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Abstract. Semantic Question Answering (SQA) removes two major access requirements to the Semantic Web: the mastery of a
formal query language like SPARQL and knowledge of a specific vocabulary. Because of the complexity of natural language, SQA
presents difficult challenges and many research opportunities. Instead of a shared effort, however, many essential components are
redeveloped, which is an inefficient use of researcher’s time and resources. This survey analyzes 62 different SQA systems, which
are systematically and manually selected using predefined inclusion and exclusion criteria, leading to 72 selected publications
out of 1960 candidates. We identify common challenges, structure solutions, and provide recommendations for future systems.
This work is based on publications from the end of 2010 to July 2015 and is also compared to older but similar surveys.
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1. Introduction

Semantic Question Answering (SQA) is defined by
users (1) asking questions in natural language (NL) (2)
using their own terminology to which they (3) receive
a concise answer generated by querying a RDF knowl-
edge base.1 Users are thus freed from two major ac-
cess requirements to the Semantic Web: (1) the mas-
tery of a formal query language like SPARQL and (2)
knowledge about the specific vocabularies of the knowl-
edge base they want to query. Since natural language is
complex and ambiguous, reliable SQA systems require
many different steps. While for some of them, like part-
of-speech tagging and parsing, mature high-precision
solutions exist, most of the others still present difficult
challenges. While the massive research effort has led
to major advances, as shown by the yearly Question
Answering over Linked Data (QALD) evaluation cam-

1Definition based on Hirschman and Gaizauskas [73].

paign, it suffers from several problems: Instead of a
shared effort, many essential components are redevel-
oped. While shared practices emerge over time, they
are not systematically collected. Furthermore, most sys-
tems focus on a specific aspect while the others are
quickly implemented, which leads to low benchmark
scores and thus undervalues the contribution. This sur-
vey aims to alleviate these problems by systematically
collecting and structuring methods of dealing with com-
mon challenges faced by these approaches. Our con-
tributions are threefold: First, we complement exist-
ing work with 72 publications about 62 systems de-
veloped from 2010 to 2015. Second, we identify chal-
lenges faced by those approaches and collect solutions
for them from the 72 publications. Finally, we draw
conclusions and make recommendations on how to de-
velop future SQA systems. The structure of the paper
is as follows: Section 2 states the methodology used
to find and filter surveyed publications. Section 3 com-
pares this work to older, similar surveys as well as eval-
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uation campaigns and work outside the SQA field. Sec-
tion 4 introduces the surveyed systems. Section 5 iden-
tifies challenges faced by SQA approaches and presents
approaches that tackle them. Section 6 summarizes the
efforts made to face challenges to SQA and their impli-
cation for further development in this area.

2. Methodology

This survey follows a strict discovery methodology:
Objective inclusion and exclusion criteria are used to
find and restrict publications on SQA.

Inclusion Criteria Candidate articles for inclusion in
the survey need to be part of relevant conference pro-
ceedings or searchable via Google Scholar (see Ta-
ble 1). The inclued papers from the publication search
engine Google Scholar are the first 300 results in the
chosen timespan (see exclusion criteria) that contain
“’question answering’ AND (’Semantic Web’ OR ’data
web’)” in the article including title, abstract and text
body. Conference candidates are all publications in our
examined time frame in the proceedings of the ma-
jor Semantic Web Conferences ISWC, ESWC, WWW,
NLDB, and the proceedings which contain the annual
QALD challenge participants.

Exclusion Criteria Works published before Novem-
ber 20102 or after July 2015 are excluded, as well as
those that are not related to SQA, determined in a man-
ual inspection in the following manner: First, proceed-
ing tracks are excluded that clearly do not contain SQA
related publications. Next, publications both from pro-
ceedings and from Google Scholar are excluded based
on their title and finally on their content.

Notable exclusions We exclude the following ap-
proaches since they do not fit our definition of SQA
(see Section 1): Swoogle [52] is independent on any
specific knowledge base but instead builds its own in-
dex and knowledge base using RDF documents found
by multiple web crawlers. Discovered ontologies are
ranked based on their usage intensity and RDF doc-
uments are ranked using authority scoring. Swoogle
can only find single terms and cannot answer natural
language queries and is thus not a SQA system. Wol-
fram|Alpha is a natural language interface based on the
computational platform Mathematica [143] and aggre-
gates a large number of structured sources and a al-

2The time before is already covered in Cimiano and Minock [33].

gorithms. However, it does not support Semantic Web
knowledge bases and the source code and the algorithm
is are not published. Thus, we cannot identify whether
it corresponds to our definition of a SQA system.

Result The inspection of the titles of the Google
Scholar results by two authors of this survey led to 153
publications, 39 of which remained after inspecting the
full text (see Table 1). The selected proceedings con-
tain 1660 publications, which were narrowed down to
980 by excluding tracks that have no relation to SQA.
Based on their titles, 62 of them were selected and in-
spected, resulting in 33 publications that were catego-
rized and listed in this survey. Table 1 shows the num-
ber of publications in each step for each source. In total,
1960 candidates were found using the inclusion crite-
ria in Google Scholar and conference proceedings and
then reduced using track names (conference proceed-
ings only, 1280 remaining), then titles (214) and finally
the full text, resulting in 72 publications describing 62
distinct SQA systems.

3. Related Work

This section gives an overview of recent QA and
SQA surveys and differences to this work, as well as
QA and SQA evaluation campaigns, which quantita-
tively compare systems.

3.1. Other Surveys

QA Surveys Cimiano and Minock [33] present a data-
driven problem analysis of QA on the Geobase dataset.
The authors identify eleven challenges that QA has
to solve and which inspired the problem categories of
this survey: question types, language “light”3, lexical
ambiguities, syntactic ambiguities, scope ambiguities,
spatial prepositions, adjective modifiers and superla-
tives, aggregation, comparison and negation operators,
non-compositionality, and out of scope4. In contrast to
our work, they identify challenges by manually inspect-
ing user provided questions instead of existing systems.
Mishra and Jain [99] propose eight classification crite-
ria, such as application domain, types of questions and
type of data. For each criterion, the different classifica-
tions are given along with their advantages, disadvan-
tages and exemplary systems.

3semantically weak constructions
4cannot be answered as the information required is not contained

in the knowledge base
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Table 1
Sources of publication candidates along with the number of publica-
tions in total, after excluding based on conference tracks (I), based on
the title (II), and finally based on the full text (selected). Works that
are found both in a conference’s proceedings and in Google Scholar
are only counted once, as selected for that conference. The QALD
2 proceedings are included in ILD 2012, QALD 3 [25] and QALD
4 [137] in the CLEF 2013 and 2014 working notes.

Venue All I II Selected

Google Scholar Top 300 300 300 153 39

ISWC 2010 [110] 70 70 1 1

ISWC 2011 [8] 68 68 4 3

ISWC 2012 [36] 66 66 4 2

ISWC 2013 [5] 72 72 4 0

ISWC 2014 [96] 31 4 2 0

WWW 2011 [78] 81 9 0 0

WWW 2012 [79] 108 6 2 1

WWW 2013 [80] 137 137 2 1

WWW 2014 [81] 84 33 3 0

WWW 2015 [82] 131 131 1 1

ESWC 2011 [7] 67 58 3 0

ESWC 2012 [126] 53 43 0 0

ESWC 2013 [34] 42 34 0 0

ESWC 2014 [112] 51 31 2 1

ESWC 2015 [60] 42 42 1 1

NLDB 2011 [101] 21 21 2 2

NLDB 2012 [22] 36 36 0 0

NLDB 2013 [138] 36 36 1 1

NLDB 2014 [93] 39 30 1 2

NLDB 2015 [17] 45 10 2 1

QALD 1 [113] 3 3 3 2

ILD 2012 [136] 9 9 9 3

CLEF 2013 [53] 208 7 6 5

CLEF 2014 [28] 160 24 8 6

⌃(conference) 1660 980 61 33

⌃(all) 1960 1280 214 72

SQA Surveys For each participant, problems and their
solution strategies are given: Athenikos and Han [9]
give an overview of domain specific QA systems for
biomedicine. After summarising the current state of the
art by September 2009 for biomedical QA systems, the
authors describe different approaches from the point of
view of medical and biological QA. The authors of this
survey only describe approaches, but do not identify
the differences between those two main categories. In
contrast to our survey, the authors hereby do not sort
the presented approaches through problems, but more
broader terms such as "Non-semantic knowledge base
medical QA systems and approaches" or "Inference-

Table 2
Other surveys by year of publication. Surveyed years are given ex-
cept when a dataset is theoretically analyzed. Approaches addressing
specific types of data are also indicated.

QA Survey Year Coverage Data

Cimiano and Minock [33] 2010 — geobase
Mishra and Jain [99] 2015 2000–2014 general

SQA Survey Year Coverage Data

Athenikos and Han [9] 2010 2000–2009 biomedical
Lopez et al. [91] 2010 2004–2010 general
Freitas et al. [57] 2012 2004–2011 general
Lopez et al. [92] 2013 2005–2012 general

based biological QA systems and approaches". Lopez
et al. [91] presents an overview similar to Athenikos
and Han [9] but with a wider scope. After defining
the goals and dimensions of QA and presenting some
related and historic work, the authors summarize the
achievements of SQA so far and the challenges that
are still open. Another related survey from 2012, Fre-
itas et al. [57], gives a broad overview of the chal-
lenges involved in constructing effective query mech-
anisms for Web-scale data. The authors analyze dif-
ferent approaches, such as Treo [56], for five different
challenges: usability, query expressivity, vocabulary-
level semantic matching, entity recognition and im-
provement of semantic tractability. The same is done
for architectural elements such as user interaction and
interfaces and the impact on these challenges is re-
ported. Lopez et al. [92] analyze the SQA systems of
the participants of the QALD 1 and 2 evaluation chal-
lenge, see Section 3.2. While there is an overlap in the
surveyed approaches between Lopez et al. [92] and our
paper, our survey has a broader scope as it also ana-
lyzes approaches that do not take part in the QALD
challenges.

In contrast to the surveys mentioned above, we do
not focus on the overall performance or domain of a
system, but on analyzing and categorizing methods that
tackle specific problems. Additionally, we build upon
the existing surveys and describe the new state of the
art systems which were published after the before men-
tioned surveys in order to keep track of new research
ideas.

3.2. Evaluation Campaigns

Contrary to QA surveys, which qualitatively com-
pare systems, there are also evaluation campaigns,
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which quantitatively compare them using benchmarks.
Those campaigns show how different open-domain QA
systems perform on realistic questions on real-world
knowledge bases. This accellerates the evolution of
QA in four different ways: Firstly, new systems don’t
have to include their own benchmark, shortening sys-
tem development. Secondly, standardized evaluation
allows for better research resource allocation as it is
easier to determine, which approaches are worthwhile
to develop further. Thirdly, the addition of new chal-
lenges to the questions of each new benchmark iter-
ation motivates addressing those challenges. And fi-
nally, the competitive pressure to keep pace with the top
scoring systems compells emergence and integration
of shared best practises. On the other hand, evaluation
campaign proceedings do not describe single compo-
nents of those systems in great detail. By focussing on
complete systems, research effort gets spread around
multiple components, possibly duplicating existing ef-
forts, instead of being focussed on a single one.

Question Answering on Linked Data (QALD) is
the most well-known all-purpose evaluation campaign
with its core task of open domain SQA on lexico-
graphic facts of DBpedia [88]. Since its inception in
2011, the yearly benchmark has been made progres-
sively more difficult. Additionally, the general core task
has been joined by special tasks providing challenges
like multilinguality, hybrid (textual and Linked Data)
and its newest addition, SQA on statistical data in the
form of RDF Data Cubes [75].

BioASQ [132,1,10,11] is a benchmark challenge
which ran until September 2015 and consists of seman-
tic indexing as well as an SQA part on biomedical data.
In the SQA part, systems are expected to be hybrids,
returning matching triples as well as text snippets but
partial evaluation (text or triples only) is possible as
well. The introductory task separates the process into
annotation which is equivalent to named entity recog-
nition (NER) and disambiguation (NED) as well as the
answering itself. The second task combines these two
steps.

TREC LiveQA, starting in 2015 [4], gives systems
unanswered Yahoo Answers questions intended for
other humans. As such, the campaign contains the most
realistic questions with the least restrictions, in contrast
to the solely factual questions of QALD, BioASQ and
TREC’s old QA track [40].

3.3. Frameworks

Framework may refer to architecture or to a system.
System framework provides an abstraction in which
an generic functionality can be selectively changed by
additional third-party code. In this section we refer
to system frameworks. Different from document re-
trieval where’s there are many existing frameworks as
Lucene5, Solr6 and Elastic Search7, there is still a lack
in tools to facilitate implementation and evaluation pro-
cess of SQA systems.

Document retrieval frameworks usually split the re-
trieval process in tree steps (1) query processing, (2)
retrieval and (3) ranking. The (1) query processing step
consist in apply query analyzers in order to better iden-
tify documents in the data store. Thereafter, the query
is used to (2) retrieve documents that match the query
terms resulting from the query processing. Later, the
retrieved documents are (3) ranked according to some
ranking function, commonly TFIDF [127]. Develop-
ing SQA framework is a hard task because must of
the systems work with a mixture of NL techniques on
top of traditional IR systems. Some systems make use
of the syntactic graph behind the question [135] to de-
duce the query intention whereas others, the knowl-
edge graph [122]. There are systems that propose to
work in either structured and unstructured data [139]
or in a combination of systems [64]. Therefore, they
contain very peculiar steps. Thus, a new research sub
field focuses on question answering frameworks, i.e.,
design and development of common features for SQA
systems.

openQA [94]8 is a modular open-source framework
for implementing and instantiating SQA approaches.
The framework’s main work-flow consists of four
stages (interpretation, retrieval, synthesis, rendering)
and adjacent modules (context and service). The adja-
cent modules are intended to be accessed by any of the
components of the main work-flow to share common
features to the different modules e.g. cache. The frame-
work proposes the answer formulation process in a very
likely traditional document retrieval fashion where the
query processing and ranking steps are replaced by the
more general Interpretation and Synthesis. According
to the authors, the interpretation step comprises all the
pre-processing and matching techniques required to de-

5https://lucene.apache.org
6https://solr.apache.org
7https://www.elastic.co
8http://openqa.aksw.org
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duce the question whereas the syntheses is the process
of ranking, merging and confidence estimation required
to produce the answer. The authors claims that openQA
enables a conciliation of different architectures and
methods.

4. Systems

The 72 surveyed publications describe 62 distinct
systems or approaches. The implementation of a SQA
system can be very complex and depending on, thus
reusing, several known techniques. SQA systems are
typically composed of two stages: (1) the query ana-
lyzer and (2) retrieval. The query analyzer generates
or formats the query that will be used to recover the
answer at the retrieval stage. There is a wide variety
of techniques that can be applied at the analyzer stage,
such as tokenization, disambiguation, internationaliza-
tion, logical forms, semantic role labels, question re-
formulation, coreference resolution, relation extraction
and named entity recognition amongst others. For some
of those techniques, such as natural language (NL)
parsing and part-of-speech (POS) tagging, mature all-
purpose methods are available and commonly reused.
Other techniques, such as the disambiguating between
multiple possible answers candidates, are not available
at hand in a domain independent fashion. Thus, high
quality solutions can only be obtained by the devel-
opment of new components. This section exemplifies
some of the reviewed systems and their novelties to
highlight current research questions, while the next sec-
tion presents the contributions of all analyzed papers to
specific challenges.

Hakimov et al. [65] proposes a SQA system us-
ing syntactic dependency trees of input questions. The
method consists of three main steps: (1) Triple patterns
are extracted using the dependency tree and POS tags
of the questions. (2) Entities, properties and classes
are extracted and mapped to the underlying knowledge
base. Recognized entities are disambiguated using page
links between all spotted named entities as well as
string similarity. Properties are disambiguated by using
relational linguistic patterns from PATTY [102] which

dbo http://dbpedia.org/ontology/

dbr http://dbpedia.org/resource/

owl http://www.w3.org/2002/07/owl#

Table 3
URL prefixes used throughout this work.

allows a more flexible mapping, e.g., “die” is mapped
to DBpedia properties like dbo:deathPlace 9 Finally, (3)
question words are matched to the respective answer
type, e.g., Who matches person, organization, company
while Where matches places) and ranked. The best re-
sult is returned as answer.

PARALEX [48] only answers questions for subjects
or objects of property-object or subject-property pairs,
respectively. It contains phrase to concept mappings
in a lexicon that is trained from a corpus of para-
phrases, which is constructed from the question-answer
site WikiAnswers10. If one of the paraphrases can be
mapped to a query, this query is the correct answer for
the paraphrases as well. By mapping phrases between
those paraphrases, the linguistic patterns are extended.
For example, “what is the r of e” leads to “how r is
e ”, so that “What is the population of New York” can
be mapped to “How big is NYC”. There is a variety of
other systems, such as Bordes et al. [19], that make use
of paraphrase learning methods and integrate linguis-
tic generalization with knowledge graph biases. They
are however not included here as they do query RDF
knowledge bases and thus do not fit the inclusion crite-
ria.

Xser [144] is based on the observation that SQA con-
tains two independent steps. First, Xser determines the
question structure solely based on a phrase level depen-
dency graph and second uses the target knowledge base
to instantiate the generated template. For instance, mov-
ing to another domain based on a different knowledge
base thus only affects parts of the approach so that the
conversion effort is lessened.

QuASE [129] is a three stage open domain ap-
proach based on web search and the Freebase knowl-
edge base11. First, QuASE uses entity linking, semantic
feature construction and candidate ranking on the input
question. Then, it selects the documents and according
sentences from a web search with a high probability to
match the question and presents them as answers to the
user.

DEV-NLQ [128] is based on lambda calculus and
an event-based triple store12 using only triple based re-
trieval operations. DEV-NLQ claims to be the only QA
system able to solve chained, arbitrarily-nested, com-
plex, prepositional phrases.

9URL prefixes are defined in Table 3.
10http://wiki.answers.com/
11https://www.freebase.com/
12http://www.w3.org/wiki/LargeTripleStores



6 Challenges of Question Answering in the Semantic Web

CubeQA [74] is a novel approach of SQA over multi-
dimensional statistical Linked Data using the RDF Data
Cube Vocabulary 13, which existing approaches cannot
process. Using a corpus of questions with open domain
statistical information needs, the authors analyze how
those questions differ from others, which additional ver-
balizations are commonly used and how this influences
design decisions for SQA on statistical data.

QAKiS [24,35,26] queries several multilingual ver-
sions of DBpedia at the same time by filling the
produced SPARQL query with the corresponding
language-dependent properties and classes. Thus, QAKiS
can retrieve correct answers even in cases of missing in-
formation in the language-dependent knowledge base.

Freitas and Curry [54] evaluate a distributional-
compositional semantics approach that is independent
from manually created dictionaries but instead relies on
co-occurring words in text corpora. The vector space
over the set of terms in the corpus is used to create a
distributional vector space based on the weighted term
vectors for each concept. An inverted Lucene index is
adapted to the chosen model.

Instead of querying a specific knowledge base, Sun
et al. [129] use web search engines to extract relevant
text snippets, which are then linked to Freebase, where
a ranking function is applied and the highest ranked
entity is returned as the answer.

HAWK [139] is the first hybrid source SQA sys-
tem which processes Linked Data as well as textual
information to answer one input query. HAWK uses
an eight-fold pipeline comprising part-of-speech tag-
ging, entity annotation, dependency parsing, linguistic
pruning heuristics for an in-depth analysis of the nat-
ural language input, semantic annotation of properties
and classes, the generation of basic triple patterns for
each component of the input query as well as discard-
ing queries containining not connected query graphs
and ranking them afterwards.

SWIP (Semantic Web intercase using Pattern) [111]
generates a pivot query, a hybrid structure between the
natural language question and the formal SPARQL tar-
get query. Generating the pivot queries consists of three
main steps: (1) Named entity identification, (2) Query
focus identification and (3) subquery generation. To for-
malize the pivot queries, the query is mapped to linguis-
tic patterns, which are created by hand from domain ex-
perts. If there are multiple applicable linguistic patterns
for a pivot query, the user chooses between them.

13http://www.w3.org/TR/vocab-data-cube/

Hakimov et al. [66] adapt a semantic parsing algo-
rithm to SQA which achieves a high performance but
relies on large amounts of training data which is not
practical when the domain is large or unspecified.

Several industry-driven SQA-related projects have
emerged over the last years. For example, DeepQA of
IBM Watson [64], which was able to win the Jeopardy!
challenge against human experts.

YodaQA [13] is a modular open source hybrid ap-
proach built on top of the Apache UIMA framework14

that is part of the Brmson platform and is inspired
by DeepQA. YodaQA allows easy parallelization and
leverage og pre-existing NLP UIMA components by
representing each artifact (question, search result, pas-
sage, candidate answer) as a separate UIMA CAS.
Yoda pipeline is divided in five different stages: (1)
Question Analysis, (2) Answer Production, (3) Answer
Analysis, (4) Answer Merging and Scoring as well as
(5) Successive Refining.

Further, KAIST’s Exobrain15 project aims to learn
from large amounts of data while ensuring a natural
interaction with end users. However, it is yet limited to
Korean for the moment.

Answer Presentation Another, important part of SQA
systems outside the SQA research challenges is result
presentation. Verbose descriptions or plain URIs are un-
comfortable for human reading. Entity summarization
deals with different types and levels of abstractions.

Cheng et al. [31] proposes a random surfer model
extended by a notion of centrality, i.e., a computation
of the central elements involving similarity (or related-
ness) between them as well as their informativeness.
The similarity is given by a combination of the related-
ness between their properties and their values.

Ngonga Ngomo et al. [106] present another ap-
proach that automatically generates natural language
description of resources using their attributes. The ra-
tionale behind SPARQL2NL is to verbalize16 RDF data
by applying templates together with the metadata of
the schema itself (label, description, type). Entities can
have multiple types as well as different levels of hier-
archy which can lead to different levels of abstractions.
The verbalization of the DBpedia entity dbr:Microsoft
can vary depending on the type dbo:Agent rather than
dbo:Company .

14https://uima.apache.org/
15http://exobrain.kr/
16For example, "123"ˆˆ<http://dbpedia.org/

datatype/squareKilometre> can be verbalized as 123
square kilometres.
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Table 4
Different techniques for bridging the lexical gap along as well as an
example of a deviation of the word “running”.

Identity running
Similarity Measure runnign
Stemming/Lemmatizing run
AQE—Synonyms sprint
Pattern libraries X made a break for Y

5. Challenges

In this section, we address seven challenges that have
to be faced by state-of-the-art SQA systems. All men-
tioned challenges are currently open research fields.
For each challenge, we describe efforts mentioned in
the 72 selected publications. Challenges that affect
SQA, but that are not to be solved by SQA systems,
such as speech interfaces, data quality and system in-
teroperability, are analyzed in Shekarpour et al. [123].

5.1. Lexical Gap

In a natural language, the same meaning can be ex-
pressed in different ways. Natural language descrip-
tions of RDF resources are provided by values of the
rdfs:label property (label in the following). While
synonyms for the same RDF resource can be mod-
eled using multiple labels for that resource, knowledge
bases typically don’t contain all the different terms that
can refer to a certain entity. If the vocabulary used in a
question is different from the one used in the labels of
the knowledge base, we call this the lexical gap17 [66].
Because a question can usually only be answered if ev-
ery referred concept is identified, bridging this gap sig-
nificantly increases the proportion of questions that can
be answered by a system. Table 4 shows the methods
employed by the 72 selected publications for bridging
the lexical gap along with examples. As an example of
how the lexical gap is bridged outside of SQA, see Lee
et al. [86].

String Normalization and Similarity Functions Nor-
malizations, such as conversion to lower case or to base
forms, such as “é,é,ê” to “e”, allow matching of slightly
different forms (problem 3) and some simple mistakes
(problem 4), such as “Deja Vu” for “déjà vu”, and are
quickly implemented and executed. More elaborate nor-
malizations use natural language programming (NLP)

17In linguistics, the term lexical gap has a different meaning, re-
ferring to a word that has no equivalent in another language.

techniques for stemming (both “running” and “ran” to
“run”).

If normalizations are not enough, the distance—and
its complementary concept, similarity—can be quan-
tified using a similarity function and a threshold can
be applied. Common examples of similarity functions
are Jaro-Winkler, an edit-distance that measures trans-
positions and n-grams, which compares sets of sub-
strings of length n of two strings. Also, one of the sur-
veyed publications, Zhang et al. [150], uses the largest
common substring, both between Japanese and trans-
lated English words. However, applying such similar-
ity functions can carry harsh performance penalties.
While an exact string match can be efficiently executed
in a SPARQL triple pattern, similarity scores gener-
ally need to be calculated between a phrase and ev-
ery entity label, which is infeasible on large knowledge
bases [139]. For instance, edit distances of two charac-
ters or less can be mitigated by using the fuzzy query
implementation of an Apache Lucene ndex18 which
implements a Levenshtein Automaton [117]. Further-
more, Ngonga Ngomo [104] provides a different ap-
proach to efficiently calculating similarity scores that
could be applied to QA. It uses similarity metrics where
a triangle inequality holds that allows for a large por-
tion of potential matches to be discarded early in the
process. This solution is not as fast as using a Leven-
shtein Automaton but does not place such a tight limit
on the edit distance.

Automatic Query Expansion Normalization and string
similarity methods match different forms of the same
word but not different words with similar meaning. Syn-
onyms, like design and plan, are pairs of words that,
either always or only in a specific context, have the
same meaning. In hyper-hyponym-pairs, like chemical
process and photosynthesis, the first word is less spe-
cific then the second one. These word pairs, taken from
lexical databases such as WordNet [97], are used as
additional labels in Automatic query expansion (AQE).
AQE is commonly used in information retrieval and
traditional search engines, as summarized in Carpineto
and Romano [29]. These additional surface forms al-
low for more matches and thus increase recall but lead
to mismatches between related words and thus can de-
crease the precision.

In traditional document-based search engines with
high recall and low precision, this trade-off is more
common than in SQA. SQA is typically optimized for

18http://lucene.apache.org
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concise answers and a high precision, since a SPARQL
query with an incorrectly identified concept mostly re-
sults in a wrong set of answer resources. However, AQE
can be used as a backup method in case there is no
direct match. One of the surveyed publications is an
experimental study [120] that evaluates the impact of
AQE on SQA. It has analyzed different lexical19 and
semantic20 expansion features and used machine learn-
ing to optimize weightings for combinations of them.
Both lexical and semantic features were shown to be
beneficial on a benchmark dataset consisting only of
sentences where direct matching is not sufficient.

Pattern libraries RDF individuals can be matched
from a phrase to a resource with high accuracy using
similarity functions and normalization alone. Proper-
ties however require further treatment, as (1) they deter-
mine the subject and object, which can be in different
positions21 and (2) a single property can be expressed
in many different ways, both as a noun and as a verb
phrase which may not even be a continuous substring22

of the question. Because of the complex and varying
structure of those linguistic patterns and the required
reasoning and knowledge23, libraries to overcome this
issues have been developed.

PATTY [102] detects entities in sentences of a cor-
pus and determines the shortest path between the en-
tities. The path is then expanded with occurring mod-
ifiers and stored as a pattern. Thus, PATTY is able to
build up a pattern library on any knowledge base with
an accompanying corpus.

BOA [62] generates linguistic patterns using a cor-
pus and a knowledge base. For each property in the
knowledge base, sentences from a corpus are chosen
containing examples of subjects and objects for this
particular property. BOA assumes that each resource
pair that is connected in a sentence exemplifies another
label for this relation and thus generates a pattern from
each occurrence of that word pair in the corpus.

PARALEX [48] contains phrase to concept map-
pings in a lexicon that is trained from a corpus of para-
phrases from the QA site WikiAnswers. The advantage
is that no manual templates have to be created as they
are automatically learned from the paraphrases.

19lexical features include synonyms, hyper and hyponyms
20semantic features making use of RDF graphs and the RDFS

vocabulary, such as equivalent, sub- and superclasses
21E.g., “X wrote Y” and “Y is written by X”
22E.g., “X wrote Y together with Z” for “X is a coauthor of Y”.
23E.g., “if X writes a book, X is called the author of it.”

Entailment A corpus of already answered questions
or linguistic question patterns can be used to infer the
answer for new questions. A phrase A is said to entail
a phrase B, if B follows from A. Thus, entailment is di-
rectional: Synonyms entail each other, whereas hyper-
and hyponyms entail in one direction only: “birds fly”
entails “sparrows fly”, but not the other way around. Ou
and Zhu [107] generate possible questions for an ontol-
ogy in advance and identify the most similar match to a
user question based on a syntactic and semantic similar-
ity score. The syntactic score is the cosine-similarity of
the questions using bag-of-words. The semantic score
also includes hypernyms, hyponyms and denorminal-
izations based on WordNet [97]. While the preprocess-
ing is algorithmically simple compared to the complex
pipeline of NLP tools, the number of possible questions
is expected to grow superlinearly with the size of the
ontology so the approach is more suited to specific do-
main ontologies. Furthermore, the range of possible
questions is quite limited which the authors aim to par-
tially alleviate in future work by combining multiple
basic questions into a complex question.

Document Retrieval Models for RDF resources Blanco
et al. [18] adapt entity ranking models from traditional
document retrieval algorithms to RDF data. The au-
thors apply BM25 as well as tf-idf ranking function to
an index structure with different text fields constructed
from the title, object URIs, property values and RDF
inlinks. The proposed adaptation is shown to be both
time efficient and qualitatively superior to other state-
of-the-art methods in ranking RDF resources.

Composite Approaches Elaborate approaches on
bridging the lexical gap can have a high impact on the
overall runtime performance of an SQA system. This
can be partially mitigated by composing methods and
executing each following step only if the one before
did not return the expected results.

BELA [141] implements four layers. First, the ques-
tion is mapped directly to the concept of the ontology
using the index lookup. Second, the question is mapped
based on Levenshtein distance to the ontology, if the
Levenshtein distance of a word from the question and
a property from an ontology exceed a certain threshold.
Third, WordNet is used to find synonyms for a given
word. Finally, BELA uses explicit semantic analysis
(ESA) Gabrilovich and Markovitch [59]. The evalua-
tion is carried out on the QALD 2 [136] test dataset and
shows that the more simple steps, like index lookup and
Levenshtein distance, had the most positive influence
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on answering questions so that many questions can be
answered with simple mechanisms.

Park et al. [109] answer natural language questions
via regular expressions and keyword queries with a
Lucene-based index. Furthermore, the approach uses
DBpedia [90] as well as their own triple extraction
method on the English Wikipedia.

5.2. Ambiguity

Ambiguity is the phenomenon of the same phrase
having different meanings; this can be structural and
syntactic (like “flying planes”) or lexical and seman-
tic (like “bank”). We distinguish between homonymy,
where the same string accidentally refers to different
concepts (as in money bank vs. river bank) and poly-
semy, where the same string refers to different but re-
lated concepts (as in bank as a company vs. bank as a
building). We distinguish between synonymy and taxo-
nomic relations such as metonymy and hypernymy. In
contrast to the lexical gap, which impedes the recall of a
SQA system, ambiguity negatively effects its precision.
Ambiguity is the flipside of the lexical gap.

This problem is aggravated by the very methods used
for overcoming the lexical gap. The more loose the
matching criteria become (increase in recall), the more
candidates are found which are generally less likely
to be correct than closer ones. Disambiguation is the
process of selecting one of multiple candidate concepts
for an ambiguous phrase. We differentiate between two
types of disambiguation based on the source and type
of information used to solve this mapping:

Corpus-based methods are traditionally used and
rely on counts, often used as probabilities, from unstruc-
tured text corpora. Such statistical approaches [125] are
based on the distributional hypothesis, which states that
“difference of meaning correlates with difference of
[contextual] distribution” [69]. The context of a phrase
is identified here as its central characteristic [98]. Com-
mon context features used are word co-occurrences,
such as left or right neighbours, but also synonyms, hy-
ponyms, POS-tags and the parse tree structure. More
elaborate approaches also take advantage of the con-
text outside of the question, such as past queries of the
user [124] .

In SQA, Resource-based methods exploit the fact
that the candidate concepts are RDF resources. Re-
sources are compared using different scoring schemes
based of their properties and the connections between
them. The assumption is that high score between all the
resources chosen in the mapping implies a higher prob-

ability of those resources being related, and that this
implies a higher propability of those resource being cor-
rectly chosen. RVT [63] uses Hidden Markov Models
(HMM) to select the proper ontological triples accord-
ing to the graph nature of DBpedia. CASIA [71] em-
ploys Markov Logic Networks (MLN): First-order logic
statements are assigned a numerical penalty, which
is used to define hard constraints, like “each phrase
can map to only one resource”, alongside soft con-
straints, like “the larger the semantic similarity is be-
tween two resources, the higher the chance is that they
are connected by a relation in the question”. Under-
specification [133] discards certain combinations of
possible meanings before the time consuming query-
ing step, by combining restrictions for each meaning.
talks about their Each term is mapped to a Dependency-
based Underspecified Discourse REpresentation Struc-
ture (DUDE [32]), which captures its possible mean-
ings along with their class restrictions. Treo [56,55]
performs entity recognition and disambiguation using
Wikipedia-based semantic relatedness and spreading
activation. Semantic relatedness calculates similarity
values between pairs of RDF resources. Determining
semantic relatedness between entity candidates asso-
ciated to words in a sentence allows to find the most
probable entity by maximizing the total relatedness.
EasyESA [30] is based on distributional semantic mod-
els which allow to represent an entity by a vector of tar-
get words and thus compresses its representation. The
distributional semantic models allow to bridge the lexi-
cal gap and resolve ambiguity by avoiding the explicit
structures of RDF-based entity descriptions for entity
linking and relatedness. gAnswer [77] tackles ambigu-
ity with RDF fragments, i.e., star-like RDF subgraphs.
The number of connections between the fragments of
the resource candidates is then used to score and select
them. Wikimantic [20] can be used to disambiguate
short questions or even sentences. It uses Wikipedia ar-
ticle interlinks for a generative model, where the proba-
bility of an article to generate a term is set to the terms
relative occurrence in the article. Disambiguation is
then an optimization problem to locally maximize each
article’s (and thus DBpedia resource’s) term probabil-
ity along with a global ranking method. Shekarpour
et al. [118,121] disambiguate resource candidates us-
ing segments consisting of one or more words from a
keyword query. The aim is to maximize the high textual
similarity of keywords to resources along with related-
ness between the resources (classes, properties and en-
tities). The problem is cast as a Hidden Markov Model
(HMM) with the states representing the set of candi-
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date resources extended by OWL reasoning. The tran-
sition probabilities are based on the shortest path be-
tween the resources. The Viterbi algorithm generates
an optimal path though the HMM that is used for dis-
ambiguation. DEANNA [145,146] manages phrase de-
tection, entity recognition and entity disambiguation
by formulating the SQA task as an integer linear pro-
gramming (ILP) problem. It employs semantic coher-
ence which measures co-occurrence of resources in the
same context. DEANNA constructs a disambiguation
graph which encodes the selection of candidates for re-
sources and properties. The chosen objective function
maximizes the combined similarity while constraints
guarantee that the selections are valid. The resulting
problem is NP-hard but it is efficiently solvable in ap-
proximations by existing ILP solvers. The follow-up
approach [147] uses DBpedia and Yago with a map-
ping of input queries to semantic relations based on text
search. At QALD 2, it outperformed almost every other
system on factoid questions and every other system on
list questions. However, the approach requires detailed
textual descriptions of entities and only creates basic
graph pattern queries. LOD-Query [119] is a keyword-
based SQA system that tackles both ambiguity and the
lexical gap by selecting candidate concepts based on
a combination of a string similarity score and the con-
nectivity degree. The string similarity is the normalized
edit distance between a labels and a keyword. The con-
nectivity degree of a concept is approximated by the oc-
currence of that concept in all the triples of the knowl-
edge base. Pomelo [67] answers biomedical questions
on the combination of Drugbank, Diseasome and Sider
using owl:sameAs links between them. Properties are
disambiguated using predefined rewriting rules which
are categorized by context. Rani et al. [115] use fuzzy
logic co-clustering algorithms to retrieve documents
based on their ontology similarity. Possible senses for a
word are assigned a probability depending on the con-
text. Zhang et al. [150] translates RDF resources to
the English DBpedia. It uses feedback learning in the
disambiguation step to refine the resource mapping

Instead of trying to resolve ambiguity automati-
cally, some approaches let the user clarify the exact in-
tent, either in all cases or only for ambigous phrases:
SQUALL [50,51] defines controled, English-based, vo-
cabulary that is enhanced with knowledge from a given
triple store. While this ideally results in a high perfor-
mance, it moves the problem of the lexical gap and
disambiguation fully to the user. As such, it covers a
middle ground between SPARQL and full-fledged SQA
with the author’s intent that learning the grammatical

structure of this proposed language is easier for a non-
expert than to learn SPARQL. A cooperative approach
that places less of a burden on the user is proposed
in [95], which transforms the question into a discourse
representation structure and starts a dialogue with the
user for all occurring ambiguities. CrowdQ [43] is a
SQA system that decomposes complex queries into
simple parts (keyword queries) and uses crowdsourcing
for disambiguation. It avoids excessive usage of crowd
resources by creating general templates as an intermedi-
ate step. FREyA (Feedback, Refinement and Extended
VocabularY Aggregation) [37] represents phrases as po-
tential ontology concepts which are identified by heuris-
tics on the syntactic parse tree. Ontology concepts are
identified by matching their labels with phrases from
the question without regarding its structure. A consoli-
dation algorithm then matches both potential and ontol-
ogy concepts. In case of ambiguities, feedback from the
user is asked. Disambiguation candidates are created
using string similarity in combination with WordNet
synonym detection. The system learns from the user
selections, thereby improving the precision over time.
TBSL [135] uses both an domain independent and a do-
main dependent lexicon so that it performs well on spe-
cific topic but is still adaptable to a different domain. It
uses AutoSPARQL [87] to refine the learned SPARQL
using the QTL algorithm for supervised machine learn-
ing. The user marks certain answers as correct or in-
correct and triggers a refinement. This is repeated un-
til the user is satisfied with the result. An extension of
TBSL is DEQA [89] which combines Web extraction
with OXPath [58], interlinking with LIMES [105] and
SQA with TBSL. It can thus answer complex questions
about objects which are only available as HTML. An-
other extension of TBSL is ISOFT [108], which uses
explicit semantic analysis to help bridging the lexical
gap. NL-Graphs [47] combines SQA with an interac-
tive visualization of the graph of triple patterns in the
query which is close to the SPARQL query structure
yet still intuitive to the user. Users that find errors in the
query structure can either reformulate the query or mod-
ify the query graph. KOIOS [16] answers queries on
natural environment indicators and allows the user to
refine the answer to a keyword query by faceted search.
Instead of relying on a given ontology, a schema index
is generated from the triples and then connected with
the keywords of the query. Ambiguity is resolved by
user feedback on the top ranked results.

A different way to restrict the set of answer candi-
dates and thus handle ambiguity is to determine the
expected answer type of a factual question. The stan-
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dard approach to determine this type is to identify the
focus of the question and to map this type to an ontol-
ogy class. In the example “Which books are written by
Dan Brown?”, the focus is “books” which is mapped
to dbo:Book . There is however a long tail of rare an-
swer types that are not as easily alignable to an ontol-
ogy, which, for instance, Watson [64] tackles using the
TyCor [85] framework for type coercion. Instead of the
standard approach, candidates are first generated using
multiple interpretations and then selected based on a
combination of scores. Besides trying to align the an-
swer type directly, it is coerced into other types by cal-
culating the probability of an entity of class A to also be
in class B. DBpedia, Wikipedia and WordNet are used
to determine link anchors, list memberships, synonyms,
hyper- and hyponyms. The follow-up, Welty et al. [142]
compare two different approaches for answer typing.
Type-and-Generate (TaG) approaches restrict candidate
answers to the expected answer types using predictive
annotation, which requires manual analysis of a do-
main. Tycor on the other hand employs multiple strate-
gies using generate-and-type (GaT), i.e., it generates all
answers regardless of answer type and tries to coerce
them into the expected answer type. Experimental re-
sults hint that GaT outperforms TaG when accuracy is
higher than 50%. The significantly higher performance
of TyCor when using GaT is explained by its robust-
ness to incorrect candidates while there is no recovery
from excluded answers from TaG.

5.3. Multilingualism

Knowledge on the Web is expressed in various lan-
guages. While RDF resources can be described in mul-
tiple languages at once using language tags, there is
not a single language that is always used in Web docu-
ments. Partially because users want to use their native
language in search queries. A more flexible approach is
to have SQA systems that can handle multiple input lan-
guages, which may even differ from the language used
to encode the knowledge. Deines and Krechel [41] use
GermaNet [68] which is integrated into the multilin-
gual knowledge base EuroWordNet [140] together with
lemon-LexInfo [23], to answer German questions. Ag-
garwal et al. [3] only need to successfully translate part
of the query after which the recognition of the other
entities is aided using semantic similarity and related-
ness measures between resources connected to the ini-
tial ones in the knowledge base. QAKiS (Question An-
swering wiKiframework-based system) [35] automati-
cally extends existing mappings between different lan-

guage versions of Wikipedia, which is carried over to
DBpedia.

5.4. Complex Queries

Simple questions can most often be answered by
translating into a set of simple triple pattern. Problems
arise when several facts have to be found out, connected
and then combined respectivly the resulting query has
to obey certain restrictions or modalities like a result
order, aggregated or filtered results.

YAGO-QA [2] allows nested queries when the sub-
query has already been answered, for example “Who
is the governor of the state of New York?” after “What
is the state of New York?” YAGO-QA extracts facts
from Wikipedia (categories and infoboxes), WordNet
and GeoNames. It contains different surface forms such
as abbreviations and paraphrases for named entities.

PYTHIA [134] is an ontology-based SQA system
with an automatically build ontology-specific lexicon.
Due to the linguistic representation, the system is able
to answer natural language question with linguistically
more complex queries, involving quantifiers, numerals,
comparisons and superlatives, negations and so on.

IBM’s Watson System [64] handles complex ques-
tions by first determining the focus element, which rep-
resents the searched entity. The information about the
focus element is used to predict the lexical answer type
and thus restrict the range of possible answers. This ap-
proach allows for indirect questions and multiple sen-
tences.

Shekarpour et al. [118,121], as mentioned in Sec-
tion 5.2, propose a model that use a combination of
knowledge base concepts with a HMM model to handle
complex queries.

Intui2 [44] is an SQA system based on DBpedia
based on synfragments which map to a subtree of the
syntactic parse tree. Semantically, a synfragment is a
minimal span of text that can be interpreted as a RDF
triple or complex RDF query. Synfragments interop-
erate with their parent synfragment by combining all
combinations of child synfragments, ordered by syntac-
tic and semantic characteristics. The authors assume
that an interpretation of a question in any RDF query
language can be obtained by the recursively interpreta-
tion of its synfragments. Intui3 [45] replaces self-made
components with robust libraries such as the neural
networks-based NLP toolkit SENNA and the DBpedia
Lookup service. It drops the parser determined inter-
pretation combination method of its predecessor that
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suffered from bad sentence parses and instead uses a
fixed order right-to-left combination.

GETARUNS [42] first creates a logical form out
of a query which consists of a focus, a predicate
and arguments. The focus element identifies the ex-
pected answer type. For example, the focus of “Who
is the major of New York?” is “person”, the predi-
cate “be” and the arguments “major of New York”. If
no focus element is detected, a yes/no question is as-
sumed. In the second step, the logical form is con-
verted to a SPARQL query by mapping elements to
resources via label matching. The resulting triple pat-
terns are then split up again as properties are refer-
enced by unions over both possible directions, as in
({?x ?p ?o} UNION {?o ?p ?x}) because the
direction is not known beforehand. Additionally, there
are filters to handle additional restrictions which can-
not be expressed in a SPARQL query, such as “Who
has been the 5th president of the USA”.

5.5. Distributed Knowledge

If concept information–which is referred to in a
query–is represented by distributed RDF resources, in-
formation needed for answering it may be missing if
only a single one or not all of the knowledge bases
are found. In single datasets with a single source, such
as DBpedia, however, most of the concepts have at
most one corresponding resource. In case of combined
datasets, this problem can be dealt with by creating
sameAs, equivalentClass or equivalentProperty links,
respectively. However, interlinking while answering a
semantic query is a separate research area and thus not
covered here.

Some questions are only answerable with multiple
knowledge bases and we assume already created links
for the sake of this survey. The ALOQUS [84] system
tackles this problem by using the PROTON [38] upper
level ontology first to phrase the queries. The ontology
is than aligned to those of other knowledge bases us-
ing the BLOOMS [83] system. Complex queries are
decomposed into separately handled subqueries after
coreferences24 are extracted and substituted. Finally,
these alignments are used to execute the query on the
target systems. In order to improve the speed and qual-
ity of the results, the alignments are filtered using a
threshold on the confidence measure.

24Such as “List the Semantic Web people and their affiliation.”,
where the coreferent their refers to the entity people.

Herzig et al. [72] search for entities and consolidate
results from multiple knowledge bases. Similarity met-
rics are used both to determine and rank results can-
didates of each datasource and to identify matches be-
tween entities from different datasources.

5.6. Procedural, Temporal and Spatial Questions

Procedural Questions Factual, list and yes-no ques-
tions are easiest to answer as they conform directly
to SPARQL queries using SELECT and ASK. Others,
such as why (causal) or how (procedural) questions re-
quire more additional processing. Procedural QA can
currently not be solved by SQA, since, to the best of our
knowledge, there are no existing knowledge bases that
contain procedural knowledge. While it is not an SQA
system, we describe the document-retrieval based KO-
MODO [27] to motivate further research in this area. In-
stead of an answer sentence, KOMODO returns a Web
page with step-by-step instructions on how to reach the
goal specified by the user. This reduces the problem
difficulty as it is much easier to find a Web page which
contains instructions on how to, for example, assem-
ble a “Ikea Billy bookcase” than it would be to extract,
parse and present the required steps to the user. Ad-
ditionally, there are arguments explaining reasons for
taking a step and warnings against deviation. Instead
of extracting the sense of the question using an RDF
knowledge base, KOMODO submits the question to a
traditional search engine. The highest ranked returned
pages are then cleaned and procedural text is identified
using statistical distributions of certain POS tags.

In basic RDF, each fact, which is expressed by a
triple, is assumed to be true, regardless of circum-
stances. In the real world and in natural language how-
ever, the truth value of many statements is not a con-
stant but a function of either or both the location or
time.

Temporal Questions Tao et al. [131] answer tempo-
ral question on clinical narratives. They introduce the
Clinical Narrative Temporal Relation Ontology (CN-
TRO), which is based on Allen’s Interval Based Tempo-
ral Logic [6] but allows usage of time instants as well
as intervals. This allows inferring the temporal relation
of events from those of others, for example by using the
transitivity of before and after. In CNTRO, measure-
ment, results or actions done on patients are modeled
as events whose time is either absolutely specified in
date and optionally time of day or alternatively in re-
lations to other events and times. The framework also
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includes an SWRL [76] based reasoner that can deduce
additional time information. This allows the detection
of possible causalities, such as between a therapy for a
disease and its cure in a patient.

Melo et al. [95] propose to include the implicit tem-
poral and spatial context of the user in a dialog in order
to resolve ambiguities. It also includes spatial, temporal
and other implicit information.

QALL-ME [49] is a multilingual framework based
on description logics and uses the spatial and temporal
context of the question. If this context is not explicitly
given, the location and time are of the user posing the
question are added to the query. This context is also
used to determine the language used for the answer,
which can differ from the language of the question.

Spatial Questions In RDF, a location can be ex-
pressed as 2-dimensional geocoordinates with latitude
and longitude, while three-dimensional representations
(e.g. with additional height) are not supported by the
most often used schema25. Alternatively, spatial rela-
tionships can be modeled which are easier to answer
as users typically ask for relationships and not exact
geocoordinates .

Younis et al. [149] employ an inverted index for
named entity recognition that enriches semantic data
with spatial relationships such as crossing, inclusion
and nearness. This information is then made available
for SPARQL queries.

5.7. Templates

For complex questions, where the resulting SPARQL
query contains more than one basic graph pattern, so-
phisticated approaches are required to capture the struc-
ture of the underlying query. Current research fol-
lows two paths, namely (1) template based approaches,
which map input questions to either manually or au-
tomatically created SPARQL query templates or (2)
template-free approaches that try to build SPARQL
queries based on the given syntactic structure of the
input question.

For the first solution, many (1) template-driven ap-
proaches have been proposed like TBSL [135] or
SINA [118,121]. Furthermore, Casia [70] generates the
graph pattern templates by using the question type,
named entities and POS tags techniques. The gener-
ated graph patterns are then mapped to resources using

25see http://www.w3.org/2003/01/geo/wgs84_pos
at http://lodstats.aksw.org

WordNet, PATTY and similarity measures. Finally, the
possible graph pattern combinations are used to build
SPARQL queries. The system focuses in the generation
of SPARQL queries that do not need filter conditions,
aggregations and superlatives.

Ben Abacha and Zweigenbaum [14] focus on a nar-
row medical patients-treatment domain and use manu-
ally created templates alongside machine learning.

Damova et al. [39] return well formulated natural
language sentences that are created using a template
with optional parameters for the domain of paintings.
Between the input query and the SPARQL query, the
system places the intermediate step of a multilingual
description using the Grammatical Framework [116],
which enables the system to support 15 languages.

Rahoman and Ichise [114] propose a template based
approach using keywords as input. Templates are auto-
matically constructed from the knowledge base.

However, (2) template-free approaches require addi-
tional effort of making sure to cover every possible ba-
sic graph pattern [139]. Thus, only a few SQA systems
tackle this approach so far.

Xser [144] first assigns semantic labels, i.e., vari-
ables, entities, relations and categories, to phrases by
casting them to a sequence labelling pattern recognition
problem which is then solved by a structured percep-
tron. The perceptron is trained using features including
n-grams of POS tags, NER tags and words. Thus, Xser
is capable of covering any complex basic graph pattern.

Going beyond SPARQL queries is TPSM, the open
domain Three-Phases Semantic Mapping [61] frame-
work. It maps natural language questions to OWL
queries using Fuzzy Constraint Satisfaction Problems.
Constraints include surface text matching, preference
of POS tags and the similarity degree of surface forms.
The set of correct mapping elements acquired using the
FCSP-SM algorithm is combined into a model using
predefined templates.

An extension of gAnswer [151] (see Section 5.2) is
based on question understanding and query evaluation.
First, their approach uses a relation mining algorithm
to find triple patterns in queries as well as relation ex-
traction, POS-tagging and dependency parsing. Second,
the approach tries to find a matching subgraph for the
extracted triples and scores them based on a confidence
score. Finally, the top-k subgraph matches are returned.
Their evaluation on QALD 3 shows that mapping NL
questions to graph pattern is not as powerful as gener-
ating SPARQL (template) queries with respect to ag-
gregation and filter functions needed to answer several
benchmark input questions.
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6. Conclusion

In this survey, we analyzed 62 systems and their con-
tributions to seven challenges for SQA systems. Seman-
tic question answering is an active and upcoming re-
search field with many existing and diverse approaches
covering a multitude of research challenges, domains
and knowledge bases.

We only cover QA on the Semantic Web, that is, ap-
proaches that retrieve resources as Linked Data from
RDF knowledge bases. As similar challenges are faced
by QA unrelated to the Semantic Web, we refer to Sec-
tion 3. We choose to not go into detail for approaches
that do not retrieve resources from RDF knowledge
bases. Moreover, our consensus can be found in Ta-
ble 6 for best practices. The upcoming HOBBIT26

26http://project-hobbit.eu/

Table 5
Number of publications per year per addressed challenge. Percent-
ages are given for the fully covered years 2011–2014 separately and
for the whole covered timespan, with 1 decimal place. For a full list,
see Table 7.
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2010 1 0 0 0 0 0 1 0

2011 16 11 12 1 3 1 2 2

2012 14 6 7 1 2 1 1 4

2013 20 18 12 2 5 1 1 5

2014 13 7 8 1 2 0 1 0

2015 6 5 3 1 0 1 0 0

all 70 46 42 6 12 4 6 11

percentage

2011 68.8 75.0 6.3 18.8 6.3 12.5 12.5

2012 42.9 50.0 7.1 14.3 7.1 7.1 28.6

2013 85.0 60.0 10.0 25.0 5.0 5.0 25.0

2014 53.8 61.5 7.7 15.4 7.7 7.7 0.0

all 65.7 60.0 8.6 17.1 5.7 8.6 15.7

project will clarify, which modules can be aligned with
state-of-the art performance and will quantify the im-
pact of those modules. To cover the field of SQA in
depth, we exluded works solely about similarity [12]
or paraphrases [15]. The existence of common SQA
challenges implies that a unifying architecture can im-
prove the precision as well as increase the number
of answered questions [94]. Research into such archi-
tectures, includes openQA [94], OAQA [148], QALL-
ME [49] and QANUS [103] (see Section 3.3). Our goal,
however, is not to quantify submodule performance or
interplay. That will be the task of upcoming projects of
large consortiums. A new community27 is forming in
that field and did not find a satisfying solution yet.28 In
this section, we discuss each of the seven research chal-
lenges and give a short overview of already established
as well as future research directions per challenge, see
Table 6.

Overall, the authors of this survey cannot observe a
research drift to any of the challenges. The number of
publications in a certain research challenge does not de-
crease significantly, which can be seen as an indicator
that none of the challenges is solved yet – see Table 5.
Naturally, since only a small number of publications
addressed each challenge in a given year, one cannot
draw statistically valid conclusions. The challenges pro-
posed by Cimiano and Minock [33] and reduced within
this survey appear to be still valid.

Bridging the (1) lexical gap has to be tackled by ev-
ery SQA system in order to retrieve results with a high
recall. For named entities, this is commonly achieved
using a combination of the reliable and mature nat-
ural language processing algorithms for string simi-
larity and either stemming or lemmatization, see Ta-
ble 6. Automatic Query Expansion (AQE), for example
with WordNet synonyms, is prevalent in information
retrieval but only rarely used in SQA. Despite its po-
tential negative effects on precision29, we consider it a
net benefit to SQA systems. Current SQA systems du-
plicate already existing efforts or fail to decide on the
right technique. Thus, reusable libraries to lower the
entrance effort to SQA systems are needed. Mapping
to RDF properties from verb phrases is much harder,
as they show more variation and often occur at mul-
tiple places of a question. Pattern libraries, such as

27https://www.w3.org/community/nli/
28http://eis.iai.uni-bonn.de/blog/2015/11/

the-2nd-annual-meetup-of-question-answering-community/
29Synonyms and other related words almost never have exactly the

same meaning.
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Table 6
Established and actively researched as well as envisioned techniques
for solving each challenge.

Challenge Established Future

Lexical Gap stemming, lemmatization, string similarity, synonyms, vector space model,
indexing, pattern libraries, explicit semantic analysis

combinated efforts,
reuse of libraries

Ambiguity user information (history, time, location), underspecification, machine learning,
spreading activation, semantic similarity, crowdsourcing, Markov Logic Network

holistic,
knowledge-base
aware systems

Multilingualism translation to core language, language-dependent grammar usage of multilingual
knowledge bases

Complex Operators reuse of former answers, syntactic tree-based formulation, answer type
orientation, HMM, logic

non-factual questions,
domain-independence

Distributed Knowledge and
Procedural, Temporal,
Spatial

temporal logic domain specific
adaptors, procedural
SQA

Templates fixed SPARQL templates, template generation, syntactic tree based generation complex questions

BOA [62], can improve property identification, how-
ever they are still an active research topic and are spe-
cific to a knowledge base.

The next challenge, (2) ambiguity is addressed by the
majority of the publications but the percentage does not
increase over time, presumably because of use cases
with small knowledge bases, where its impact is mi-
nuscule. For systems intended for longtime usage by
the same persons, we regard as promising integration
of previous questions, time and location, as is already
commen in web of document search engines. There is a
variety of established disambiguation methods, which
use the context of a phrase to determine the most likely
RDF resource, some of which are based on unstruc-
tured text collections and others on RDF resources. As
we could make out no clear winner, we recommend sys-
tem developers to make their decisions based on the re-
sources (such as query logs, ontologies, thesauri) avail-
able to them. Many approaches reinvent disambigua-
tion efforts and thus–like for the lexical gap–holistic,
knowledge-base aware, reusable systems are needed to
facilitate faster research.

Despite its inclusion since QALD 3 and following,
publications dealing with (3) multilingualism remain a
small minority. Automatic translation of parts of or the
whole query requires the least development effort, but
suffers from imperfect translations. A higher quality
can be achieved by using components, such as parsers
and synonym libraries, for multiple languages. A possi-
ble future research direction is to make use of various
language versions at once to use the power of a uni-
fied graph [35]. For instance, DBpedia [90] provides

a knowledge base in more than 100 languages which
could form the base of a next multilingual SQA system.

Complex operators (4) seem to be used only in spe-
cific tasks or factual questions. Most systems either use
the syntactic structure of the question or some form
of knowledge-base aware logic. Future research will
be directed towards domain-independence as well as
non-factual queries.

Approaches using (5) distributed knowledge as well
as those incorporating (6) procedural, temporal and spa-
tial data remain niches. Procedural SQA does not ex-
ist yet as present approaches return unstructured text
in the form of already written step-by-step instructions.
While we consider future development of procedural
SQA as feasible with the existing techniques, as far as
we know there is no RDF vocabulary for and knowl-
edge base with procedural knowledge yet.

The (7) templates challenge which subsumes the
question of mapping a question to a query structure is
still unsolved. Although the development of template
based approaches seems to have decreased in 2014, pre-
sumably because of their low flexibility on open do-
main tasks, this still presents the fastest way to develop
a novel SQA system but the limitiation to simple query
structures has yet to be overcome.

Future research should be directed at more modu-
larization, automatic reuse, self-wiring and encapsu-
lated modules with their own benchmarks and evalu-
ations. Thus, novel research field can be tackled by
reusing already existing parts and focusing on the re-
search core problem itself. A step in this direction
is QANARY [21], which describes how to modular-
ize QA systems by providing a core QA vocabulary
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against which existing vocabularies are bound. An-
other research direction are SQA systems as aggre-
gators or framework for other systems or algorithms
to benefit of the set of existing approaches. Further-
more, benchmarking will move to single algorithmic
modules instead of benchmarking a system as a whole.
The target of local optimization is benchmarking a pro-
cess at the individual steps, but global benchmarking
is still needed to measure the impact of error propaga-
tion across the chain. A Turing test-like spirit would
suggests that the latter is more important, as the local
measure are never fully representative. Additionally,
we foresee the move from factual benchmarks over
common sense knowledge to more domain specific
questions without purely factual answers. Thus, there
is a movement towards multilingual, multi-knowledge-
source SQA systems that are capable of understanding
noisy, human natural language input.
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Table 7: Surveyed publications from November 2010 to July of 2015, inclusive, along with the challenges they
explicitely address and the approach or system they belong to. Additionally annotated is the use light expressions as
well as the use of intermediate templates. In case the system or approach is not named in the publication, a name is
generated using the last name of the first author and the year of the first included publication.
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Tao et al. [131] Tao10 2010 X
Adolphs et al. [2] YAGO-QA 2011 X X
Blanco et al. [18] Blanco11 2011 X
Canitrot et al. [27] KOMODO 2011 X X
Damljanovic et al. [37] FREyA 2011 X X X
Ferrandez et al. [49] QALL-ME 2011 X X
Freitas et al. [56] Treo 2011 X X X X
Gao et al. [61] TPSM 2011 X X
Kalyanpur et al. [85] Watson 2011 X
Melo et al. [95] Melo11 2011 X X
Moussa and Abdel-Kader [100] QASYO 2011 X X
Ou and Zhu [107] Ou11 2011 X X X X
Shen et al. [124] Shen11 2011 X
Unger and Cimiano [133] Pythia 2011 X
Unger and Cimiano [134] Pythia 2011 X X X X
Bicer et al. [16] KOIOS 2011 X X
Freitas et al. [55] Treo 2011 X
Ben Abacha and Zweigenbaum [14] MM+/BIO-CRF-H 2012 X
Boston et al. [20] Wikimantic 2012 X
Gliozzo and Kalyanpur [64] Watson 2012 X
Joshi et al. [84] ALOQUS 2012 X X
Lehmann et al. [89] DEQA 2012 X X X
Yahya et al. [145] DEANNA 2012
Yahya et al. [146] DEANNA 2012 X X
Shekarpour et al. [118] SINA 2012 X X
Unger et al. [135] TBSL 2012 X X X
Walter et al. [141] BELA 2012 X X X X
Younis et al. [149] Younis12 2012 X X
Welty et al. [142] Watson 2012 X
Elbedweihy et al. [46] Elbedweihy12 2012 X
Cabrio et al. [24] QAKiS 2012 X
Demartini et al. [43] CrowdQ 2013 X X
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Aggarwal et al. [3] Aggarwal12 2013 X X X
Deines and Krechel [41] GermanNLI 2013 X
Dima [44] Intui2 2013 X X
Fader et al. [48] PARALEX 2013 X X X X
Ferre [50] SQUALL2SPARQL 2013 X X X
Giannone et al. [63] RTV 2013 X X
Hakimov et al. [65] Hakimov13 2013 X X X
He et al. [70] CASIA 2013 X X X X X
Herzig et al. [72] CRM 2013 X X X
Huang and Zou [77] gAnswer 2013 X X
Pradel et al. [111] SWIP 2013 X X
Rahoman and Ichise [114] Rahoman13 2013 X
Shekarpour et al. [121] SINA 2013 X X X
Shekarpour et al. [120] SINA 2013 X
Shekarpour et al. [119] SINA 2013 X X X
Delmonte [42] GETARUNS 2013 X X X
Cojan et al. [35] QAKiS 2013 X
Yahya et al. [147] SPOX 2013 X X
Zhang et al. [150] Kawamura13 2013 X X
Carvalho et al. [30] EasyESA 2014 X X
Rani et al. [115] Rani14 2014 X
Zou et al. [151] Zhou14 2014 X
Stewart [128] DEV-NLQ 2014 X
Höffner and Lehmann [75] CubeQA 2014 X X X
Cabrio et al. [26] QAKiS 2014 X
Freitas and Curry [54] Freitas14 2014 X X
Dima [45] Intui3 2014 X X X
Hamon et al. [67] POMELO 2014 X X
Park et al. [108] ISOFT 2014 X X
He et al. [71] CASIA 2014 X X X
Xu et al. [144] Xser 2014 X X
Elbedweihy et al. [47] NL-Graphs 2014 X
Sun et al. [130] QuASE 2015 X X
Park et al. [109] Park15 2015 X X
Damova et al. [39] MOLTO 2015 X
Sun et al. [129] QuASE 2015 X X
Usbeck et al. [139] HAWK 2015 X X X
Hakimov et al. [66] Hakimov15 2015 X
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