for wij that give the best performance. Hence, the algorithm 

is capable of assigning importance to pairs of events. Under proper conditions, this 

algorithm learns to produce significantly different outputs when pairs of events occur 

(8)
argmax

θ

∑

e∈D

logPθ (e)

(9)
Sθ (e) =

∑

i,j:1≤i≤j≤m

wij

(

vai · vaj

)

.
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simultaneously. One should be able to abstract this technique to apply to entities in gen-

eral, and not simply events.

Since Chen et al. do not provide source code for their experiments we need to do some 

reverse engineering. We see an opportunity for future research to use Mikolov and Sut-

skever’s source code from [44] and incorporate the ideas in [30] in detecting fraudulent 

transactions. We treat the transactions as Chen et al. treat entities in [30], and we use the 

time of the transaction to place an ordering on entities. It is important to note that we do 

not find that Chen et al. report an embedding technique, so to get started on the future 

research we are suggesting, we would use Keras’ embedding layer [20].

Chen et al.’s work also shows how using an automatic technique for encoding qualita-

tive data, in this case entity embedding, is reusable in different domains. Here we see the 

same technique used for estimating sales in drugstores, and for detecting anomalies in 

computing systems.

Neural probabilistic outlier detection

“A Neural Probabilistic outlier detection method for categorical data” [50], by Cheng, 

Wang and Ma presents an automatic technique for finding outliers in datasets with cat-

egorical data. Outlier detection is a suitable perspective to take for classifying highly 

imbalanced datasets. With imbalanced datasets, minority class observations may be 

identifiable as outliers. In this case one may be able to employ an automatic technique 

for representing categorical data in a neural network for the unsupervised task of outlier 

detection. If one finds an acceptable overlap between the set of outliers and the minority 

class, then one also has a classifier that can separate a dataset. Hence, Cheng, Wang and 

Ma’s automatic way to learn a data representation for categorical variables for outlier 

detection is also a potential classifier for imbalanced data.

�e architecture Cheng, Wang, and Ma present is a three-layer neural network. �e 

simplicity of the architecture is attractive. Cheng, Wang, and Ma propose a loss function 

that guides their model to learn parameters such that the loss function will output large 

values for outliers, and small values for observations that are not outliers. We do not find 

source code for Cheng, Wang, and Ma’s work, so we must rely on the theoretical discus-

sion they give in [50]. �e loss function Cheng, Wang, and Ma propose is

We use Cheng, Wang, and Ma’s terminology to define the elements of Eq. 10. �e ith 

attribute value of an object is oi . �e context of oi is con
(

o
i
)

 . An attribute’s context is the 

value of all the other attributes that we observe along with it in a particular instance of 

a dataset. �erefore, P
(

o
i
∣

∣con
(

o
i
))

 is the conditional probability of the attribute value 

given the other attributes along with it. To compute the loss function Cheng, Wang, and 

Ma sum the negative logarithm of the conditional probabilities over all the objects in O . 

Cheng, Wang, and Ma define O as a set of objects with categorical attributes. Since we 

are taking the negative logarithm of the conditional probabilities, this sum will be large 

when its components are small. When the components of the sum are small, this implies 

that the conditional probabilities are small. When the conditional probabilities are small, 

this means we have an attribute that is not likely to occur with other attributes, or if 
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we prefer, an outlier. Hence, the three-layer Neural Network that Cheng, Wang, and Ma 

propose is an algorithm that automatically learns to partition elements of a dataset into 

outliers, and non-outliers. It learns via backpropagation of the loss function defined in 

10. �ey name this algorithm Neural Probabilistic Outlier Detection ( NPOD).

In order to evaluate NPOD , Cheng, Wang, and Ma compare NPOD ’s ability to detect 

outliers to eight algorithms for detecting outliers in categorical data. �ey use 12 pub-

licly available datasets as input to the nine algorithms and report that their technique 

achieves the best Area under the curve ( AUC ) score for seven of the twelve datasets.

�e simplicity and elegance of Cheng, Wang, and Ma’s approach makes it an attrac-

tive choice for working with categorical data in neural networks, but it is limited in 

scope. On the one hand, it is a technique that is capable of finding outliers in data that 

employs unsupervised machine learning. However, we find it difficult to conceive of 

how to employ it as a general purpose technique for transforming categorical data 

for use in neural networks. We choose to include it in this study because it involves 

neural networks, and feeding categorical data into them. We are aware of important 

machine learning tasks, such as medicare fraud detection Johnson et al. cover in [6], 

that can be solved from an outlier detection perspective.

Hierarchical gated recurrent units

“Deep neural models for ICD-10 coding of death certificates and autopsy reports in 

free-text” [48], by Duarte et  al., presents an intricate model for automated labeling 

of medical documents. We consider the author’s technique for encoding qualitative 

data an automated technique because at a high level it relies on entity embedding via 

Keras Embedding layers. However, the details in their paper, and source code reveal 

a blending of techniques. �eir approach involves nested components. �e source 

code in [49] that accompanies the paper [48] is most helpful in guiding one to under-

stand Duarte et al.’s approach. �e authors use a Keras Embedding layer to encode the 

words in the fields of the clinical forms that constitute the input to their model. �ey 

then connect the embedding layer to a Bi-directional Gated Recurrent Unit ( BiGRU ) 

that is capable of detecting patterns in the word embedding layer. Duarte et al. then 

connect the first BiGRU to an attention layer that is able to recognize patterns in the 

sequences of word embeddings in the BiGRU layer to form a representation of a sen-

tence. In addition, Duarte et al. use a duplicate word embedding layer that they com-

bine with the output of the attention layer to feed into an output layer. �e output 

layer has three components that give a representation of various ICD-10 codes. We 

provide the reader a copy of a diagram of Duarte et al.’s in Fig. 3. Duarte et al.’s design 

is intricate, and specialized for the purpose of generating ICD-10 codes from autopsy 

reports and death certificates. �eir use of a Keras embedding layer implies that their 

model automatically learns a representation of its input.

Duarte et al. compare six variations of the model we show in Fig. 3 with two vari-

ations of a Support Vector Machine (SVM) model for evaluation. �ey report their 

model outperforms SVM, but that their model requires a trade off between accuracy, 

precision, and recall. �e trade-off is in the choice of initialization technique for the 

output layers of their model. Duarte et  al. get the highest values for accuracy when 



Page 33 of 41Hancock and Khoshgoftaar  J Big Data            (2020) 7:28  

they initialize the output layer of their model with weights they derive from the fre-

quencies of co-occurrences of ICD-10 codes using the Apriori algorithm. On the other 

hand, Duarte et al. report the highest precision and recall scores for the configuration 

of their model where they initialize the weights of its output layers with Non-Neg-

ative Matrix Factorization ( NMF ). �e interested reader should consult the source 

code in [49] to see precisely how Duarte et al. employ these initialization techniques.

Duarte et al. present an automated technique for encoding qualitative natural lan-

guage clinical data for use in a classifier that categorizes the data into ICD-10 codes. 

Since they provide the source code [49] to accompany [48], we have easy opportu-

nities to extend their work. One possibility is replacing the embedding layer they 

use for representing text with another encoding technique such as Latent Dirichlet 

Allocation that Wang and Xu use in [18]. Duarte et al.’s work is a clear example for 

researchers interested in employing representation learning to use qualitative data in 

neural networks.

Transfer learning

Instead of reusing an algorithm to learn data representation, we can transfer an exist-

ing data representation for use in another algorithm. �is technique saves training time, 

since we do not have to learn a new representation for input data. Bengio, Courville, 

and Vincent define transfer learning as, “... the ability of a learning algorithm to exploit 

commonalities between different learning tasks in order to share statistical strength, 

and transfer knowledge across tasks” [81]. Practically, in the context of neural networks, 

transfer learning amounts to using part of a neural network that we train using one algo-

rithm, for use in another. �is is the meaning of the term transfer learning in the context 

of this study. In this section we describe one work that uses transfer learning, as a way to 

use categorical data as input for a neural network.

Fig. 3 Architecture diagram copied from Duarte et al. [48]
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Before we cover the example of transfer learning, we must clarify that our definition of 

“transfer learning” differs from another definition present in current literature. In works 

such as [82],  “transfer learning” refers to training a supervised machine learning algo-

rithm with a labeled dataset, and then feeding the trained algorithm input values from a 

different dataset. �is is not the technique we refer to as transfer learning here.

The sent2a�ect algorithm

In “Deep learning for affective computing: Text-based emotion recognition in decision 

support” [47], Kratzwald et al. use transfer learning for classifying the emotional content 

of various samples of texts from different datasets. Kratzwald et al. reuse the text embed-

ding that the GloVe algorithm learns for the machine learning task of recognizing the 

emotional nature of a body of text.

�e samples of text that Kratzwald et al. use in their experiments are labeled according 

to the emotional content of the text. Krazwald et al. write that they use a factorial experi-

ment design to evaluate the performance of different machine learning algorithms’ per-

formance on various datasets. Krazwald et al. use five datasets, and six different machine 

learning algorithms. �e datasets are samples of text from literary tales, twitter mes-

sages related to an election, self-reported experiences, headlines, and a general collec-

tion of twitter messages. �e classifiers Kratzwald et al. use are Random Forest, Support 

Vector Machine ( SVM ), Long Short-term Memory ( LSTM ), and Bi-directional Long 

Short-term Memory ( BiLSTM ). Furthermore, Kratzwald et  al. explore two architec-

tural variations on LSTM and BiLSTM . In one configuration they use a randomly initial-

ized embedding layer. In this configuration the authors do not apply transfer learning. 

�is is necessary because they are controlling for the effect of using transfer learning to 

assess the impact of it in their experiments. In the second configuration of their LSTM 

and BiLSTM models, Kratzwald et al. use a pre-trained word embedding from a GloVe 

model to convert the text they classify into vectors. Most notably, Kratzwald et al. report 

that the experiments where they record the highest F1-scores for classifying the emo-

tional content of text are the trials involving BiLSTM with the pre-trained GloVe word 

embedding. In fact, this configuration is the one that achieves the highest F1 score on 

every dataset.

Another important fact about the work Kratzwald et al. report in [47] is that the cor-

pus they apply the GloVe algorithm to, to obtain their pre-trained word embedding is a 

dataset from a Kaggle Twitter Sentiment Analysis contest in 2017 [83]. �eir approach 

is to train GloVe on the labeled dataset from the Kaggle Twitter Sentiment Analysis 

contest where Twitter messages (tweets) are labeled as positive or negative. �ey then 

replace the output layer above an LSTM or BiLSTM with a layer that has more output 

values, and train the new model again with one of the different datasets we mention 

above. It is important to note that Kratzwald et al. do not freeze the parameters of their 

LSTM or BiLSTM once they are finished training it with the Kaggle Twitter Sentiment 

Analysis contest dataset.

Krazwald et al.’s paper is a good example of why we use the term spectrum to write 

about techniques for using categorical data in neural networks. �ey start with reusing 

an existing word embedding algorithm for sentiment analysis which we would consider 
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an automatic technique. Ultimately, they apply transfer learning to reuse a data repre-

sentation to achieve the best performance in their experiments.

Autoencoders

Another interesting application of embeddings is with time series data, and autoen-

coders. In [38] Kieu et al. use an embedding algorithm similar to Guo and Berkhahn’s 

[3]. Kieu et al. show that their model improves with an embedding layer. �ey encode 

categorical values using an embedding to capture contextual information to enhance 

time-series data. �ey show that using the embedded contextual information improves 

the accuracy of their deep neural network algorithm for outlier detection. Autoencod-

ers provide another form of automatic technique for using categorical data in neural 

networks.

Lei et al. [40] use an autoencoder to embed medical records in a vector space. Good-

fellow, Bengio, and Courville cover autoencoders in Chapter 14 of [1]. Autoencoders are 

pairs of neural networks that together learn the identity function of their input. We do 

not find modeling the identity function interesting. However, the process of training the 

autoencoder to compute the identity function causes the hidden layers of the autoen-

coder to develop a representation of the input domain. In order to accommodate time-

series data, Lei et al. use recurrent neural networks in their autoencoder. Lei et al. treat 

medical records as time series data. However, their approach is different from that of 

Kieu et al. because Lei et al. use an autoencoder to do their embedding, whereas Kieu 

et al. first embed their input data using an embedding layer, and use the output of the 

embedding layer as input to an autoencoder. �e reader should note that according to 

the way Lei et al. describe their approach, they use a sequence of time series data to pro-

duce one feature vector that is the output of the autoencoder. �at is interesting because 

the model produces an embedding that is sensitive to the way the data that represents a 

patient changes over time, and thus the embedding technique is capable of producing 

similar representations of patients when their records change in the same way over time.

One area for further research is to compare the effectiveness of Kieu et al.’s and Lei 

et al.’s techniques. Since Kieu et al. found that using the embedding layer enhances the 

performance of their algorithm, it could be the case that we could improve the algorithm 

that Lei et al. devise if we add an embedding layer that would then provide the input for 

an autoencoder. On the other hand, it may be the case that we could feed an autoen-

coder the data Kieu et al. use, without an embedding layer, and obtain a result with per-

formance comparable to what Lei et al. report.

Dealing with categorical values in time series data as inputs for deep learning algo-

rithms presents its own unique challenges. However, we find researchers use different 

architectures to accommodate time series data. Which approach is more advantageous 

is an avenue for future research. Another opportunity for future research is to compare 

automatic techniques with a controlled set of machine learning algorithms. One could 

design a set of experiments to feed a fixed group of algorithms data from autoencoders, 

or entity embedding to determine which technique is better.
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Convolutional neural network for time series data

“Analysis and prediction of unplanned intensive care unit readmission using recurrent 

neural networks with long short-term memory” [51], by Lin et al. is another work that 

involves using a convolutional neural network that uses qualitative data for input. �e 

central theme of the work is using electronic health records ( EHR’s) to predict when a 

patient will be readmitted to a hospital’s intensive care unit (ICU). One may readily lev-

erage this work because the authors provide the source code [52], and the data [84] for 

their experiments. We include this work in the automatic family of techniques for using 

categorical data in neural networks because of the manner in which Lin et al. prepare 

their data for input into a neural network. However, we view [51] as a borderline case 

because the authors report their best metrics with a model that uses both transfer learn-

ing and One-hot encoding for its qualitative inputs. It is borderline cases, such as [51] 

that inspires the term spectrum when we discuss techniques for using categorical data in 

neural networks.

Figure  4 shows the reader Lin et  al.’s approach to using qualitative data for input to 

neural networks. It also indicates how the authors can use a block of 48 h of EHR data for 

one patient as one input to a convolutional neural network for experiments where they 

use a convolutional neural network. For the purpose of this work we are interested in 

how Lin et al. deal with the categorical values they use as input to their neural networks. 

We see from Fig. 4 that the authors convert ICD-9 codes to embedded values. Lin et al. 

write that they use Choi, Chill, and Sontag’s technique from “Learning low-dimensional 

representations of medical concepts” [53] to embed the ICD-9 codes. Lin, Chill, and Son-

tag’s technique is based on Mikolov et al.’s Word2vec algorithm. �is is why we chose to 

place this work in the category of automatic techniques. �e reader may be interested to 

know that the source code for Lin, Chill, and Sontag’s embedding technique is available 

in [54]. For categorical features in the charted events and demographics areas indicated 

in Fig.  4 Lin et  al. use One-hot encoding. �is use of One-hot encoding immediately 

raises a prospect for future research. We see their Glasgow coma scale categorical value 

has 13 dimensions. In [3], Guo and Berkhahn embed categorical variables with a similar 

number of One-hot encoding dimensions, and they achieve a lower mean approximate 

percentage error when they use embedded categorical variables.

Fig. 4 Image copied from [51], structure of time series dataset shows mix of quantitative and qualitative 
data, including embedding of ICD-9 codes
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Lin et al. evaluate the performance of Convolutional Neural Networks ( CNN’s), Long 

Short-term Memory ( LSTM ), and combinations of LSTM and CNN ’s that use the input 

data pictured in Fig.  4. In this evaluation they also include a comparison to Logistic 

Regression, Naive Bayes, Random Forest, and Support Vector Machine classifiers, but 

they must treat their input data differently for use as input to these classifiers. Out of 

all the models they include in their experiments, Lin et al. find that the best performing 

configuration is an LSTM that takes the data illustrated in Fig. 4, and the output of the 

LSTM goes to a CNN that produces the final prediction of whether the patient is likely to 

return to the ICU.

�e model Lin et al. present is a complex example that reflects the authors’ expertise in 

the domain of the input data they use. When such expertise is employed to construct a 

dataset with categorical data, we encounter a blending of techniques. Still, one can ana-

lyze the techniques the authors use and identify determined and automatic techniques. 

�is work is an example of how to employ multiple techniques to encode categorical 

data for use in a complex neural network.

Summary of automatic techniques

Researchers have achieved state-of-the-art results using data encoded with automatic 

techniques. See [32, 43] for reports of such superior results. However, the reader should 

bear in mind that when starting from scratch, automatic techniques are resource inten-

sive. Especially when working with big data, a new automatic technique could require 

a lot of space and time to compute an embedding of qualitative values. For example, in 

[43] Mikolov et al. report a training times on the order of one day on datasets of billions 

of words.

Fortunately many automatic techniques lend themselves to transfer learning, so often 

it is possible to reuse parts of models previously trained to avoid duplicating the effort. 

On one hand, we notice there is a common theme of current best-in-class algorithms 

employing automatic techniques. On the other we recommend trying to use transfer 

learning first to avoid the resource intensive process of employing an automatic tech-

nique for working with qualitative data in neural networks.

Automatic techniques are compelling to study because they are reusable across a wide 

variety of domains. Furthermore, the symmetry between operations on vectors learned 

by Word2vec, and semantic relationships between the encoded words is exciting. It 

is exciting because this pattern emerges from an automated technique that does not 

encode prior knowledge of its input domain. In this section, we cover distributed rep-

resentations, entity embeddings, autoencoders, and how transfer learning plays a role in 

sophisticated models. We also find that while an automatic technique may be the most 

important aspect of the way in which researchers deal with qualitative data in neural 

networks, in practice one must employ a composition of techniques.

Conclusion

In this survey, we provide an overview of techniques for using categorical data as inputs 

to deep learning algorithms. To the best of our knowledge, this is the first work to pre-

sent a unified description of techniques for encoding categorical values for use in neural 
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networks. We present a new perspective on encoding techniques. �e new perspective 

is a view of encoding techniques in three categories: determined, algorithmic, and auto-

matic. In practice, one must use a blend of techniques for working with categorical data 

in neural networks, unless one is satisfied with using only determined techniques. Auto-

matic and algorithmic techniques rely on some determined technique as a first step. 

Determined and automatic techniques are most suitable for big data projects. We find 

algorithmic techniques to be less attractive because they have lower potential for re-use, 

and when working with big data, may have running times that are prohibitive. We see 

an opportunity for future research in a systematic study to compare combinations of 

embedding techniques on various machine learning tasks. We provide the reader with 

references to the source code of multiple implementations of models that use categorical 

encoding techniques to facilitate opportunities for future research. For the long term, 

it appears that automatic techniques for using categorical data in neural networks may 

be the most important. We assume industry will be more interested in funding devel-

opment of techniques that are easy to employ, general-purpose, and reusable. Algorith-

mic techniques fit this description. However, for the short term, determined techniques 

are more suitable for encoding quantitative data in large datasets because they are less 

computationally expensive than automatic or algorithmic techniques. Despite long-

standing research on embedding techniques for neural networks, opportunities for fur-

ther research still exist. For specific tasks, it could be the case that more sophisticated 

techniques, such as EDLT [76] and GEL [19], are better. However, to the best of our 

knowledge we do not have a study that compares GEL or EDLT to automatic techniques. 

�is is an opportunity for future research. In this study, we have found a way to organ-

ize techniques for working with categorical data in neural networks. Researchers should 

be aware of the spectrum of techniques available, as well as the methods of employing 

them.
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